
X =1.00

X =0.01
perf

lossSD
Software Design and Quality

Modeling and Simulation of
Message-Driven Self-Adaptive Systems

Master Thesis of

Larissa Schmid

at the Department of Informatics

Institute for Program Structures and Data Organization (IPD)

Reviewer: Prof. Dr.-Ing. Anne Koziolek

Second reviewer: Prof. Dr. Ralf H. Reussner

Advisor: Dipl.-Inform. Jörg Henss

Second advisor: Dipl.-Inf. Martina Rapp

25. November 2019 – 25. May 2020

Karlsruher Institut für Technologie

Fakultät für Informatik

Postfach 6980

76128 Karlsruhe

This document is licensed under a Creative Commons Attribution 4.0 International License

(CC BY 4.0): https://creativecommons.org/licenses/by/4.0/deed.en

https://creativecommons.org/licenses/by/4.0/deed.en

I declare that I have developed and written the enclosed thesis completely by myself, and

have not used sources or means without declaration in the text.

Karlsruhe, 25.05.2020

. .

(Larissa Schmid)

Abstract

Dynamic systems that are capable of recon�guring themselves use message queues as

a common method to achieve decoupling between senders and receivers. Predicting

the quality of systems at the design stage is crucial, as changes within later stages of

development have a signi�cantly higher cost attached to them. At the moment, there is no

well-established method to represent message queues on an architectural level and predict

their impact on the quality of systems. Existing approaches do not model queues explicitly

and do not consider queuing e�ects or details of the messaging infrastructure such as �ow

control. In order to facilitate a representation thereof, this thesis proposes a meta-model,

as well as a simulation interface between a simulation of a component-based architecture

description language and a messaging simulation. The meta-model has been realized as

an extension to the Palladio Component Model. The interface has been implemented for

SimuLizar, which is a Palladio simulator, and a RabbitMQ inspired messaging simulation

that adheres to the AMQP 0.9.1 protocol. This enables architectural representation of

messaging and predicting quality attributes of message-driven, self-adaptive systems. The

evaluation with a case study shows the applicability of the approach and its prediction

accuracy for point-to-point communication. Moreover, other quality-related attributes,

such as queue length, queue input and output rates, and memory consumption, have been

predicted correctly. This provides deeper insights into the quality of a system. We also

argue that the approach in this work is capable of simulating self-adaptive message-driven

systems that recon�gure based on various metrics.

i

Zusammenfassung

Dynamische, sich selbst rekon�gurierende Systeme nutzen Nachrichtenwarteschlangen

als gängige Methode zum Erreichen von Entkopplung zwischen Sendern und Empfängern.

Das Vorhersagen der Qualität von Systemen zur Entwurfszeit ist wesentlich, da Änderun-

gen in späteren Phasen der Entwicklung sehr viel aufwändiger und teurer sind. Momentan

gibt es keine Methode, Nachrichtenwarteschlangen auf architekturellem Level darzustellen

und deren Qualitätsein�uss auf Systeme vorherzusagen. Existierende Ansätze modellieren

Warteschlangen nicht explizit sondern abstrahieren sie. Warteschlangene�ekte sowie De-

tails der Nachrichten-Infrastruktur wie zum Beispiel Flusskontrolle werden nicht beachtet.

Diese Arbeit schlägt ein Meta-Modell vor, das eine solche Repräsentation ermöglicht, und

eine Simulations-Schnittstelle zwischen einer Simulation einer komponentenbasierten

Architekturbeschreibungssprache und einer Nachrichtenaustausch-Simulation. Das Meta-

Modell wurde als Erweiterung des Palladio Komponentenmodells realisiert. Die Schnitt-

stelle wurde implementiert für den Palladio-Simulator SimuLizar und eine von RabbitMQ

inspirierte Simulation, die dem AMQP 0.9.1 Protokoll folgt. Dies ermöglicht architekturelle

Repräsentation von Nachrichtenaustausch und das Vorhersagen von Qualitätsattributen

von nachrichtengetriebenen, selbst-adaptiven Systemen. Die Evaluation anhand einer

Fallstudie zeigt die Anwendbarkeit des Ansatzes und seine Vorhersagegenauigkeit für

Punkt-zu-Punkt-Kommunikation. Außerdem konnten andere qualitätsbezogene Metriken,

wie etwa Nachrichtenwarteschlangenlänge, Ein- und Ausgangsraten von Nachrichten-

warteschlangen, sowie Speicherverbrauch korrekt vorhergesagt werden. Das ermöglicht

tiefere Einsichten in die Qualität eines Systems. Wir argumentieren weiterhin, dass der

Ansatz in dieser Arbeit selbst-adaptive nachrichtengetriebene Systeme, die sich basierend

auf verschiedenen Metriken rekon�gurieren, simulieren kann.

iii

Contents

Abstract i

Zusammenfassung iii

1. Introduction 1
1.1. Rationale . 1

1.2. Aims and Objectives . 1

2. Foundations 3
2.1. Message-oriented Middleware . 3

2.1.1. Design Patterns for Messaging 4

2.1.2. Advanced Message Queuing Protocol (AMQP) 5

2.1.3. RabbitMQ . 7

2.1.4. Messaging Simulation . 7

2.2. Self-Adaptive Systems . 8

2.3. Model-Driven Software Development (MDSD) 8

2.4. The Palladio Approach . 9

2.4.1. Palladio Component Model (PCM) 9

2.4.2. Quality Analysis Lab (QuAL) . 12

2.4.3. SimuLizar . 13

2.5. Colored Petri Nets . 14

2.6. Interoperability of Simulations . 16

3. RelatedWork 19
3.1. Modeling Message-Driven System with Palladio 19

3.2. Self-Adaptive Systems using Message Queues 21

4. Modeling Message-Driven Systems 23
4.1. Meta-Model elements . 24

4.1.1. Repository . 24

4.1.2. Service E�ect Speci�cation . 25

4.1.3. Assembly . 26

4.1.4. Allocation . 30

4.2. Replications of Elements due to Recon�gurations 30

4.3. Formalization using CPNs . 33

5. Simulating Messaging 41
5.1. Requirements for a Simulation Interface 41

5.2. Concepting a Simulation Interface . 42

v

Contents

5.3. Implementation . 44

5.4. Integrating Measurements into the Messaging Simulation 47

5.5. Transformation . 49

5.6. Simulating Self-Adaptations . 51

6. Evaluation 55
6.1. GQM plan . 55

6.2. Calibrating the Model . 56

6.2.1. Benchmarking RabbitMQ . 56

6.2.2. Interpreting the Results . 64

6.3. SPECjms2007 Benchmark . 68

6.3.1. SPECjms2007 Interaction 1 . 68

6.3.2. SPECjms2007 Interaction 3 . 69

6.4. PCM Models of the SPECjms2007 Benchmark 69

6.4.1. Repository and System model . 70

6.4.2. Usage model . 72

6.5. Evaluation of Prediction Accuracy . 72

6.5.1. Results SPECjms2007 Interaction 1 72

6.5.2. Results SPECjms2007 Interaction 3 73

6.6. Evaluation of Support of Self-Adaptations 74

6.7. Evaluation summary . 76

7. Conclusion 79
7.1. Summary . 79

7.2. Future Work . 80

Bibliography 81

A. Appendix 85
A.1. QVT-O Transformations . 85

A.2. SPECjms2007 measurement results . 87

vi

List of Figures

2.1. Overview of the entities of the AMQ model 6

2.2. Component type hierarchy . 11

2.3. Overview of the parts of the QuAL framework relevant to this work . . . 13

2.4. Example of a Petri Net . 15

2.5. State of the Petri Net after the transition �red once 15

2.6. Example of a CPN . 16

2.7. State of the CPN after the transition �red once 16

4.1. Elements of the meta-model of the repository view type 25

4.2. Repository of the alarm noti�cation system 26

4.3. The SendMessageAsync action . 26

4.4. SEFF model using the new SendMessageAsync action 27

4.5. The available routing entities and their relations 28

4.6. Hierarchy of message channels . 29

4.7. Assembly model of the example alarm noti�cation system 30

4.8. Base scenario for replications . 31

4.9. Replication of producer . 31

4.10. Replication of router . 32

4.11. Replication of consumer . 32

4.12. Base scenario with a publish/subscribe channel 32

4.13. Replication of consumer in case of a publish/subscribe channel 32

4.14. Point-to-point-Channel . 34

4.15. Publish/subscribe Channel . 34

4.16. Round-Robin scheduling (violet) combined with a Point-To-Point channel

(blue) . 35

4.17. Execution of a CPN using Round-Robin for scheduling (initial marking) . 35

4.18. Execution of a CPN using Round-Robin for scheduling (Step 1) 36

4.19. Execution of a CPN using Round-Robin for scheduling (Step 2) 36

4.20. Acknowledgments (orange) combined with a Point-To-Point channel (blue) 37

4.21. Acknowledgments (orange) combined with a Publish/Subscribe channel

(green) . 38

4.22. An example system modeled as CPN . 39

4.23. An example system modeled using the elements from the presented meta-

model . 39

4.24. An example system as CPN using an aggregator 39

5.1. Overview of the simulation interface concept 43

5.2. Overview of the implementation structure 44

vii

List of Figures

5.3. Overview of the interface structure . 45

5.4. Process of sending a message . 46

5.5. Process of receiving a message . 47

5.6. Structure of measurements integration 48

5.7. Example of a transformed model with a point-to-point channel 50

5.8. Example of a transformed model with a publish/subscribe channel 50

5.9. Model after the transformation with added elements colored orange . . . 52

5.10. Propagation of model changes by the MessagingModelSyncer 53

6.1. Measured latency in the base con�guration with a send rate of 1 msg/s . 58

6.2. Measured latency in the base con�guration with a send rate of 1 msg/s . 58

6.3. Measured latency in the prefetch con�guration with a send rate of 1 msg/s 59

6.4. Measured latency in the prefetch con�guration with a send rate of 1 msg/s 59

6.5. Measured latency in the pubAcks con�guration with a send rate of 1 msg/s 60

6.6. Measured latency in the pubAcks con�guration with a send rate of 1 msg/s 60

6.7. Measured latency in the base con�guration with a send rate of 100 msg/s 61

6.8. Measured latency in the base con�guration with a send rate of 100 msg/s 61

6.9. Measured latency in the prefetch con�guration with a send rate of 100 msg/s 62

6.10. Measured latency in the prefetch con�guration with a send rate of 100 msg/s 62

6.11. Measured latency in the pubAcks con�guration with a send rate of 100 msg/s 63

6.12. Measured latency in the pubAcks con�guration with a send rate of 100 msg/s 63

6.13. Linear regression model for the basic con�guration with a send rate of 1

msg/s . 65

6.14. Linear regression model for the di�erence between the con�guration with

consumer prefetch and the basic con�guration for a send rate of 1 msg/s 66

6.15. Linear regression model for the di�erence between the con�guration with

publisher acknowledgments and the basic con�guration for a send rate of

1 msg/s . 66

6.16. Linear regression model for the basic con�guration with a send rate of 100

msg/s . 67

6.17. Linear regression model for the di�erence between the con�guration with

consumer prefetch and the basic con�guration for a send rate of 100 msg/s 67

6.18. Linear regression model for the di�erence between the con�guration with

publisher acknowledgments and the basic con�guration for a send rate of

100 msg/s . 68

6.19. System model of SPECjms2007 interaction 1 71

6.20. System model of SPECjms2007 interaction 3 71

6.21. Measurement results and prediction of latency for interaction 1 by message

type . 74

viii

List of Tables

2.1. Palladio view types . 10

3.1. Comparison of the approaches for modeling message-driven systems using

Palladio . 20

5.1. Overview over the mapping of entities and requests between a component

and a messaging simulation . 43

5.2. Mapping of meta-model elements to AMQP entities 49

5.3. Overview of the anticipated messaging-related recon�gurations and their

implication on the IAmqpBrokerModel . 51

6.1. Goals, Questions, and Metrics for the evaluation 56

6.2. Speci�cations of the machine used for benchmarking 57

6.3. Message sizes in KByte by message type for interaction 1 [34, p.117] . . . 69

6.4. Message sizes of the PriceUpdate message in KByte for interaction 3 [34,

p.117] . 69

6.5. Sent and received mesage types by messaging component 70

6.6. Synthetic test cases and their outcome 73

6.7. Delivery time by message type and deviation between measurement me-

dians and prediction . 75

6.8. Overview of the anticipated messaging-related recon�gurations and their

implication on the Palladio model and the IAmqpBrokerModel 76

A.1. Measurement results of SPECjms2007 interaction 1 per message type . . 87

A.2. Measurement results of SPECjms2007 interaction 3 per message type . . 87

ix

1. Introduction

The rationale for this study is outlined in Section 1.1. Then, the objective is de�ned in

section 1.2.

1.1. Rationale

Nowadays, there is a preference for systems in the context of the Internet of Things or

microservice systems to be developed as distributed systems. Hereby, message queues

decouple the sending and receiving ends of processing requests, which communicate via a

message broker and do not need to explicitly know each other. Asynchronous communi-

cation is considered to improve scalability and availability of systems as it facilitates the

reduction of waiting times and the application of load balancing by distributing messages

to attached consumers. The distribution of messages to consumers can not only be depen-

dent on a �xed scheduling strategy, but also on �ow control, which can cause back pressure

when consumers do not handle messages as fast as they are sent to them. Elasticity is

provided by adding or removing consumers. Such scaling decisions can be taken based on

queue metrics [13, 14]. Performance is one of the most important qualities of software

nowadays. Not only is it important to provide users with a good user experience, but it

also helps to reduce operating costs. However, the performance impact of using message

brokers in a system can only be determined at runtime. At the moment, there is no method

to represent message queues on an architectural level and predict their impact on the

quality of systems. Changes at this stage of the development are signi�cantly more costly

than during early stages. Existing approaches do not simulate queuing behavior in detail

but abstract it. Also, they do not consider self-adaptive systems. Therefore, an approach for

modeling message brokers and queuing behavior within self-adaptive system architectures

is needed. Simulating these models will allow for a prediction of their quality attributes.

1.2. Aims and Objectives

The main aim of this thesis has been to predict the quality of message-driven self-adaptive

systems. To ful�ll the aim, we �rst propose a meta-model for mapping message-based

communication. This meta-model is realized as an extension to the Palladio Component

Model. We also provide an approach to formalization of the semantics of the meta-

model using Colored Petri Nets. Second, a simulation interface between a simulation of a

component-based architecture description and a messaging simulation is presented along

with an implementation for the Palladio simulator SimuLizar and an AMQP messaging

simulation. We chose SimuLizar because of its capability to simulate self-adaptations. For

1

1. Introduction

deriving quality predictions, the Quality Analysis Lab (QuAL) [25] has been integrated

into the messaging simulation as well as the implementation of the simulation interface

and extended with messaging-speci�c metrics and measuring points.

The following research questions are addressed:

RQ1: How can message queues be represented on an architectural level?

RQ2: Can prediction accuracy for message-driven systems be improved using a detailed

simulation of the message queues?

RQ3: How can adaptations of the system be mapped to the architectural model and the

message queue simulation?

2

2. Foundations

This chapter covers the foundations of this work. Since this work is about modeling

and simulation of message-driven self-adaptive systems, Section 2.1 introduces message-

oriented middleware and Section 2.2 self-adaptive systems. Section 2.3 presents model-

driven software development as model-driven techniques will be used in this work. We

describe the Palladio Approach for modeling and simulating software architectures in

Section 2.4. The architectural representation of messaging will be realized as an extension

to the Palladio Component Model to enable performance predictions for complete software

architectures using messaging as communication paradigm. Section 2.5 introduces Colored

Petri Nets. We will use them for a formalization of the semantics of the proposed meta-

model. How interoperability between di�erent simulations can be classi�ed is presented

in Section 2.6.

2.1. Message-oriented Middleware

Message-oriented middleware (MOM) enables scalability, reliability, and �exibility in

distributed systems [6]. Peers can communicate with other peers asynchronously via the

sending of messages. Messages sent are stored in queues until the receiving consumer is

ready to process them one by one. According to Celar [6], there are two types of MOM:

Peer-to-peer messaging, where every peer has a middleware component that is responsible

for the discovery of other peers, and broker-based messaging, where every peer only

needs to know the broker which is responsible for routing the message. The advantage of

broker-based messaging is the loose coupling between sender and receiver [18, p. 322]. In

the following, the term MOM will refer to broker-based messaging only.

There are two messaging models, point-to-point communication and publish/subscribe

[9]. In point-to-point communication, a message is delivered to one consumer although

there can be more consumers to that queue. This makes it a good strategy for load-balancing

as well as for the distribution of batch jobs. In contrast, producers publish messages to a

speci�c channel or topic in the publish/subscribe model. Consumers subscribe to these

channels or topics if they wish to receive messages from there. Any entity can be either

a producer, a consumer, or both. A common application of this model is broadcasting.

However, publishers do not have any guarantee on the number of receivers which may

even be zero. Publish/subscribe provides high �exibility, whereas the complexity is higher

than in the point-to-point model [9]. An example of the application of point-to-point

communication are messages about purchases that customers made because they should be

processed only once. Price update messages by a headquarter should be delivered to every

supermarket the headquarter is responsible for. Hence, publish/subscribe communication

can be applied here.

3

2. Foundations

As mentioned above, the point-to-point model provides load-balancing by its property

of delivering a message to only one connected consumer. However, �ow control can also

contribute to load-balancing. When �ow control is enabled, producers only get a certain

amount of credit and can only send as many messages as they have credit for. When the

receiver of a message acknowledges it, they get credit back and can, therefore, send further

messages. Flow control can also cause back pressure when producers do not have enough

credit to send a message to the desired consumer. They can then either choose to send the

message to another consumer they have enough credit for or wait until they get credit

back for the originally desired consumer.

Hohpe and Woolfs [18] provide design patterns for building messaging solutions. Pat-

terns important for designing a system using messaging as communication paradigm will

be introduced in Section 2.1.1. There are several standards for messaging with multiple

implementations each. One standard is the Advanced Message Queuing Protocol (AMQP)

which is presented in further detail in Section 2.1.2. RabbitMQ, which supports not only

AMQP but also e.g. MQTT and STOMP, is introduced in 2.1.3. The messaging simulation

used in this work which is inspired by RabbitMQ will be explained in Section 2.1.4.

2.1.1. Design Patterns for Messaging

One of the main goals of using messaging is to achieve decoupling between senders and

receivers. A �rst approach to that is the use of Message Channels where the sender has to

know the name of a channel only instead of the name of the receiver. Message channels are

unidirectional. To ensure that messages can be read by their receivers, Datatype Channels
[18, p.111�.] can be used where all data sent on one channel must have the same type.

This means that e.g. price update and purchase information messages are sent via two

di�erent channels. Point-to-point and publish/subscribe channels map the respective

communication model introduced in Section 2.1 [18, p.101]. Invalid and not deliverable

messages can be dealt with by forwarding them to an Invalid, respectively Dead Letter
message channel. This should happen in conjunction with a system monitoring tool that

can decide upon further delivery of the message [18, p.101].

Applications can connect to message channels using Message Endpoints which "encapsu-
late the messaging system from the rest of the application [18, p.96]." A messaging endpoint

can either send or receive messages and is channel-speci�c.

However, when using channels for decoupling only, the number of channels grows very

quickly. Also, an application still has to know where to address its messages itself, i.e.

which channels and respective receivers are interested in a message. This could depend

on criteria the application is not aware of, e.g. the number of messages passed through

the channel so far [18, p.78f.]. Routers can help with that by taking responsibility for

determining the correct destination of a message. The general functionality of a router

includes consuming messages from message channels and republishing them to di�erent

channels based on a set of criteria. One criterion could be the properties of the message,

environmental conditions, or the state of the router [18, p.80�.]. A router that only uses the

properties of a message to determine its destination is the Content-Based Router [18, p.230].

The Aggregator is an example of a stateful router: It stores messages until it received a

complete set of related messages and then republishes them as a single message composed

4

2.1. Message-oriented Middleware

of the correlated messages [18, p.269]. Messages are correlated by e.g. their type. If a set is

considered complete can be determined by various criteria, e.g. by a �eld in every message

indicating how many messages there are to correlate in total or after a certain amount of

time [18, p.272]. When a supermarket decides to extend its product range and requests

di�erent suppliers of it for the price they charge for the new product, using an aggregator

is a good idea. The aggregator just needs to know how many suppliers were requested

and can then wait for the individual replies, correlate the ones regarding the same product,

and only forward the reply with the lowest price as soon as all suppliers have answered,

which is the completeness criterion in this example.

Though routers provide better decoupling, managing an increasing number of message

routers an application can send messages to also becomes cumbersome. Using a central

Message Broker that receives messages from multiple destinations and routes them provides

a solution to that [18, p.323�.]. The internals of the message broker are implemented using

other message routers. However, the message broker has a di�erent scope than a single

router because it is an architectural pattern as it concerns the whole organization of a

system. Message broker hierarchies help with managing complexity by combining several

message brokers, each responsible for only a subnet of the system. If a message should

be routed to a destination inside a subnet, the local message broker handles that. If the

destination is not inside the same subnet, the message is forwarded to a central message

broker which in turn routes it to the relevant subnet. This provides a compromise between

having only a single point of maintenance and its complexity.

