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Abstract

Printed Electronics (PE) is an emerging technology that complements conventional tech-

nologies with its unique features, hence, the market of PE technology has rapidly increased

from US$ 6B in 2010 to US$ 41B in 2019, and projected to grow US$ 153B in 2027. PE tech-

nology combines additive manufacturing and electronic functionality to enable the usage of

various materials in the electronic components fabricated in the point-of-use, cost-effectively

and environmentally friendly on a wide range of substrates that can be flexible, lightweight,

transparent, large-area, and implantable. Therefore, PE technology enables the realization of

envisioned applications such as smart packaging, disposables, smart labels, and electronic skin.

The progress of PE technology faces several challenges in yield, reliability, and performance

that are primarily focused to advance PE technology. However, in recent years, the importance

of security aspects of hardware platforms has been highlighted by numerous hardware-based

attacks. Since the target PE applications can perform vital functionalities and contain sensi-

tive information such as implantable devices and health monitoring patches, security flaws and

trust issues in the supply chain can cause serious problems including fatality. Moreover, the

unique features of PE technology such as additive manufacturing, larger feature sizes, fewer

layers, and limited process steps result in more vulnerability to hardware-based attacks and

new trust issues such as reverse engineering, counterfeiting, and hardware trojans. Besides, the

adoption of countermeasures in conventional technologies is unsuitable and inefficient as such

countermeasures introduce comparably high overhead to low-cost PE applications. Hence, this

thesis provides a technology-specific assessment of hardware-level threats and their counter-

measures in the form of resource-constrained hardware primitives to secure the supply-chain

and functionalities of PE applications.

In the first contribution of this dissertation, we propose a printed Physical Unclonable Func-

tion (pPUF) design to provide secure keys that are used in several countermeasures such as

authentication and fingerprinting. Also, we optimize the multi-bit pPUF design and achieve

31% area save for 16-bit key generation. Moreover, we develop an analysis framework includ-

ing a Monte Carlo simulation flow for pPUF and perform simulation and fabrication-based

analyses. The results show that pPUF has sufficient uniqueness and reliability metrics, and

operates at the supply voltage of down to 0.5 V.

In the second contribution of this dissertation, we propose a compact printed True Random

Number Generator (pTRNG) design to generate unpredictable keys for cryptographic functions

and random authentication challenges. The pTRNG design mitigates the process variation

using a printed resistor tuning method enabled by the customizable fabrication feature of PE

so that the generated bits are mostly based on the random noise in the circuit, providing a true

random behaviour. The simulation results demonstrate that the overall process variation of the

TRNGs is mitigated by 110 times, and the generated bitstreams of TRNGs pass the National
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Institute of Standards and Technology Statistical Test Suite. Moreover, the characterization

results of fabricated TRNGs prove that the TRNGs generate random bitstreams at the supply

voltage of down to 0.5 V.

The third contribution of this dissertation is to describe the unique features of PE circuit

design and fabrication which differ from conventional technologies resulting in the necessity of

a new reverse engineering (RE) methodology. Hereof, we propose a robust RE methodology

based on supervised learning for PE circuits to demonstrate their vulnerabilities to RE attacks.

The RE results show that the proposed methodology reverse engineers numerous PE circuits

without complex and expensive tools.

In the last contribution, we propose a one-time programmable printed Look-up Table (pLUT)

that implements any printed digital circuits and enables countermeasures such as camouflaging,

split manufacturing, and watermarking against various hardware-level attacks. The compar-

ison of the PE implementation of the existing and the proposed pLUT designs shows that

the proposed pLUT outperforms other designs in terms of area usage, worst-case delay, and

power consumption. The proposed pLUT design is simulated, fabricated, and programmed

with inkjet-printed conductive ink to implement XNOR, XOR, and AND gates to prove the

programmability of the proposed design. The simulation and characterization results prove

the functionality of the pLUT at 1 V.
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Zusammenfassung

Gedruckte Elektronik (Printed Electronics (PE)) ist eine neu aufkommende Technologie

welche komplementär zu konventioneller Elektronik eingesetzt wird. Dessen einzigartigen

Merkmale führten zu einen starken Anstieg von Marktanteilen, welche 2010 $6 Milliarden

betrugen, $41 Milliarden in 2019 und in 2027 geschätzt $153 Milliarden. Gedruckte Elektronik

kombiniert additive Technologien mit funktionalen Tinten um elektronische Komponenten aus

verschiedenen Materialien direkt am Verwendungsort, kosteneffizient und umweltfreundlich

herzustellen. Die dabei verwendeten Substrate können flexibel, leicht, transparent, großflächig

oder implantierbar sein. Dadurch können mit gedruckter Elektronik (noch) visionäre Anwen-

dungen wie Smart-Packaging, elektronische Einmalprodukte, Smart Labels oder digitale Haut

realisiert werden.

Um den Fortschritt von gedruckten Elektronik-Technologien voranzutreiben, basierten die

meisten Optimierungen hauptsächlich auf der Erhöhung von Produktionsausbeute, Reliabilität

und Performance. Jedoch wurde auch die Bedeutung von Sicherheitsaspekten von Hardware-

Plattformen in den letzten Jahren immer mehr in den Vordergrund gerückt. Da realisierte

Anwendungen in gedruckter Elektronik vitale Funktionalitäten bereitstellen können, die sen-

sible Nutzerdaten beinhalten, wie zum Beispiel in implantierten Geräten und intelligenten

Pflastern zur Gesundheitsüberwachung, führen Sicherheitsmängel und fehlendes Produktver-

trauen in der Herstellungskette zu teils ernsten und schwerwiegenden Problemen. Des Weit-

eren, wegen den charakteristischen Merkmalen von gedruckter Elektronik, wie zum Beispiel

additive Herstellungsverfahren, hohe Strukturgröße, wenige Schichten und begrenzten Produk-

tionsschritten, ist gedruckte Hardware schon per se anfällig für hardware-basierte Attacken

wie Reverse-Engineering, Produktfälschung und Hardware-Trojanern. Darüber hinaus ist die

Adoption von Gegenmaßnahmen aus konventionellen Technologien unpassend und ineffizient,

da solche zu extremen Mehraufwänden in der kostengünstigen Fertigung von gedruckter Elek-

tronik führen würden. Aus diesem Grund liefert diese Arbeit eine Technologie-spezifische

Bewertung von Bedrohungen auf der Hardware-Ebene und dessen Gegenmaßnahmen in der

Form von Ressourcen-beschränkten Hardware-Primitiven, um die Produktionskette und Funk-

tionalitäten von gedruckter Elektronik-Anwendungen zu schützen.

Der erste Beitrag dieser Dissertation ist ein vorgeschlagener Ansatz um gedruckte Physi-

cal Unclonable Functions (pPUF) zu entwerfen, welche Sicherheitsschlüssel bereitstellen um

mehrere sicherheitsrelevante Gegenmaßnahmen wie Authentifizierung und Fingerabdrücke zu

ermöglichen. Zusätzlich optimieren wir die multi-bit pPUF-Designs um den Flächenbedarf

eines 16-bit-Schlüssels-Generators um 31% zu verringern. Außerdem entwickeln wir ein Analyse-

Framework basierend auf Monte Carlo-Simulationen für pPUFs, mit welchem wir Simulationen

und Herstellungs-basierte Analysen durchführen können. Unsere Ergebnisse haben gezeigt,

dass die pPUFs die notwendigen Eigenschaften besitzen um erfolgreich als Sicherheitsanwen-

dung eingesetzt zu werden, wie Einzigartigkeit der Signatur und ausreichende Robustheit. Der
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Betrieb der gedruckten pPUFs war möglich bis zu sehr geringen Betriebsspannungen von nur

0.5 V.

Im zweiten Beitrag dieser Arbeit stellen wir einen kompakten Entwurf eines gedruckten

physikalischen Zufallsgenerator vor (True Random Number Generator (pTRNG)), welcher

unvorhersehbare Schlüssel für kryptographische Funktionen und zufälligen ”Authentication

Challenges” generieren kann. Der pTRNG Entwurf verbessert Prozess-Variationen unter Ver-

wendung von einer Anpassungsmethode von gedruckten Widerständen, ermöglicht durch die

individuelle Konfigurierbarkeit von gedruckten Schaltungen, um die generierten Bits nur von

Zufallsrauschen abhängig zu machen, und damit ein echtes Zufallsverhalten zu erhalten. Die

Simulationsergebnisse legen nahe, dass die gesamten Prozessvariationen des TRNGs um das

110-fache verbessert werden, und der zufallsgenerierte Bitstream der TRNGs die ”National

Institute of Standards and Technology Statistical Test Suit”-Tests bestanden hat. Auch

hier können wir nachweisen, dass die Betriebsspannungen der TRNGs von mehreren Volt zu

nur 0.5 V lagen, wie unsere Charakterisierungsergebnisse der hergestellten TRNGs aufgezeigt

haben.

Der dritte Beitrag dieser Dissertation ist die Beschreibung der einzigartigen Merkmale von

Schaltungsentwurf und Herstellung von gedruckter Elektronik, welche sehr verschieden zu kon-

ventionellen Technologien ist, und dadurch eine neuartige Reverse-Engineering (RE)-Methode

notwendig macht. Hierfür stellen wir eine robuste RE-Methode vor, welche auf Supervised-

Learning-Algorithmen für gedruckte Schaltungen basiert, um die Vulnerabilität gegenüber

RE-Attacken zu demonstrieren. Die RE-Ergebnisse zeigen, dass die vorgestellte RE-Methode

auf zahlreiche gedruckte Schaltungen ohne viel Komplexität oder teure Werkzeuge angewandt

werden kann.

Der letzte Beitrag dieser Arbeit ist ein vorgeschlagenes Konzept für eine ”one-time pro-

grammable” gedruckte Look-up Table (pLUT), welche beliebige digitale Funktionen realisieren

kann und Gegenmaßnahmen unterstützt wie Camouflaging, Split-Manufacturing und Water-

marking um Attacken auf der Hardware-Ebene zu verhindern. Ein Vergleich des vorgeschlage-

nen pLUT-Konzepts mit existierenden Lösungen hat gezeigt, dass die pLUT weniger Flächen-

bedarf, geringere worst-case Verzögerungszeiten und Leistungsverbrauch hat. Um die Konfig-

urierbarkeit der vorgestellten pLUT zu verifizieren, wurde es simuliert, hergestellt und pro-

grammiert mittels Tintenstrahl-gedruckter elektrisch leitfähiger Tinte um erfolgreich Logik-

Gatter wie XNOR, XOR und AND zu realisieren. Die Simulation und Charakterisierungsergeb-

nisse haben die erfolgreiche Funktionalität der pLUT bei Betriebsspannungen von nur 1 V

belegt.
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1 Introduction

In the era of digitalization, products enabled by the advances in electronics have massively

driven the market in almost every application fields such as communication, household appli-

ances, automotive, internet of things, education, research, medical, and security. Moreover,

the rapid growth in the semiconductor field, as projected in Moore’s law, has enabled the

development of new products or upgrading the existing ones in terms of functionality, speed

and compactness [18, 19, 20]. However, conventional electronics has become incapable in ad-

dressing the increased demand for emerging applications such as the internet of disposable

things (IoDT) [21] and electronic skin (e-skin) [22] due to their complex fabrication processes,

mechanical properties, and minimum cost limitations.

Figure 1.1: Reported and predicted market growth of Printed Electronics [1, 2].

Printed Electronics (PE) is a complementary technology of conventional silicon-based elec-

tronics, targeting several emerging applications. The market for PE has increased from US$
6B in 2010 to US$ 41B in 2019, and is projected to grow US$ 153B in 2027 [1, 2], as shown in

Figure 1.1. PE employs additive printing techniques, broadly known for conventional printing,

in the manufacturing of electronics. The combination of additive manufacturing and electronic

functionality allows the usage of various functional materials in fabricating electronic compo-

nents on a broad range of substrates such as glass, flexible foil, textiles, and paper. This pro-

vides advantages or new functionalities such as low-cost, on-demand, customizable fabrication,

and mechanical flexibility that are unachievable by other manufacturing processes. PE applica-

tions can be flexible, stretchable, lightweight, transparent, large-area, bio-compatible, and/or

implantable and manufactured in point-of-use, cost-effective, and environmentally friendly pro-

cesses. Therefore, the realization of several envisioned applications such as smart packaging

[23], e-skin [22], health monitoring patches [24], smart cards [25], smart labels [26] and IoDT

[21] can benefit from the promising features of PE [27]. Figure 1.2 presents some examples of
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PE applications developed by industry and research institutions.

(a) (b) (c)

(d) (e)

(f) (g) (h)

Figure 1.2: Examples of Printed Electronics applications. (a) Printed electrochromic display on flexible

substrate [3]. (b) Tacttoo: thin and feel-through tattoo for on-skin tactile output [4]. (c)

BodyNet sticker: wireless sensors that stick to skin to track health indicators [5]. (d) Printed

energy harvesting circuit [3]. (e) PrintSense: on-surface sensing technique for planar, curved

and flexible surfaces [6]. (f) Comfortable, disposable health patch with long battery life to

measure vital signs [7]. (g) Flexible tags that communicate with standard touch screens

[8, 9]. (h) Intelligent shoe sole that measures distribution of pressure of foot [10].

PE components are manufactured using several printing processes instead of complex pho-

tolithography based subtractive process which are expensive as well as environmentally haz-

ardous. Some prominent examples of additive printing processes are screen printing, flexog-

raphy printing, offset printing, gravure printing, and inkjet printing [27]. Depending on the

application, one or multiple printing methods can be used in the manufacturing process. Due

to their maskless fabrication process, some of these processes such as inkjet printing enable

a highly demanding feature that is customizable/personalized fabrication at the point-of-use

[27, 28]. Personalized fabrication allows users to select their material and substrate according

to their application, and fabricate fully custom designs without profound expertise, sophisti-

cated and extremely expensive manufacturing tools.