2.1.2. Advanced Message Queuing Protocol (AMQP)

The Advanced Message Queuing Protocol is an open standard for passing messages

between applications. The aim is to enable interoperability between all messaging middle-

ware. It is a connected protocol building on TCP/IP with channels providing the ability to

multiplex this connection [15, p.19f.]. Information sent is organized into frames of various

types. Though the version 1.0 of AMQP is the most recent, the focus in this work will

be on AMQP 0.9.1 as the messaging simulation used, which will be presented in Section

2.1.4, is oriented at RabbitMQ which adheres to AMQP 0.9.1. Not only de�nes AMQP 0.9.1

a network wire-level protocol but also an Advanced Message Queuing Protocol Model

(AMQ model) which "speci�es a modular set of components and standard rules for connecting
these [15, p.7]." We present the AMQ model in Section 2.1.2.1. However, the simulation

realizes the Flow Control proposed in the 1.0 version, which will therefore be presented

in Section 2.1.2.2 together with a brief overview of the conceptual model of transport of

AMQP 1.0.

2.1.2.1. Advanced Message Queuing Protocol Model (AMQmodel)

The AMQ model distinguishes between three main types of components, the exchange,
message queue and binding. Exchanges receive messages from applications and route

them to queues based on the binding of the queue to the exchange. There are Publisher
applications andConsumer applications which the �rst one publishing, i.e. sending messages

5

2. Foundations

binded to

Exchange

Queue

Producer
Application publishes to

Consumer
Applicationconsumes from

Figure 2.1.: Overview of the entities of the AMQ model

to an exchange and the latter receiving messages from queues. Fig. 2.1 gives an overview

of the entities of the AMQ model and their relations.

Message queues are "named FIFO bu�ers that hold messages [15, p.28]". They can be

durable, temporary, or auto-deleted, which refers to their lifetime. Auto-deleted queues are

deleted when they are no longer used. Temporary queues are deleted at server shutdown

whereas durable queues must be explicitly deleted.

Exchange types areDirect, Fanout, Topic, andHeaders with theDirect and Topic exchanges

being of particular importance [15, p.15]. In the case of a direct exchange, message queues

can bind to it with a routing key K. When a publisher sends a message to that exchange

with routing key R, and R = K, the message is forwarded to that queue. Topic exchanges

allow for the de�nition of a routing pattern P instead of a routing key for binding message

queues. All messages with a routing key R matching that pattern will then be forwarded

to that queue [15, p.27]. Headers exchanges use headers instead of the routing key. Fanout

exchanges route incoming messages to all queues regardless of the routing key.

The content of messages consists of a content header and a content body. The content

header holds a set of properties, e.g. the routing key, while the content body is binary data

to be processed by the receiving application. Messages can also be speci�ed as persistent

which means that they are written on disk and can, therefore, be delivered even in the event

of malfunction [15, p.26]. Consumer applications can explicitly acknowledge messages,

e.g. after receiving or processing them. In the automatic acknowledgment mode, the

server removes messages from the queue after delivery [15, p.29]. Consumer applications

can use explicit acknowledgments and specify a prefetch to avoid being �ooded with

more messages than it can process [15, p.29]. The prefetch states how many messages the

consumer application accepts before it has to have acknowledged previous messages. To

signal publishers that they are over-producing, �ow control at the link layer can be applied.

Though prefetch and �ow control are mentioned in the AMQP 0.9.1 speci�cation, the

mechanisms to achieve them are not speci�ed in more detail and are not very sophisticated.

Senders can not know how many messages they can send before the receiver blocks; �ow

control is even described as "emergency procedure" [15, p.29].

6

2.1. Message-oriented Middleware

2.1.2.2. AMQP 1.0 Transport Model

In contrast to AMQP 0.9.1, AMQP 1.0 focuses more on the actual transport of messages.

The conceptual model for transport speci�es nodes and links as entities in an AMQP

network [28, p.31�.]. A node can be a Producer, Consumer, or a queue. Nodes are held by

containers which are the broker or a client application. Each container can hold many

nodes. Client applications and brokers are connected via an AMQP connection which

is divided into unidirectional channels. To enable bidirectional communication between

connected entities, AMQP sessions correlate channels appropriately [28, p.31]. Messages

are transferred via unidirectional links [28, p.33] which are established within a session.

Whereas �ow control for AMQP 0.9.1 is only available as proprietary extension by

di�erent vendors, AMQP 1.0 de�nes a standardized �ow control scheme on sessions

[28, p.47] as well as on links [28, p.53]. Flow control on sessions controls the number

of transmitted transfer frames that are not acknowledged yet. Message transfers are

controlled by �ow control on links. For both of them, the receiver can specify a maximum

number of events that he accepts without having them acknowledged. The sender can

then only send a message if he has received a su�cient number of acknowledgments.

When consumers do not send acknowledgments as fast as messages arrive at the queue,

back pressure occurs. However, in contrast to the consumer prefetch which is negotiated

once at the beginning, the �ow control can be dynamically adjusted over run-time.

2.1.3. RabbitMQ

RabbitMQ [30] is an open-source message broker that implements the AMQP 0.9.1 protocol.

It also provides several extension to it, e.g. exchange to exchange bindings, dead letter

exchanges, and queue length limits. A variety of client libraries, as e.g. Java, .NET, and

Ruby, and protocols besides AMQP 0.9.1 are supported. Other protocols are e.g. STOMP,

MQTT, and AMQP 1.0 which are supported via plugins.

2.1.4. Messaging Simulation

The messaging simulation [27] we use in this work is inspired by RabbitMQ and adheres

to the AMQ model of AMQP 0.9.1. However, on the link layer, it is oriented at AMQP 1.0

which requires conversion of 1.0 frames sent on links to commands from AMQP 0.9.1. In

addition to consumers, producers, and queues, which were explicitly described as nodes in

the AMQP 1.0 speci�cation, exchanges are also nodes in the simulation. Client applications

can be either publisher or consumer applications. Sessions and connections are abstracted

in the simulation. By default, �ow control is turned on on the link layer. The simulation is

still under development. In consequence, it could include bugs and behavior that does not

comply to the standard.

The AmqpBrokerModel class is responsible for the creation of the entities of the sim-

ulation and triggering of sending of messages. It extends the AbstractSimulationEngine
which is an abstraction layer for discrete-event simulation libraries [1]. The state of

discrete systems changes stepwise. Discrete-event simulations realize that by having

one central timeline on which events are scheduled, i.e. placed on [33, p.168]. An event

7

2. Foundations

has an event routine that is executed at the scheduled time of the event. Usually, one

event schedules subsequent events. For example, the event of receiving a message sched-

ules a disposition event. Simulation entities capable of scheduling events inherit from

AbstractSimEntityDelegator which is also part of the abstract simulation engine.

2.2. Self-Adaptive Systems

Self-Adaptive systems can con�gure and recon�gure themselves to react to a changing

operational and environmental context. This lets them not only optimize themselves but

also enables them to recover themselves and provide additional functionality. Designing

systems as self-adaptive systems provides a way to cope with the complexity of software

systems by keeping the complexity from users and administrators [7]. Self-adaptive

systems can be categorized in proactive and reactive systems [26]: Whereas proactive

systems consider anticipated future demands for their recon�gurations, reactive systems

recon�gure themselves as a reaction to the current status of the system. A status triggering

a recon�guration could be one or a combination of several performance metrics exceeding

or falling below a de�ned threshold. As it is easier to react to a current state than to predict

future demands, the reactive approach has become more popular.

The elasticity of a system refers to its ability to acquire and release resources dynamically.

System can be scaled horizontally or vertically. While horizontal scaling adds and releases

new machines, vertical scaling a�ects the sizing, e.g. CPU and RAM, of already existing

machines. Because on the most operating systems it is not possible to change their power

without rebooting, most cloud providers only o�er horizontal scaling [26].

The time a system needs to execute adaptations also has an impact on its e�ectiveness

and e�ciency [40]. For example, a newly launched VM is not available immediately; it

needs time to boot and be deployed. In fact, an adaptation could also harm the Quality of

Service (QoS) of the system when the cost of the recon�guration in terms of performance

is higher than the gained bene�t. Therefore, it is important to be aware of the transient

e�ects caused by recon�gurations when developing self-adaptive systems.

2.3. Model-Driven So�ware Development (MDSD)

Model-Driven Software Development (MDSD) is an approach to software development

which treats models as equal to code [39, p.3] and part of the software [39, p.28]. According

to Stachowiak [38, p.131�.], a model has three main characteristics which are mapping of

an original which can be an object from the real world or another model, reduction as not

all properties of the original are modeled, and pragmatism because the model is designed

for a certain context. The goal of MDSD is a reduction of platform complexity [36], a faster

software development by automation of activities, and increased platform-independence

[39, p.13f.]. Schmidt de�nes it as a combination of [36]:

• Domain-speci�c modeling languages (DSML) describe the structure and behavior as

well as the requirements of an application in a speci�c domain. The structure of the

DSML is de�ned by a meta-model which will be explained in the following.

8

2.4. The Palladio Approach

• Transformation engines and generators transform models to other models or other

artifacts, e.g. code, in an automated way. This enables consistency between all

artifacts.

Models of the DSML instantiate a meta-model which de�nes an abstract and concrete

syntax and a static and dynamic semantics [39, p.57f.]. The abstract syntax determines

which elements and relations between them can be used for modeling independent of their

representation in models. How they are represented is speci�ed by the concrete syntax. A

meta-model can have several concrete syntaxes but only one abstract syntax. The static

semantic de�nes additional rules and constraints that can not be expressed by the abstract

syntax. The semantics of the meta-model is captured by the dynamic semantics.

The Eclipse Modeling Framework (EMF) [12] is a tool that supports MDSD. It de�nes its

own meta-meta-model named Ecore which can then be used to de�ne own meta-models.

We will use EMF in this work to de�ne a meta-model for modeling messaging on an

architectural level.

2.4. The Palladio Approach

Palladio is an approach for modeling and analyzing component-based software archi-

tectures [33, p. 9]. Reussner et al. de�ne software components as in the following: “A

software component is a contractually speci�ed building block for software, which can

be composed, deployed, and adapted without understanding its internals [33, p. 47].“

The Palladio Approach includes three parts which are the Palladio Component Model

(PCM), analytical techniques, and a development process model [33, p. 11]. Prediction

of performance and reliability is supported. In Section 2.4.1, the PCM is explained in

more detail. How measurements during analyses are conducted and stored is presented

in 2.4.2. There are multiple tools that aid analysis of systems modeled with Palladio, e.g.

SimuCom which is often considered as the reference simulator of Palladio. In this work,

we will use SimuLizar for the simulation of models since it supports predicting the quality

of self-adaptive systems. Also, SimuLizar is the designated successor and will replace

SimuCom soon. Section 2.4.3 introduces SimuLizar.

2.4.1. Palladio Component Model (PCM)

The meta-model of Palladio is structured into viewpoints and view types [33, p.42]. A view

that shows elements of a model is always an instance of a view type which de�nes which

classes of the meta-model are shown in that view. Viewpoints group view types that have

the same concern. However, one view type can be referenced by several viewpoints.

The Palladio Component Model supports structural, behavioral, and deployment view-

points [33, p. 44�.]. The structural viewpoint consists of the repository view type, where

components, interfaces, and data types are speci�ed in a system-independent way, and

the assembly view type, which contains information about the structure of a system or

composite component. Usage models describe the usage of the system whereas Service

E�ect Speci�cations (SEFF) specify the intracomponent behaviour and sequence diagrams

9

2. Foundations

View point System-independent System-speci�c

Structural Repository Assembly

Behavioral SEFF Usage, Sequence Diagrams

Deployment Resource environment Allocation

Table 2.1.: Palladio view types

the intercomponent behaviour. These view types make up the behavioral viewpoint.

The deployment viewpoint consists of two view types, the allocation and the resource

environment view type. While the resource environment view type contains all available

containers and their connecting links, the allocation view type describes a concrete allo-

cation of the assembled system to a resource environment. Table 2.1 gives an overview

of the viewpoints and view types and whether a view type is system-speci�c or system-

independent. In the following, we will describe the view types relevant to this work in

more detail.

2.4.1.1. Repository view type

Repositories contain components, interfaces, and data types. The parameters of signatures

of interfaces are typed by data types. Interfaces have a name and contain a list of signatures

[33, p.45]. Every signature speci�es a name, input parameters, and a return data type.

Parameters are also typed by data types. Components specify their relation to other

components by de�ning provided and required roles which refer to interfaces [33, p.47].

To access the services of a component, every component must provide at least one interface.

However, it can also require that interface.

In the event extension already present in the PCM, SourceRoles and SinkRoles inherit

from ProvidedRole, respectively RequiredRole, and specify the ability of a component to

send or receive events. EventGroups are interfaces specifying EventTypes as signatures [31,

p.132f.].

There are di�erent abstraction levels components can be speci�ed on to account for

di�erent stages in the development process [33, p.51�.]. For example, in the beginning,

it may only be clear which functionality a component should provide but not which

functionality it needs in order to do so. Then, a Provides Component Type can be speci�ed

by only giving provided interfaces of the component. However, if some required interfaces

are already known, they can also be given. The provides component type is the most abstract

component type available. When all required interfaces are known, the speci�cation can be

re�ned by adding them. The component is now speci�ed as complete component type. It is

also possible to add new provided interfaces. Implementation component types are basic and

composite components which additionally specify their behavior. Composite components

are implemented by composing other components. How the behavior of components can

be speci�ed will be covered in the next section. Fig. 2.2 shows the hierarchy of component

types. The conforms relationship requires the less abstract component types to provide

all interfaces their respective more abstract component type provides and to not require

more interfaces than it. However, they may provide more or require fewer interfaces.

10

2.4. The Palladio Approach

conforms

Provides
Component Type

Complete
Component Type

Implementation
Component Type:
Basic Component

Implementation
Component Type:
Composite
Component

conforms conforms

Figure 2.2.: Component type hierarchy

2.4.1.2. SEFF view type

Information about the inner behavior of components is given in SEFFs which specify the

relation between provided and required interfaces [33, p.53]. Resource demanding SEFFs

(RDSEFFs) are an extension to SEFFs for performance prediction [33, p.99]. They de�ne

the sequence of actions performed when a provided service of a component is called.

Every action can have a resource demand that speci�es how many abstract work units of

a certain processing type are needed for performing the action.

In- and output parameters used can be characterized, meaning that their values as well

as e.g. bytesize and number of elements in a collection can be given [33, p.106]. Resource

demands of actions can depend on the characterization of input parameters. For specifying

these characterizations, Stochastic Expressions (StoEx) [33, p.103] can be used. This enables

stating not only constant values but also random variables with distribution functions.

Random variables can be either discrete or continuous; discrete variables are speci�ed

with a probability mass function (PMF) and continuous with probability density functions

(PDF). Additionally, StoEx allows for calculations and comparisons. The speci�ed behavior

in the usage and SEFF models can be dependent on these parameter characterizations, e.g.

how long an action takes can be dependent on the bytesize of a parameter.

2.4.1.3. Assembly view type

Systems and composite components are assembled in the assembly view type [33, p.49].

As for components, systems must provide at least one role. Assembly contexts instantiate

components from a repository. They inherit the provided and required roles of the encap-

sulated component. How the assembly contexts of a system or composite component are

wired together is given by assembly connectors which link required to provided interfaces

11

2. Foundations

of a subtype or the same type. AssemblyEventConnectors can connect source and sink roles.

This speci�es point-to-point communication between them. Publish/Subscribe communi-

cation between source and sink roles is speci�ed by connecting them to an EventChannel
via an EventChannelSourceConnector, respectively EventChannelSinkConnector [31, p.138].

Delegation connectors link interfaces of systems or composite components to an in-

terface of an assembly context they contain [33, p.50]. Requests arriving at the interface

of the composite structure are then forwarded to the speci�ed assembly context. Dele-

gation connectors can either link provided to provided interfaces or required to required

interfaces.

2.4.1.4. Usage view type

For predicting whether a system will conform to a speci�ed service level, usage of the

system needs to be taken into account. Palladio o�ers the possibility to describe user

behavior in usage models that can contain several usage scenarios [33, p.56f.]. A scenario

describes how a user interacts with the system, i.e. which provided roles of the system

he uses in which frequency. Also, specifying the number of users is possible. Therefore,

two types of workload are distinguished which are open and closed. While in an open

workload, users arrive, execute the scenario behavior, and then leave, users in closed

workloads execute the scenario over and over. For open workloads, an interarrival time

must be given whereby for closed workloads, the number of expected users and their think

time between two executions of their behavior must be speci�ed.

2.4.1.5. Allocation view type

The allocation of a system speci�es which entities of the system are allocated to which

resource of a resource environment [33, p.58]. Assembly contexts, composite components,

and event channels must be allocated by creating AllocationContexts that reference the

entity to allocate as well as the resource container they should be allocated on. Composite

components can be deployed to one resource only.

2.4.2. Quality Analysis Lab (QuAL)

The Quality Analysis Lab (QuAL) is a framework for conducting, storing, and visualizing

metric measurements. For conducting measurements, metrics that should be measured

need to be speci�ed regarding their capture type (e.g., real number) and unit (e.g., seconds)

[25, p.7]. Also, a name and a description must be given to capture the semantics of a metric.

An example of a metric is the response time metric which is captured as a real number

in seconds. QuAL provides a library of common metrics which can be extended by own

metrics. Metrics type the measurements to collect. There are two types of measurements:

Basic measurements capture one value while measurement sets consist of several basic

measurements [25, p.8].

When running an analysis, probes measure values. Associated calculators process and

enrich them with the metric of interest, i.e. converting measures to measurements [25,

p.23]. An example of a calculator is the response time calculator which takes two probes

12

2.4. The Palladio Approach

Data Flow: Metric measurements in Palladio Analyses

Data specification: Metrics & Measurements

typed by

transferred via
Pipes and Filters

Metrics Measurements

Analyzer
Probes &

Calculators
Recorders

Figure 2.3.: Overview of the parts of the QuAL framework relevant to this work

of the current simulation time and derives the response time by subtracting the two values

and attaching the response time metric to the result. Calculators do not only observe

probes but are also observed themselves. Whenever a new measurement is available,

a recorder gets noti�ed and is responsible for storing it. An example of a recorder is

the Experiment Data Persistency & Presentation (EDP2) [25, p.37]. Measurements are

transferred to recorders via the Pipes and Filters framework. Fig. 2.3 gives an overview of

the mentioned parts of the QuAL framework.

Typically, a set of standard measurements is collected and persisted. However, cre-

ating a Measuring Point Repository and Monitor Repository model enables the user to

explicitly specify which measurements he wants to take [25, p.39�.]. At the moment, this

is supported by the Palladio analyzer SimuLizar only. The measuring point repository

consists of measuring points that specify which part of the system they monitor, e.g. an

assembly context. The monitor repository model consists of monitors that each reference

a measurement speci�cation, comprising a measuring point, a metric that is to be col-

lected at that measuring point, and if self-adaptations of the system are triggered by these

measurements. A monitor can be activated or deactivated.

2.4.3. SimuLizar

SimuLizar extends Palladio with the possibility to model and simulate self-adaptive sys-

tems. Therefore, a self-adaptation viewpoint is introduced, containing the Monitoring

13

2. Foundations

Speci�cation View and the State Transition View [4]. The Monitoring Speci�cation View

comprises the measuring point and monitor repository model whereas the State Transi-

tion View contains self-adaptation rules which consist of a condition and an action to be

executed when the condition is true. The system is simulated using a MAPE-K loop [4, 5]:

“The simulated system is monitored, the monitoring results are analyzed, recon�guration is
planned, and a recon�guration is executed on the simulated system if required.“ Recon�gura-

tion in this context means transforming the PCM model by executing a model-to-model

transformation. Supported model transformation languages are QVT-O, Henshin, and

Storydiagrams.

On the implementation level, the SimuLizarRuntimeState provides access to all sim-

ulation and SimuLizar related objects. PCM models are simulated starting from usage

scenarios when users perform operations [4]. For simulating users and the system be-

havior as well as resources, SimuCom and framework code are used. The measurements

are conducted as speci�ed in the monitor repository. Whenever a new measurement is

available, the Palladio Runtime Measurement Model is updated. This triggers the planning

phase which checks if the condition of a self-adaptation rule is true. If that is the case, the

respective recon�guration is executed.

As remarked in Section 2.2, adaptations may even harm the quality of a system if the

recon�guration costs outweigh the gained bene�t. Therefore, it is important to be aware

of the performance impact of transient e�ects. Specifying a Self-Adaptation Action Model

enables the prediction of transient e�ects during recon�guration in SimuLizar [40]. Such

a model consists of adaptation actions, each describing one self-adaptation rule. The

BranchingAdaptationStep maps the condition of the rule. If it is true, the AdaptationSteps
corresponding to that rule are executed. EnactAdaptationSteps call the model transforma-

tion and thus map the e�ect on the con�guration of the system. ResourceDemandingSteps
describe the parametric resource demand of an adaptation.

2.5. Colored Petri Nets

Colored Petri Nets (CP-Nets) are an extension to Petri Nets which are especially useful

for modeling concurrent and communicating systems [23, p. 3]. As Petri Nets, they are

not limited to a particular domain but provide a general-purpose modeling language. The

models are formal in the way that they have a formal de�nition of syntax and semantic

that can be used to prove certain system properties with the stace space method [23, p. 7].

System properties and behavior can be analyzed by executing the model.

CP-Nets is a graphical modeling language [23, p. 14], although the CPN ML programming

language supports the de�nition of data types and annotations describing e.g. which data

types a node can handle.

Just as Petri Nets, the model structure consists of nodes, which are places - depicted as

ellipses - and transitions - depicted as rectangles -, and directed arcs connecting them. The

graphical notation in this work adheres to the notation of Jensen and Kristensen [23]. An

arc always connects a place with a transition or vice versa. Even though nodes can have

names, they do not have any formal meaning but are there for reasons of clarity. Fig. 2.4

shows an example of a Petri Net with three places and one transition. Place 1 and Place 2

14

2.5. Colored Petri Nets

Place 1
Transition

Place 3

2

1

Place 2

1

Figure 2.4.: Example of a Petri Net

Place 1
Transition

Place 3

2

1

Place 2

1

Figure 2.5.: State of the Petri Net after the transition �red once

have initial tokens depicted as black circles inside. When there is one token in Place 1 and

one token Place 2, the transition is enabled and �res. The state of the Petri Net after the

transition �red once is shown in 2.5. The two tokens required for enabling the transition

were transported to Place 3. The transition is still enabled and can �re one more time.

In addition to the elements of Petri Nets, Colored Petri Nets have a concept of data types

which is represented by token colors: A colorset containing various token colors de�nes

a data type, e.g. colorsetNUMBERS = int ; de�nes the data type NUMBERS. Tokens of

the data type NUMBERS have an integer as token color [23, p. 15]. It is also possible to

de�ne list color sets with the list color set constructor [23, p.51]: colsetNUMBERSLIST =
listNUMBERS ; de�nes the data type NUMBERSLIST which comprises a list of tokens of the

NUMBERS data type. The ^^ operator concatenates lists. Color sets can also de�ne to be

the product of other datatypes, e.g. colsetNUMBERSxNUMBERS = productNUMBERS ∗
NUMBERS ; de�nes a data type whose tokens are a tuple of NUMBERS tokens. The

accepted color sets of each place are by convention annotated next to it, the initial tokens

in that place above it. Tokens can be concatenated to multisets using ++ and
′

as operators.

The ++ operator takes two multisets and returns their union. How often one element is

contained in a multiset can be speci�ed with the in�x operator
′

by writing the number of

appearances of an element left and the element right to it [23, p.16].

A transition moves tokens in the direction of its arcs. Transitions are enabled when

tokens satisfying their arc expression are in their input place [23, p. 17]. If two transitions

on a place are enabled, only one can �re; however, if a transition has several outgoing arcs

to several output places, the token is added to every output place.

Fig. 2.6 gives an example of a CPN similar to the Petri Net shown before. However, the

place one and two now only accept tokens of the color set NUMBERS . Place three accepts

tokens of the color set NUMBERSxNUMBERS , therefore, the two tokens forwarded by the

transition are concatenated to a tuple. De�nitions of all color sets and variables are given

in Listing 2.1. Place one and two both have initial tokens which are given as multisets in

15

2. Foundations

their upper right corner. Place one has one token of color 7 and two of color 14; Place two

one token of color 6 and one token of color 2. Since the arc expressions of the transition are

satis�ed, the transition is enabled. Fig. 2.7 shows the state of the CPN after the transition

�red once. The tokens 7 and 6 are now at place three.

c o l s e t NUMBERS = i n t ;

c o l s e t NUMBERSxNUMBERS = p r o d u c t NUMBERS ∗ NUMBERS ;

var number : NUMBERS ;

var number2 : NUMBERS ;

Listing 2.1: De�nition of color sets

NUMBERS

number2

1'(7) ++ 2'(14)

Place 1

Transition Place 3

Place 2

1'(6) ++ 1'(2)

NUMBERS

NUMBERSxNUMBERS

number

(number,number2)

Figure 2.6.: Example of a CPN

NUMBERS

number2

2'14

Place 1

Transition Place 3

Place 2

1'2

NUMBERS

NUMBERSxNUMBERS

number

(number,number2)

1'(7,6)

Figure 2.7.: State of the CPN after the transition �red once

2.6. Interoperability of Simulations

The Levels of Conceptual Interoperability Model (LCIM) [42] aims to provide a classi�cation

of systems regarding their level of interoperability. It de�nes �ve layers of interoperability

from Level 0, where all data is only system-speci�c and there is no exchange of data

at all, and Level 4, where the use and exchange of data are not only well-de�ned by

16

2.6. Interoperability of Simulations

standard software engineering methods but there is also semantic consistency between

the simulations.

Generally, the interoperability of simulations can be divided by three main concerns

which are syntactical, semantic, and pragmatic interoperability [41]. While syntactic

interoperability is about structuring the data in formats readable by other systems, semantic

interoperability targets the meaning of data. Pragmatics is concerned with the purpose

of exchanging the data. In order to provide meaningful interoperability, it is necessary

to target it not only on the technical layer by enabling systems to simply exchange data

via a common protocol but also on the semantic and pragmatic layer. This requires a

conceptual alignment which describes "the objectives, inputs, outputs, content, assumptions,
and simpli�cations of the models [44]". For example, systems that interchange data about

scheduling policies must agree about which policies are available and how they interpret

them.

There are various approaches to generalized interoperability of simulations, e.g. the

High-Level Architecture (HLA) which is also an IEEE standard [19]. However, they target

interoperability at a very general level.

The simulation interface in this work will be designed speci�cally for the domains of

the simulations to be coupled though it still aims to enable simple replacement of either

one of the simulations.

17

3. RelatedWork

This chapter provides an overview of related work and distinguishes the approaches from

the approach of this thesis. Using message brokers with message queues is a popular ap-

proach and various approaches to modeling them exist. Within ArchiMate [2], a modeling

language for Enterprise Architectures, there are several options for modeling message

queues. Clients can be connected to an application server by a so-called communication

path that is annotated with message queuing, expressing that they communicate via mes-

saging [8]. It is also possible to model messaging infrastructure in more detail by modeling

queues and messages explicitly as �rst class entities [11]. However, ArchiMate does not

support simulation or any other analysis of models.

Sachs et al. [35] use a methodology based on queuing Petri nets and provide a set of

generic modeling patterns for modeling message-oriented systems. The approach and

its predictions obtained by simulating the Petri net are validated with the SPECjms2007

benchmark. Self-adaptation is not considered.

Section 3.1 introduces already existing approaches to modeling message-driven systems

with Palladio. Works on self-adaptation of systems using message queues are presented in

Section 3.2.

3.1. Modeling Message-Driven Systemwith Palladio

Model-driven performance prediction via parametric performance completions is proposed

by Happe et al. [16, 17]. Performance completions aim to close the gap between a high

level of abstraction in the model and the need for more detailed information in order to

obtain accurate performance predictions by adding necessary re�nement in automated

model-to-model transformations. When designing a performance completion, possible

factors a�ecting the performance are identi�ed by performance analysts which then design

experiments to evaluate their actual in�uence on the performance. To obtain quantitative

information for a speci�c platform, the test-driver of the performance completion has

to be executed. The obtained performance measurements can then be used to derive

parametric resource demands for a platform-speci�c completion. The concept is illustrated

by the example of modeling a message-oriented middleware with the Palladio Component

Model where the resource demands are parameterized by e.g. the size of the messages

and their arrival rate. This allows for considering the MOM as a black box and still obtain

accurate predictions. Only the prediction of point-to-point communication is supported

[17]. Parameter characterizations of a message can not be forwarded from the sender to

the receiver [16].

Rathfelder et al. [31, 32] present an extension for modeling event-based interactions in

Palladio. They model middleware as a reusable and parameterized component. Message

19

3. Related Work

Property Happe et al.

[16, 17]

Rathfelder et

al. [31, 32]

Czogalik [10] This work

Calibration speci�c

to

MOM, Hard-

ware

Message

types

MOM, Hard-

ware

MOM, Hard-

ware

Supported communi-

cation models

P2P P2P, Pub/Sub P2P, Pub/Sub P2P, Pub/Sub

Components get no-

ti�ed upon arrival of

messages

X X - X

Prediction of queue

length

- - X X

Increased latency for

queued messages

- - - X

Flow control - - - X

Table 3.1.: Comparison of the approaches for modeling message-driven systems using

Palladio

queues are not explicitly modeled but abstracted [31, p. 108]. To simulate the model, they

apply a transformation which converts the asynchronous events into synchronous calls

and removes the event elements from the architecture. Resource demands are measured

and modeled message-speci�c. They show the prediction accuracy for point-to-point and

publish/subscribe communication in a case study.

Building on the work of Rathfelder, Czogalik [10] proposed modeling of a message-

oriented middleware with consideration of queuing e�ects using the already existing

elements in Palladio. Again, the model is reusable and parameterized. There exist di�er-

ent calibrations obtained from measuring di�erent message brokers. In contrast to the

approach of Rathfelder [31], resource demands are not modeled per message but derived

by conducted measurements of a message broker dependent on the size of a message.

In the simulation, a transformed model without the event elements is used. Receiving

messages is modeled as a separate usage scenario. Even though the length of queues can be

predicted, queuing e�ects do not increase the latency of messages. Queue lengths can not

be limited and self-adaptations are not considered. The prediction proved to be accurate

for point-to-point communication only.

Table 3.1 shows a comparison of the three presented approaches and the approach in

this work regarding their properties. Though the approach of Czogalik [10] can predict

the queue length, none of the presented approaches is capable of predicting an increased

latency for queued messages or simulating �ow control as opposed to the approach in this

work.

Moreover, Klinaku et al. [24] demand for better modeling abstractions for message-

driven systems to be o�ered in Palladio to obtain better predictions for elasticity, cost-

e�ciency, and scalability. In their case study, several scenarios that included e.g. message

queues could only be modeled using workarounds. One was even impossible to model

since it required self-adaptation rules.

20

3.2. Self-Adaptive Systems using Message Queues

Another extension of Palladio concentrating on events is the Indirections extension [20],

though the focus there is on streams and aggregation of data. It extends the PCM with

DataSink and DataSource roles that inherit from ProvidedRole, respectively RequiredRole.
Several added actions enable the speci�cation of new intracomponent behavior, such as,

e.g., emitting and consuming of data. DataChannels transfer data between components.

Additionally, they specify, among other things, how many elements are to be emitted via

them, a scheduling policy, and a maximum length. Components can not only be noti�ed

when data is available but also poll for new data. The meta-model in this work is designed

to allow for the integration of the Indirections extension.

3.2. Self-Adaptive Systems using Message Queues

Gotin et al. [13] conducted a case study on which performance metric should be used

to auto-scale microservices that consume from message queues. Usage of queue-related

metrics is compared to using CPU utilization as a metric. The scaling should prevent

�ooded or congested queues as well as overprovisioning of consuming microservices. A

queue is considered as �ooded when its length exceeds the maximum length a message

broker can handle whereas congested means that the delivery times for messages are higher

than desired. Consuming microservices are overprovisioned when they are allocated more

resources than needed to process all incoming messages. Microservices are divided into

two classes, compute- and I/O-intensive. It is shown that all metrics are suitable if the

microservices have constant behavior. However, if there are changes in external services,

queue metrics are better suited.

If it is not possible to provide more resources, overload protection by adapting the send

rates is a possibility that Gotin et al. [14] presented. Send rates are adapted based on the

current processing rate which is estimated based on queue metrics.

21

4. Modeling Message-Driven Systems

The main goal of this thesis is to support performance predictions for message-driven

self-adaptive systems. For predicting the performance of a system at design-time, it needs

to be modeled. To be able to model messaging middleware including queuing behavior on

an architectural level, a meta-model for messaging is needed. A meta-model de�nes the

structure of a DSML, as explained in Section 2.3. For capturing not only messaging aspects

but also other properties of the system, integration into the PCM is useful. Therefore,

some elements of the messaging meta-model inherit from or reference PCM elements. To

extend PCM, the child extenders feature is used which allows for using the model elements

of this work in Palladio models.

The modeled view types include the repository, SEFF, assembly, and allocation view

type. The repository view type of this work enriches the PCM repository view type with

the possibility to capture the ability of a component to send and receive messages and

allows for the de�nition of routing keys. To be able to send messages, the extension to

the SEFF view type de�nes a new action to send messages with a probabilistic routing

key. Within the assembly view type, we o�er new model elements to connect components

sending and receiving messages via messaging infrastructure such as message channels,

routers, and brokers. New messaging allocation contexts then allow for the allocation of

these new elements in the allocation view type.

Routing speci�cs are included in the assembly view type. We also considered to model

the routing in a speci�c message routing view type and connect the communicating

components directly in the assembly view type. However, this was discarded since it

would have increased the modeling e�ort: One of the original goals of using messaging is

to decrease the coupling between components, i.e. a message-sending component does

not need to know about the eventual destination of the message. Connecting components

directly in the assembly view type would break that. It would also be complex to ensure

consistency between both view types since the message routing view type must connect

the components over possibly several channels and routers as speci�ed in the assembly

view type. Additionally, endpoints are channel-speci�c [18, p. 96] and can, therefore, be

connected to one channel only. If several components are connected with another, one

needs to think about how communication should happen in terms of channels anyways to

�gure out how many endpoints are needed.

In the following, Section 4.1 describes the elements of the meta-model. Possible recon-

�gurations of a system and their implications on the model are considered in Section 4.2.

An approach to formalization of the semantics of the meta-model using Colored Petri Nets

is given in Section 4.3.

23

4. Modeling Message-Driven Systems

4.1. Meta-Model elements

The meta-model is organized in the four view types already mentioned above: repository,

assembly, allocation, and SEFF. Whenever possible, we used inheritance from elements

of the PCM as an extension mechanism to avoid duplicate modeling and provide easy

integration. The meta-model in this work is about messaging speci�cs only whereas the

other aspects of a system can be modeled using the PCM elements. The general structure

of the meta-model is based on the patterns of Hohpe and Woolf [18] that Section 2.1

presented.

To illustrate the usage of the model elements, a simple alarm noti�cation system will be

modeled throughout the section. In this system, one component sends alarm noti�cations

from two di�erent countries, Germany and France. Another component receives alarm

messages and processes them. This component will be instantiated two times: One instance

is responsible for processing alarm noti�cations from Germany and the other one for the

noti�cations from France.

4.1.1. Repository

To model repositories, a MessagingRepository is needed as a root element since routing

keys are introduced as new �rst-class modeling elements directly contained in the mes-

saging repositor. This means that routing keys exist independently from potential use by

other elements. However, the MessagingRepository inherits from the Palladio repository

and therefore o�ers all Palladio repository elements for modeling. In the long term, not

both are needed and the additional features of the messaging repository could be merged

into the Palladio repository. Since messaging is a form of event-based communication,

SendEndpoints and ReceiveEndpoints inherit from SourceRole, respectively SinkRole. The

EventGroup of a MessagingEndpoint de�nes the supported MessageTypes of it. For contain-

ment reasons, we introduced a MessagingComponent, which inherits from BasicComponent,
to allow for the creation of messaging endpoints. MessageTypes inherit from EventType
and additionally allow for the de�nition of a root routing key. RoutingKeys are Entities and

can be hierarchic. The term root routing key means that a message type could have either

that routing key or a routing key which has the speci�ed root routing key as a parent

over possibly several levels. An example of a hierarchy of routing keys is the routing key

AlarmFR whose parent routing key is Alarm. The full routing key can be displayed as

Alarm.AlarmFR.

An already existing alternative to that is using variable characterizations and then

branch depending on their value. However, characterizations only allow for string values.

Having a model element for routing keys makes modeling more type-safe and also has a

clear semantics. Fig. 4.1 shows a class diagram of the added elements. Inherited properties

are greyed out.

Fig. 4.2 depicts the repository of the alarm noti�cation system as an example. All

elements are contained in a messaging repository unless depicted otherwise. It contains

the two messaging components Transformator and Extractor. The Transformator provides

the operation interface ISendAlarms and can also send messages of the Alarms event group

via its send endpoint. These messages can be received by the Extractor component via its

24

4.1. Meta-Model elements

[0..1] rootroutingkey

[0..*] routingkey [0..*] messagingendpoint

[0..1] parentroutingkey

Repository

MessagingRepository

RoutingKey

name : String

MessageType

MessagingComponent

MessagingEndpoint

SendEndpoint ReceiveEndpoint

Figure 4.1.: Elements of the meta-model of the repository view type

receive endpoint. The message type Alarm is contained by the Alarms event group and

has the root routing key AlarmRK. The routing keys AlarmDE and AlarmFR specify the

AlarmRK as their parent routing key.

4.1.2. Service E�ect Specification

In the SEFF view type, we added a new action called SendMessageAsync for sending

messages. It inherits from AbstractAction and CallAction. Analogously to the EmitEvent
action it has a reference to the send endpoint used and the message type sent. The routing

keys of the messages can be speci�ed by adding ProbabilisticRoutingKeys which each

reference a routing key and specify its frequency as double. To determine the routing

key of a message in the simulation, an EnumPMF is built out of all probabilistic routing

keys speci�ed as it will be explained in more detail in Section 5.5. Messages having one

routing key only can be modeled by setting that routing key as the only probabilistic

routing key of the action with a frequency of 1. Fig. 4.3 depicts the added action and its

properties while Fig. 4.4 shows a SEFF model for the send endpoint of the Transformator
component presented in the previous section using the SendMessageAsync action. When

the sendAlarm(String msg) method provided is called, the SEFF starts and executes the

SendMessageAsync action. The action sends an alarm message with the probabilistic

25

4. Modeling Message-Driven Systems

OperationProvidedRole
ISendAlarms

SendEndpoint
Alarms

rootroutingkey

ReceiveEndpoint
Alarms

Transformator Extractor

<<OperationInterface>>
ISendAlarms

+ sendAlarm(String msg) :
void

<<RoutingKey>>
AlarmDE

<<RoutingKey>>
AlarmFR

<<EventGroup>>
Alarms

<<MessageType>>
Alarm

input parameter: String
msg

<<RoutingKey>>
AlarmRK

Figure 4.2.: Repository of the alarm noti�cation system

[0..*] probabilisticroutingkey

SendMessageAsync

[1..1] messagetype : MessageType
[1..1] sendendpoint : SendEndpoint

ProbabilisticRoutingKey

[1..1] frequency : Double
[1..1] routingkey : RoutingKey

Figure 4.3.: The SendMessageAsync action

routing keys AlarmDE and AlarmFR. The size of the message sent is characterized by a

BYTESIZE characterization and is the same as the BYTESIZE of the input parameter.

The modeling alternative here was to use variable usages and directly specify an

EnumPMF as variable characterization. However, EnumPMFs support only strings as

literals whereas with the ProbabilisticRoutingKey feature it is possible to refer to routing

keys already present in the model. This eases modeling for the user. We also consid-

ered adapting the syntax of stochastic expressions. This was disregarded because of the

potentially high e�ort needed and the limited bene�t for the contributions of this work.

Receiving a message is speci�ed by simply selecting the corresponding connected

receive endpoint in a RDSEFF.

4.1.3. Assembly

To model assemblies that use messaging, we introduce a new root element called Mes-
sagingAssembly. A MessagingAssembly directly contains MessageChannels, RoutingEntities,
and MessagingDelegationConnectors and inherits from the PCM System. We decided to

26

4.1. Meta-Model elements

ProbabilisticRoutingKey

routingkey: AlarmDE
frequency: 0.4

ProbabilisticRoutingKey

routingkey: AlarmFR
frequency: 0.6

VariableUsage

variableCharacterisation:
msg.BYTESIZE
variableReference: msg

SendMessageAsync

messagetype: Alarm
sendendpoint: SendAlarms

Figure 4.4.: SEFF model using the new SendMessageAsync action

include routing entities in the assembly view type since we assumed that they are not very

complex and unlikely to be reused. RoutingEntities can be either a MessageRouter, Mes-
sageAggregator, or a MessageBroker which contains further routing entities. This enables

the modeling of message broker hierarchies. Routing entities connect to DatatypeChannels
via ConnectedSendEndpoints and ConnectedReceiveEndpoints which are channel-speci�c

and have an event group. They are required to have at least one sending and one receiving

endpoint since otherwise, they can not actually route something. Message routers and

aggregators also have an enum RoutingStrategy which at the moment supports the literal

contentbased only. This realization makes use of the strategy pattern which suggests to not

implement an algorithm directly into a class but to store a reference to an object realizing

it. This way, di�erent variants of the algorithm can be used easily. In this context, this

refers to the message routers and aggregators not directly containing a speci�c strategy of

routing but only storing a reference to the RoutingStrategy enum. This enables changing

the routing strategy without the need to select a di�erent type of router or aggregator.