Various printed transistors such as p-type organic-based thin-film transistors (OTFTs) [29],

organic field-effect transistors (OFETs) [30], and n-type organic transistors [31, 32] are demon-

strated to construct functional PE circuits. However, these transistors mostly suffer from the
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high supply voltage and low mobility making them unsuitable for low-power applications.

On the other hand, inorganic semiconductor-based transistors combined with an electrolyte

gate, called electrolyte-gated transistors (EGTs), provide high mobility and require low supply

voltage (≤ 1 V), paving the way for low-power PE applications [12]. Due to their promising

electrical characteristics, the fabrication of proposed circuits in this thesis are performed using

EGTs.

Although PE is a promising field, several challenges have to be addressed by a wide range

of experts from different scientific backgrounds to advance this technology. Yield, reliability,

performance, supply-chain, and life-cycle aspects are some examples of challenges that need

to be thoroughly considered while developing PE technology. However, given the fact that

the target applications of PE can perform vital functionalities such as implantable devices

for healthcare and/or contain sensitive information such as health monitoring patches, the

security aspects of PE applications should be also carefully examined while advancing the

technology. Thus, while PE fundamentally transforms the usage areas of electronics, it should

exhibit trusted and secure applications.

1.1 Problem Statement and Objective

The advancement of PE brings about security concerns since most of PE applications are

pervasive, containing vital functionalities and sensitive information. Any security flaw or trust

issue in the supply chain can cause severe problems including fatality. While developing such

technologies, the security challenges of their applications should be equally considered with

other fundamental challenges such as yield, reliability, and performance. On the other hand,

unlike the cost of silicon-based integrated circuits (ICs) applications such as server chips,

these applications are expected to be highly cost-effective. For instance, PE applications like

the Internet of Disposable Things (IoDT) target cost-effective products, and the overhead of

securing the product should not exceed a certain percentage of such product costs. Therefore,

the security aspects of PE should be carefully examined, and lightweight and compact security

solutions have to be provided.

The security aspects of PE differ from the security of silicon-based ICs in terms of techni-

cal properties and supply chain. The unique features of PE such as additive manufacturing,

larger feature sizes, transparent layers, fewer layers, and limited process steps contrast to that

of the silicon-based ICs such as subtractive manufacturing, packaging, smaller feature sizes

down to nanometers, opaque and stacked layers and various process steps These differences

make PE applications more vulnerable to hardware-based attacks such as reverse engineering,

counterfeiting, and malicious circuit modification. Moreover, although the point-of-use manu-

facturing of PE allows removing the cost of transportation from the overall cost of products,

it can lead to new intellectual property (IP) piracy and IC overbuilding models at the point-

of-use which does not exist in the supply chain of silicon-based ICs. Also, the direct adoption

of existing countermeasures is comparably unsuitable in terms of overhead considering the

cost-effectiveness of PE applications. Therefore, the technology-specific threat models against

the security of PE applications should be reconsidered, and the compact countermeasures to

thwart such threats should be provided in a way that they secure the PE applications with

the help of compact hardware primitives, in other words, resource-constrained circuits.
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The objective of the thesis is to provide a technology-specific assessment of hardware-level

threats and their countermeasures in the form of resource-constrained circuits to secure the

supply-chain and functionalities of PE applications at the hardware level. In this regard, we

have proposed a printed Physical Unclonable Function (PUF) and a printed True Random

Number Generator (TRNG) that generates unclonable and random keys to utilize in several

countermeasures against hardware-based attacks and provide secure communication and au-

thentication to PE applications. Moreover, we have proposed a robust reverse engineering

method for PE circuits and demonstrated their vulnerability to such attacks. Furthermore,

we have proposed a printed Look-up Table based programmable circuit that can be used

to thwart hardware-based attacks including reverse engineering, IP piracy, and overbuilding

in the supply chain. The common property of proposed hardware primitives is their low-

overhead designs compared to silicon-based counterparts, which are achieved by exploiting the

technology-specific features of PE. The overview of possible hardware-level attacks, correspond-

ing countermeasures, and the usage of proposed hardware primitives in such countermeasures

in the context of PE security is shown in Figure 1.3. The detailed contributions of this thesis

are elaborated in the following section.

Hardware
Trojans

IP Piracy and 
Overbuilding

Reverse
Engineering

Side Channels

Counterfeiting

Obfuscation

IP Watermarking

IP Fingerprinting

IC Metering

Split Manufacturing

IC Camouflaging

Key-based Authentication

Noise Injection 

Secure Scan

Physical Unclonable Function

Aging Sensor

Attacks Countermeasures

1.   Printed PUF

Contributions
2.   Printed TRNG

4.   Printed LUT3.   RE of PE 

1 2

3 4
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1

4
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2

1

Figure 1.3: Overview of hardware-level attacks, countermeasures, and contributions of this thesis in dif-

ferent security aspects of printed electronics. (1) Printed Physical Unclonable Function, (2)

Printed True Random Number Generator, (3) Reverse Engineering of Printed Electronics,

(4) Printed Look-up Table
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1.2 Thesis Contributions

1.2.1 Inkjet-Printed Physical Unclonable Function

Since pervasive PE applications need secure communication and/or authentication, it is im-

perative to embed security primitives for cryptographic key and authentication purposes into

the applications. Physical unclonable functions (PUFs) have been adopted widely to pro-

vide secure keys, which are extracted from uncontrollable process variations in manufacturing.

This work presents the design, simulation, fabrication, and measurements of a printed PUF

[13, 33, 12]. A comprehensive framework, including Monte Carlo simulations calibrated on

real device measurements, is developed to evaluate the proposed PUF. Moreover, a multi-bit

printed PUF design is proposed to optimize the area usage. Our simulation results show that

the printed PUF has ideal uniqueness (50.1%) and good reliability (89%). Moreover, the pro-

posed multi-bit printed PUF reduces the area usage around 30%. The proposed PUF was

fabricated and the experimental results confirm that the printed PUF can operate reliably

at as low as 0.5 V, and hence, it is a remarkable candidate to be utilized in low-power PE

applications.

1.2.2 Compact True Random Number Generator based on Inkjet-Printing
Technology

True Random Number Generators (TRNGs) are required to generate unpredictable random

bits by digitizing unpredictable natural phenomenons (entropy source) such as thermal noise

to random bits for security purposes such as cryptographic functions, random challenges for

authentication, and noise injection for side-channel attacks, which secure the operation of

pervasive PE applications. Since the digitization of entropy sources must be performed in

a way that the bias introduced by TRNGs is negligible, the process variation of TRNGs

should be mitigated. However, since the additive fabrication processes of PE circuits result

in high intrinsic variation due to the random dispersion of the printed inks on the substrate,

constructing a printed TRNG is challenging. In this work, we propose a compact TRNG

design, which exploits the additive customizable fabrication feature of inkjet printing [34, 35].

We propose an additive resistor tuning flow for the TRNG circuit to mitigate the overall

process variation of the TRNG so that the generated bits are mostly based on the random

noise in the circuit, providing a true random behavior. The simulation results show that the

overall process variation of the TRNGs is mitigated by 110 times, and the generated bitstream

of tuned TRNGs pass the National Institute of Standards and Technology Statistical Test

Suite. For proof-of-concept, the proposed TRNG circuit was fabricated and tuned. The

characterization results of tuned TRNGs prove that the TRNGs generate random bitstreams

at the supply voltage of down to 0.5 V. Furthermore, the proposed TRNG occupies 4.59 mm2

which is less than 1% of the area usage of PE implementation of a silicon-based counterpart.

Hence, the proposed TRNG design is a promising candidate to secure low-power applications

in this domain.
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1.2.3 Reverse Engineering of Printed Electronics Circuits

The custom fabrication is a key feature of PE technology, enabling customization per appli-

cation, even in small quantities due to low-cost printing compared to lithography. However,

the personalized and on-demand fabrication, the non-standard circuit design and the limited

number of printing layers with larger geometries compared to traditional silicon-based ICs,

open doors for new and unique reverse engineering (RE) schemes for this technology. In this

work, we present a robust RE methodology based on supervised machine learning, starting

from image acquisition to netlist extraction of PE circuits to demonstrate their vulnerability

to RE attacks [36]. The results show that the proposed RE methodology can reverse engineer

numerous PE circuits with very limited manual effort, and is robust against non-standard

circuit design, customized layouts and high variations resulting from the inherent properties

of PE manufacturing processes.

1.2.4 Printed Look-Up Table-based Programmable Printed Digital Circuit

The supply-chain of PE applications is vulnerable to several attacks due to the properties of PE

such as larger feature sizes, transparent and fewer layers, and limited process steps. Therefore,

attacks like reverse engineering, counterfeiting, IP piracy, and overbuilding are rather easy. PE

applications that are used in critical functionalities have to be protected against such attacks

since they can lead to severe problems. In this work, we propose a one-time programmable

printed Look-up Table (pLUT) that implements any printed digital circuits and can be used for

IC camouflaging, split manufacturing and IP watermarking to thwart the attacks in the supply-

chain [37]. The proposed pLUT implementation is simulated, fabricated, and programmed with

inkjet-printed conductive ink as XNOR, XOR, and AND logic gate functionalities to prove the

programmability of the proposed pLUT design. The characterization results show that the

fabricated pLUT operates at 1 V. Furthermore, the usage cases of the proposed pLUT in the

context of security countermeasures, yield, and performance improvements are discussed.

1.3 Outline

This chapter presents the problem statement, objective, and contributions of this thesis. The

remainder of the thesis is organized into six chapters:

• Chapter 2 provides background information on Printed Electronics Technology, Physical

Unclonable Functions, True Random Number Generators, and Reverse Engineering.

• Chapter 3 presents the first printed Physical Unclonable Function. The analysis frame-

work for the printed PUF design is explained. The simulation-based analysis of the

printed PUF using the framework is performed, and the fabrication-based analysis is

presented as a proof-of-concept.

• Chapter 4 presents the first printed True Random Number Generator based on inkjet-

printing technology and the additive printed resistor used in the TRNG design. The

simulation-based analysis of the printed TRNG is conducted, and the fabrication-based

analysis to prove the concept of the proposed TRNG design is demonstrated.

• Chapter 5 describes the need for a new reverse engineering methodology for PE circuits
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and presents the proposed reverse engineering methodology for Printed Electronics cir-

cuits. The proposed RE methodology is applied to several PE circuits to demonstrate

their vulnerabilities to the RE attack.

• Chapter 6 presents first printed LUT-based one-time programmable printed digital cir-

cuits and its fabrication and configuration flow. The simulation-based and fabrication-

based analyses of the pLUT are reported. The utilization of the pLUT in PE applications

for security, yield, and performance improvements is discussed.

• Chapter 7 finally concludes the thesis and provides an outlook for future research direc-

tions.
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2 Background

This chapter presents the preliminary information required to understand the contributions

of this thesis. In this context, we first provide an overview of Printed Electronics Technology.

Moreover, the basics of Physical Unclonable Functions, True Random Number Generators,

and Reverse Engineering are described.

2.1 Printed Electronics

Printed Electronics is drawing significant attention for contributing to applications where

low-cost, mechanical flexibility, on-demand fabrication, lightweight, and/or large area play an

important role [1, 2, 38]. It is likely to complement silicon-based electronics which shows limita-

tions in fields of flexible electronics, disposable electronics, large-area applications, and highly

customizable circuitry. Moreover, thanks to its feature of point-of-use manufacturing, it also

addresses the ultra-low-cost applications where the transportation cost from the fabrication

site to point-of-use might be unaffordable compared to product cost [37, 21].

The market driver applications of PE are radio frequency identification (RFID) tags [39,

40, 41, 42], sensor arrays [43, 44, 45], photo-voltaic cells [46], batteries [47, 48] and displays

[49, 50]. In addition, some envisioned applications are internet of disposable things (IoDT),

electronic skin (e-skin), dynamic newspapers, smart labels, smart sensors, smart cards, health

care diagnosis devices, energy harvesters and smart clothing [21, 22, 27, 25, 26, 24, 51].

PE circuits and systems are manufactured by printing the functional materials additively on

a flexible or rigid substrate. Figure 2.1 shows typical subtractive and additive processing steps

to manufacture a structure. In subtractive manufacturing, masks, lithography and etching

processes, and steps, which are complex, expensive, and environmentally hazardous, are used.

Contrarily, additive manufacturing enables ultra-low-cost and simple fabrication of several

materials to the point-of-interest on a substrate owing to the mask-less fabrication. This

allows printing various materials easily in different shapes for several functionalities [27, 11].

Various printing methods are used to serve different application purposes. These additive

printing processes are inkjet, aerosol jet, electrohydrodynamic jet, gravure, flexography, screen,

and reverse offset printing. Some key parameters of these printing methods are given in Table

2.1. One of the prominent additive printing processes is inkjet printing, which receives great

interest as a technique for printing electronic circuits. Its simplicity of applying custom changes

and affordable tools make personalized and customizable fabrication possible even for end-

users. Users can change the design, manufacture, and develop their components and circuitry

according to their needs.

In the field of PE, various printed materials and processes have been developed to construct

functional PE circuits. The organic material based transistors such as p-type organic-based

thin-film transistors (OTFTs) [29, 52], organic field-effect transistors (OFETs) [30], are some
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Subtractive Process Additive Process

0. Substrate

1. Film deposition

2. Photoresist 
    deposition

3. Ultra-violet
    exposure

4. Development

5. Etching

6. Photoresist 
    removal

0. Substrate

1. Deposition

(a) (b)

Figure 2.1: Processing steps to pattern a structure in a typical (a) subtractive process involving etching,

(b) fully-additive process [11].

Table 2.1: Comparison of printing methods used in the manufacturing of PE [15].