Enums do have the disadvantage of di�cult extensibility, however, child extenders

are allowed to extend the RoutingStrategy enum. Fig. 4.5 depicts the di�erent routing

entities and their relations. The endpoints of a message broker can be connected to the

endpoints of another routing entity with MessagingDelegationConnectors. They have the

same semantics as Palladio delegation connectors which can not be used because they

connect operation provided roles and need a reference to an assembly context.

MessageChannels can be Point-to-Point, Publish/Subscribe or DeadLetter and are unidirec-

tional. Every channel has a reference to QueuingProperties which specify the properties of

the resulting queue in the simulation which are maximum length, if the queue should be

durable, and a scheduling policy which determines in which order messages are taken out

of the queue and forwarded to consumers. At the moment, Round-Robin and First-Come-

First-Serve can be chosen as a scheduling policy. The scheduling policy is modeled as an

enum and can be extended by child extenders. A DeadLetterChannel is a special case of a

message channel and must be contained by a routing entity. If an incoming message can

27

4. Modeling Message-Driven Systems

[1..*] connectedreceiveendpoint

[0..1] routingentity

[0..*] routingentity

ConnectedReceiveEndpoint

[1..1] prefetch : int
[1..1] transactionalAck : Boolean
[0..1] datatypechannel : DatatypeChannel
[0..1] receiveendpoint : ReceiveEndpoint

RoutingEntity

[0..1] deadletterchannel : DeadLetterChannel

MessageBroker

ConnectedEndpoint

[1..1] eventgroup : EventGroup
[0..1] messagingassemblycontext : MessagingAssemblyContext

MessageRouter

[1..1] isStateless : Boolean
[1..1] routingStrategy : RoutingStrategy

MessageAggregator

[1..1] routingStrategy : RoutingStrategy

RoutingStrategy

- CONTENTBASED

[1..*] connectedreceiveendpoint

[0..1] routingentity

[0.1] messagebroker

ConnectedReceiveEndpoint

[1..1] prefetch : int
[1..1] transactionalAck : Boolean
[0..1] datatypechannel : DatatypeChannel
[0..1] receiveendpoint : ReceiveEndpoint

Figure 4.5.: The available routing entities and their relations

not be routed to any outgoing message channel, the message is forwarded to the dead letter

channel. Point-to-point and publish/subscribe channels are DatatypeChannels which have

an event group and can have multiple connected send and receive endpoints. However,

they are required to have at least one sending and one receiving endpoint connected. The

event groups of the connected endpoints must be the same as the channel event group. To

enable routing based on the routing key, information on which routing key is accepted

needed to be integrated into the assembly view type. Therefore, datatype channels can

optionally specify an accepted root routing key. Messages with routing keys di�ering from

the accepted root routing key and not having it as parent routing key will be discarded

or routed to a dead letter channel, if present. The hierarchy of message channels and

their properties can be seen in Fig. 4.6. The routing key could have also been integrated

to connected receive or connected send endpoints. However, that would arise the ques-

tion on how to deal with di�erent connected endpoints specifying di�erent routing keys

connecting to the same channel. In the case of connected receive endpoints, an accepted

routing key would even seem like a message �lter which it should not be. Associating

this information to datatype channels makes clear which behavior can be expected from

it when connecting to it and eases modeling. This equals a contractual speci�cation: If

a connected endpoint of a compatible event group to the datatype channel connects to

it, the endpoint can send, respectively receive, messages to or from it. Compatible here

28

4.1. Meta-Model elements

[1..1] queuingproperties

DatatypeChannel

[0..1] acceptedrootroutingkey : RoutingKey
[1..*] connectedsendendpoint : ConnectedSendEndpoint
[1..*] connectedreceiveendpoint : ConnectedReceiveEndpoint
[1..1] eventgroup : EventGroup

PointToPointChannel PublishSubscribeChannel

DeadLetterChannel

MessageChannel QueuingProperties

[1..1] schedulingPolicy : SchedulingPolicy
[1..1] maxLength : int
[1..1] durable : Boolean

Figure 4.6.: Hierarchy of message channels

means that the event group of the endpoint should be the same as the event group of the

channel, or inherit from the channel event group.

MessagingEndpoints de�ned in the repository are instantiated with ConnectedEndpoints
contained by MessagingAssemblyContexts in order to connect to message channels. Con-
nectedReceiveEndpoints additionally specify a prefetch which indicates how many messages

can be sent to it without having acknowledgments for them, and if the acknowledgment

sent should be transactional, i.e., is sent before or after processing the message at the

receiving side. This di�ers from the usual Palladio modeling where roles do not need to be

instantiated. However, source and sink roles, from which the messaging endpoints are

inheriting, must refer to an InterfaceRequiringEntity or InterfaceProvidingEntity, respec-

tively. Routing entities can not inherit from that since it would allow for the modeling of

non-messaging related concepts, e.g., operation interfaces and signatures. Therefore, a

separate concept for the modeling of endpoints of routing entities is needed. To unify the

modeling in the assembly view type, we decided to use ConnectedEndpoints for routing

entities as well as for messaging assembly contexts.

An alternative approach supporting the usual Palladio modeling would have been to

introduce connected endpoints for routing entities only, and use the messaging endpoints

for connecting to channels from messaging assembly contexts. However, this has the

disadvantage of having two di�erent model elements representing the same concept which

could be confusing for users. Additionally, specifying the prefetch and acknowledgment

behavior of a consumer in the assembly view type would only be possible by de�ning

component parameters in the repository view type and setting them in the assembly view

type. However, component parameters do not have a clear semantics using them this way.

29

4. Modeling Message-Driven Systems

Broker

sendAlarm

Transformator
Assembly Alarms-P2P-Channel

Alarms-P2P-Channel

Extractor
Assembly1

Router
Alarms-P2P-Channel

Extractor
Assembly2

acceptedrootroutingkey:
AlarmDE

acceptedrootroutingkey:
AlarmFR

Figure 4.7.: Assembly model of the example alarm noti�cation system

Moreover, they would overwrite the values of variables inside the respective component

with the value set in the assembly view type when, e.g., a variable in the SEFF of the

component has the same name as the component parameter.

Fig. 4.7 shows an assembly for the example alarm noti�cation system, however, some

details as, e.g., the queuing properties of the channels and prefetch of connected receive

endpoints are omitted. The TransformatorAssembly has its connected send endpoint

connected to a Point-To-Point channel with the event group Alarms. The Router receives

messages from that channel; its connected receive endpoint is connected to the channel

via a receive messaging delegation connector. The connected send endpoints of the router

are connected to two Point-To-Point channels via send messaging delegation connectors.

Both channels have the Alarms event group, however, they de�ne di�erent root routing

keys: While ExtractorAssembly1 will only receive messages with an AlarmDE routing key,

ExtractorAssembly2 gets all messages with AlarmFR as routing key.

4.1.4. Allocation

Since the Palladio allocation context has a constraint that either an assembly context or

an event channel must be allocated, a MessagingAllocationContext is needed for allocating

message channels and routing entities which can not inherit from the Palladio allocation

context because of that constraint. A new constraint ensures that a message channel or a

routing entity is referenced. Therefore, a new MessagingAllocation must contain the new

messaging allocation contexts and can inherit from the Palladio allocation.

4.2. Replications of Elements due to Reconfigurations

The presented meta-model should be appropriate for self-adaptive systems and support re-

con�gurations. Hence, we discuss possible replications of elements due to self-adaptations

of the system or recon�gurations made from the outside, and their mapping to the model

in the following. There are two main reasons for replicating elements which are load-

balancing and failover. The modeling presented in this work is supposed to cover load-

balancing scenarios. Failover con�gurations are not explicitly considered because they are

not part of the architectural model. However, recovery from faults can be modeled using

Palladio recovery blocks.

30

4.2. Replications of Elements due to Recon�gurations

Considered scenarios for load-balancing are the replication of producers, consumers,

and routers. We do not consider the replication of single channels because it is not a

common case and very technical. The scenarios are illustrated starting from the base

scenario in Fig. 4.8. When a producing assembly context P is replicated, the replicated

assembly context P’ can simply connect its connected send endpoints to the same channels

as P is connected to. Fig. 4.9 covers that replication scenario.

Nearly the same applies when a consuming assembly context C is replicated: If the

assembly context is connected to a point-to-point channel, the replicated assembly context

C’ can simply connect its connected receive endpoint to the same channel C is connected

to. The point-to-point property then ensures that the message is delivered exactly once.

Fig. 4.11 depicts this. In the case of a publish/subscribe channel, replicating a consumer

for load-balancing is not a very likely case. Fig. 4.12 shows the base scenario for that.

However, it can be mapped to the model by adding a new point-to-point channel with the

same properties as the publish/subscribe channel and connecting the connected endpoints

of C and C’ to it, as shown in Fig. 4.13. The same holds in the case of router replication: If

the connected receive endpoints of a router are only connected to point-to-point channels,

the replicated router R’ can connect its connected endpoints to them and the load will be

balanced between both routers. Fig. 4.10 illustrates that. In the case of publish/subscribe

channels, it can be decided whether only the connected receive endpoints connected to

point-to-point channels are replicated or if new point-to-point channels are established

as for the consumer replication in case of publish/subscribe channels. In any case, the

connected send endpoints of R’ can connect to the channels R is sending to.

P2P-ChannelProducer Router ConsumerP2P-Channel

Figure 4.8.: Base scenario for replications

P2P-Channel

Producer

Router ConsumerP2P-Channel

Producer'

Figure 4.9.: Replication of producer

31

4. Modeling Message-Driven Systems

P2P-ChannelProducer

Router

ConsumerP2P-Channel

Router'

Figure 4.10.: Replication of router

Pub/Sub-ChannelProducer Router

Consumer

P2P-Channel

Consumer2

Figure 4.11.: Replication of consumer

Pub/Sub-ChannelProducer Router

Consumer

P2P-Channel

Consumer2

Figure 4.12.: Base scenario with a publish/subscribe channel

Pub/Sub-Channel

Producer Router

Consumer2

P2P-Channel

Consumer
P2P-Channel

Consumer'

Figure 4.13.: Replication of consumer in case of a publish/subscribe channel

32

4.3. Formalization using CPNs

4.3. Formalization using CPNs

A formal representation of the semantics of the metamodel can be given using Colored

Petri Nets (CPNs) as explained in Section 2.5. Formalizing semantics has the advantage of

capturing it unambiguously. Therefore, models have a more precise meaning. Furthermore,

the properties of a system can be proved. While a mapping for the main concepts will be

given, modeling aspects such as reliability or timing are not in the scope of this work.

We model messages as tokens of a color set that is a product of the two color sets group
and payload. Group represents the event group as in the meta-model, whereas payload

is just an int value specifying the size of the message. The exact data contained in the

message is not relevant for the functionality of the system and is therefore abstracted,

however, the size of a message does in�uence, e.g., its latency. Di�erent event groups can

be represented using di�erent colors: Every event group is represented by a unique color.

The de�nition of these colors in CPN ML, as introduced by Jensen and Kristensen [23],

is presented in listing 4.1. An enum list de�nes the available event groups. An example

token of color GROUPxPAYLOAD is, e.g., (ALARMDE, 7) where ALARMDE is the color

for the event group "alarms from Germany" and 7 the size of the message.

c o l s e t GROUP = with ALARMFR | ALARMDE ;

c o l s e t PAYLOAD = INT ;

c o l s e t GROUPxPAYLOAD = p r o d u c t GROUP ∗ PAYLOAD ;

Listing 4.1: De�nition of color sets

Places depict applications or routing entities. Applications may have initial tokens if

they send messages, routers wait for incoming tokens and forward them. Aggregators only

forward messages if they have received a su�cient number of messages. If an application

or a routing entity sends messages of various event groups via di�erent send endpoints,

the transition has a guard accepting only tokens of the right color, respectively event

group. Message types and routing keys are not considered here but could be integrated by

de�ning additional color sets for each of them and including them in the arc expressions of

transitions. This causes the transition to be enabled only when the group and the routing

key, respectively message type, are conforming to the arc expression.

Transitions and their in- and outgoing arcs represent message channels. A point-to-

point-Channel includes several transitions from one place, all accepting the same event

group. There is only one outgoing arc from each transition to a di�erent consumer. This

ensures the property that every message is consumed by exactly one consumer since

tokens can not replicate in a place: Even though all transitions are enabled, only one of

them can �re and forward the token to a consumer. Fig. 4.14 shows a sketch of a CP-Net

realizing a point-to-point channel: When a token, that binds to the type of the variable

message, arrives at Component 1, all transitions are enabled but only one of them will �re.

A publish/subscribe channel includes only one transition with several outgoing arcs, one

to every consumer subscribed to the channel. Since outgoing arcs create tokens, every

consumer receives the message when the transition �res. Fig. 4.15 illustrates the concept.

Incoming messages are queued at routing entities by using lists as the accepted datatype

33

4. Modeling Message-Driven Systems

of routing entities. Ingoing transitions append to the list whereas outgoing transitions

remove the �rst element.

Component 1 Send Message
message

Component 3

Component 2

Component 4

message

message

Send Message

Send Message

message

message

message

Figure 4.14.: Point-to-point-Channel

Send Message
message

Component 3

Component 2

Component 4

message

message

message

Component 1

Figure 4.15.: Publish/subscribe Channel

Fig. 4.16 sketches Round-robin scheduling for a point-to-point channel. To model

scheduling, new scheduling places are introduced. The scheduling place that should enable

the �rst transition gets one RR token in the beginning. Since now all transitions of the

channel require a RR token to be enabled, only that can �re. When the transition �res,

the RR token is passed to the next scheduling place which will forward the token to the

next transition until the token arrives at its �rst place again, and the whole process begins

all over. Fig. 4.17 shows a point-to-point channel that uses Round-robin scheduling as

CPN with initial tokens at Component 1 and the upper scheduling place. The color sets

from Listing 4.1 are used, as well as the color sets and variables shown in Listing 4.2. The

enabled transition is marked green. Because the SendMessaдe transitions need a token of

type GROUPxPAYLOAD, as well as an ACK token, only the upper transition is enabled.

When the transition �res, one of the (AlarmFR, 7) tokens is sent to Component 2 and the

transition below gets activated as the ACK token is transferred to the scheduling place

below. Fig. 4.18 shows the CPN after the �rst transition has �red. When now the lower

SendMessaдe �res, the ACK token is transferred to the upper scheduling place and thus

enabling the upper transition again. Fig. 4.19 depicts the state of the CPN after the lower

transition �red.

34

4.3. Formalization using CPNs

Component 1

Component 2

Component 4
message

Send Message

Send Message

message

message

message

Scheduling

Scheduling

RR

RR

RR

RR

Figure 4.16.: Round-Robin scheduling (violet) combined with a Point-To-Point channel

(blue)

c o l s e t ACK = with ack token ;

var RR : ACK ;

var message : GROUPxPAYLOAD ;

Listing 4.2: De�nition of color sets for Round-Robin scheduling

Component 1

Component 2

Component 4
message

Send Message

Send Message

message

message

message

Scheduling

Scheduling

RR

RR

RR

RR

GROUPxPAYLOAD

GROUPxPAYLOAD

GROUPxPAYLOAD

ACK

ACK

2’(AlarmFR,7) ++
1’(AlarmDE,2)

acktoken

Figure 4.17.: Execution of a CPN using Round-Robin for scheduling (initial marking)

35

4. Modeling Message-Driven Systems

Component 1

Component 2

Component 4
message

Send Message

Send Message

message

message

message

Scheduling

Scheduling

RR

RR

RR

RR

GROUPxPAYLOAD

GROUPxPAYLOAD

GROUPxPAYLOAD

ACK

ACK

1’(AlarmFR,7) ++
1’(AlarmDE,2) acktoken

(AlarmFR,7)

Figure 4.18.: Execution of a CPN using Round-Robin for scheduling (Step 1)

Component 1

Component 2

Component 4
message

Send Message

Send Message

message

message

message

Scheduling

Scheduling

RR

RR

RR

RR

GROUPxPAYLOAD

GROUPxPAYLOAD

GROUPxPAYLOAD

ACK

ACK

1’(AlarmDE,2)

acktoken

(AlarmFR,7)

(AlarmFR,7)

Figure 4.19.: Execution of a CPN using Round-Robin for scheduling (Step 2)

36

4.3. Formalization using CPNs

Dead letter queues can simply be modeled by adding a transition with the inverse of the

union of all other transition guards from outgoing transitions of that place as transition

guard. This transition then leads to a place simply collecting unroutable messages. For

example, when the color sets from Listing 4.3 are used and a router only routes messages

of the group ALARMFR, the dead letter queue transition would de�ne a guard that the

group of the message must be ALARMDE, because that is the inverse of the union of all

transition guards outgoing from that router.

Prefetch of consumers and acknowledgments can be mapped by ack tokens of an

acknowledgment color set. Fig. 4.20 depicts their integration with point-to-point channels

and Fig. 4.21 with publish/subscribe channels. The acknowledgment part is colored orange.

In both cases, there are as many AckPlaces of the sending component as there are receiving

components. They have a certain amount of initial tokens which determine the prefetch

of the consumers. In the case of point-to-point channels, every consumer can specify

a di�erent prefetch. For publish/subscribe channels, the AckPlace with the least initial

tokens will determine the prefetch of all consumers. The SendMessage transition can only

�re if there is an ack token in the respective AckPlace needed. For point-to-point channels,

this is the case per transition to one consumer; however, for publish/subscribe channels, it

is required that all AckPlaces have at least one ack token. The �rst SendMessage transition

makes a tuple out of the ack and themessaдe token. They are now in a new In-Delivery
state that accepts the product of the color sets of messaдe and ack . When now the next

SendMessage transition �res and the message is delivered to the consuming component,

the acknowledgment is delivered back to its AckPlace, thus giving the sender new credit.

In-Delivery

Send Message

(message, ack)

message
Component 1

Component 1
AckPlace

ack

ack

(message,ack)

Component 2

Send Message

message

Figure 4.20.: Acknowledgments (orange) combined with a Point-To-Point channel (blue)

Fig. 4.23 shows an example system modeled using the model elements from the presented

meta-motel. Modeling details that are not mapped to the CPN model are omitted, e.g.

queuing properties. AssemblyContext1 sends messages to the Router via a point-to-point

channel their connected send and receive endpoints are connected to. The router routes the

messages to AssemblyContext2 and AssemblyContext3 via two di�erent channels depending

on their event group: Messages of event group A are routed via the point-to-point channel

A to AssemblyContext2, messages of event group B via the point-to-point channel B to

AssemblyContext3.

Fig. 4.22 depicts the same system modeled as CPN. The colors used are consistent to

the colors of Fig. 4.23. Listing 4.3 shows the color sets and variables used in this example.

37

4. Modeling Message-Driven Systems

Component 1 Send Message
message

(message, ack)

(message, ack)

Component 1
AckPlace

ack

Component 1
AckPlace

ack

ack

In-Delivery

In-Delivery

(message,ack) Component 2Send Message
message

Component 2Send Message
message(message,ack)

ack

Figure 4.21.: Acknowledgments (orange) combined with a Publish/Subscribe channel

(green)

c o l s e t GROUP = with A | B ;

c o l s e t PAYLOAD = INT ;

c o l s e t GROUPxPAYLOAD = p r o d u c t GROUP ∗ PAYLOAD ;

c o l s e t MESSAGEQUEUE = l i s t GROUPxPAYLOAD ;

var messagequeue : MESSAGEQUEUE ;

var group : GROUP ;

var pay load : PAYLOAD ;

Listing 4.3: Color sets of the example system

Component 1 sends messages via a point-to-point-Channel to the Router, where incoming

messages are appended to the message queue. They are routed to di�erent channels

depending on their group: If the group of a message is A, the Receive Messages A transition

�res and delivers the message to Component 2. If the group of the message is B, the Receive
Messages B transition �res and delivers the message to Component 3.

Fig. 4.24 depicts another, simpli�ed version of the system that uses an aggregator as a

routing entity. The additional variables дroup2 and payload2 are de�ned similar to дroup
and payload . The red part of the arc expression makes up the aggregator functionality:

While themsдqueue variable can be an empty list, the Receive Messages transition needs

at least two messages present at the aggregator to �re.

38

4.3. Formalization using CPNs

Component 1 Send Messages

GROUPxPAYLOAD

1’(A,7) ++ 1’(B,2)

Router

MESSAGEQUEUE

Component 2

1’[]

(group,payload)

msgqueue^^[(group,payload)]msgqueue

Receive Messages A

Receive Messages B

[(group,payload)]
::msgqueue

msgqueue

msgqueue (group,payload)::msgqueue

(group,payload)

[group = A]

[group = B]

(group,payload)

GROUPxPAYLOAD

Component 3

GROUPxPAYLOAD

Figure 4.22.: An example system modeled as CPN

P2P-Channel

P2P-Channel
"A"

P2P-Channel
"B"

Assembly
Context 1

Router

Assembly
Context 2

Assembly
Context 3

Figure 4.23.: An example system modeled using the elements from the presented meta-

model

Component 1 Send Messages

GROUPxPAYLOAD

1’(A,7) ++ 1’(B,2)

Aggregator

MESSAGEQUEUE

Component 2

1’[]

(group,payload)

msgqueue^^[(group,payload)]msgqueue

Receive Messages

[(group,payload)]::[(group2,payload2)]
::msgqueue

msgqueue

(group,payload)::
(group2,payload2)

GROUPxPAYLOAD

Figure 4.24.: An example system as CPN using an aggregator

39

5. Simulating Messaging

To simulate component-based systems using messaging as a communication paradigm, the

existing simulation SimuLizar will be combined with the messaging simulation introduced

in Section 2.1.4 through a simulation interface. We chose SimuLizar because message

queues are a common method to achieve decoupling in dynamic systems that are re-

con�guring themselves.

Though we already gave a formalization for the semantics of the developed meta-model

and highlighted advantages of formal models, we will not perform formal veri�cation of

system models to derive quality predictions but simulate them.

Theorem proving and state-space methods are the main approaches for verifying a

formal model and its properties [43]. While system properties can be proven by theorem

proving, this method is not suitable for answering questions about how a system behaves

if it is not clear what that behavior exactly is. It can only be proven that a system has a

certain, formulated behavior. Moreover, it does not give any hints about why a certain

proof does not succeed [43]. This makes it not a good choice for getting information about

systems and their behavior at design time. The state-space method has the advantage

of providing counterexamples if a property does not hold [22, p.7]. However, the state

explosion problem [43] makes the analysis of even relatively small systems infeasible: The

state-space method is based on exploring all possible states of a system that may be very

high or even in�nite [22, p.7] very fast. Furthermore, formal analyses are static program

analyses that do not execute programs. This does not allow for changes in the system

during an analysis which is necessary for predicting the quality of self-adaptive systems.

First, the requirements for a general simulation interface between a simulation of a

component-based architecture description language (ADL) and a messaging simulation

are introduced in Section 5.1. Based on these requirements, we developed a concept that is

presented in Section 5.2. The implementation for SimuLizar and the messaging simulation

as introduced in Section 2.1.4 will be described in Section 5.3. Section 5.4 covers the

integration of measurements. Transformation of the Palladio modeling elements to the

elements of the broker simulation is explained in Section 5.5. How self-adaptations can be

speci�ed based on measurements taken during a simulation run and how they a�ect the

entities in the messaging simulation is explained in Section 5.6.

5.1. Requirements for a Simulation Interface

A simulation interface between a simulation of a component-based ADL and a messaging

simulation must ensure technical as well as semantical interoperability. On the technical

side, both simulations should have the same timeline to ensure consistency and synchro-

nization between them. Semantically, concepts and requests from one simulation must be

41

5. Simulating Messaging

mapped to the entities of the other simulation. While enabling that, re-use and replacing

of one of the simulations should still be as easy as possible. This should also ease the

separate testing of both simulations.

5.2. Concepting a Simulation Interface

As already remarked in Section 2.6, it is necessary to target standardization at the modeling

level to ensure meaningful interoperability as some issues regarding, e.g., semantics and

di�erent structures for the same concept can not be dealt with on the technical level

[42]. Therefore, we developed a generalized concept of a simulation interface between a

component-based ADL and a messaging simulation and provide a mapping of the respective

concepts. Followed by that, we give an overview of the realization in this work.

As stated in Section 5.1, the component simulation and the messaging simulation should

be as independent of each other as possible. Therefore, the concept of the simulation

interface needs the component simulation to know about where a message is addressed

to only and requires no further knowledge of the messaging infrastructure. On the other

side, the messaging simulation only gets the size and the routing key of a message and is

not interested in the content of the message sent. When a message is sent, the simulation

interface is invoked and stores the content and context information of a message by

a unique message ID assigned to it. It only forwards the size and the routing key, as

well as the message ID, to the producer in the messaging simulation corresponding to

the component sending the message in the component simulation. The behavior of the

sending component can then be executed further while the message is in delivery in the

messaging simulation. When a message arrives at a consumer, the simulation interface

gets noti�ed with information about the consumer and retrieves the stored information

about the message by its ID. The information about the consumer identi�es the receiving

component whose behavior when receiving this type of message is then triggered with

the actual content of the message. Acknowledgments of consumers are triggered by the

component simulation because the messaging simulation should not be aware whether

acknowledgments are transactional or not. When a message should be acknowledged,

the component simulation must give information about the receiving component and the

ID of the message to acknowledge. The simulation interface then sends this request to

the messaging simulation with the ID of the consumer corresponding to the component

information. On the semantic side, the simulation interface must, therefore, provide

a mapping between components and producers, respectively consumers to realize its

functionality as explained above. An overview of the mapping of entities and requests

between the simulations is provided in Tab. 5.1.

Technical interoperability should be provided by simulating both models in one simula-

tion. This gives them both the same timeline with the same future event list.

This concept comes with the advantage of asynchronous sending behavior: Senders

consider the sending process �nished after passing a message to the simulation interface

and return immediately in terms of simulation time. Also, no usage scenarios need to

be speci�ed for consuming messages: Components receiving messages are noti�ed upon

arrival and the execution of their respective behavior is then triggered. Moreover, both

42

5.2. Concepting a Simulation Interface

Component simulation Messaging simulation

Component sending messages Producer

Component receiving messages Consumer

Component sends a message Corresponding producer sends

message

Corresponding component receives a message Consumer receives message

Component sends acknowledgment for a Consumer sends acknowledgment

message

Table 5.1.: Overview over the mapping of entities and requests between a component and

a messaging simulation

simulations are transparent to each other. It is therefore easy to replace either one of

them; messaging simulations only need to provide a method for sending messages and

acknowledgments via a speci�ed producer, respectively consumer, and a callback providing

information about the receiving consumer.

AssemblyContext1

ConnectedSendEndpoint A

AssemblyContext2

ConnectedReceiveEndpoint B

SimuLizar

Messaging Simulation

Send Message

Producer1:A

Interface between simulations

Routing key, size, msgID Broker
Exchange

Queue Consumer2:B

msgID

Figure 5.1.: Overview of the simulation interface concept

An overview of the realization of the concept for SimuLizar and the AMQP messaging

simulation as described in Section 2.1.4 is given in Fig. 5.1. The order of events is from the

top left via the bottom left and bottom right to the top right. When an assembly context

wants to send a message via a connected send endpoint, the routing key of the message

is determined via the parameters of the SendMessageAsync action, as it was introduced

in Section 4.1.2. After the message and its routing key are passed to the simulation

interface, SimuLizar considers the action done and moves on to the interpretation of

the next action. The simulation interface is responsible for storing the Palladio-relevant

message information and handing the size, routing key, and ID of the message as well

as information about the producer, which should send the message, to the messaging

simulation. The corresponding producer is determined by the assembly context sending

the message and the send endpoint used. The producer in the messaging simulation then

43

5. Simulating Messaging

sends the message. When a message arrives at a consumer, the simulation interface is

noti�ed with information about the consumer and the ID of the received message. The

information about the consumer identi�es the corresponding assembly context and its

receive endpoint. The RDSEFF of it can then be triggered with the stored palladio-relevant

information of the message.

5.3. Implementation

We decided to extend SimuLizar via the modelobserver extension point because classes

contributing to that extension point are initialized before the simulation starts and ob-

serve the Palladio model, which is both needed for initializing the messaging model and

adapting it to possible changes. It would have also been possible to directly extend the

SimuLizarRuntimeState class, which provides access to all simulation and SimuLizar re-

lated objects and keeps the current simulation state. This would have meant to provide

a dedicated "messaging analysis" or to directly modify the SimuLizar code to launch the

extended SimuLizarRuntimeState. However, semantically, simulating messaging is not

a new analysis but only an extension to the existing analysis. Therefore, we decided to

implement the extension using the extension point. Fig. 5.2 gives a general overview of

the structure.

broker.simulation.example

broker.simulation

broker.simulizar

<<Interface>>
IMessageReceived

+ messageReceived(String msgID,
String consumerID) : void

implements

MessagingModelSyncer extends
AbstractModelObserver<MessagingAssembly>

BrokerModelRuntimeState

forwards messaging model

AmqpBrokerModel

<<Interface>>
IMessagingSimulationModel

+ sendMessage(String publisherID,
String routingKey, String messageID) :
void
+ sendMessage(String publisherID,
String routingKey, String messageID,
long messageSize)
+ acknowledgeMessage(String
messageID, String consumerID) : void

has

implements

has

creates + adapts

MessagingAware
RDSeffSwitch

send message

IAmqpBrokerModel

Figure 5.2.: Overview of the implementation structure

When executing the MessagingModelSyncer, the messaging model is created as an

IAmqpBrokerModel based on the Palladio model. The details of the transformation will

be explained in Section 5.5. However, to enable callbacks from the entities held in the

AmqpBrokerModel to it, it implements the IMessageReceived interface so entities do not

need to know about the type of simulation model they belong to.

44

5.3. Implementation

<<Interface>>
IMessageReceived

+ messageReceived(String msgID, String
consumerID) : void

<<Interface>>
IMessageEvent

<<Interface>>
IMessagingSimulationModel

+ sendMessage(String publisherID,
String routingKey, String messageID) :
void
+ sendMessage(String publisherID,
String routingKey, String messageID,
long messageSize)
+ acknowledgeMessage(String
messageID, String consumerID) : void

<<Interface>>
IHasMessagingEventNotificationHelper

+ getMessagingEventNotificationHelper() :
MessagingEventNotificationHelper

<<Interface>>
IAmqpBrokerModel

+ createBroker(String brokerID) : void
+ declareExchange(String brokerID, String
exchangeID, ExchangeType type, boolean
durable) : void
+ declareQueue(String routingEntity, String
queueID, List<String> routingKeys, boolean
durable, int maxLength) : void
+ createConsumer(String consumerID, int
prefetch, String routingEntity, String
queueID) : void
+ removeConsumer(String consumerID) :
void
+ createProducer(String producerID, String
exchange, String supportedRoutingKey) :
void
+ removeProducer(String producerID) : void
+ getProducer(String producerID) :
SimplePublisherApplication
+ getQueue(String monitoredQueueID) :
RabbitQueue

Figure 5.3.: Overview of the interface structure

To realize the requirement of the same timespan for both simulations, the simulation

control and simulation engine factory of the SimuCom model are also set for the messaging

model. The SimuCom model is the simulation model used by SimuLizar for simulating

users, system behavior, and resources. This way, they both have the same simulation

timespan and events of both simulations are scheduled in the same list of future events.

45

5. Simulating Messaging

sendMessage(producerID,
routingKey, messageID,
messageSize)

MessagingAwareRDSEFFSwitch BrokerModelRuntimeState IMessagingSimulationModel

sendMessage(producerID,
messageType, variableUsages,
routingKey, context

schedules SendEvent

Figure 5.4.: Process of sending a message

Desmo-J, which is one of the simulation engines used for executing the simulation, also

allows for setting submodels of a model. However, other simulation engines do not support

this which led to the decision of using the same simulation control for both models.

When the AmqpBrokerModel is created, the BrokerModelRuntimeState is set as its IMes-
sageReceived attribute and it is forwarded to the BrokerModelRuntimeState that stores it as

IMessagingSimulationModel. The hierarchy of interfaces can be seen in Fig. 5.3. Whenever

a SendMessageAsync action is about to be executed, the MessagingAwareRDSe�Switch is

called via the rdse�switch extension point from SimuLizar. The RDSe�Switch of SimuLizar

interprets resource demanding SEFFs. The MessagingAwareRDSe�Switch then determines

the routing key of the message by evaluating the ProbabilisticRoutingKey property of the

SendMessageAsync action. The property is evaluated by building a stochastic expression:

The individual ProbabilisticRoutingKeys constitute an EnumPMF with their name as an

enum and their probability as the probability of the respective enum.

This expression is then evaluated and the full routing key is determined by concatenating

the probabilistic routing key with its potential parent routing keys and the event group of

the message. Assembly context and send endpoint ID are used for constructing the name

of the respective producer in the messaging simulation. Routing key and producer id are

then passed to the BrokerModelRuntimeState together with other relevant information

associated with the message, which are message type, input variables, and the execution

context.

The BrokerModelRuntimeState determines the size of the message to send via aBYTESIZE
variable characterization if present. Otherwise, a standard size will be assigned by the

messaging model. The other information is stored until the arrival of the message. The

message is then sent via the send message method of the messaging model. Fig. 5.4 shows

this process.

When a message arrives at a consumer, the AmqpBrokerModel is noti�ed and itself

noti�es its IMessageReceived reference, which is the BrokerModelRuntimeState. Based on

the ID of the consumer, the receiving Palladio assembly context and the receive endpoint

is determined. The other message information is retrieved by the ID of the message.

Execution of the respective RDSEFF in Palladio is triggered by creating and scheduling

a ConsumerProcess, inheriting from SimuComSimProcess, which uses the same request

context as for sending the message but a copy of the stored context for execution. It also

gets the assembly context, receive endpoint, and message type. With this information, a

46

5.4. Integrating Measurements into the Messaging Simulation

new ConsumerProcess
(context,
msgAssemblyContext,
messageType, rcvEndpoint,
isTransactionalAck)

schedule(delay)

messageReceived(msgID,
consumerID)

AmqpConsumer IMessagingSimulationModel BrokerModelRuntimeState ConsumerProcess

messageReceived(msgID,
consumerID)

Figure 5.5.: Process of receiving a message

RepositoryComponentSwitch is created and the caseProvidedRole method called with the

receive endpoint as parameter. Depending on whether the acknowledgments should be

transactional, they are sent before or after that. Fig. 5.5 depicts the process of receiving a

message until the creation of the consumer process.

5.4. IntegratingMeasurements into theMessaging Simulation

To measure metrics that are speci�c to messaging, they must be captured by the simulation.

Therefore, we integrated and extended the Quality Analysis Lab (QuAL) [25]. Considered

metrics in this work are latency of messages, queue length, queue input rates, queue

growth, and memory consumption of queues. However, the implemented integration can

easily be extended to support further metrics.

We integrated the metrics by creating a new library of metrics descriptions. The

measurement of the new model elements is enabled by newly created measuring points:

ReceiveMessageMeasuringPoints are attached to a messaging endpoint and an assembly

context. MessageLatencyMeasuringPoints reference a message type of which the latency

should be measured. Message channels and their resulting queues can be measured by a

QueueMeasuringPoint. In the case of measuring a Publish/Subscribe-Channel, a connected

receive endpoint must be given to determine the correct queue to be measured.

Fig. 5.6 gives an overview of the structure of the implementation. The BrokerProbe-
FrameworkListener creates probes and calculators according to the monitors de�ned in the

monitor repository model. For the building of calculators, the IGenericCalculatorFactory
of the probe framework context of the SimuCom model is used for ensuring that the

calculated values are persisted by the Experiment Data Persistency & Presentation (EDP2)

framework. The BrokerProbeFrameworkListener is also responsible for taking measure-

ments whenever an event is �red by the observed event noti�cation helpers. Therefore, it

implements the two interfaces IBrokerInterpreterListener and IMessagingInterpreterListener
where the former observes a MessagingEventNoti�cationHelper, responsible for events in

the SimuLizar environment such as response times of receive endpoints and latency of

47

5. Simulating Messaging

<<Interface>>
IBrokerInterpreterListener

+ <R extends ReceiveEndpoint, M extends
MessageType>
beginAssemblyReceiveEndpointCallInterpretation
(AssemblyReceiveEndpointPassedEvent<R, M>
event) : void
+ <R extends ReceiveEndpoint, M extends
MessageType>
endAssemblyReceiveEndpointCallInterpretation
(AssemblyReceiveEndpointPassedEvent<R, M>
event) : void
+ beginMessageSentEventInterpretation
(MessageSentEvent messageSentEvent) : void
+ endMessageSentEventInterpretation
(MessageSentEvent messageSentEvent) : void

<<Interface>>
IMessagingInterpreterListener

+ beginQueueLengthChangedEventInterpretation
(QueueLengthChangedEvent ev) : void
+ beginQueueRatesChangedEventInterpretation
(QueueRatesChangedEvent ev) : void
+ beginStatsChangedEventInterpretation
(QueueStatsChangedEvent ev) : void

BrokerProbeFrameworkListenerimplements implements

creates probes
and calculators,

takes
measurements

MessagingEventNotificationHelper extends
AbstractObservable<IMessagingInterpreterListener>

oberserves

<<Interface>>
IHasMesagingEventNotificationHelper

1

1

IMessagingSimulationModel

implements

BrokerEventNotificationHelper extends
AbstractObservable<IBrokerInterpreterListener>

observes

BrokerModelRuntimeState

1
1

Figure 5.6.: Structure of measurements integration

messages of one message type, and the latter a BrokerEventNoti�cationHelper, responsible

for events in the messaging simulation.

The elements in the messaging simulation are aware of the existence of the messaging

event noti�cation helper only and create and �re the respective events via their refer-

ence to the IMessagingSimulationModel that every element of the messaging simulation

has. Supported events are the QueueLengthChangedEvent, QueueRatesChangedEvent and

QueueStatsChangedEvent.

Events concerning the latency of messages and the response time of receive endpoints are

�red by the BrokerModelRuntimeState. When the latency of a message should be measured

and it is delivered to several consuming assembly contexts, e.g. via a Publish/Subscribe-

Channel, only the �rst time of delivery is taken into account for calculating its latency.

48

5.5. Transformation

Meta-model element AMQP entity

Connected Send Endpoint Producer

Connected Receive Endpoint Consumer

Point-to-point channel One queue

Publish/subscribe channel One queue per Connected Receive Endpoint con-

nected to the channel

Dead Letter channel of a router Queue without consumers

Broker Broker

Router Topic exchange

Table 5.2.: Mapping of meta-model elements to AMQP entities

5.5. Transformation

For the simulation of the newly introduced model elements, they need to be transformed

into entities of the messaging simulation. As introduced in Section 2.1.4, a RabbitMQ

inspired messaging system that adheres to the AMQP 0.9.1 protocol is simulated here.

To enable an easy mapping from the model elements to the created AMQP entities and

vice versa, the id of the respective model name is set as the id of the AMQP entity it is

transformed to. Tab. 5.2 gives an overview of the mapping of meta-model elements to

AMQP entities.

First, broker nodes are created as speci�ed in the model. Every router is translated to

a topic exchange, located on its given broker or a default broker otherwise. Dead letter

channels are created as dead letter queues; dead letter channels located on brokers are not

considered because messages in RabbitMQ are always addressed to an exchange and can

therefore not be identi�ed as undeliverable at brokers. Dead letter queues are ordinary

queues but do not have regular consumers consuming from it.

For every connected receive endpoint, one consumer is created having the speci�ed

prefetch and consuming from the queue which was created based on the datatype channel

the endpoint is connected to. For publish/subscribe channels, one queue for every con-

sumer is created. point-to-point channels result in only one queue. The queue is bound to

the exchange with the accepted root routing key of its corresponding channel and has the

queuing properties as speci�ed in the model. A message is routed to a queue when its rout-

ing key starts with or is equal to the routing key of the queue. For example, when a queue

is bound with the routing key Alarms , messages with the Alarms or Alarms .AlarmsFR
routing key will be routed to it.

A producer is created for every connected send endpoint of an assembly context. It

publishes to the exchange or exchanges that has or have connected receive endpoints

connected to the datatype channel of the connected send endpoint the producer is cor-

responding to. If the connected receive endpoint belongs to a broker, the messaging

delegation connectors are evaluated. To account for the accepted root routing key of

the channel, producers only send a message if it starts with or is equal to that. Queuing

properties of channels from producers to brokers or exchanges are not transformed.

49

5. Simulating Messaging

Broker

TopicExchange

Queue "A"

Queue "B"

Producer1
publishes to

Consumer2

Consumer3
consumes from

consumes from

Figure 5.7.: Example of a transformed model with a point-to-point channel

Broker

TopicExchange

Queue "A:2"

Queue "A:3"

Producer1
publishes to

Consumer2

Consumer3
consumes from

consumes from

Figure 5.8.: Example of a transformed model with a publish/subscribe channel

Fig. 5.7 gives an example of the system in Fig. 4.23 after the presented transformation

to AMQP entities was applied. The sending and receiving assembly contexts result in

producers and consumers, in- and outgoing point-to-point channels with the same event

group result in one queue located on a topic exchange, which itself is located on a created

default broker. If AssemblyContext2 and AssemblyContext3 were both connected to a

publish/subscribe channel with event group A, the resulting AMQP model would look as

in Fig. 5.8. The publish/subscribe channel results in the two queues A:2 and A:3 which

means that they are bound to the exchange with the routing key A. Hence, both queues

receive the same messages.