Method/Feature Resolution (µm) Line width (µm) Throughput (m2s−1)

Inkjet 2 2-8 ≤ 1

Aerosol jet 10 10 ≤ 0.01

Electrohydro-

dynamic jet
2 2 ≤ 0.01

Gravure 2 35 ≥ 1

Flexography 1 3 ≥ 0.01

Screen 100 40 ≥ 0.01

Reverse

offset
1 2 0.01-1

of the early examples in this field. In addition, some n-type organic transistors are presented

in literature [31, 32]. These transistors suffer from low mobility and high supply voltage

requirement. To overcome these shortcomings, oxide-based semiconductors are used which

together with electrolyte gating to provide high mobility and high gate capacitance, enabling

low voltage operations, which fits the requirements of energy harvested and battery-backed

low power applications [53, 54, 55, 12, 56, 57]. Therefore, we have used oxide-based n-type

electrolyte-gated transistors (EGTs) in this work since EGTs enable the operation of circuits

below 1 V [12, 13, 58, 37, 59]. However, due to the lack of well-performing p-type EGTs,

the circuits are currently based on transistor-resistor logic designed with n-type EGTs in the

pull-down network and a resistor as a replacement of p-type EGTs [12, 60, 61, 62].

In the fabrication process of EGTs, the channel material, indium oxide (In2O3) semicon-

ductor, is inkjet printed to form the channel between drain and source electrodes which are

made of lithographically structured indium tin oxide (ITO). Afterward, the electrolyte is inkjet
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2.1 Printed Electronics

printed on the top of the channel acting as the gate dielectric. Lastly, on top of the electrolyte,

PEDOT:PSS is inkjet printed as a top gate in a way that it overlaps the channel area [63]. The

cross-sectional view, top view, fabrication process, and the optical image of an EGT is shown

in Figure 2.2 while Figure 2.3 shows the output curve measurement of a fabricated EGT with

the dimensions of 100 µm width and 40 µm length. Although some passive structures, in the

current development stage of this technology, are patterned, it still has the printing features

of PE since the other parts are inkjet-printed.
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Figure 2.2: Description of Electrolyte-gated transistor (EGT) technology. (a) Cross-sectional view of

EGT. (b) Top view of EGT. (c) Fabrication process of EGT. (d) Optical image of a fabri-

cated EGT device [12, 13].

Figure 2.3: Measured output curves (IDS-VDS) at different Gate-Source Voltage (VGS) of an EGT

(width = 100µm, length = 40µm).

The research directions on PE circuits are focused on printed transistors as well as other

circuit elements [29, 30, 12]. Moreover, there are some examples of printed circuits in literature

such as inverters, latches, and ring oscillators (RO) contains limited numbers of elements
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[64, 61, 62, 65, 66]. The large scale integration of printed transistors suffers from the high

variation, low yield, and low performance of low-cost manufacturing printing processes such

as inkjet printing. Moreover, to the best of our knowledge, the reported highest operation

frequency of a printed RO in [64] is 1300 Hz. Although improving the performance of PE

circuits is still investigated by researchers, the current performance can be sufficient for many

PE applications.

The fabrication of printed structures in this thesis is performed using Dimatix DMP-283

inkjet-printer as shown in Figure 2.4a. Moreover, devices and circuits are contacted through a

Süss Microtech probe station shown in Figure 2.4b. The fabrication and characterization setup

of devices and circuits in the following chapters are elaborated in the corresponding chapter.

(a)

(b)

Figure 2.4: (a) Dimatix DMP-2831 Inkjet-Printer used for fabrication. (b) Süss Microtec Probe Station

used for characterization.
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2.2 Physical Unclonable Function

PUFs have been widely used to provide secret keys [67]. It derives digital signatures from

intrinsic manufacturing process variations. The inherent variations make signatures unpre-

dictable. Thus the signatures can be used as a key for security and authentication [68, 69].

A PUF is a function that produces a response corresponding to the challenge it receives

[68]. Since the relation between challenges and responses is unpredictable, it is represented

as a black box function with challenge-response pairs. PUFs are categorized as weak PUFs

that provide few secret keys and are used for the key storage of cryptographic algorithms, and

strong PUFs which provide numerous secret keys depending on their inputs and are used for

authentication purposes [68].

The PUF metrics such as uniqueness and reliability are used to evaluate the performance

of the PUFs. The uniqueness and reliability metrics are calculated using the definition of the

Fractional Hamming Distance (FHD) which is given in Equation 2.1.

FHD(A,B) =
1

N

N∑
i=1

|Ai −Bi| (2.1)

where A and B denote two different bit arrays containing N bits while i denotes the bit index.

Thus the FHD calculates the fraction of the bits which differs from A to B.

The uniqueness metric indicates how unique the responses of the PUFs are. It is obtained

by calculating the FHD of every two PUF responses. The average of the uniqueness of an ideal

PUF should be 50% [70]. The reliability metric explains the stability of the PUF response in

the presence of different environmental and noise conditions. It is obtained by calculating the

FHD between the reference PUF response and the PUF response in different environmental

and noise conditions. In an ideal case, the reliability should be 100%.

PUFs enable applications that would be impossible to construct otherwise because of their

unique properties as hardware primitives. Some of these applications that are made possible or

improved by the use of PUFs are identification and entity authentication, anti-counterfeiting,

key generation, key storage, and hardware-software binding.

Identification is being able to produce identifying information without any proof whether

this information is valid, or even belongs to the entity presenting it while authentication

requires the proof of the validity of the identifying information, and the entity presenting

the proof at the time the proof was requested. Conventional electronic identification and

authentication methods are based on presenting some form of the serial number as identifiers

that are inherently clonable regardless of how well protected they are. Therefore, they only

provide a reasonable level of authentication as long as it is guaranteed that the identifying

information has not been stolen or copied. A PUF-based authentication system does not have

this problem due to its unclonability feature. A set of challenge-response pairs for each PUF

instance is pre-stored. Later, Each PUF can be authenticated by comparing its response to

the pre-stored response for the same challenge [71].

Anti-counterfeiting is the same as authentication from a technology point of view, but, it

is not an everyday application of cryptographic technology. Traditional non-electronic anti-

counterfeiting methods rely on incorporating difficult to manufacture artifacts in a product
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such as embedding watermarks onto banknotes, which are naturally expensive [72]. Since a

cheaper electronic method in many products is much more preferred, one of the first suggested

applications for PUFs is anti-counterfeiting [73]. A manufacturer stores a set of challenge-

response pairs for each product containing the PUF. To verify a product’s genuineness, a

challenge is applied, and the returned response is compared with the stored one. In this way,

PUFs enhance the anti-counterfeiting of products by introducing the unclonability over a serial

number.

Secret key generation and storage are necessary to store a secret key to perform encryption

and decryption. According to Kerckhoff’s principle, the secrecy of the key is fundamental

for the security of the system. Conventionally, the key is stored in non-volatile memories

(NVM) such as flash memory, EEPROM, anti-fuse, or battery-backed SRAM. The secret

key generated using a true random number generator (TRNG) is stored in the NVM. The

programming interface of the NVM also has to be disabled permanently to avoid possible

attacks. The security of such a system depends on that the NVM is not accessible by an

adversary. However, this is difficult to fulfill, since one can reverse engineer the chip and try

to read-out the content electrically or apply different attack techniques on the NVM [74, 75].

PUFs can improve the key generation and storage because of its advantages. A remarkable

advantage of PUFs is that the physical security of PUFs has better resilience against adversarial

attacks since measuring the process variation is rather difficult.

2.3 True Random Number Generator

Cryptographic algorithms are the crucial points for securing systems and True Random Num-

ber Generators (TRNGs) are essential building blocks of embedded security systems. They pro-

vide secret keys, initialization vectors, random challenges, and data padding, masking against

differential power analysis (DPA), and one-time password (OTP) [76, 35] to enable various

cryptographic algorithms, protocols and secured implementations. The security of these ap-

plications depends on the unpredictability and uniformity of the utilized random numbers.

The most common cause of failure in security systems results from a design flaw or an active

attack on the used TRNG [27, 9] rather than to a broken cryptographic algorithm or an unpro-

tected implementation [77, 78]. Because of their importance for security, TRNGs are strictly

evaluated in the process of industrial certification.

All standards categorize Random Number Generators (RNGs) into two main types. TRNGs

harness true randomness from unpredictable physical sources such as the timing jitter, the ther-

mal noise, or the final state of a metastable element while PRNGs are deterministic algorithms

that expand a short input sequence generated by TRNGs and produce a longer random-like

sequence. Unlike TRNGs where physical phenomena such as noise in electronic devices are

the source of true randomness for the unpredictable nature of TRNGs since PRNGs are purely

deterministic, they do not produce any new true randomness.

The generic architecture of a TRNG consists of an entropy source and a digitization module

and may include a post-processing module and an online tests module as illustrated in Fig-

ure 2.5. All true randomness is produced by the entropy source, in most cases in the form of

analog signals. The digitization module converts these analog signals into digital bits. The

produced outputs of the digitization module are called raw random numbers. The raw random
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Figure 2.5: Generic architecture of True Random Number Generator (TRNG).

numbers usually contain statistical defects, such as the bias from an ideal probability of ones

and the correlation between output bits. The post-processing module improves the statistical

and security characteristics of the raw random numbers by extracting their densified random-

ness. The online tests detect failures simultaneously in the process of generating raw random

numbers.

Several TRNGs have been proposed to generate the random seed which then can also be used

for the initial vector of the Pseudo-Random Number Generators (PRNG) to generate longer

keys [76, 35, 79]. Metastability based [80, 81] and ring oscillator (RO) based [82, 83] TRNGs

are commonly used to convert a physical entropy source such as thermal noise and optical noise

to binary numbers. The physical entropy source should be unpredictable so that the generated

numbers satisfy the randomness tests. On the other hand, the TRNG circuit should harvest

the entropy without or with minimum bias. The bias resulted from the entropy source, the

process and run-time variation of the circuit, or the environmental changes can be determined

using online tests. Furthermore, the remaining bias can be masked using post-processors to

increase the entropy of TRNG output while reducing throughput [76, 79].

2.4 Reverse Engineering

Reverse engineering (RE) of integrated circuits (IC) is to determine the used technology,

extract the circuit netlist, and infer the functionality. RE has been widely used for both honest

and dishonest purposes in the integrated circuit market for the last few decades [84, 16, 85].

These purposes are summarized in Table 2.2.

Several RE works have been done for silicon-based ICs as they have been widely used in

commercial products for decades [84, 89, 90, 91, 88, 92]. The RE process of a chip consists of

three steps [16, 91].:

(1) Depackaging and Mechanical Preprocessing

(2) Delayering and Imaging

(3) Software Post-processing

In the first step (1), the chip is depackaged by using chemicals or mechanical tools. The

next step (2) is to delayer the chip by using the combination of chemicals, plasma-etching, and

mechanical polishing, and to image each layer by scanning electron microscope (SEM), trans-

mission electron microscope (TEM) and scanning capacitance microscopy (SCM). It should be
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Table 2.2: Purposes for Reverse Engineering [16].

”Honest” Intentions ”Dishonest” Intentions

Failure analysis and defect identification Fault injection attacks

Detection of counterfeit products [86, 87] Counterfeiting

Circuit analysis to

recover manufacturing defects
Tampering

Confirmation of IP IP piracy and theft

Hardware Trojan detection [88] Hardware Trojan insertion

Analysis of a competitor’s product;

Obsolete product analysis
Illegal cloning of a product

Education and research Development of attacks

noted that delayering requires careful engineering to preserve important information since the

transistor feature size has been shrunk dramatically. Also, environmental conditions, specif-

ically brightness, affect imaging quality impacting the accuracy of the last step (3). In the

last step (3), acquired images are stitched. Since (digital) ICs are composed of the cells of a

standard cell library, every cell of the used cell library has to be identified manually. Then, the

cells used inside the chip can be automatically detected using image processing methods. The

wire connections between cells can also be detected, and the circuit netlist can be extracted

automatically.

The extracted circuit netlist may have some errors because of the imperfection of the afore-

mentioned steps. These errors can be mitigated by design rule checks and/or checking for

any shorted input/output, floating nodes, or supplies and nets that have no input/output.

Then, a reverse engineer can use the public information of the product such as the datasheet

to analyze and/or organize the netlist [16, 91]. Then, several techniques can be used to infer

the functionality of the circuit netlist [16, 93, 94, 95]. It should be noted that although there

are tools to automate some parts of these steps, most of the process steps require expertise

in various fields such as mechanics, imaging and circuit design, and manual effort to perform

error-free RE [16, 89, 91].
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The emerging applications of Printed Electronics (PE), particularly those in the context of

smart sensors and IoT, require secure communication and/or authentication, for which secret

keys are required [96, 97, 98, 99, 100, 101]. Physical Unclonable Functions (PUFs) have

been proposed to provide such secret keys [68, 102], which derive unpredictable keys from

uncontrolled physical feature disorders [103, 104, 105]. Recently, one study has presented a

strong PUF using organic materials to provide secret keys in PE [106]. The organic PUF

generates a key based on the frequency difference of ROs. However, the organic PUF suffers

from a high circuit complexity rendering it very vulnerable to yield problems and high operation

voltage, which are unsuitable features for the low-power applications.

In this chapter, we present the first weak printed PUF (pPUF) based on printed electrolyte-

gated transistor (EGT) technology, which operates at low-voltage and has low circuit complex-

ity, to be used in PE applications. The proposed pPUF is a memory-based circuit that benefits

from positive feedback created by two cross-coupled inverters to provide the output (response)

and includes a control transistor enabling the circuit by an input signal (challenge). Moreover,

we propose a multi-bit pPUF design to reduce the area used for multiple bit key generation.

We have developed a Monte Carlo (MC) based analysis framework including variation models

based on the real EGT measurements to evaluate the proposed circuits. Furthermore, we

fabricated and characterized the proposed single-bit pPUF circuits to validate its operation.