At the moment, the messaging simulation does not o�er an interface to a resource

simulation. Therefore, information about the allocation of the entities is not translated.

Moreover, the simulation does not support exchange to exchange or broker to broker bind-

ings. Because the Palladio model representation was developed independent of RabbitMQ

speci�cs, there are some constructs which can be modeled but can not be transformed to

RabbitMQ entities: Components connected via a message channel are not transformed

and the prefetch of connected receive endpoints is only translated if the connected receive

endpoint belongs to an assembly context, i.e., results in a consumer, because RabbitMQ

supports the setting of a prefetch only for consumers.

50

5.6. Simulating Self-Adaptations

Recon�guration Implication on IAmqpBrokerModel
New assembly context encapsu-

lating a messaging component

Creation of producers and consumers according to

its connected send and receive endpoints and which

channels they are connected to

Removal of assembly context

encapsulating a messaging

component

Deletion of producers and consumers corresponding

to its connected send and receive endpoints

Table 5.3.: Overview of the anticipated messaging-related recon�gurations and their im-

plication on the IAmqpBrokerModel

5.6. Simulating Self-Adaptations

Since we chose SimuLizar as a simulation engine for Palladio models, which is capable of

simulating self-adaptive systems, most functionality needed for that is covered by it. For

reasons of clarity, we present the process for de�ning self-adaptations of systems and how

they are simulated with respect to the application for messaging-related self-adaptations.

The self-adaptations of a system can be speci�ed by de�ning model-to-model transfor-

mations that will then be invoked every time a new measurement from a monitor that

triggers self adaptations is available. Supported model transformation languages include

QVT-O, Henshin, and Story Diagrams. In this work, we realized transformations using

QVT-O (Queries, Views, and Transformations - Operational), an imperative transforma-

tion language using ImperativeOCL which is a variant of the Object Constraint Language

(OCL) with side e�ects. Transformations must check if their respective precondition is

ful�lled themselves. Typically, such a precondition is a measurement taken at a certain

measuring point exceeding or falling below a de�ned threshold. We presented works

about which metrics are suitable for scaling consumers of message queues were presented

in Section 3.2. Transformations get the current Palladio model as input, modify that by

e.g. adding or removing assembly contexts or resources, and output the modi�ed Palladio

model. SimuLizar then noti�es all classes contributing an extension to the modelobserver
extension point about the changes made.

The MessagingModelSyncer presented earlier in Section 5.3 contributes to that extension

point and therefore gets noti�ed about changes. It checks if a change concerns messaging-

relevant parts of the system and adjusts the IAmqpBrokerModel according to it. The updated

model is then forwarded to the BrokerModelRuntimeState.
Table 5.3 depicts possible recon�gurations related to messaging and their implications on

the IAmqpBrokerModel. We derived the possible recon�gurations based on the anticipated

replications of elements discussed in Section 4.2. The addition and removal of routers was

not assumed to be a common scenario and is therefore not considered here.

While the model transformation is general, the transformation of changes in the model

to the entities of the messaging simulation is speci�c to the messaging simulation used.

Transformations are always system-speci�c. However, we present an excerpt of a trans-

formation in QVT-O for the example alarm noti�cation system already used throughout

Section 4.1 whose assembly is depicted in Fig. 4.7. Whenever a de�ned threshold for the

51

5. Simulating Messaging

queue length of the AlarmsFR queue is exceeded and there are free resource containers,

a new assembly context encapsulating the Extractor component is added which has its

connected receive endpoints connected to the AlarmsFR Point-To-Point channel. Listing

A.2 shows the method that checks for this condition and calls the scaleUp method if it is

ful�lled. Listing A.1 depicts the scaleUp method of the transformation which is called to

add the messaging assembly context and allocate it to a free resource container. Encapsu-
latedComponentId, encapsulatedComponentAssemblyCtxId, replicationCount are variables

that are de�ned prior to calling the scaleUp function. The replicationCount variable simply

counts how many times the transformation was executed to name the added assembly

contexts accordingly. First, the instantiated component model object and the messaging

assembly context to replicate are found by their ID. Then, a target resource container is

chosen by selecting a random resource container out of all resource containers that are

not allocated yet. In line 11, the new messaging assembly context is instantiated with

the object keyword. It gets an ID and name a�ected by the current value of replication

count to be uniquely identi�able. In the following, the connected receive endpoints of

assemblyContextToReplicate are also copied to the newAssemblyContext. After that, the new

assembly context is added to the messaging assembly as well as to the messaging allocation

model. The functions createConnectedReceiveEndpoints, addAssemblyContextToSystem,

instantiateAllocationContext are omitted. Fig. 5.9 shows the assembly model of the sys-

tem after the transformation was executed. The added assembly context and its connected

receive endpoint are colored orange.

Broker

sendAlarm

Transformator
Assembly

Alarms-P2P-Channel
Alarms-P2P-Channel

Extractor
Assembly1

Router
Alarms-P2P-Channel

Extractor
Assembly2

acceptedrootroutingkey:
AlarmDE

acceptedrootroutingkey:
AlarmFR

Assembly_
Extractor1

Figure 5.9.: Model after the transformation with added elements colored orange

After the transformation was executed, the MessagingModelSyncer gets noti�ed about

the change. It then checks if the change is messaging-relevant which is true since the new

assembly context is a messaging assembly context. Hence, the MessagingModelSyncer must

adapt the IAmqpBrokerModel to the new consumer by calling its createConsumer(String

consumerID, int prefetch, String routingEntity, String queueID)method. This in-

formation can be derived from the model as we explained previously in Section 5.5. After

this, he forwards the complete broker model to the BrokerModelRuntimeState. Fig. 5.10

depicts this process.

52

5.6. Simulating Self-Adaptations

setModel(IAmqpBrokerModel brokerModel)

add(Notification n)

MessagingModelSyncer IAmqpBrokerModel BrokerModelRuntimeState

createConsumer(String id, int
prefetch, String routingEntity,
String queueId)

Figure 5.10.: Propagation of model changes by the MessagingModelSyncer

53

6. Evaluation

The main objective of this thesis is to enable design-time predictions for message-driven

self-adaptive systems. Therefore, we introduced a meta-model for the representation

of message-driven systems on an architectural level in Chapter 4. The simulation of

message-driven self-adaptive systems based on SimuLizar and a messaging simulation was

presented in Chapter 5. This chapter now evaluates whether the predictions made in the

simulation comply with measurements taken during a real execution of the modeled system.

Therefore, we investigate a case study: The system is executed and benchmarked during

execution, and also modeled and simulated. The results are then compared regarding

various metrics using a Goal-Question-Metric (GQM) plan [3] which is presented in further

detail in Section 6.1. Section 6.2 is about the calibration of the messaging simulation. The

case study used is introduced in Section 6.3. Section 6.4 presents the Palladio models for

these scenarios. The results of the evaluation regarding prediction accuracy are described

in Section 6.5 and regarding the support of self-adaptations in Section 6.6, followed by a

discussion in Section 6.7.

6.1. GQM plan

The Goal-Question-Metric (GQM) method [3] is a top-down approach to ensure a structured

and transparent procedure. First, goals are formulated. Then, questions are de�ned whose

answers provide insights about whether the respective goal is achieved. The questions are

answered using the de�ned metrics for that question.

The goals, questions, and metrics used for the evaluation of this thesis are shown in

Fig. 6.1. They are oriented at the research questions formulated in Section 1.2. The overall

goal is, as said earlier, to support design-time predictions for message-driven self-adaptive

systems. It is divided into three sub-goals. First, the representation of message-driven

systems on an architectural level should be possible. If the scenarios of the case study can

be modeled, this goal is ful�lled. The second sub-goal is the increase of prediction accuracy

for message-driven systems. The question here is two-fold: Can prediction accuracy for

real systems be shown and if so, is the prediction more precise than predictions made

using other approaches, e.g. performance completions? The metrics used are message

latency, queue length, queue growth, distribution of messages to consumers, and memory

consumption of the broker. The distribution to consumers refers to two levels here:

First, if the routing and load balancing re�ect the reality, and second if the �ow control

takes place. The prediction accuracy for these metrics will be evaluated by computing

the average absolute and relative error, but also by assessing the qualitative correlation

between measurements and prediction, e.g. if trends are foreseen correctly. The support

of recon�gurations of message-driven systems is the third sub-goal. It is ful�lled if the

55

6. Evaluation

Goal 1 Support design-time predictions for message-driven self-adaptive systems

Goal 1.1 Enable representation of message-driven systems on architectural level

Question Can case study scenarios be modeled using the proposed model elements?

Metric Ful�lled: yes/no

Goal 1.2 Increase prediction accuracy for message-driven systems

Question

• Is the prediction more accurate than a prediction using performance

completions?

• Can the prediction accuracy be shown for real systems?

Metric Latency of messages

Queue length

Queue growth

Distribution of messages to consumers

Memory consumption

Goal 1.3 Support recon�gurations of message-driven systems

Question Can typical recon�gurations of message-driven systems be mapped to

the architectural model and the messaging simulation?

Metric Ratio of scenarios of the case study that can be mapped

Table 6.1.: Goals, Questions, and Metrics for the evaluation

recon�gurations of the system in the case study can be mapped to the architectural model

and the messaging simulation.

The meta-model is not evaluated regarding comprehensibility and usability because it

is di�cult to avoid biases caused by the editor used for the model.

6.2. Calibrating the Model

We can not map all environmental factors to the model; mapping everything to the model

is also not desirable because the model would lack its pragmatism then. Therefore, the

model must be calibrated in order to obtain accurate performance predictions. Model

calibration means enriching a qualitative model with quantitative data. This data can be

estimated or collected from measurements [33, p. 116].

First, the benchmarks conducted for collecting the data are presented in Section 6.2.1.

In Section 6.2.2, we explain the interpretation and usage of the obtained results for the

calibration of the model.

6.2.1. Benchmarking RabbitMQ

Because the message size has a strong in�uence on the latency of a message and the

performance of the broker [16, 17, 21], we are interested in the latency of messages of

56

6.2. Calibrating the Model

OS Amount of CPUs CPU model RAM

Ubuntu 18.04.4 48 AMD Opteron 6174 251 GB

Table 6.2.: Speci�cations of the machine used for benchmarking

di�erent size for calibration of the model. The throughput, which is normally used for

benchmarks, is not of interest here because it does not allow to draw conclusions about

the latency of single messages and is therefore not useful for calibrating the model. The

experiments measure the latency of messages always for one message size at a time. The

basic benchmark con�guration includes the sending of persistent messages via a direct

exchange with one producer and one consumer with manual acknowledgments. The

send rate of the producer is restricted to one, respectively hundred, messages per second

to collect data for low and high load scenarios. The pubAcks con�guration additionally

includes required publisher acknowledgments, increasing the latency by the time for

persisting the message, and the prefetch con�guration a consumer prefetch of 1, increasing

the latency by the time until consumer acknowledgments are received. This is expected to

give insights about the time needed for message persisting and disposition sending.

We conducted the benchmarks with RabbitMQ PerfTest [29] version 2.11.0 on a machine

from FZI with the speci�cations as shown in Tab. 6.2. RabbitMQ PerfTest, as well as

RabbitMQ, ran in Docker containers connected by a bridge network. A docker image

of RabbitMQ version 3.8.3 was used. The measured latency is end-to-end. Each test ran

for one minute and was executed �ve times to account for possible inaccuracies of the

measurements.

The results for the basic scenario with a send rate of 1 message per second are depicted

in Fig. 6.1 and Fig. 6.2. Latencies with publisher acknowledgments can be seen in Fig. 6.5

and Fig. 6.6 latencies with a consumer prefetch of 1 in Fig. 6.3 and Fig. 6.4.

The latencies for a send rate of 100 msg/s are shown in Fig. 6.7 and Fig. 6.8 for the basic
con�guration, in Fig. 6.9 and Fig. 6.10 for the prefetch con�guration and in Fig. 6.11 and

Fig. 6.12 for the pubAcks con�guration.

The average latency for messages in the base con�guration and a send rate of 1 msg/s is

higher than for a send rate of 100 msg/s. This could be caused by the send rate of 1 msg/s

being too low to keep all RabbitMQ processes running and causing them to switch to an

idle status in between the sending of two messages. Also, the prefetch con�guration poses

less overhead for a rate of 100 msg/s than for a rate of 1 msg/s. However, the pubAcks
con�guration is considerably slower for a rate of 100 msg/s.

57

6. Evaluation

1 2.5 5 7 10 25 50

1.
3

1.
4

1.
5

1.
6

1.
7

msg size (kbyte)

la
te

nc
y

(m
s)

Figure 6.1.: Measured latency in the base con�guration with a send rate of 1 msg/s

100 150 200 250 300 400 500 1000

2
3

4
5

6
7

8
9

msg size (kbyte)

la
te

nc
y

(m
s)

Figure 6.2.: Measured latency in the base con�guration with a send rate of 1 msg/s

58

6.2. Calibrating the Model

1 2.5 5 7 10 25 50

1.
3

1.
4

1.
5

1.
6

1.
7

msg size (kbyte)

la
te

nc
y

(m
s)

Figure 6.3.: Measured latency in the prefetch con�guration with a send rate of 1 msg/s

100 150 200 250 300 400 500 1000

2
3

4
5

6
7

8
9

msg size (kbyte)

la
te

nc
y

(m
s)

Figure 6.4.: Measured latency in the prefetch con�guration with a send rate of 1 msg/s

59

6. Evaluation

1 2.5 5 7 10 25 50

1.
2

1.
3

1.
4

1.
5

1.
6

1.
7

1.
8

msg size (kbyte)

la
te

nc
y

(m
s)

Figure 6.5.: Measured latency in the pubAcks con�guration with a send rate of 1 msg/s

100 150 200 250 300 400 500 1000

2
3

4
5

6
7

8

msg size (kbyte)

la
te

nc
y

(m
s)

Figure 6.6.: Measured latency in the pubAcks con�guration with a send rate of 1 msg/s

60

6.2. Calibrating the Model

1 2.5 5 7 10 25 50

0.
5

0.
6

0.
7

0.
8

0.
9

msg size (kbyte)

la
te

nc
y

(m
s)

Figure 6.7.: Measured latency in the base con�guration with a send rate of 100 msg/s

100 150 200 250 300 400 500 1000

1
2

3
4

5
6

msg size (kbyte)

la
te

nc
y

(m
s)

Figure 6.8.: Measured latency in the base con�guration with a send rate of 100 msg/s

61

6. Evaluation

1 2.5 5 7 10 25 50

0.
5

0.
6

0.
7

0.
8

0.
9

msg size (kbyte)

la
te

nc
y

(m
s)

Figure 6.9.: Measured latency in the prefetch con�guration with a send rate of 100 msg/s

100 150 200 250 300 400 500 1000

1
2

3
4

5
6

msg size (kbyte)

la
te

nc
y

(m
s)

Figure 6.10.: Measured latency in the prefetch con�guration with a send rate of 100 msg/s

62

6.2. Calibrating the Model

1 2.5 5 7 10 25 50

12
13

14
15

msg size (kbyte)

la
te

nc
y

(m
s)

Figure 6.11.: Measured latency in the pubAcks con�guration with a send rate of 100 msg/s

100 150 200 250 300 400 500 1000

15
20

25
30

msg size (kbyte)

la
te

nc
y

(m
s)

Figure 6.12.: Measured latency in the pubAcks con�guration with a send rate of 100 msg/s

63

6. Evaluation

6.2.2. Interpreting the Results

The measurements conducted in Section 6.2.1 suggest a dependency between the size of a

message and its latency. The Pearson Correlation Coe�cient r normalizes the covariance

of two random variables to values from minus 1 to plus 1 where a value of plus 1 suggests

a strong positive correlation, minus 1 a strong negative correlation and a value of 0 no

correlation. The p value describes the probability of observing a correlation of r even

though the random variables are not correlated in the population. However, the Pearson

Correlation Coe�cient is suitable for linear dependencies only.

The result of calculating the Pearson Correlation Coe�cient r is 0.99 for all of the

measurements above with a p-value of 9.297897e-61 and smaller. This suggests a strong

linear dependency between the size of a message and its latency with a low probability of

wrong observation.

For estimating the latency of messages of arbitrary size, we used linear regression for

interpolation. How well a linear regression �ts the data can be measured by calculating

the coe�cient of determination r which provides insight into how much the data scatters

along the linear regression. It ranges from 0 to 100% with higher values denoting smaller

deviations. The regressions presented in the following achieve a r value of 98% to 99%

except for the regression for the publisher acknowledgments with a r value of 95% which

is not as high as for the other regressions but is still good.

The resulting linear regression model for the basic con�guration with a send rate of 1

msg/s has the form given in Equation 1, for a send rate of 100 msg/s it has the form as in

Equation 2. The respective plots are in Fig. 6.13 and in Fig. 6.16.

latency(ms) = 1.402349e − 03 + (6.861179e − 09 ∗messaдesize(bytes)) (Equation 1)

latency(ms) = 6.353401e − 04 + (5.122246e − 09 ∗messaдesize(bytes)) (Equation 2)

The overhead of the publisher acknowledgment and consumer prefetch features is

determined by comparing the results of the respective measurements to the values of the

basic scenario. For this reason, the values used for the respective linear regression are

subtracted from each other and the resulting values are then used for calculating a new

linear regression describing the overhead of the con�guration.

For a send rate of 1 msg/s, the plots for the overhead introduced by the prefetch con�gu-

ration can be seen in Fig. 6.14 and by the pubAcks con�guration in Fig. 6.15. The overhead

for the pubacks con�gurations decreases and even gets negative for higher message sizes.

This does not allow for conclusions about the write rate of the message store that persists

the messages. Therefore, only the regression for the overhead of the consumer prefetch,

given in Equation 3, is used for calibrations, even though we did not expect the additional

latency of the consumer prefetch to be dependent of the message size.

latency(ms) = 3.614767e − 04 + (1.318373e − 07 ∗messaдesize(bytes)) (Equation 3)

For a send rate of 100 msg/s, the overhead for the prefetch con�guration is depicted in

Fig. 6.17 and for the pubAcks con�guration in Fig. 6.18. The overhead increases for the

64

6.2. Calibrating the Model

pubAcks con�guration now as expected and allows for conclusions about the time needed

for persisting messages. The equation for the linear regression is given in Equation 4.

Because Fig. 6.17 shows that messages sent in the prefetch con�guration have an even

shorter latency as in the basic scenario for sizes less than 200 KByte, the time needed for

sending dispositions is assumed to be 0 in the high load scenario.

latency(ms) = 1.362617e − 02 + (2.038807e − 08 ∗messaдesize(bytes)) (Equation 4)

For calibrations of the model, we distinguish between high and low load scenarios for

the base latency of a message which is set as in Eq. Equation 2 for high loads and as in

Eq. Equation 1 for low loads. The write rate of the message store is set to be as in Eq.

Equation 4. The time taken by dispositions sent by consumers is set to 0 even for the

low load scenario since the additional latency there increases with message size and is

therefore not assumed to be originated from the prefetch value but from the overhead of

idle processes in between the sending of two messages.

0 200 400 600 800 1000

2
4

6
8

msg size (kbyte)

la
te

nc
y

(m
s)

Figure 6.13.: Linear regression model for the basic con�guration with a send rate of 1

msg/s

65

6. Evaluation

0 200 400 600 800 1000

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

0.
12

msg size (kbyte)

ad
di

tio
na

l l
at

en
cy

 (
m

s)

Figure 6.14.: Linear regression model for the di�erence between the con�guration with

consumer prefetch and the basic con�guration for a send rate of 1 msg/s

0 200 400 600 800 1000

−
0.

10
−

0.
05

0.
00

0.
05

0.
10

msg size (kbyte)

la
te

nc
y

(m
s)

Figure 6.15.: Linear regression model for the di�erence between the con�guration with

publisher acknowledgments and the basic con�guration for a send rate of 1

msg/s

66

6.2. Calibrating the Model

0 200 400 600 800 1000

1
2

3
4

5
6

msg size (kbyte)

la
te

nc
y

(m
s)

Figure 6.16.: Linear regression model for the basic con�guration with a send rate of 100

msg/s

0 200 400 600 800 1000

0.
00

0.
02

0.
04

0.
06

msg size (kbyte)

ad
di

tio
na

l l
at

en
cy

 (
m

s)

Figure 6.17.: Linear regression model for the di�erence between the con�guration with

consumer prefetch and the basic con�guration for a send rate of 100 msg/s

67

6. Evaluation

0 200 400 600 800 1000

15
20

25
30

msg size (kbyte)

la
te

nc
y

(m
s)

Figure 6.18.: Linear regression model for the di�erence between the con�guration with

publisher acknowledgments and the basic con�guration for a send rate of 100

msg/s

6.3. SPECjms2007 Benchmark

The SPECjms2007 benchmark aims at providing a standard workload for measurement

and evaluation of the performance and scalability of JMS-based MOMs [37]. It represents a

real application and comprises seven di�erent interactions, including both point-to-point

and publish/subscribe communication. The messages sent have di�erent types, sizes,

and delivery modes. The system used in the benchmark models the supply chain of a

supermarket company. There are four types of actors: Supplier (SP), Distribution Center

(DC), Headquarter (HQ), and Supermarket (SM). Every supermarket is supplied by exactly

one distribution center. When scaling horizontally, the number of supermarkets is changed

whereas, for vertical scaling, the number of products sold is adjusted.