The results obtained from our analysis framework show that the proposed pPUF has near

to ideal uniqueness (50.1%) and good enough reliability (89%). Furthermore, the proposed

multi-bit pPUF saves 31.02% area for a 16-bit key with nearly ideal uniqueness (49.8%) and

good reliability (92.6%). The experimental results show that the fabricated single-bit pPUFs

can generate distinguishable outputs at the supply voltage of down to 0.5 V, and consume

∼2.53 µW .

The summary of the contributions of the work is as follows:

• We present a printed PUF (pPUF) based on EGT technology.

• We have generated a variation model of the EGT calibrated using measurements from

several fabricated EGTs.

• We develop an analysis framework that includes a Monte Carlo simulation flow for the

evaluation of the pPUF.

• We propose a multi-bit pPUF which is optimized to reduce area usage for multiple bits.

• We fabricated and characterized the proposed single-bit pPUF to validate the operation

of the pPUF at down to 0.5 V.

The rest of the chapter is organized as follows. Section 3.1 explains the proposed pPUF

designs. In Section 3.2, the analysis framework for the pPUF is described. Section 3.3 and
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3 Inkjet-Printed Physical Unclonable Function

3.4 shows the simulation and fabrication results respectively, and in Section 3.5, the chapter

is concluded.
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Figure 3.1: (a) Proposed single-bit pPUF circuit. (b) Simulated timing diagram of a single-bit

pPUF circuit (A sample from Monte Carlo simulation using parameters: R1=R2=20 kΩ,

W1=W2=100µm, W3=200µm, L1=L2=L3=40µm).

3.1 Proposed Printed PUF

Since the fabrication process of EGTs is based on inkjet printing, the EGTs have high intrinsic

variation resulting from the random dispersion of the ink on the substrate, which is beneficial

for PUF design. In the silicon technology, process variations are divided into local and global

variations. Contrary to that, in inkjet Printed Electronics, all devices are printed individually

by multiple additive process steps, where each step can vary on its own. These process and

systematic variations originating from the ink, droplet forming, attachment of droplets on the

substrate and manufacturing tools are random and cannot naturally be divided into local and

global variations. Therefore, It should be noted that since transistors in inkjet printing are

printed one by one, the spatial systematic correlation occurring in the lithographic fabrication

of silicon circuits does not exist in inkjet printed EGTs. The high manufacturing variation

of EGTs should be exploited to form stable PUF circuits. In addition, it is important to use

as few number of circuit elements to have low-cost and low complexity PE products. At last,

from this particular technology point of view, since the performance of p-type EGTs is orders

of magnitude lower than n-type EGTs [61], resistors should be used for pull-up network as a

substitute of p-type EGTs.

For this purpose, we have utilized a memory-based single-bit PUF circuit which exploits

the high variation of the EGTs, uses few elements, and uses resistors for the pull-up network.

Moreover, memory-based PUFs have nearly ideal average uniqueness results because of their

working mechanism. Additionally, we have proposed a multi-bit PUF circuit which optimizes

area usage through resource sharing. The details of the single-bit and multi-bit pPUF circuits
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are explained below.

3.1.1 Single-bit Printed PUF

The proposed memory-based pPUF is composed of two cross-coupled inverters and one control

transistor which activates and deactivates the circuit. The schematic of the proposed pPUF is

given in Figure 3.1a. The cross-coupled inverters create a positive feedback which forces the

circuit to a stable state where the output is logic-0 or logic-1 depending on the manufacturing

variation mismatch between inverter pairs. Figure 3.1b shows the timing diagram of a single-

bit pPUF which uses 20 kΩ resistors and 100µm width and 40µm length for transistor pairs,

200µm width and 40µm length for CTRL transistor to illustrate its working mechanism.

When the control input (CTRL) is logic-0, the Q1 and Q2 nodes are equal to VDD. While

the CTRL input is switching to logic-1, the feedback connections force the nodes, Q1 and Q2,

to the stable states. Depending on the strength of the inverters, one node becomes logic-0

while the other becomes logic-1.

Figure 3.2 is the layout of the proposed pPUF circuit, which contains three EGTs, two

resistors, and five input/output pads which are VDD, VSS , CTRL, OUT , and OUT . Since

the fabrication process of the technology supports only one layer for wiring, the inverters are

connected in a way that wires are not crossed. Moreover, the delays of the wires are designed

to be equal.
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Electrolyte
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Figure 3.2: Layout of proposed single-bit printed PUF circuit.

3.1.2 Multi-bit Printed PUF

Since secret keys have multiple bits to be used in cryptographic algorithms and authentica-

tion, multiple single-bit PUF circuits can be used to generate multiple bit keys. However, a

simple replication of single-bit pPUF circuits is inefficient as the increase of the area usage is

proportional to the number of bits. For this reason, the resistors can be shared to reduce the

area of the multi-bit PUF circuit. Figure 3.3 illustrates the proposed multi-bit pPUF design.
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Figure 3.3: Proposed multi-bit printed PUF circuit.

As shown in Figure 3.3, the resistors are shared among transistor pairs. For an n bit array,

n transistor pairs are required while the number of resistors is independent of the number of

bits. Thus, the resistor usage for multiple bits is reduced. After power-up, the first control

input (CTRL1) is set to logic-1 to activate corresponding transistor pairs, then the output

(OUT ) is read, and the control input (CTRL1) is reset to logic-0 to deactivate the transistor

pairs. These steps are done sequentially for all transistor pairs to generate a multiple bit key.

Since the resistors are shared among transistor pairs in multi-bit pPUF, the output (OUT) of

transistor pairs are connected to each other, and if all CTRL signals are activated at the same

time, only one bit can be generated based on all transistor pairs. The drawback of the multi-bit

pPUF is that since bits are read sequentially, it requires more time to generate multiple bits

than multiple single-bit pPUFs. However, since generating the key is done for one time, this

drawback results in delay for once in the system.

Another possible optimization is to use one shared CTRL transistor for multiple single-bit

PUF. However, since the current flowing through the EGT does not proportionally increase

with the increase of the width according to Table 3.1 , the shared transistor should be de-

signed larger in size than separated transistors, which finally result in similar area usages of

shared and separated transistors. Therefore, the sharing of CTRL transistors is not taken into

consideration.

Table 3.1: The mean saturated drain current of fabricated transistors with various widths

Width (Length = 40µm) 200µm 400µm 600µm 800µm

Saturated Drain Current (µA) 276.37 369.27 380.72 437.78
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3.2 Simulation-based Analysis Framework

In this section, the simulation framework created to analyse the proposed pPUF circuit is

explained. The models required to analyse the pPUF such as variation, temperature, and

noise models are explained.

3.2.1 Overall Printed PUF Analysis Flow

Because of the fact that the behaviour of a PUF circuit is based on manufacturing variations,

it is critical to develop a variation aware simulation framework. For this reason, we have

developed a MC simulation flow, allowing to simulate the variation due to manufacturing for

EGT-based printed circuits, calibrated with actual EGT measurements, and integrated into a

industry standard Electronic Design Automation (EDA) tool. In addition, an evaluation flow

using MC simulation results to obtain the PUF metrics such as uniqueness and reliability is

established. Figure 3.4 illustrates the overall analysis flow of the pPUF design.
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Figure 3.4: Analysis flow for proposed printed PUF that contains Monte Carlo simulation and evaluation

of PUF metrics.
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The analysis flow is composed of the MC simulation and the evaluation parts of the PUF

metrics. In the MC simulation, first, a set of PUF instances are created by selecting transistors

and resistors among possible variation range. Several transistors are fabricated and modelled,

which is explained in detail later. These models based on measurements are selected uniformly,

and define the variation range of the transistors. The variation range of the resistors is defined

as ±10% which is obtained empirically. After that, PUF instances are simulated in nominal

conditions and corner conditions, and the bits generated by instances are combined as keys.

The keys produced by the MC simulations are used to obtain the PUF metrics of the pPUF.

The FHD between each key is calculated for the uniqueness. For reliability, the FHDs between

the keys obtained in normal conditions and corner conditions are calculated.

3.2.2 Variation Modelling

Since our PUF circuit is based on manufacturing variations, it is vital to have a variation

model of the circuit elements. However, since the EGT is an emerging transistor technology,

the variation modelling of the EGT has not been studied yet. So, we aimed to create EGT

variation model directly from the measurement data. Our approach is to create a binning

model which includes the individual models of the numerous fabricated and measured EGTs,

and the total variation effect can be simulated by making the individual models selectable.

This approach not only allows us to develop a proper EGT empirical variation model, but also

enables us to use measurement data for more realistic pPUF analysis.
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Figure 3.5: An example interpolation problem of fixed near threshold regime boundaries in transfer

curve (IDS-VGS) of an EGT modeling.

The transistor model presented in [63] was extracted by using the mean values of the DC

measurements of various fabricated EGTs. It includes three equations for three regimes of

the EGT, namely below threshold, near threshold, and above threshold regimes. The below

threshold regime is modelled by a modified sub-threshold swing model in Equation 3.1 [107]

IDS = Is.e
Vgs−Vth
nVtherm (3.1)

where Is is fitting parameter, n is the ideality factor, and Vtherm is the thermal voltage while
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the above threshold regime is modelled by a modified Curtice model in Equation 3.2 [108]

IDS = β.(Vgs − Vth)γ (3.2)

where β is the transconductance parameter, and γ is the power-law parameter. The near

threshold regime between the below and the above threshold regimes are interpolated by using

third degree polynomial. The polynomial for the near threshold regime is given in Equation

3.3.

IDS = aV 3
gs + bV 2

gs + cVgs + d (3.3)

where a, b, c and d denote the interpolation coefficients which are dependent on the boundaries

of the near threshold regime.

The boundaries of the near threshold regime are fixed between Vth − ε1 and Vth + ε2 where

epsilon values, ε1 and ε2, are chosen experimentally in [63]. However, when this modeling

methodology is used to create individual models for various fabricated EGTs under process

variation, the fixed boundaries of the near threshold regime cause problems, making it non-

monotonic and causing convergence issues in simulation. Figure 3.5 illustrates an example

transfer curve (IDS-VGS). In this example, interpolated polynomial is first increasing and then

decreasing while providing continuity and smoothness. However, this causes convergence issues

in simulation since multiple voltage levels have equal current values. The polynomial and its

slope must be monotonically increasing to avoid this problem. To assure that, first and second

derivatives of the polynomial which are given in Equation 3.4 and 3.5 must be positive.
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Figure 3.6: Flow for finding optimal epsilon values, ε1 and ε2.
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d2IDS
dV 2

gs

= 6aVgs + 2b (3.5)

To obviate the problem, we have developed a method which iteratively selects different

boundaries for near threshold regimes for each transistor model to make sure that the first and

second derivatives are positive. Figure 3.6 illustrates the flow of obtaining ε1 and ε2 for each

transistors. At first, temporary boundary (ε1-ε2) values are defined around threshold voltage

of corresponding EGT and the polynomial is interpolated according to these epsilon values.

Unless the first and second derivatives of polynomial are greater than zero, these boundary

values are increased until Vth − ε1 equals to 0.05 V since Vth − ε1, which defines where below

threshold regime finishes and near threshold starts, should not be close to 0 V to obtain better

below threshold regime modelling. After that point, only ε2 is increased until the derivatives

are greater than zero. At last, the obtained boundary values are used to define near threshold

interval, and fabricated particular EGT is modelled. Figure 3.7 shows the IDS−VGS curves of

the measurements and the models of 9 sample instances out of total 88 fabricated EGTs. The

models are implemented using Verilog-A and made it selectable. By changing model number,

the variation of the EGT is simulated.

Figure 3.7: Transfer curves (IDS-VGS) of measurement and model of EGTs.

3.2.3 Temperature and Noise Modeling

The results presented in [17] on the impact of temperature on EGT characteristics are used to

model the temperature effect. Since the saturated drain current Id,sat which is the combined

result of other affected parameters is the circuit level parameter, we directly use the saturated

drain current to model the temperature effect.

The saturated drain current increases while the temperature is increasing from −35 ◦C to

60 ◦C. To create the temperature model for corner cases, the highest ratios of the saturated

drain current between 23 ◦C and −35 ◦C, and between 23 ◦C and 60 ◦C are calculated and

given in Table 3.2.
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Figure 3.8: Reliability results where ±8mV noise is introduced for various resistance values .

Table 3.2: Saturated drain current ratios extracted from [17] for corner temperatures

Reference

Temperature

Corner

Temperature
Saturated Drain

Current Ratio
23 ◦C 60 ◦C 1.20

23 ◦C -35 ◦C 0.83

To be able to simulate the temperature effect on the pPUF circuit and obtain the reliability

of the pPUF circuit at corner temperature cases, a temperature constant (CT ) multiplying the

drain-source current (IDS) is added to the variation model. The temperature constant can be

0.83, 1, or 1.20 when temperature is -35 ◦C, 23 ◦C, or 60 ◦C respectively, using Table 3.2.

I
′
DS = CT ∗ IDS (3.6)

Since there is no experimental noise analysis done for the EGT yet, we used a method to

mimic the noise effect on the circuit output. The method is to add a fixed amount of voltage

(e.g., 8 mV) to one output (OUT ) and subtract from the other output (OUT ), and vice versa,

while the CTRL transistor is turning on. Therefore, the noise directly affects the response of

the pPUF.

3.3 Simulation Results

3.3.1 Design Parameters

The PUF circuit is composed of three EGTs and two resistors. The width and length of T1 and

T2 transistors and the resistance value of R1 and R2 resistors must be equal to have identical

two inverters. The width and the length of the T1 and T2 EGTs are selected as 100µm and

25



3 Inkjet-Printed Physical Unclonable Function

Figure 3.9: Uniqueness (inter-FHD) of the proposed printed PUF.

40µm respectively since these values are the parameters of the smallest fabricated EGT. The

width and the length of the T3 are 200µm and 40µm since T3 should be able to flow the sum

of the current flowing through T1 and T2.

Since the resistance value of R1 and R2 affects reliability, the PUF circuits with various

resistance values are simulated in nominal conditions and the conditions in which only ±8mV

noise is introduced to find out the resistance resulting in better reliability. The reliability

results for various resistance values are given in Figure 3.8. The results show that the lower

resistance values provide better reliability since the lower resistance allows higher current flow

through circuit and this charges/discharges the noise on the outputs. Besides, the resistor

area decreases while the resistance value is decreasing. However, while the resistance value

decreases, the feedback strength of the inverters, which forces the PUF circuit to go to a stable

state, also decreases. The low feedback strength of the inverters can bring unstable outputs.

Therefore, the number of the unstable PUF outputs rapidly increases below 20 kΩ according

to simulation and experiments. For this reason, 20 kΩ is selected as the resistance value of R1

and R2 to obtain better reliability, smaller area, and stable outputs.

3.3.2 PUF Metrics and Design Space Exploration

The analysis framework which is explained in Section 3.2 is utilized to obtain the PUF metrics.

More than 20,000 MC simulations were executed to obtain uniqueness and reliability metrics.

Since the single-bit PUF circuit generates one bit, 16 single-bit PUF circuits are used to obtain

16-bit keys.

For uniqueness, 128x16-bit keys, i.e. the digital response of the pPUFs, obtained in nominal

condition, which denotes that the temperature is 23 ◦C, the supply voltage is 1 V, and the noise

level is zero, are used. The histogram of the FHDs between the keys is shown in Figure 3.9.

The mean of the histogram should be ideally 50%. In our work, the mean and the standard

deviation are 50.1% and 12.49%, respectively. These results show that the uniqueness of our

proposed pPUF is very close to the ideal uniqueness.
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(a) (b)

(c) (d)

Figure 3.10: Reliability (intra-FHD) of the proposed printed PUF with different noise levels a) ±1mV

b) ±2mV c) ±4mV d) ±8mV

For reliability, the keys are obtained in nominal condition and corner condition, which de-

notes that the temperature is 60 ◦C, the supply voltage is 1.1 V, and the noise is introduced

with various voltage levels since the worst reliability results are obtained for this corner condi-

tion. The FHDs between the keys are calculated for reliability at different noise voltage levels

and the FHD distributions of each noise level are given in Figure 3.10. The results show that

the mean of the worst reliability is around 89% where the noise level is ±8mV . According

to the mean and standard deviation of the uniqueness histogram, the smallest FHD between

two keys is 14.12% and the worst unreliability is around 40%. Since the unreliability of the

majority of the keys is below 10%, and the smallest uniqueness is greater than that value, the

majority of the keys are distinguishable. In addition, the unreliability can be mitigated by

error correction codes [103],[109].

Although a multiple single-bit PUF circuit can be used to create multi-bit keys, a resource

shared multi-bit pPUF circuit described earlier can be used to reduce the area usage. The area

usage of the single-bit and the multi-bit PUF designs for various bit numbers, and the area

reduction rates are given in Table 3.3. The results show that the area usage can be reduced

by 31.02% for 16-bit by using multi-bit pPUF circuit which has the same PUF metrics results.

The PUF metrics of the multi-bit PUF are obtained for 16-bit multi-bit circuit. The unique-

ness of the multi-bit pPUF is 49.8%, which is near to the single-bit pPUF, since the circuit

behaviour of one pair is same as the single-bit pPUF. However, the reliability of the multi-bit
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3 Inkjet-Printed Physical Unclonable Function

Table 3.3: Area usage of single-bit and multi-bit PE-PUF, and area improvements for various number

of bits.

# of Bit
Area Usage (103 ∗ pm2)

Area Improvement (%)
Single-bit Multi-bit

1 272 272 0

2 544 454 16.54

4 1088 818 24.82

8 2176 1546 28.95

16 4352 3002 31.02

pPUF for ±8mV noise is around 92.6%, which is higher than the single-bit pPUF since the

leakage currents of the deactivated pairs reduce the effect of noise.

V
DD

OUT

OUT

CTRL

V
SS

R2R1

400 µm

T2

T3

T1

Figure 3.11: Optical image of a fabricated single-bit printed PUF circuit.

3.4 Fabrication Results

Fabricating the proposed pPUF is very important to validate the functionality of the design,

find out the minimum operating voltage, and measure the power consumption. For this reason,

we fabricated and characterized the proposed single-bit pPUF circuit. The detailed information

of fabrication and experiments are explained in the following subsections.
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3.4 Fabrication Results

Figure 3.12: Timing diagram of fabricated single-bit printed PUF at 1 V.

3.4.1 Fabrication Parameters

The proposed single-bit pPUF circuit consists of three transistors and two resistors. The

widths of the T1, T2 and T3 EGTs are selected as 200µm, 200µm and 600µm respectively,

and the length of EGTs are selected as 40µm, to provide high current capacity. The resistance

values of R1 and R2 are selected as 40 kΩ to provide sufficient amplification of the inverters.

Figure 3.11 is the photo of the fabricated single-bit pPUF circuit.

Since this EGT-based PE technology is an emerging technology under development, it is

probable to have yield problems. Therefore, to avoid any yield related problems, the width

values of transistors and the resistance value of resistors are selected higher than the values

used in simulation so that the fabricated pPUF has higher pull-up resistors providing more

amplification and transistors providing higher current capabilities. These larger dimensions
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3 Inkjet-Printed Physical Unclonable Function

(a) (b)

Figure 3.13: (a) Measured output voltage range of fabricated eleven single-bit printed PUFs at supply

voltage of 1 V. (b) Measured output voltage range of fabricated single-bit printed PUF at

supply voltage of 2 V down to 0.3 V.

help to have better yield in the printing process.

The fabrication process of the EGT is already explained in Section II. The fabricated single-

bit pPUF also includes the resistors (R1, R2), wires and contacts other than EGTs. These are

lithographically structured using indium tin oxide (ITO).

3.4.2 Measurement Setup

The fabricated single-bit pPUF circuits are contacted through a Süss Microtech probe station.

As source for the supply voltage, Agilent 4156C precision semiconductor parameter analyzer

is used. The enable signal (CTRL) is generated with a Keithley 3390 arbitrary waveform

generator. The enable and the output (OUT , OUT ) signals are recorded with Yokogawa

DL6104 digital oscilloscope. All measurements are performed at room temperature and 50%

relative humidity.

3.4.3 Measurement Results

The fabricated single-bit pPUF circuits are supplied by 1 V voltage source and enabled by

applying a 2 Hz, 50% duty cycle pulse signal to the CTRL input. It is also noted that the

high level of the CTRL signal equals to the supply voltage for all measurements. After power-

up, the circuits are enabled hundred times to examine the consistency of the outputs of the

circuits.

Figure 3.12 is the measured timing diagram of a fabricated pPUF circuit. After enabling

the circuit, one output (OUT ) is logic-0 while the other output (OUT ) is logic-1, as it is

expected. The outputs (OUT ) of nine pPUFs among eleven fabricated pPUFs are logic-0 and

the outputs (OUT ) of other two pPUFs are logic-1 while the circuits are enabled by CTRL

signal.

The generated output bits by the single-bit pPUF circuits are stable while the circuits are

enabled hundred times. Figure 3.13a illustrates the voltage level range of the outputs of the

simulated and the fabricated pPUFs. The mean voltage level for logic-1 is above 0.9 V among
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(a) (b)

Figure 3.14: (a) Quiescent and active currents (IDDQ, IDDA) of fabricated single-bit printed PUF at

various supply voltages. (b) Quiescent and active power consumption (PQ, PA) of fabri-

cated single-bit printed PUF at various supply voltages.

eleven fabricated pPUFs because of the leakage current of the EGT. The mean voltage level

for logic-0 is below 0.3 V since resistors are used instead of low performance p-type EGTs.

The output voltage level range of simulated pPUF is between 206 mV and 127 mV for logic-0,

and between 1 V and 994 mV which are similar to the output voltage level ranges of fabricated

pPUFs. The slight differences are mostly resulting from external conditions (e.g. noise) or

minor modelling inaccuracies.

Since lower supply voltage is important for the PE applications, we measured the outputs of

one pPUF at various supply voltages (from 2 V down to 0.3 V) to examine the lowest operating

voltage of the pPUF. Figure 3.13b shows the voltage levels of the outputs at different supply

voltages. The results show that the outputs are distinguishable as low as ∼0.5 V. In addition,

we measured the quiescent (static) and active (dynamic) currents of the pPUF at various

supply voltages to calculate the quiescent and active power consumption of the pPUF. Figure

3.14a shows the quiescent and active currents of the pPUF at various supply voltages.

Figure 3.14b shows the quiescent and active power consumption of the pPUF at various

supply voltages. The active power consumption sinks from ∼57.64 µW to ∼2.53 µW when

VDD is lowered from 2.0 V down to 0.5 V. Furthermore, active power consumption is always

higher than quiescent power consumption because of the control transistor (T3). However,

while the supply voltage is decreasing, the difference between active and quiescent power

consumption is also decreasing since the control transistor limits the current (IDDA) when a

lower potential is applied to its gate.

3.5 Summary

Printed Electronics provides mechanical flexibility and low-cost fabrication which are crucial in

many emerging applications, such as IoDT, smart sensors, and wearables. However, for secure

communications and/or authentication, these applications may require secret keys. In this

chapter, we have addressed the secret key requirement by proposing the printed PUF based on

printed electrolyte-gated transistors. We evaluated the performance of the pPUF by using the

analysis framework based on real measurements of several printed transistors. The analysis
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3 Inkjet-Printed Physical Unclonable Function

results show that the proposed pPUF has decent PUF metrics. Also, we have proposed the

multi-bit design of the pPUF to optimize the area usage. The optimized multi-bit design saves

31.02% area usage for 16-bit compared to 16 times single-bit solution. Furthermore, we have

presented the fabrication results of single-bit pPUFs. The measurement results show that the

behaviour of the fabricated pPUFs are similar to the simulation, and the fabricated pPUFs

operate at ∼0.5 V, and consume ∼2.53 µW , which is promising for low-power PE applications.
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4 Compact True Random Number Generator

based on Inkjet Printing Technology

The advances in Printed Electronics (PE) field give rise to security concerns, specifically au-

thentication and cryptography, since the envisioned application areas are mostly intercon-

nected, and contain sensitive data, which has to be secured. To that end, True Random

Number Generators (TRNGs) are employed to generate unpredictable keys, the initial vec-

tor of Pseudo-Random Number Generators (PRNGs), padding values, and random challenge

sequences [14].

TRNGs digitize an unpredictable natural phenomenon (entropy source) such as thermal

noise to random bits while PRNGs use short initial random bits generated by a TRNG, and

generate random-looking longer bitstreams [76]. The entropy source of the TRNG design is the

most crucial component since it provides the unpredictability to the system, and the TRNG

circuit should harvest the entropy without introducing bias. The bias caused by the entropy

source, the process variation of the circuit, or the environmental changes can be masked using

a post-processor, although it is not needed in all designs [76, 110].

Additive printing processes including inkjet printing have high intrinsic process variation

resulting from the dispersion of the ink printed in multiple steps, where each step varies on

its own [111, 112, 113]. Since the high process variation can significantly introduce bias to the

generated bits of TRNGs, designing an inkjet-printed TRNG, in other words mitigating the

high variation, is very challenging. Nevertheless, inkjet printing enables the customization of

each circuit individually, which can be exploited to mitigate the high process variation of the

fabricated circuits in the post-fabrication phase [111, 114].

In this chapter, the first printed TRNG utilizing the customizable fabrication feature of

the PE technology to compensate for the high intrinsic process variation is presented. A

printed resistor that can be tuned by printing additional layers is presented and utilized in the

proposed circuit to mitigate the overall process variation so that the power-up behaviour of

the circuit is highly based on the noise. A resistor tuning flow is proposed to determine the

point where the overall process variation of the circuit is mitigated, and the generated bits are

random. Additionally, we optimize the resistor tuning flow to reduce the measurement and

tuning efforts. Moreover, we fabricated, tuned, and characterized TRNG circuits to validate

the functionality of the proposed TRNG.

The simulation results show that the mean of the overall process variation of TRNG instances

is reduced by 110 times using the resistor tuning flow, and the optimized tuning flow decreases

the tuning time by 10 times. The proposed TRNG passes National Institute of Standards

and Technology - Statistical Test Suite (NIST-STS) showing that the proposed TRNG design

can provide highly random bitstreams that pass the required tests. The experimental results

show that the proposed tuning flow mitigates the process variation of the fabricated printed

TRNGs, and they generate random bitstreams with near to 50% probability of ones.
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The summary of the contributions of this work is as follows:

• We present the first printed TRNG using printed electrolyte-gated transistor (EGT)

technology.

• We propose a method that exploits the additive manufacturing feature of PE utilizing

presented printed resistors to efficiently mitigate the overall process variation of the

proposed TRNG circuit.

• We validate the randomness of the tuned TRNGs using NIST-STS.

• We fabricate the proposed TRNG and apply resistor tuning flow to compensate for the

overall process variation. We characterize the tuned TRNGs to validate their operation

at below 1 V.

Figure 4.1: (a) Illustration of additively printed layers. (b) Top-view photos of fabricated printed resis-

tors.

The rest of the chapter is organized as follows. Section 4.1 explains the resistor tuning

using additive printing of resistors based on fabrication data. In Section 4.2, we present the

proposed inkjet-printed TRNG design. Section 4.3 and 4.4 present and discuss the simulation

and fabrication results, respectively. Lastly, Section 4.5 concludes the chapter.

4.1 Additive Printing of Resistors

Additive printing processes have several advantages over subtractive processes where sophis-

ticated and/or expensive equipments and infrastructure are required. These advantages are

low-cost, on-demand and customizable fabrication. The customizable fabrication can be used

to modify/tune the circuits with very little effort, after the manufacturing.

We have examined an inkjet-printed resistor exploiting the customizable fabrication [115].