The scenario behavior of the actors is described in Section 6.3.1 and Section 6.3.2, where

the former covers interaction 1 and the latter interaction 3. We chose the scenarios because

they exercise Point-To-Point, respectively Publish/Subscribe communication. The other

interactions are not considered for the evaluation in this work.

6.3.1. SPECjms2007 Interaction 1

The �rst interaction is about order and shipment handling and involves SMs, DCs, and

the HQ. The con�guration for this evaluation uses one SM, one DC, and one HQ. All

communication is point-to-point and uses persistent messages. The sequence of events is

as follows [37]:

68

6.4. PCM Models of the SPECjms2007 Benchmark

Message type Size 1 Size 2 Size 3
Probability 95% 4% 1%
Order 1.74 7.10 41.01

OrderConf 2.02 7.39 41.29

ShipDep 1.12 8.59 55.79

StatInfo 0.22 1.67 10.83

ShipInfo 1.28 8.76 55.95

ShipConf 0.81 2.73 14.83

Table 6.3.: Message sizes in KByte by message type for interaction 1 [34, p.117]

Message type Size 1 Size 2 Size 3
Probability 95% 4% 1%
PriceUpdate 0.24 0.24 0.24

Table 6.4.: Message sizes of the PriceUpdate message in KByte for interaction 3 [34, p.117]

1. SM sends an order to its DC (Order message)

2. DC sends a con�rmation to the SM (OrderConf message)

3. Goods are registered upon leaving the DC (ShipDep message)

4. DC sends information about the transaction to the HQ (StatInfo message)

5. Goods are registered at the SM upon arrival (ShipInfo message)

6. SM sends a con�rmation to its DC (ShipConf message)

Tab. 6.3 depicts the sizes of messages in this interaction.

6.3.2. SPECjms2007 Interaction 3

This interaction describes the communication of price updates: When a selling price

changes, the HQ sends PriceUpdate messages to the SMs. The con�guration for this

evaluation uses ten SMs and two HQs. Communication here is on a publish/subscribe

basis and the messages sent are persistent. Tab. 6.4 depicts size and distribution of the

PriceUpdate messages.

6.4. PCMModels of the SPECjms2007 Benchmark

For a performance prediction of the scenarios introduced in Section ??, we modeled the

scenarios as PCM models using the proposed model elements from Section 4.1. In the

following, the PCM models for the SPECjms2007 interactions are described. The repository

and system models are introduced in Section 6.4.1, Section 6.4.2 describes the Usage model.

The resource environment and allocation model are omitted because the focus of the

69

6. Evaluation

Component Sends messages Receives messages

SM Order, ShipConf OrderConf, ShipInfo
DC OrderConf, StatInfo, ShipDep, ShipInfo Order, ShipDep, ShipConf
HQ StatInfo

Table 6.5.: Sent and received mesage types by messaging component

evaluation is on metrics collected in the messaging simulation. Since the messaging

simulation is not connected to a resource simulation, its metrics are independent of its

allocation.

6.4.1. Repository and Systemmodel

The actors SM, DC, and HQ are modeled as messaging components. Every message

sent in the two interactions is modeled as a message type within a separate event group.

Each message type has a String input parameter msg which will be used to characterize

the size of messages. There is no need for routing keys because the scenarios do not

further distinguish messages apart from their type. The receive and send endpoints of the

messaging components specify their respective event group. Tab. 6.5 provides an overview

of which messaging component sends or receives which messages. The behavior upon

receiving of a message is speci�ed with RDSEFFs. In the case of interaction 1, receiving

a message mostly triggers the sending of subsequent messages as described in Sec. 6.3.1

except for the ShipConf message which ends the interaction. In interaction 3, the SMs

receiving the price updates do not execute further actions. Sending of messages is speci�ed

using the new SendMessageAsync action as it was introduced in Sec. 4.1.2. The size of the

message to be sent, as presented in Tab. 6.3 and Tab. 6.4, is given with a BYTESIZE variable

characterisation of the msg variable. To start interaction 1, the SM messaging component

has an operation provided role providing an operation interface with a signature sendOrder,
which sends an Order message. For the start of interaction 3, the HQ provides an interface

with a sendPriceUpdate signature which sends a PricdeUpdate message.

Fig. 6.19 depicts the part of the system mapping interaction 1. All assembly contexts

are connected to point-to-point channels via their connected send, respectively receive,

endpoints. Every event group is sent via a di�erent channel as depicted. The contentbased
routing strategy of the router ensures that received messages of one event group are

forwarded to an outgoing message channel of the same event group. Fig. 6.20 shows

the part of the system mapping interaction 3. While both HQs send price updates via a

point-to-point-Channel to the broker, the connected receive endpoints of the channels

are connected to di�erent connected receive endpoints of di�erent routers via messaging

delegation connectors. The connected send endpoints of both routers are connected to

publish/subscribe channels. SM1 to SM5 are connected to the publish/subscribe channel

Router1 publishes to, SM6 to SM10 to the publish/subscribe channel of Router2. This maps

that one HQ is giving price updates to the �ve SMs it is responsible for.

70

6.4. PCM Models of the SPECjms2007 Benchmark

SM DC

HQ

Order-P2P-Channel

OrderConf-P2P-Channel

Order-P2P-Channel

StatInfo-P2P-Channel

S
tatInfo-P

2P
-C

hannel

ShipDep-P2P-Channel

ShipDep-P2P-Channel

OrderConf-P2P-Channel

ShipInfo-P2P-Channel

ShipInfo-P2P-Channel

ShipConf-P2P-Channel

ShipConf-P2P-Channel

sendOrder

Router

Figure 6.19.: System model of SPECjms2007 interaction 1

Broker

sendPriceUpdate

HQ1

SM1

PriceUpdate-Pub/Sub-ChannelHQ2

PriceUpdate-P2P-Channel

PriceUpdate-P2P-Channel

PriceUpdate-Pub/Sub-Channel

SM3

SM5

SM2

SM4

SM6

SM8

SM10

SM7

SM9

sendPriceUpdate

Router2

Router2

Figure 6.20.: System model of SPECjms2007 interaction 3

71

6. Evaluation

6.4.2. Usagemodel

The usage model contains a UsageScenario for each interaction. In the usage scenarios,

an EntryLevelSystemCall is executed which refers to the respective operation provided

role starting that interaction. For interaction 3, two EntryLevelSystemCalls are executed

refering to one HQ each. The usage of separate usage scenarios enables the setting of an

individual send rate for each interaction by using di�erent workload speci�cations. Also,

single interaction can be deactivated easily this way.

6.5. Evaluation of Prediction Accuracy

We evaluate the prediction accuracy by comparing the measurements obtained by running

the SPECjms2007 benchmark against the values predicted by the simulation of a model of

the SPECjms2007 scenarios as proposed in this thesis. The scenarios chosen are interaction

1 and 3 as they were introduced in Section 6.3. Interaction 1 ran with a send message rate

of 1.539201540 msg/s and one SM, one DC, and one HQ. Interaction 3 ran with a send

message rate of 6 msg/s and two HQs, each giving price updates to 5 SMs. This results in

a send message rate of 3 msg/s per HQ. This does not adhere to the guidelines of SPEC

which specify a di�erent topology and the concurrent execution of all interactions.

We conducted each measurement �ve times for half an hour with a preceding warm-up

period of 10 minutes in each case to account for possible inaccuracies of the measurements.

They ran on the same machine as used for conducting the benchmarks in Section 6.2.1.

Tab. 6.2 shows its speci�cations. The CPU utilization ranged from 5% to 30%. RabbitMQ

as well as the SPECjms code was executed in docker containers communicating over a

bridge network. The used version of RabbitMQ is 3.8.3.

As the respective send rates are low, the model calibration for low loads as presented

in Section 6.2.2 is used. The CPU utilization is not measured because there is no actual

processing of messages, actors only receive messages and forward them.

In addition to the evaluation of the case study scenarios, we have created several syn-

thetic test cases to show the feasibility of the approach regarding �ow control, scheduling,

and use of di�erent routing keys. They are shown in Tab. 6.6. The routing scenario

includes one producer that sends messages with two di�erent routing keys that have

the same parent routing key to the broker. There are two consumer, each connected to

a di�erent point-to-point channel that each accepts one of the two routing keys. The

outcome for all test cases is as expected.

6.5.1. Results SPECjms2007 Interaction 1

The measurement results for the latency of messages of interaction 1 of the SPECjms2007

benchmark and the performance prediction are presented in 6.21. The results from the �ve

measurements conducted as well as the median of the measurements and the predicted

latency are given by message type. The relative prediction error between the median of

the measurements and the prediction in percent is between 2.75% and 36.87%, resulting in

a median error of 13.21%. Tab. 6.7 depicts this. Also, the mean values of the measurements

and the standard deviation are given. However, the median was used for calculating the

72

6.5. Evaluation of Prediction Accuracy

Test case Tested

property

Outcome

Over-producing producer, no

transactional acknowledg-

ments

Flow

control

Messages are queued up and only deliv-

ered when the consumer has acknowl-

edged the receipt of previous messages

Over-producing producer,

transactional acknowledg-

ments

Flow

control

Messages are queued up and only deliv-

ered when the consumer has acknowl-

edged previous messages after processing

them

One producer, two con-

sumers with same resources

available, round-robin

scheduling

Scheduling Both consumers receive messages alter-

nately

Routing scenario Routing Consumers only receive messages with

the routing key of their channel

Table 6.6.: Synthetic test cases and their outcome

relative prediction error because it is not as strongly a�ected by outliers as the mean value.

Tab. A.1 shows the measured latency per message type.

The predicted queue length of 0 is correct as well as the predicted queue growth of 0

and the rate of 1.53 of incoming messages which equals the rate at which Order messages

are sent for all queues. The distribution to consumers is obviously correct as there is only

one consumer connected to every queue. Flow control did not have any in�uence on

deliveries, all entities sending messages had enough credit to send messages all the time.

The prediction of memory consumption is qualitatively good as every message is held in

RAM until it is acknowledged at a queue by the receiving consumer. Since every message

gets consumed right away, this time interval is very short. However, the measurements

did not show any RAM usage which is probably due to the time steps between the single

measurements taken on the queue being too big and the time in RAM of a message being

too short, which does not allow for a quantitative comparison.

6.5.2. Results SPECjms2007 Interaction 3

The median and average latency of the PriceUpdate message measured is 2.39ms. Tab.

A.2 shows the measured values. The performance analysis predicts 1.403994ms, which

gives us a prediction error of 41.42%. However, when the scenario is executed with only

1 SM instead of 10 SMs, the median latency of the PriceUpdate message is only 1.45ms

with an average value of 1.48ms. The simulation still predicts a latency of 1.403994ms

which results in a prediction error of only 3.17%. This implies that the higher latency is

caused by the distribution of messages to the queues which has a higher resource demand

when messages are forwarded to more queues. Because the messaging simulation is not

yet connected to a resource simulation, this can not be re�ected in the simulation at the

moment.

73

6. Evaluation

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

La
te

nc
y

(m
s)

O
rd

er

O
rd

er
C

on
f

S
ta

ts

S
hi

pD
ep

S
hi

pI
nf

o

S
hi

pC
on

f

Prediction

Measurement

Measurement−Median

Figure 6.21.: Measurement results and prediction of latency for interaction 1 by message

type

As before, the consumers consume the messages right after they are published to the

queues, resulting in queue lengths of 0 which were predicted correctly. The queue growth

of 0 is also correct for the whole measurement period. Every consumer receives every

PriceUpdate sent which is in accordance with the measured values. Flow control had no

impact on the deliveries as there was always enough credit available. Also, the memory

consumption prediction shows the same behavior as before with every message being

in RAM for a very short time. This is assumed to be correct because the messages are

delivered almost immediately and are held in RAM until delivery only. However, as

before, no quantitative comparison is possible due to the lack of measurements of RAM

consumption.

6.6. Evaluation of Support of Self-Adaptations

The system in the case study is not self-adaptive. Therefore, we can not compare recon�g-

urations in the real system with predicted recon�gurations. However, we will argue that

the approach in this work is capable of simulating self-adaptive message-driven systems

that recon�gure based on message queue metrics and CPU utilization of consumers, as

investigated by Gotin et al. [13].

In Section 4.2, we highlighted possible and anticipated replications of elements due

to recon�gurations and presented how they can be mapped to the model. Section 5.6

covered which recon�gurations are expected during a simulation run. Tab. 6.8 shows

74

6.6. Evaluation of Support of Self-Adaptations

Message type Order OrderConf Stats ShipDep ShipInfo ShipConf

Median measure-

ments (ms)

1.76 1.65 1.30 1.27 1.38 1.03

Average measure-

ments (ms)

1.76 1.66 1.28 1.27 1.39 1.04

Standard devi-

ation measure-

ments (ms)

0.08 0.03 0.04 0.02 0.05 0.07

Prediction (ms) 1.420202 1.405133 1.415679 1.416923 1.417947 1.409733

Deviation be-

tween median

measurement

and prediction

19.31% 14.84% 8.90% 11.57% 2.75% 36.87%

Table 6.7.: Delivery time by message type and deviation between measurement medians

and prediction

considered recon�gurations and their implications on the Palladio model, as well as their

implications on the AMQP simulation model. We explained how self-adapting behavior

can be de�ned and which changes in the model are propagated how to the messaging

simulation model. This was illustrated by an example adaptation that adds more consumers

to a queue if the length of the queue exceeds a de�ned threshold. Therefore, we presented a

transformation that instantiates additional message receiving messaging assembly contexts

to that channel. We also described the process of propagating the new assembly context,

respectively consumer, to the messaging simulation model.

As mentioned, the execution of transformations depends on a precondition they specify.

Typically, this condition checks if the value of a measurement at a measuring point exceeds

or is below a de�ned threshold. Since we added measuring points to collect measurements

at the new model elements as explained in Section 5.4, carrying out transformations

dependent on messaging metrics is possible. In fact, all metrics investigated by Gotin et al.

[13] which were presented in Section 3.2 can be used.

To show the feasibility of the approach, we have created synthetic test cases that added

and removed consumers based on the queue length and the response time of consumers.

Gotin et al. [14] also mentioned the possibility to adapt send rates to provide overload

protection. Though overload protection can be provided by the consumer prefetch and

the �ow control by the broker and consumers on the link layer, an adaptation of the send

rate would also be possible by applying a transformation to the workload of the respective

usage scenario.

SimuLizar also supports transient e�ect analysis [40] by specifying the adaptation

behavior in an action repository that can cause resource demands. Transient e�ects caused

by link creation and removal are already considered by the messaging simulation. However,

not all transient e�ects can be mapped since the messaging simulation is not yet connected

to a resource simulation.

75

6. Evaluation

Recon�guration Implication on Palladio model Implication on AMQP broker

model

Adding a new consumer New assembly context that re-

ceives messages

Creation of consumers ac-

cording to connected receive

endpoints

Removal of consumer Removal of assembly context

that receives messages

Removal of corresponding

consumer

Adding a new producer New assembly context that

sends messages

Creation of producers accord-

ing to connected send end-

points

Removal of producer Removal of assembly context

that sends messages

Removal of corresponding

producer

Table 6.8.: Overview of the anticipated messaging-related recon�gurations and their im-

plication on the Palladio model and the IAmqpBrokerModel

To sum up, we provided concepts on how recon�gurations of a message-driven system

can be mapped to the model and propagated further to the entities of the messaging

simulation used. The addition and removal of messaging assembly contexts were realized

on an exemplary basis by QVT-O transformations. We, therefore, expect to be able to map

typical recon�gurations of a message-driven system to the architectural model as well as to

the messaging simulation. However, the performance predictions may be over-optimistic

since we did not consider the cost of recon�gurations yet.

6.7. Evaluation summary

To evaluate the approach proposed in this thesis, we de�ned three evaluation goals that

focus on the applicability of the model elements, the prediction accuracy, and the support

for recon�gurations of the system, as depicted in Tab. 6.1.

We evaluated these goals using the SPECjms2007 case study. Interaction 1 and 3 of it

were modeled using the model elements proposed in Section 4.1 which showed their appli-

cability. Both interactions could be modeled in full detail. The comparison of predicted and

measured message latency exhibited a median prediction error of 13.21% for Point-To-Point

communication and a prediction error of 41.42% for Publish/Subscribe communication.

Modeling and simulating message-driven systems as proposed by Rathfelder [31] exhibited

a prediction error not exceeding 25% in most of the cases which means that the results

obtained by using the approach from this thesis could be slightly better without measuring

resource demands separately for every message but using a generic calibration only. How-

ever, the prediction accuracy for Publish/Subscribe communication could not be shown

as the prediction error is considered too high. This could be improved by connecting the

messaging simulation to a resource simulation as implied by the measurements taken

when messages were delivered to one SM instead of ten. Besides that, queue length, as

well as queue growth and input rates, were predicted correctly for both interactions of the

SPECjms2007 case study. The memory consumption is qualitatively correct. This shows

76

6.7. Evaluation summary

that more detailed statements about the state of the system are possible using a dedicated

messaging simulation. However, for making more reliable statements about the prediction

accuracy of this approach, a larger case study needs to be investigated.

An internal threat to the validity of the evaluation is the small sample. We chose to

evaluate only two interactions which are not necessarily representative for message-driven

systems. Furthermore, the messaging simulation is still under development and could still

include wrong behavior and bugs. External validity is threatened by the fact that case

studies can not be generalized. Consequently, showing the prediction accuracy for one

case study does not allow for conclusions about the prediction accuracy in other scenarios.

77

7. Conclusion

In this last chapter, we conclude the thesis and give an overview of possibilities for future

work.

7.1. Summary

The goal of this thesis has been to enable quality predictions for message-driven self-

adaptive systems. Previous approaches did not simulate messaging in detail and abstracted

queuing behavior among other factors. Moreover, they did not consider self-adaptive

systems. Therefore, this thesis presented a meta-model for architectural representation

of messaging, and a simulation interface between a simulation of a component-based

architecture description language and a messaging simulation. We introduced an imple-

mentation of this interface for the Palladio simulation engine SimuLizar and an AMQP

messaging simulation, and explained how self-adaptations can be speci�ed and simulated.

The approach has been evaluated regarding its applicability, prediction accuracy, and

support of recon�gurations of self-adaptive systems.

We developed the meta-model as an extension to the PCM following the patterns of

Hohpe and Woolfs [18]. This ensures the independence of the meta-model from message

broker implementations. It comprises four di�erent view types, separating the modeling

of structural, behavioral, and deployment characteristics, as well as system-speci�c from

system-independent characteristics. Colored Petri Nets have been applied in order to

de�ne the semantics of the model elements. We also highlighted expected recon�gurations

of systems and their respective mapping to models of the meta-model.

To analyze the impact of using messaging on component-based systems, we de�ned a

number of requirements for a simulation interface between a simulation of a component-

based architecture description language and a messaging simulation, and presented a

generic concept for such an interface. With regard to the implementation, we chose the

Palladio simulation engine SimuLizar and used an AMQP messaging simulation. We chose

SimuLizar since systems using messaging tend to be dynamic and SimuLizar is able to

simulate self-adaptations. This realization integrates two models within one simulation to

ensure consistency and synchronization between both of them on the technical side. The

use of a dedicated messaging simulation enables the prediction of other quality-related

metrics than message latency, such as length of message queues; it also facilitates the

distribution of messages to consumers not only for reasons of load balancing but also

conditional on a �ow control. This provides deeper insights into the quality of a system.

In the evaluation chapter, we demonstrated the applicability of the proposed model

elements by modeling a representative case study. Regarding the latency of messages, we

could show the prediction accuracy for Point-To-Point communication. For Publish/Sub-

79

7. Conclusion

scribe communication, the prediction error was 41.42 percent, which means that prediction

accuracy could not be shown for this communication model. Other metrics, such as queue

length and input rate, proved to be accurate for Point-To-Point and Publish/Subscribe

communication. The RAM consumption of queues was qualitatively correct. We also

argued that the approach is capable of supporting the recon�guration of systems. However,

further case studies have to be performed to verify the general applicability of the approach

and its prediction accuracy.

7.2. Future Work

Future studies could bene�t from further investigation of several aspects. At the moment,

the messaging simulation is not connected to a resource simulation. The evaluation of

the Publish/Subscribe scenario showed that the latency of messages increases as more

consumers subscribe to a speci�c Publish/Subscribe channel. By connecting a resource

simulation to the messaging simulation, this behavior could be mapped and prediction

accuracy therefore be improved. Prediction accuracy could be improved further through

the use of a theoretical model describing the time certain events take in more detail. On

the implementation side, modeling could be eased by providing graphical editors that

extend existing Palladio editors.