The resistance of the printed resistor which uses PEDOT:PSS as a material can be modified

by printing more layers on top of existing layers. Each layer can be represented as a resistor,

34
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Figure 4.2: Effective and individual resistance of printed resistors with different layers.

and printing a layer on top of the other layers adds another resistor in parallel as illustrated

in Figure 4.1.

The printed resistors containing various number of layers with the width of 50µm are fab-

ricated and characterized at room temperature. The measured effective resistance and the

extracted individual resistance of the layers are given in Figure 4.2. Since the path of each

successively printed layer is longer than the previous layers, as illustrated in Figure 4.1a, the

resistance of each layer is larger than the previous layer.

The measurements show that the effective resistance decreases while the total number of layer

is increasing, and the individual resistance of layers increases while the number of printed layers

is increasing, except the first layer since it does not form a continuous line on the substrate, as

shown in Figure 4.1b. Furthermore, to reduce the effective resistance even faster, additional

layers can be printed next to other layers, which adds less resistance in parallel compared to

the layer printed on top of other layers. Therefore, this feature of the resistor tuning can be

used to compensate the process variation of the proposed TRNG circuit, as discussed in the

next sections.

4.2 Proposed Inkjet-Printed TRNG Design

The proposed TRNG circuit should have few number of circuit elements to satisfy the low-cost

requirement since most of the PE applications are expected to be low-cost. On the other hand,

the inkjet printing of the EGTs causes high process variation which results from the random

dispersion of the inks on the substrate [13]. The high process variation leads to the high degree

of bias on the generated bits from the TRNG, reducing the entropy. The process variation of

the TRNG must be low to provide high entropy. In existing TRNGs based on conventional

technologies, the bias of TRNG is mitigated using an additional calibration circuitry which

probes the generated bits, examines and calibrate the core TRNG circuit [116]. However,

the calibration circuitry adds an overhead to TRNG core. Thus, we have proposed a compact
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Figure 4.3: Proposed TRNG circuit with customizable resistors. Overall process variation of circuit is

mitigated using additional layers for customization of printed resistors.

circuit which uses few elements, and instead of calibration circuitry, we have proposed a resistor

tuning flow, which takes advantage of the additive manufacturing feature of the inkjet printing,

to mitigate the high process variation without area overhead. The proposed TRNG circuit

and the proposed resistor tuning flow is elaborated in the following subsections.

4.2.1 TRNG Circuit

The proposed TRNG circuit is a memory-based circuit that contains two cross-coupled in-

verters and an enable transistor enabling/disabling the circuit. The inverters are composed

of an n-type EGT and a resistor. This is done for two reasons. Firstly, the use of resistors

in the pull-up network allows to realize the additive tuning. Secondly, the p-type inorganic

channel materials usually have very poor characteristics, hence effective p-type transistors are

still under investigation. The circuit schematic of the TRNG is given in Figure 4.3.

The OUT and OUT nodes are equal to VDD when the circuit is not enabled meaning that

the ENABLE input is zeros. Since the symmetrical inverters lead to a metastable state, the

feedback amplifies the random noise (thermal noise, shot noise, etc.), and drives the OUT

and OUT nodes to the stable states, either ones or zeros depending on the noise while the

ENABLE input is switching to ones. Therefore, the noise is digitized to generate true random

bits. Figure 4.4 shows the waveform of the circuit generating the random bits based on the

noise.

However, since the fabrication of the circuit is based on inkjet printing, it has high intrinsic

process variation deriving from the random dispersion of the ink on the substrate. In addition,

contrary to the silicon technology where the process variations are divided into local and global
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1 1 0 1

Figure 4.4: Example simulated timing diagram of output of an inkjet-printed TRNG circuit.
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Figure 4.5: Illustration of behavior of (a) skewed, (b) non-skewed circuit (∆PV : skew because of process

variation, σNoise: standard deviation of noise) [14].

variations, which result in low variation between two close devices, all devices are printed

individually by multiple additive steps in inkjet printing, which cause higher variation, even

for the two cross-coupled inverters in this circuit.

The process variation cause a skew that forces the circuit to one side which results in the bias

at the generated bits. A skewed circuit whose behaviour is illustrated in Figure 4.5a is biased

to ones because of the process variation (∆PV ), while the non-skewed circuit whose behaviour

is illustrated in Figure 4.5b is not biased and generates bits based on the random noise which

is essential for a TRNG. Therefore, to construct an inkjet-printed TRNG, its high process

variation should be mitigated. For this reason, we propose a resistor tuning flow explained in

the following section.

4.2.2 Resistor Tuning Flow

It is vital to compensate the skew of the proposed TRNG circuit, which results from the

overall process variation. The proposed resistor tuning flow as shown in Figure 4.6 utilizes the

additively-printed resistor, as presented in Section III, to compensate the overall skew shown

in Figure 4.5. The printed resistor tuning flow is as follows. After fabricating the circuit, the

output has to be read N times, and the number of ones in N read is counted. If the number of

ones is greater than N/2 (50%), which means that the tuned circuit is skewed to ones, printing

one layer to the R2 shifts the skew towards neutral axis. If the number of ones is less than

37



4 Compact True Random Number Generator based on Inkjet Printing Technology
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Figure 4.6: Optimized resistor tuning flow to mitigate process variation of proposed TRNG design.

Resistors are additively tuned to converge ratio of ones to 50%. m and N are flow parameters.

N/2, printing one layer to the R1 shifts the skew from zeros towards neutral axis. Printing

additional layers to the R1 or R2 is repeated until the number of ones reaches to N/2.

Figure 4.7a shows the ratio of ones in the generated bitstream of an inkjet-printed TRNG

with respect to the number of additional layers. The simulation flow to obtain the generated

bitstream is based on the Monte Carlo simulation of a TRNG instance, which uses the param-

eters given in Table 4.1 and ±10% variation for the resistors and the variation model presented

in [113]. In addition, a normal distributed random noise source which has the mean (µ) and

sigma (σ) of 0V and 3mV is used in simulation. Since the range near to 50% ratio of ones

(non-skewed point) is too short, the additional layers of the resistor are printed one by one to

not miss the non-skewed point. However, this leads to very long tuning time (including the

number of iterative measurements and printing steps) since, in each step, the circuit output has

to be read N times. For this reason, we optimize the resistor tuning flow to reduce the tuning

time. In the improved flow as illustrated in Figure 4.6, if the ratio of ones is greater (smaller)

than 50%, 2m layers are printed on top of R2 (R1) in each step, and then the measurements

are done, until the ratio of ones is less (greater) than 50%. When it is less (greater) than 50%,

2m−1 layers are printed on top of the resistor of the opposite branch, in this case R1 (R2) vice

versa, and it continues until the number of printed layers reaches one. Therefore, the overall

tuning time is significantly reduced.

In addition to these improvements for the resistor tuning flow, the TRNG output voltage

level can be used to further improve the tuning efforts. The change of the TRNG output
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Figure 4.7: (a) Ratio of ones with respect to number of additionally printed layers of a TRNG in-

stance under noise (µ = 0V, σ = 3mV ). Red dots indicate TRNG state and orange and

green arrows represent change of TRNG state by printing additional layers to R1 and R2

respectively, based on the tuning flow presented in Figure 4.6. (b) Output voltage level

vs. normalized number of additionally printed layers of 10 TRNG instances (layer numbers

where output is flipped are normalized to 10.).

voltage level with each successive printed resistor layer can give an insight about the skewness

of the TRNG so that the step size can be adjusted more effectively. Figure 4.7b shows the

output voltage level of a TRNG circuit at different successive printing layers generated from

the same setup described above. The more the circuit is skewed, the output voltage levels are

closer to VDD (or GND). As the skewness decreases, the output voltage level degrades more.

This information could be used to further optimize the tuning flow. However, utilizing such

information requires more precise, costly, and sophisticated measurements at the tuning steps,

unlike the fast and low-cost binary readouts used in the proposed tuning flow.
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(a) (b)

Figure 4.8: Number of TRNG instances between various flipping noise levels (a) before resistor tuning,

(b) after resistor tuning.

Table 4.1: Design parameters of transistors and resistors used in simulation of TRNG design. Resistance

of resistors is initial value before resistor tuning.

T1 T2 T3 R1 R2

Width 200µm 400µm
Resistance 60 kΩ

Length 40µm

4.3 Simulation-based Analysis

The proposed TRNG design and the impact of the resistor tuning flow is evaluated based

on the simulation results in this section. The details of the simulation setup, the results of

the resistor tuning flow, and the results of National Institute of Standards and Technology -

Statistical Test Suite (NIST-STS) are explained in the following subsections.

4.3.1 Simulation Setup

The design parameter details are given in Table 4.1. We have assumed that the printed resistors

are composed of one hundred layers resulting in 60 kΩ effective resistance, and we extrapolated

the effective resistance for each additional printed layer. In addition, the process variation of

the resistors is considered as ±10% of resistances based on the experiments. For EGTs, we

have employed the variation model of EGT presented in [113]. We have used 100 Monte Carlo

instances of printed TRNG, and a normal distributed noise source which has the mean (µ) and

sigma (σ) of 0V and 3mV respectively, is introduced between inverters as an overall noise in

the circuit to extract the results.

4.3.2 Resistor Tuning Flow Results

The minimum noise level to flip the output, which is called flipping noise level in this paper,

is used to quantify the overall skewness of the TRNG instances. To extract the flipping noise

level of the instances, instead of a normal distributed noise, a DC voltage was swept between

−100mV and +100mV . The number of TRNG instances based on their flipping noise levels,
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Figure 4.9: Mean number of tuning steps of 100 TRNG instances for baseline (one by one layer printing)

and optimized tuning flows (2m layer printing). Baseline denotes one by one additional layer

printing flow. 8, 16, 32 and 64 denote initial 2m value.

before and after the resistor tuning, is depicted in Figure 4.8. The mean values of the absolute

flipping noise level before and after the tuning are 35.41mV and 0.32mV respectively, showing

that the tuning flow reduces the mean variation by more than 110 times. In addition, the

percentage of TRNG instances with the flipping noise level between ±1mV , resulting in less

bias at the generated bits, increases from 1% to 96% after the tuning.

As described in Section III, the resistors are tuned by printing additional layers in two ways

which we name Baseline (one by one, printing only one resistor) and Optimized n where n

equals to 2m, and is the step size (n steps and tuning both resistors) for convenience. The

average trials to tune the instances are given in Figure 4.9. The average number of tuning

steps for the baseline flow is 185.15 while with step size of 32 (m=5), the average number of

tuning steps is minimized to 17.98. Therefore, the number of tuning steps is reduced by more

than 10 times using our proposed method.

4.3.3 Analysis of Temperature Effect on Generated Bits

The generated bits of the circuits after the resistor tuning are slightly biased, compared to ideal

true random bits because of the remained skewness of the process variation, due to the process

variation of the additional printed resistor layers as well as the discrete nature of tuning.

The effect of the remained skewness on the bits can be quantified as the sigma (σ) of the

distribution of the ones ratio in the generated bits, which is 1.27% while the mean is 49.81% at

25°C as shown in Figure 4.10a. To analyze temperature effect on the randomness of proposed

TRNG, we utilized the EGT model with temperature effect described in [13], and implemented

a temperature constant into printed resistor according to ratios given in [117]. The mean and

standard deviation of the number of ones are 49.78% and 1.67% at 60°C, 49.83% and 2.31%

at -35°C, as shown in Figure 4.10b and 4.10c, respectively. These results show that the effect

of the temperature on the randomness of the tuned TRNGs is negligible.
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4 Compact True Random Number Generator based on Inkjet Printing Technology

(a) (b)

(c)

Figure 4.10: Distribution of ratio of ones out of 100 bits for tuned 100 Monte Carlo TRNG samples

at (a) 25°C, (b) 60°C, (c) -35°C. Sigma values are similar in distributions indicating that

temperature effect on randomness is negligible.

4.3.4 NIST-STS Test Results

National Institute of Standards and Technology - Statistical Test Suite (NIST-STS) contains

several tests explained in [118] to evaluate the randomness of the generated bits. We have used

NIST-STS to evaluate the 10000 bits generated from each tuned TRNG instance. A P-value

greater than 0.001 and a proportion greater than 96/100 are required to pass NIST tests. The

results given in Table 4.2 show that the generated bits satisfy the requirements, and therefore,

the proposed TRNG design passes the given NIST-STS tests.

4.4 Fabrication-based Analysis

We fabricated, tuned and characterized the proposed TRNG design to validate our approach.

It should be noted that the inkjet-printed EGT technology used in the proposed TRNG is

an emerging technology, and due to the lab setup which has limited yield and throughput, it

requires a lot of effort to have functional circuits, and to tune these circuits at this stage of

the technology. The details of fabrication and characterization are explained in the following

subsections.
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Table 4.2: NIST test results. Generated bitstream includes 10000 bits from 100 simulated TRNG

instances. (A test requires the P-value greater than 0.001 and the proportion greater than

96/100 to pass.

Statistical Test P-value Proportion Result

Frequency 0.202268 96/100 Pass

Block frequency 0.213309 100/100 Pass

Cumulative sums 0.428568 96/100 Pass

Runs 0.171867 99/100 Pass

Longest run of ones 0.437274 100/100 Pass

FFT 0.474986 98/100 Pass

Overlapping Template 0.055361 99/100 Pass

Serial 0.494555 100/100 Pass

Linear Complexity 0.249284 97/100 Pass

(a) (b)

500 µm 500 µm

T1

R1

R2 T2
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VDD

Tuned R1

Figure 4.11: Images of a fabricated TRNG (a) Before resistor tuning. (b) After resistor tuning.

4.4.1 Fabrication and Characterization Setup

The proposed TRNG circuit contains three transistors and two resistors. The width and length

of printed resistors are selected as 50µm and 1mm. The widths of T1, T2 and T3 are selected

as 200µm, 200µm and 600µm respectively, and the length of transistors is selected as 60µm.

In the fabrication process of the EGTs, the channel material indium oxide (In2O3) semi-

conductor is inkjet-printed between drain and source electrodes which are lithographically

structured indium tin oxide (ITO). Then, the substrates are annealed at 400 ◦C for two

hours. After that, the electrolyte is inkjet-printed on top of the channel instead of a gate

dielectric. Finally, poly(3,4-ethylenedioxythiophene)-polystyrenesulfonic acid (PEDOT:PSS )

is inkjet-printed on top of the electrolyte as a top-gate [63, 119]. For printed resistors, PE-

DOT:PSS is inkjet-printed with the width of 50µm and the length of 1mm. The wiring and

test pads are structured using a conducting material which is indium tin oxide (ITO).

The fabricated TRNG circuits are contacted through a Süss Microtech probe station. Agi-

lent 4156C precision semiconductor parameter analyzer is used as source for the supply voltage.

The enable signal (ENABLE) is generated with a Keithley 3390 arbitrary waveform gener-

ator. The enable and the output (OUT ) signal are recorded with Yokogawa DL6104 digital

oscilloscope. All measurements are performed at room temperature and 50% relative humidity.
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4 Compact True Random Number Generator based on Inkjet Printing Technology

Figure 4.12: Timing waveform of a fabricated TRNG operating at 1 V after resistor tuning.

4.4.2 Results

The fabricated TRNGs are powered by 1 V supply voltage, and enabled by applying a 1 Hz,

50% duty cycle pulse signal to the ENABLE input. The high level of the enable signal is

set to supply voltage. After each power-up, the circuits are enabled hundred times, and their

outputs are measured to observe their functionality and calculate ratio of ones. Depending on

the ratio of ones, an additional PEDOT:PSS layer is inkjet-printed on top of either R1 or R2

as discussed in Section 4.2.2.

Figure 4.12 is the measured timing waveform of a fabricated TRNG after resistor tuning.

After enabling the circuit, the output (OUT ) becomes ones or zeros depending on the mismatch

of the inverter pair, which results from the process variation and the noise in the circuit. Since

the additive resistor tuning alleviates the mismatch stemmed from the process variation, the

output value relies on the random noise in each time the circuit is enabled. Figure 4.11 contains
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(a) (b)

Figure 4.13: Ratio of ones of out of 100 bits of fabricated TRNGs. (a) Ratio of ones for three TRNG

converges to 50%. Bias due to process variation is mitigated by printing additional layer

to corresponding printed resistor. (b) Ratio of ones for another TRNG converges to 50%.

While more layers are printed to same resistor, it converges to 0%.

the annotated images of a fabricated TRNG before and after resistor tuning. The area usage

of the fabricated TRNG is 4.59 mm2.

The change in the ratio of the ones of the fabricated TRNGs with respect to the number

of additional layers is given in Figure 4.13a. Fabricated TRNGs are annotated with a number

(e.g., TRNG-1) for convenience. The measurements show that the resistor tuning mitigates

the process variation of the circuit, and the ratio of ones for each TRNG converges to 50%

which indicates that the output is highly dependant to random noise. Additionally, we have

consistently printed additional layers on top of the R2 of TRNG-4 to examine its behaviour.

As given in Figure 4.13b, after second and third additional layers are printed, its ratio of ones

is reduced from 83% to 53% and 45%, respectively, meaning that the influence of the process

variation is mostly reduced. Moreover, after fourth and fifth printed layers, the ratio of ones is

decreased to 9% and 8%, respectively, since the tuning excesses the mismatch resulting from

process variation.

We swept the supply voltage of the TRNG-3 from 0.6 V to 1.2 V to examine the susceptibility

of its ratio of ones to supply voltage. The ratio of ones are 32%, 32%, 39% and 36% for the

supply voltage of 0.6, 0.8, 1.0 and 1.2 V, respectively, which show that the change of the

supply voltage does not bias the output to one value. Moreover, the slight change on the ratio

of ones for different supply voltages demonstrates that the supply voltage susceptibility of the

TRNG-3 is low.

Furthermore, we constantly measure the TRNG-3 for 12 weeks to check its functionality.

During 12 weeks of measurements, the ratio of ones of TRNG-3 changed from 39% to 41%,

and finally become 37%. This shows that the randomness of the tuned TRNG does not

significantly change. Additionally, after 12 weeks, the maximum delays measured at different

supply voltages are observed between 69 ms and 76 ms showing that it does not significantly

vary at different supply voltages. Therefore, the throughput of the TRNG-3 is ∼13.16 bit/s,

which is sufficient for most of the PE applications.

Figure 4.14 shows the current and power consumption of the tuned TRNG-3 at various
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Figure 4.14: Current and power measurements of tuned TRNG-3 at various supply voltages. (left axis)

Quiescent and active currents (IDDQ, IDDA), (right axis) quiescent and active power

consumption (PQ, PA).

supply voltages. The quiescent and active currents decrease from ∼3.94 µA and ∼395.22 µA

to ∼0.99 µA and ∼16.49 µA, respectively, when the supply voltage is lowered from 2.0 V down

to 0.5 V. The quiescent and active power consumptions sink from ∼7.88 µW and ∼790.43 µW

to ∼0.50 µW and ∼8.24 µW , respectively, when the supply voltage is reduced from 2.0 V down

to 0.5 V. The active power consumption is always higher than the quiescent power consumption

due to the enable transistor (T3) in the design.

4.4.3 Discussion on comparison with existing TRNGs

PE enables the applications where ultra low-cost is vital requirement. The ultra low-cost

requirement constraints the complexity of PE circuits including security primitives such as

Physical Unclonable Functions (PUFs) and TRNGs to secure interconnected applications of

PE. The silicon-based TRNGs usually contains a calibration circuitry, which result in an

additional cost, to mitigate the process variation. The complexity constraint of PE makes

existing TRNGs infeasible in PE applications. The proposed circuit and its additive tuning

method enable to realize a compact TRNG for ultra low-cost PE applications. The power-

efficiency and the throughput of an existing silicon-based TRNG [116] and the proposed TRNG

are incomparable since the feature sizes of the silicon-based TRNG and the printed TRNG

are 14 nm and 10µm respectively, and it is infeasible to extrapolate their power-efficiency and

throughput. However, the area usage of two designs can be compared by extrapolating their

reported area usage according to their feature size. The extrapolated area usage of the silicon-

based TRNG is 555 mm2 in 10 µm feature size while the reported area usage of the proposed

TRNG is 4.59 mm2 which is less than 1% of the silicon counterpart. So, the utilization of

existing TRNGs in PE stem from high area usage resulting from their additional calibration

circuitry.

46



4.5 Summary

4.4.4 Suitability of TRNG postprocessing techniques

The generated bitstream can be post-processed to compensate any bias and/or correlation.

However, post-processing techniques introduce additional area and power overhead, which

harm target low-cost and low-power applications [120]. Therefore, the post-processing tech-

nique should be selected according to the constraints of the target application. For instance,

XOR function post-processing technique has high overhead, hence is inefficient for PE appli-

cations, since it calculates the odd parity of multiple TRNG instances to accumulate entropy

from the TRNGs [76, 79]. On the other hand, the von Neumann corrector generates one

bit from two bits, and removes consecutive ones/zeros increasing the entropy to one [121].

However, it reduces the throughput by at least 75% which is not harmful for most of PE

applications where the operation requiring random bits is infrequent [27, 122]. Therefore, the

von Neumann correct is a suitable post-processing technique since it has low overhead while

providing sufficient throughput for the target applications.

4.5 Summary

Printed electronics is paving its way in many application domains. These applications may

require random keys generated by TRNGs to secure their operations. Since PE circuits have

high intrinsic process variation, designing a proper TRNG requires the mitigation of the pro-

cess variation. In this chapter, we have presented a printed TRNG design that exploits the

customizable fabrication feature of the PE to tune the circuit to mitigate the process variation

impact. The proposed resistor tuning flow reduces the effect of the overall process variation

by 110 times such that the tuned TRNGs can pass the NIST randomness test. Moreover, the

proposed TRNG is fabricated and tuned using resistor tuning flow to validate our approach.

The experimental results show that the fabricated TRNGs generate random bitstreams after

tuning while operable at below 1 V and consuming down to ∼8.24 µW active power.
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5 Reverse Engineering of Printed Electronics

Circuits

The evolvement of Printed Electronics (PE) brings about security aspects, more specifically,

the reverse engineering of PE circuits. However, the reverse engineering methodologies of

silicon-ICs are unsuitable for PE circuits since PE circuit design and fabrication processes are

fundamentally different from silicon-based chips. For instance, the custom fabrication feature

of PE, thanks to its low-cost inkjet printing process, results in the use of miscellaneous circuit

elements instead of the standard cell libraries used in silicon circuits, and non-structured

layouts in the place of highly structured placement used in digital silicon chips. Besides,

since the fabrication processes of PE circuits are additive and individual components such as

transistors, resistors, and wires are printed individually and one by one, the variation of these

circuits is higher than that of the silicon counterparts.

These differences imply that the existing reverse engineering (RE) methodologies for the

circuits fabricated using wafer-scale silicon technologies, which contain standard elements with

structured layouts and low variation, are inapplicable for RE of PE circuits. Therefore, a

new RE methodology capable of dealing with these differences is required for honest (e.g.

failure analysis and defect identification, yield learning and design improvement, detection of

counterfeit products) and dishonest (e.g. counterfeiting, illegal cloning of a product) intentions.

In this chapter, we present the first RE methodology for PE circuits from image acquisition

all the way to netlist extraction. We have defined the fundamental differences in PE design and

fabrication that necessitate a new RE methodology. We have developed a robust, supervised

learning-based RE methodology containing preprocessing, classification, and post-processing

parts that can cope with the unique characteristics of PE design and fabrication. The results

show that the proposed RE methodology extracts the netlist of various circuits without or

with only minimal manual correction.

The contributions of this work are summarized as follow:

• We define the unique features of PE circuit design and fabrication, fundamentally dif-

ferent than the wafer-scale silicon-based circuits resulting in the necessity of a new RE

methodology.

• We propose a robust RE methodology for PE circuits.

• We evaluate our RE methodology on several PE circuits.

The rest of the chapter is organized as follows: Section 5.1 explains the motivation of this

work. The proposed RE methodology is described in Section 5.2, while the evaluation results

are given and discussed in Section 5.3. Finally, Section 5.4 concludes the chapter.
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5.1 Motivation of This Work

In PE circuit design and manufacturing, there are substantial differences compared to wafer-

scale silicon-based ICs, leading to new security issues resulting in the rethinking of RE. The

first difference is that circuit elements used in PE circuits vary in discordance with the silicon-

based ICs where mostly CMOS is utilized. Some PE circuits based on organic technology use

p-type transistors for the pull-up network and p-type transistors whose gates are shorted to

its drain [123] while others use ”pseudo-CMOS” logic [124]. In printed electrolyte-gated tran-

sistor (EGT) technology, n-type EGTs are used for the pull-down network while the resistor is

used for the pull-up network because of the lack of p-type inorganic transistors [61]. Another

difference which is derived from its customized fabrication feature is that the layouts of PE

circuits are highly customizable. Since silicon-based circuits can only be fabricated in foundries

with complex and extremely expensive manufacturing tools, and moreover due to complexity

of such ICs, the layouts of these circuits are structured based on standard libraries, and the

layout customization is limited in silicon-based ICs [69, 125]. In PE, personalized/customizable

fabrication as well as the limited complexity of the circuits used for PE applications enables

designers including non-expert users to customize the layout such that the layout is not struc-

tured well. Moreover, the shape of devices such as transistors, resistors and capacitors may

change from one circuit to another since the efficient shape of devices are highly dependent

on the capability of utilized printing processes and other limitations such as material types

and consumption [27]. In addition, a generic layout designed and fabricated by experts can be

mass printed but the fabricated layout can be customized in the field using low-cost printing

schemes. In PE, the devices are individually spot printed. In addition, the number of printing

layers is very limited, and may also be transparent. This is in contrast to wafer-scale silicon

fabrication which has many complex processing steps and contains several fabrication layers,

which are wafer coated and opaque. For instance, for wire crossing in silicon, there is an

insulator layer in the entire wafer and vias are created to establish the connections through

insulator layers. However, for PE, the wire crossings are fabricated on the spot and the in-

sulator is droplet printed only at the crossing. The last difference is that PE circuits have

higher inherent process variation than silicon counterparts since the PE fabrication methods

are additive processes while silicon circuits are lithographically fabricated by using advanced

subtractive processes. Since the circuit elements are printed one by one, there is no spatial

correlation, as normally expected in the silicon processes [113, 13, 34]. These three group of

differences can be summarized as follow:

• Non-standard circuit elements

• Customized layouts

• High variation

Since these differences are related to technology, design and fabrication, existing RE method-

ologies for silicon-based ICs are inapplicable for RE of PE, especially for the software post-

processing part of RE. A new RE methodology considering these differences is required to cope

with these unique characteristics of PE design, technology and fabrication.
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Pre-processing Machine Learning
Classification Post-processingImage NetlistFeature
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Figure 5.1: Overview of reverse engineering methodology of printed electronics circuits.

5.2 Reverse Engineering Methodology of Printed Electronics

This section explains the reverse engineering methodology starting from image acquisition to

the netlist extraction. First, the image of a PE circuit is captured using an optical camera inte-

grated to a microscope in contrast to the expensive tools such as scanning electron microscope

(SEM) and focused ion beam (FIB) used in RE of silicon ICs. This image is preprocessed to

remove any environmental effects such as noise and lighting problems. Then, a classifier based

on supervised machine learning is utilized to classify circuit elements. At last, the classification

results are post-processed to mitigate misclassified parts, such that the netlist can be extracted.

After the transistors, resistors and their connections are fully detected, the circuit netlist can

be extracted automatically as it is done in RE of silicon ICs [16, 90, 91]. The overview of the

proposed RE methodology is illustrated in Figure 5.1. These steps are explained in detail in

the following subsections.