80

Bibliography

[1] Abstract Simulation Engine. https : / / sdqweb . ipd . kit . edu / wiki / Abstract _
Simulation_Engine. Last accessed: 2020-05-02.

[2] ArchiMate. https://www.opengroup.org/archimate-forum/archimate-overview.

Last accessed: 2019-11-14.

[3] V. R. Basili and D. M. Weiss. “A Methodology for Collecting Valid Software Engi-

neering Data”. In: IEEE Transactions on Software Engineering SE-10.6 (1984), pp. 728–

738.

[4] Matthias Becker, Ste�en Becker, and Joachim Meyer. “SimuLizar: Design-Time

Modeling and Performance Analysis of Self-Adaptive Systems”. In: Software Engi-
neering 2013. Ed. by Stefan Kowalewski and Bernhard Rumpe. Bonn: Gesellschaft

für Informatik e.V., 2013, pp. 71–84.

[5] Matthias Becker, Markus Luckey, and Ste�en Becker. “Performance Analysis of

Self-adaptive Systems for Requirements Validation at Design-time”. In: Proceedings
of the 9th International ACM Sigsoft Conference on Quality of Software Architectures.
QoSA ’13. Vancouver, British Columbia, Canada: ACM, 2013, pp. 43–52. isbn: 978-1-

4503-2126-6. doi: 10.1145/2465478.2465489. url: http://doi.acm.org/10.1145/

2465478.2465489.

[6] Stipe Celar, Eugen Mudnic, and Zeljko Seremet. “State-Of-The-Art of Messaging for

Distributed Computing Systems”. In: Jan. 2016, pp. 0298–0307. isbn: 9783902734082.

doi: 10.2507/27th.daaam.proceedings.044.

[7] Betty H.C. Cheng et al. “08031 – Software Engineering for Self-Adaptive Systems:

A Research Road Map”. In: Software Engineering for Self-Adaptive Systems. Ed. by

Betty H. C. Cheng et al. Dagstuhl Seminar Proceedings 08031. Dagstuhl, Germany:

Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany, 2008. url: http:

//drops.dagstuhl.de/opus/volltexte/2008/1500.

[8] Communication Path. https://circle.visual- paradigm.com/communication-

path/. Last accessed: 2019-11-14.

[9] Edward Curry. “Message-Oriented Middleware”. In: Middleware for Communications.
John Wiley & Sons, Ltd, 2005. Chap. 1, pp. 1–28. isbn: 9780470862087. doi: 10.1002/

0470862084.ch1. eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/

0470862084.ch1. url: https://onlinelibrary.wiley.com/doi/abs/10.1002/

0470862084.ch1.

[10] Thomas Czogalik. “Modellierung und Simulation von verteilter und wiederver-

wendbarer nachrichtenbasierter Middleware”. MA thesis. Karlsruhe Institute of

Technology (KIT), 2019.

81

https://sdqweb.ipd.kit.edu/wiki/Abstract_Simulation_Engine
https://sdqweb.ipd.kit.edu/wiki/Abstract_Simulation_Engine
https://www.opengroup.org/archimate-forum/archimate-overview
https://doi.org/10.1145/2465478.2465489
http://doi.acm.org/10.1145/2465478.2465489
http://doi.acm.org/10.1145/2465478.2465489
https://doi.org/10.2507/27th.daaam.proceedings.044
http://drops.dagstuhl.de/opus/volltexte/2008/1500
http://drops.dagstuhl.de/opus/volltexte/2008/1500
https://circle.visual-paradigm.com/communication-path/
https://circle.visual-paradigm.com/communication-path/
https://doi.org/10.1002/0470862084.ch1
https://doi.org/10.1002/0470862084.ch1
https://onlinelibrary.wiley.com/doi/pdf/10.1002/0470862084.ch1
https://onlinelibrary.wiley.com/doi/pdf/10.1002/0470862084.ch1
https://onlinelibrary.wiley.com/doi/abs/10.1002/0470862084.ch1
https://onlinelibrary.wiley.com/doi/abs/10.1002/0470862084.ch1

Bibliography

[11] Display messages in queues. https://wiki.vianovaarchitectura.nl/index.php/
Display_messages_in_queues. Last accessed: 2019-11-14.

[12] Eclipse Modeling Framework. https://www.eclipse.org/modeling/emf/.

[13] Manuel Gotin et al. “Investigating Performance Metrics for Scaling Microservices

in CloudIoT-Environments”. In: ICPE. 2018.

[14] Manuel Gotin et al. “Overload Protection of Cloud-IoT Applications by Feedback

Control of Smart Devices”. In: Proceedings of the 2019 ACM/SPEC International
Conference on Performance Engineering. ICPE ’19. Mumbai, India: Association for

Computing Machinery, 2019, pp. 51–58. isbn: 9781450362399. doi: 10.1145/3297663.

3309673. url: https://doi.org/10.1145/3297663.3309673.

[15] AMQP Working Group. AMQP - Advanced Message Queuing Protocol Protocol Speci-
�cation. Nov. 2009. url: http://www.amqp.org/specification/0-9-1/amqp-org-

download.

[16] Jens Happe et al. “A Pattern-Based Performance Completion for Message-Oriented

Middleware”. In: Proceedings of the 7th International Workshop on Software and
Performance. WOSP ’08. Princeton, NJ, USA: Association for Computing Machinery,

2008, pp. 165–176. isbn: 9781595938732. doi: 10 . 1145 / 1383559 . 1383581. url:

https://doi.org/10.1145/1383559.1383581.

[17] Jens Happe et al. “Parametric Performance Completions for Model-Driven Perfor-

mance Prediction”. In: Performance Evaluation 67.8 (2010), pp. 694–716.

[18] Gregor Hohpe and Bobby Woolf. Enterprise integration patterns : designing, building,
and deploying messaging solutions. 10. print. The Addison-Wesley signature series.

Boston, Mass. [u.a.]: Addison-Wesley, 2007. isbn: 0321200683; 9780321200686.

[19] “IEEE Standard for Modeling and Simulation (M&S) High Level Architecture (HLA)–

Framework and Rules”. In: IEEE Std 1516-2010 (Revision of IEEE Std 1516-2000) (2010),

pp. 1–38.

[20] Indirections Git Repository. https://github.com/PalladioSimulator/Palladio-

Addons-Indirections.

[21] V. M. Ionescu. “The analysis of the performance of RabbitMQ and ActiveMQ”. In:

2015 14th RoEduNet International Conference - Networking in Education and Research
(RoEduNet NER). Sept. 2015, pp. 132–137. doi: 10.1109/RoEduNet.2015.7311982.

[22] Kurt Jensen. “Coloured petri nets and the invariant-method”. In: Theoretical Com-
puter Science 14.3 (1981), pp. 317–336. issn: 0304-3975. doi: https://doi.org/10.

1016/0304-3975(81)90049-9. url: http://www.sciencedirect.com/science/

article/pii/0304397581900499.

[23] Kurt Jensen and Lars M. Kristensen. Coloured Petri Nets: Modelling and Validation of
Concurrent Systems. 1st. Springer, Berlin, Heidelberg, 2009. isbn: 978-3-642-00284-7.

doi: https://doi.org/10.1007/b95112.

82

https://wiki.vianovaarchitectura.nl/index.php/Display_messages_in_queues
https://wiki.vianovaarchitectura.nl/index.php/Display_messages_in_queues
https://www.eclipse.org/modeling/emf/
https://doi.org/10.1145/3297663.3309673
https://doi.org/10.1145/3297663.3309673
https://doi.org/10.1145/3297663.3309673
http://www.amqp.org/specification/0-9-1/amqp-org-download
http://www.amqp.org/specification/0-9-1/amqp-org-download
https://doi.org/10.1145/1383559.1383581
https://doi.org/10.1145/1383559.1383581
https://github.com/PalladioSimulator/Palladio-Addons-Indirections
https://github.com/PalladioSimulator/Palladio-Addons-Indirections
https://doi.org/10.1109/RoEduNet.2015.7311982
https://doi.org/https://doi.org/10.1016/0304-3975(81)90049-9
https://doi.org/https://doi.org/10.1016/0304-3975(81)90049-9
http://www.sciencedirect.com/science/article/pii/0304397581900499
http://www.sciencedirect.com/science/article/pii/0304397581900499
https://doi.org/https://doi.org/10.1007/b95112

[24] Floriment Klinaku, Dominik Bilgery, and Ste�en Becker. “The Applicability of

Palladio for Assessing the Quality of Cloud-based Microservice Architectures”.

In: Proceedings of the 13th European Conference on Software Architecture - Volume
2. ECSA ’19. Paris, France: ACM, 2019, pp. 34–37. isbn: 978-1-4503-7142-1. doi:

10.1145/3344948.3344961. url: http://doi.acm.org/10.1145/3344948.3344961.

[25] Sebastian Lehrig. Quality Analysis Lab (QuAL): Software Design Description and
Developer Guide. Tech. rep. Universität Paderborn, 2016.

[26] Tania Lorido-Botran, Jose Miguel-Alonso, and Jose A Lozano. “A review of auto-

scaling techniques for elastic applications in cloud environments”. In: Journal of
grid computing 12.4 (2014), pp. 559–592.

[27] Messaging Simulation. https://git.rss.iste.uni-stuttgart.de/mosaic/mosaic-

broker.

[28] OASIS. OASIS Advanced Message Queuing Protocol (AMQP) Version 1.0. Oct. 2012. url:

https://docs.oasis-open.org/amqp/core/v1.0/amqp-core-complete-v1.0.pdf.

[29] RabbitMQ PerfTest. https://rabbitmq.github.io/rabbitmq-perf-test/stable/
htmlsingle/. Last accessed: 2020-04-25.

[30] RabbitMQ website. https://www.rabbitmq.com/. Last accessed: 2020-05-02.

[31] C. Rathfelder. Modelling Event-Based Interactions in Component-Based Architectures
for Quantitative System Evaluation. Karlsruhe Series on Software Design and Quality

/ Ed. by Prof. Dr. Ralf Reussner. KIT Scienti�c Publishing, 2013. isbn: 9783866449695.

url: https://books.google.de/books?id=BbYKjU4j2cAC.

[32] Christoph Rathfelder et al. “Modeling event-based communication in component-

based software architectures for performance predictions”. In: Software & Systems
Modeling 13.4 (Oct. 2014), pp. 1291–1317. issn: 1619-1374. doi: 10.1007/s10270-

013-0316-x. url: https://doi.org/10.1007/s10270-013-0316-x.

[33] Ralf [HerausgeberIn] Reussner et al., eds. Modeling and simulating software ar-
chitectures : the Palladio approach. Includes bibliographical references and index.

Cambridge, Massachusetts: The MIT Press, [2016]. isbn: 9780262034760. url: http:

//www.gbv.de/dms/tib-ub-hannover/85684540x.pdf%20;%20https://mitpress.

mit.edu/modeling.

[34] Kai Sachs. “Performance Modeling and Benchmarking of Event-Based Systems”.

PhD thesis. TU Darmstadt, 2011.

[35] Kai Sachs, Samuel Kounev, and Alejandro Buchmann. “Performance modeling and

analysis of message-oriented event-driven systems”. In: Software & Systems Modeling
12.4 (Oct. 2013), pp. 705–729. issn: 1619-1374. doi: 10.1007/s10270-012-0228-1.

url: https://doi.org/10.1007/s10270-012-0228-1.

[36] Douglas C Schmidt. “Guest Editor’s Introduction: Model-Driven Engineering”. In:

Computer - IEEE Computer Society - 39.2 (Feb. 2006), pp. 25–31. doi: 10.1109/MC.

2006.58.

[37] SPECjms2007 Design Document. https://www.spec.org/jms2007/docs/DesignDocument.
html. Last accessed: 2020-04-24.

83

https://doi.org/10.1145/3344948.3344961
http://doi.acm.org/10.1145/3344948.3344961
https://git.rss.iste.uni-stuttgart.de/mosaic/mosaic-broker
https://git.rss.iste.uni-stuttgart.de/mosaic/mosaic-broker
https://docs.oasis-open.org/amqp/core/v1.0/amqp-core-complete-v1.0.pdf
https://rabbitmq.github.io/rabbitmq-perf-test/stable/htmlsingle/
https://rabbitmq.github.io/rabbitmq-perf-test/stable/htmlsingle/
https://www.rabbitmq.com/
https://books.google.de/books?id=BbYKjU4j2cAC
https://doi.org/10.1007/s10270-013-0316-x
https://doi.org/10.1007/s10270-013-0316-x
https://doi.org/10.1007/s10270-013-0316-x
http://www.gbv.de/dms/tib-ub-hannover/85684540x.pdf%20;%20https://mitpress.mit.edu/modeling
http://www.gbv.de/dms/tib-ub-hannover/85684540x.pdf%20;%20https://mitpress.mit.edu/modeling
http://www.gbv.de/dms/tib-ub-hannover/85684540x.pdf%20;%20https://mitpress.mit.edu/modeling
https://doi.org/10.1007/s10270-012-0228-1
https://doi.org/10.1007/s10270-012-0228-1
https://doi.org/10.1109/MC.2006.58
https://doi.org/10.1109/MC.2006.58
https://www.spec.org/jms2007/docs/DesignDocument.html
https://www.spec.org/jms2007/docs/DesignDocument.html

Bibliography

[38] Herbert Stachowiak. Allgemeine Modelltheorie. Springer-Verlag Wien-New York,

1973.

[39] Thomas Stahl and Markus Völter. Model driven software development : technology,
engineering, management. Chichester [u.a.]: Wiley, 2006. isbn: 0-470-02570-0; 978-0-

470-02570-3.

[40] C. Stier and A. Koziolek. “Considering Transient E�ects of Self-Adaptations in

Model-Driven Performance Analyses”. In: 2016 12th International ACM SIGSOFT
Conference on Quality of Software Architectures (QoSA). Venice, 2016, pp. 80–89. doi:

10.1109/QoSA.2016.14.

[41] A. Tolk. “Interoperability, Composability, and Their Implications for Distributed

Simulation: Towards Mathematical Foundations of Simulation Interoperability”. In:

2013 IEEE/ACM 17th International Symposium on Distributed Simulation and Real
Time Applications. 2013, pp. 3–9.

[42] Andreas Tolk and James A Muguira. “The levels of conceptual interoperability

model”. In: Proceedings of the 2003 fall simulation interoperability workshop. Vol. 7.

2003, pp. 1–11.

[43] Antti Valmari. “The state explosion problem”. In: Lectures on Petri Nets I: Basic Models:
Advances in Petri Nets. Ed. by Wolfgang Reisig and Grzegorz Rozenberg. Berlin,

Heidelberg: Springer Berlin Heidelberg, 1998, pp. 429–528. isbn: 978-3-540-49442-3.

doi: 10.1007/3-540-65306-6_21. url: https://doi.org/10.1007/3-540-65306-

6_21.

[44] Wenguang Wang, Andreas Tolk, and Weiping Wang. “The Levels of Conceptual

Interoperability Model: Applying Systems Engineering Principles to M & S”. In:

Proceedings of the 2009 Spring Simulation Multiconference. SpringSim ’09. San Diego,

California: Society for Computer Simulation International, 2009.

84

https://doi.org/10.1109/QoSA.2016.14
https://doi.org/10.1007/3-540-65306-6_21
https://doi.org/10.1007/3-540-65306-6_21
https://doi.org/10.1007/3-540-65306-6_21

A. Appendix

A.1. QVT-O Transformations

1 helper scaleUp(allocation : MessagingAllocation) : Boolean {

2 var instantiatedComponent : BasicComponent := allocation.system_Allocation.

assemblyContexts__ComposedStructure.encapsulatedComponent__AssemblyContext[

BasicComponent]

3 ->any(id = encapsulatedComponentId);

4 var assemblyContextToReplicate : MessagingAssemblyContext := allocation.

allocationContexts_Allocation.assemblyContext_AllocationContext->select(id =

encapsulatedComponentAssemblyCtxId)->oclAsType(MessagingAssemblyContext)->any(true);

5

6 var targetContainers := allocation.targetResourceEnvironment_Allocation.

resourceContainer_ResourceEnvironment

7 ->reject(r | allocation.allocationContexts_Allocation.resourceContainer_AllocationContext

->includes(r));

8 var targetResourceContainer : ResourceContainer := targetContainers->any(true);

9

10 //create new assemblyContext.

11 var newAssemblyContext = object MessagingAssemblyContext {

12 entityName := ’Assembly_’ + instantiatedComponent.entityName + replicationCount.toString()

;

13 id := assemblyContextToReplicate.id + replicationCount.toString();

14 encapsulatedComponent__AssemblyContext := instantiatedComponent;

15 };

16 newAssemblyContext.connectedendpoint := createConnectedReceiveEndpoints(

assemblyContextToReplicate.connectedendpoint);

17

18 //add assemblyContext to messaging assembly

19 msgAssembly.rootObjects()[MessagingAssembly]->map addAssemblyContextToSystem(

newAssemblyContext);

20 msgAllocation.rootObjects()[MessagingAllocation]->map instantiateAllocationContext(

newAssemblyContext, targetResourceContainer);

21

22 return true;

23 }

24 }

Listing A.1: Example QVT-O method that adds a new assembly context

85

A. Appendix

1 helper Set(RuntimeMeasurement) :: checkScalingCondition() : Boolean {

2 self->forEach(measurement) {

3 if (measurement.measuringValue > threshold) {

4 msgAllocation.rootObjects()[MessagingAllocation]->forEach(allocation) {

5 if(allocation.targetResourceEnvironment_Allocation.resourceContainer_ResourceEnvironment->

asSet()->size() > allocation.allocationContexts_Allocation.

resourceContainer_AllocationContext->asSet()->size()) {

6 scaleUp(allocation);

7 replicationCount := replicationCount + 1;

8 } else {

9 assert fatal(false) with log(’Maximum scaleout factor reached.’);

10 };

11 };

12 return true;

13 };

14 };

15 return false;

16 }

Listing A.2: Example QVT-O method that checks a scaling condition

86

A.2. SPECjms2007 measurement results

A.2. SPECjms2007measurement results

Message type Delivery time

Order 1.67 1.85 1.82 1.7 1.76

OrderConf 1.65 1.71 1.63 1.64 1.69

ShipDep 1.26 1.29 1.24 1.3 1.27

StatInfo 1.26 1.3 1.23 1.3 1.33

ShipInfo 1.35 1.4 1.38 1.35 1.46

ShipConf 0.96 1.11 1.03 0.98 1.1

Table A.1.: Measurement results of SPECjms2007 interaction 1 per message type

Message type Delivery time

PriceUpdate 2.46 2.38 2.39 2.32 2.43

Table A.2.: Measurement results of SPECjms2007 interaction 3 per message type

87

	Abstract
	Zusammenfassung
	1 Introduction
	1.1 Rationale
	1.2 Aims and Objectives

	2 Foundations
	2.1 Message-oriented Middleware
	2.1.1 Design Patterns for Messaging
	2.1.2 Advanced Message Queuing Protocol (AMQP)
	2.1.3 RabbitMQ
	2.1.4 Messaging Simulation

	2.2 Self-Adaptive Systems
	2.3 Model-Driven Software Development (MDSD)
	2.4 The Palladio Approach
	2.4.1 Palladio Component Model (PCM)
	2.4.2 Quality Analysis Lab (QuAL)
	2.4.3 SimuLizar

	2.5 Colored Petri Nets
	2.6 Interoperability of Simulations

	3 Related Work
	3.1 Modeling Message-Driven System with Palladio
	3.2 Self-Adaptive Systems using Message Queues

	4 Modeling Message-Driven Systems
	4.1 Meta-Model elements
	4.1.1 Repository
	4.1.2 Service Effect Specification
	4.1.3 Assembly
	4.1.4 Allocation

	4.2 Replications of Elements due to Reconfigurations
	4.3 Formalization using CPNs

	5 Simulating Messaging
	5.1 Requirements for a Simulation Interface
	5.2 Concepting a Simulation Interface
	5.3 Implementation
	5.4 Integrating Measurements into the Messaging Simulation
	5.5 Transformation
	5.6 Simulating Self-Adaptations

	6 Evaluation
	6.1 GQM plan
	6.2 Calibrating the Model
	6.2.1 Benchmarking RabbitMQ
	6.2.2 Interpreting the Results

	6.3 SPECjms2007 Benchmark
	6.3.1 SPECjms2007 Interaction 1
	6.3.2 SPECjms2007 Interaction 3

	6.4 PCM Models of the SPECjms2007 Benchmark
	6.4.1 Repository and System model
	6.4.2 Usage model

	6.5 Evaluation of Prediction Accuracy
	6.5.1 Results SPECjms2007 Interaction 1
	6.5.2 Results SPECjms2007 Interaction 3

	6.6 Evaluation of Support of Self-Adaptations
	6.7 Evaluation summary

	7 Conclusion
	7.1 Summary
	7.2 Future Work

	Bibliography
	A Appendix
	A.1 QVT-O Transformations
	A.2 SPECjms2007 measurement results