As described before, through the involvement of fluids, and the less controlled production

process of printed components, the resulting components show high variation, and the cus-

tomizable fabrication results in non-standard cell layout design [11, 12, 126, 113]. Because of

these differences, automated library-cell-based identification methods such as [92, 90, 89, 16, 91]

is therefore inefficient. We thus resort to supervised machine learning techniques to eliminate

the need for such expert-generated descriptions. The details of the classification, and the

post-processing are illustrated in Figure 5.2.

5.2.1 Supervised Machine Learning

Supervised machine learning (ML) uses algorithms to generate a mapping (classifier) m :

X → Y from a set of provided (explanatory) variables X, also referred to as features, which

correlate with some other set of observed (response) variables of interest Y called labels.

The classifier m is thereby developed by trying to map a set of observed tuples of instances

D = {(x, y) |x ∈ X, y ∈ Y } as well as possible, that is, assigning the correct y to a given x,

while the details depend on the algorithm used. The evaluation of classifier m for a given x is

also referred to as prediction.

Generally, not all available instances of D are utilized to develop the classifier (training),

but only a subset Dtrain ⊂ D (training set), while another subset Dtest = D \Dtrain (test set)

is held back to evaluate the quality of the classifier later on. The partitioning of the dataset is

done to detect unwanted effects like the classifier being able to predict the training data very

well but performing poorly on the test set. This would be an indicator that the classifier does

not capture the general relationship between X and Y , which is desired, but overly adapted

to Dtrain. This problem is also referred to as over-fitting.

In our use case, the data (x, y) will be generated by processing a set of (training) images of

printed circuits, e.g. Figure 5.3a for a PUF circuit. The images will firstly be cut into multiple
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Figure 5.2: Training and test processes of proposed reverse engineering methodology of printed elec-

tronics circuits.
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small images called patches. From these patches, we then extract vectors x ∈ Rn, representing

several calculated attributes (features), and labels y ∈ {T,R,W,B} representing transistors

(T), resistors (R), wires (W) and blank substrate (B).

In the following, we will describe the necessary steps to prepare the images of printed

circuits in order to apply ML for the detection of individual components, namely transistors

and resistors, as well as the wires connecting them.

5.2.2 Image Preprocessing and Training Label Preparation

Since the raw images show various properties, like non-homogeneous lighting and dust, which

could influence the detection performance negatively, we apply the following image processing

steps to mitigate them. See Figure 5.4 for the respective steps applied to the training image

of a printed Physically Unclonable Function (PUF) circuit.

1. Conversion to grayscale

2. Image denoising

3. Image normalization

4. Edge detection

5. Adaptive Histogram Equalization

6. Image denoising

7. Adaptive Histogram Equalization

Firstly, the image is converted to a grayscale image to promote invariance to coloration.

Even though the color channels might carry some information, the main coloration of the

components is produced by different lighting or background.

The image denoising is done using bilateral filtering [127] which is an edge-preserving filter

that averages pixels not just based on closeness in location, but also based on similarity in pixel

values. After that, normalization is applied to scale all pixel values to the range of [0, 1]. This

is mostly done to mitigate different lighting conditions between different pictures. Following

the normalization, an edge detection step using Robers cross operator [128] is performed.

In the next step, Adaptive Histogram Equalization (e.g. see [129]) is employed, which should

further increase the contrast of the detected edges by locally adapting the pixel intensity

values for darker or lighter regions. Following this, the image is denoised again and Adaptive

Histogram Equalization is used one more time which, in our experiments, improves the results

further. All preprocessing steps can be performed in python using the scikit− image library

[130].

Furthermore, to have labels y for the ML algorithm later on, every pixel of the training

image needs to be assigned one of the values of {T,R,W,B} by the user. This can be done

by approximately labeling whole regions of pixels at a time. See Figure 5.3b for the labeled

training image.
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(a) (b)

Figure 5.3: (a) PUF2 circuit image (b) Label of PUF2 image; green: wire, blue: transistor, yellow:

resistor, dark blue: blank.

(a) (b)

(c) (d)

Figure 5.4: Preprocessing of PUF2 image, (a) Denoised PUF2 image using bilateral filtering (b) Nor-

malized PUF2 (c) The Edges of PUF2 extracted using Roberts cross operator (d) The result

of Adaptive histogram equalization on PUF2
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5.2.3 Extracting and Labeling of Patches

To apply an ML Algorithm to the preprocessed image, we first need to generate our training

data Dtrain consisting of tuples of (x, y) instances. For this, we divide the image into multiple

patches p of c × c pixels. Those patches will later be used to calculate features x ∈ Rn and

labels y ∈ {T,R,W,B} for the training of the ML algorithm. A patch p ∈ Nc×c≤255 can be

thought of as a matrix of values containing natural numbers between 0 and 255. We denote

the set Pc×c as the set of patches p generated by partitioning the image into c × c pixels.

Additional pixels at the edges, which can not form a full c× c patch, are omitted.

Since only one label y is assigned to a patch, the choice of c poses a trade-off. The higher

c, the less patches are generated which will reduce the resolution of the classification. On the

other hand, if c is taken to be too small, the features extracted from a patch might not contain

enough information to distinguish the components. The value c should be chosen according to

the resolution of acquired optical images and the feature sizes of the circuit elements. Since the

feature sizes of the elements are mostly diverse, we have used three c values in the methodology.

Specifically, the patches of used circuits in this work are extracted for c ∈ {8, 32, 64} which

result in the sets of patches P8×8, P32×32 and P64×64.

5.2.4 Feature Engineering

In the following, we describe which features are extracted from a patch p ∈ Pc×c. A vector

x, created by combining all extracted features of a given patch p into a list, and the label y

can then be seen as an instance of (x, y) for training. The following methods are utilized to

generate the features:

• Histogram of Oriented Gradients (HOG)

• Summary statistics of pixel values

• Histograms of pixel values

• Number of peaks

• Number of corners

Histograms of Oriented Gradients (HOG) [131] is an algorithm that generates features based

on weighted counts of gradient orientations in an image. The HOG Algorithm is mainly

defined by three parameters which are the cell size specifying the size of the regions for which

histograms of gradients are created, the number of different orientations which correspond

to the bins of the histogram, and the block size, which is used to normalize the histogram of

multiple cells later. The steps performed by HOG usually include an optional normalization

of the image, a computation of the gradients along the vertical and horizontal axis and the

binning of the gradients based on their orientation, while their magnitude is used as a weight.

The computation of the binning of the gradients is followed by a so called block-normalization

step which selects multiple neighboring cells depending on the blocksize and normalizes them

jointly. As HOG will generally produce many features, we calculate summary statistics from

the results to strongly reduce the amount of features generated. For the summary statistics, we

use the mean, standard deviation, min and max, this should not only decrease the amount of

features, but also lead to increased invariance with respect to the specific position of patterns

in the patch.
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Furthermore, we apply several summary statistics to the pixel values of the preprocessed

patches, namely mean, standard deviation, min, max and the counts from a histogram of the

pixel values with eight bins, as well as the number of contrast peaks. We hope to capture gen-

erally lighter and darker areas with this feature, where the use of the summary statistics leads

to position invariance within a patch. Additionally, we extract the number corner orientations

[132] from the patch.

For the training images, we also need to select the label y of the patch. Since we are just

allocating one label y to a patch p ∈ Pc×c, we need to apply an aggregation function to

the labels of the pixels belonging to the patch. As the labels are categorical, taking the most

frequent value (majority vote) is a natural choice. In case of a tie for the majority, the following

label preference relation is used B � T �W � R, where B � T indicates preference of B over

T .

The feature calculation as well as label extraction steps will be applied to all patches p ∈ Pc×c

for c ∈ {8, 32, 64}, generating a different set of training data for each value of c.

5.2.5 Component Detection using Ensembles of Random Forests

A machine learning (ML) algorithm which has proven to work generally well in a lot of cases is

Random Forest [133]. Random Forests use multiple Decision Trees trained on different subset

of the training data and features to produce a prediction.

Decision Trees (CART) [134] are binary trees partitioning the feature space (Rn in our case)

into different regions. These regions are chosen such that the training data points

Dtrain = {(x, y) |x ∈ Rn, y ∈ {T,R,W,B}} populating them are as pure as possible with re-

spect to their label y. The purity of a partition can be measured using any measure of purity,

where generally the Gini-coefficient or the Shannon information entropy is used.

The partition is formed iteratively as follows. Starting from the root node, for all features,

all values of the feature leading to different partitions are evaluated as possible splits. The

split, consisting of a feature and a value tuple, producing the highest purity in the resulting

partition is then selected and two child nodes representing the two regions separated by the

split are added to the tree. This procedure is repeated for each child node, i.e. subregion,

until some termination criterion is reached. While the trivial termination criterion is given by

fully pure leaf nodes, additional criteria can be used, e.g. an upper bound on the depth of the

tree, or a minimum number of data points in a region, to allow for a split to be performed.

These additional criteria are often utilized to reduce the previously described over-fitting effect

and increase the generalization properties of the prediction. After a tree is grown this way,

a prediction for a data point x ∈ Rn can be obtained by returning the most frequent label

value y in the region (leaf node) x belongs to. While this procedure, due to its greedy nature,

might only reach a suboptimal partition with respect to the purity of the leaf nodes, it is

computationally more viable than exhaustive search and produces good results in practice. To

achieve sufficient generalization, i.e. prevent over-fitting and produce a classifier with a good

test set performance, the termination criteria needs to be chosen carefully.

Another method which tries to generate a more robust classifier from trees uses so called

Ensembles of multiple slightly different trees. One method to generate such an Ensemble is

Bagging [135], which is short for bootstrap aggregation. In Bagging, k samples of size |Dtrain|

56



5.2 Reverse Engineering Methodology of Printed Electronics

of the training data Dtrain are drawn with replacement (bootstrapping), and a Decision Tree

is trained on each set using the aforementioned procedure. To obtain a prediction from an

Ensemble of Decision Trees, an aggregation function is applied to the set of outputs of all

Decision Trees of the Ensemble. In a classification setting usually the most frequent value

is used. Ensembles of Decision Trees are generally less prone to over-fitting than individual

Decision Trees since it is very unlikely that all trees were trained on the whole training data,

which means they can not overfit it in the sense of memorizing training examples. Furthermore,

this procedure simulates the effect of missing data on the models, while the aggregation of

multiple of trees reflects the uncertainty of data points and leads to a more robust prediction

where single instances have little influence.

Extending the idea of the Bagging procedure, Random Forests additionally select random

subsets of features for each tree. This reflects uncertainty about the features used and can help

to create a more robust representation that relies less on the presence of patterns in individual

features.

All Random Forests described in the following are trained using the scikit − learn [136]

library, with a parametrization of 200 Decision Trees of depth 30 and the Gini-coefficient as

label purity measure.

As we generate three sets of training data (see Section 5.2.3), one for each value of c ∈
{8, 32, 64}, we train a separate Random Forest on each training data set. We denote the

Random Forest trained on the data generated by extracting (x, y) from Pc×c as RFc. Note

that for each of the Random Forests a different number of predicted labels is obtained, e.g.

RF32 will have four predictions for an area of 64× 64 pixels, while RF64 will just have one.

To combine the predictions of the three Random Forests into a single predicted label for a

64×64 pixel patch, we first aggregate the predicted labels on the highest prediction resolution,

i.e. 8 × 8 by RF8 by majority voting. In case of a tie we utilize the preference relation used

before, namely B � T � W � R. This will result in 64 labels for 8× 8 patches in a region of

64× 64 pixels.

After this step, the 64 aggregated 8×8 pixel predictions for the patches are combined to one

label of a single 64×64 patch. The same majority voting methodology is used for this step but

with one small adjustment regarding the B (blank) label. A 64 × 64 region is only assigned

the label B if all of its 8× 8 patches were assigned the label B, else, the second most frequent

label is used. In case of a tie, we again use the same label preference relation as for the first

step (excluding the relation for B). This way, the result of the combination of three Random

Forest predictions will return one label for a 64× 64 region. The final label of a 64× 64 region

is thus the result of an Ensemble of Random Forests trained on different resolutions. For a

schematic illustration of the combination of the predictions of the three Random Forests see

Figure 5.5.

Note that for this to work, unconnected wires need to be more than 64 pixels apart or they

could be shortened. If such problems are observed, smaller c× c resolutions should be chosen.

For an illustration of the individual predictions of the Random Forests on a real image see

Figure 5.6.
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𝑹𝑭𝟖 𝑹𝑭𝟑𝟐 𝑹𝑭𝟔𝟒

Aggregation

Majority Vote

Figure 5.5: A schematic illustration of the procedure used to aggregate the predicted labels of the three

Random Forest models into a single label. The labels of RF8 where unified to 16 × 16

blocks for readability. Note that even though the majority of all smallest resolution patches

are labeled B (blank) after the aggregation, the second most frequent label, namely T

(transistor), is assigned after majority voting due to B being ignored in this step.

5.2.6 Post-processing

Due to the nature of the data we expect some wrong predictions. Even though small errors

might not matter, as for example a single wrongly labeled patch on the substrate, other

errors could lead to a false netlist. The most likely error leading to a false netlist is multiple

misclassified patches causing a disconnected wire. We thus propose some post-processing steps

to counteract these problems. Following the assumption that spatially close patches are highly

probable to share the same label, we employ a post-processing step using a filter kernel for

label correction.

A filter kernel on a patch uses aggregated information from a neighborhood of the patch

to adjust its label. As such, it has two degrees of freedom. Firstly, the definition of the

neighborhood and secondly the aggregation function. In our case, we will only consider directly

adjoining patches in the horizontal and the vertical axis of the patch of interest. See Figure

5.7 for the filter kernel on the green patch.

This kernel will be applied two times, each time with a different aggregation function. The

58



5.2 Reverse Engineering Methodology of Printed Electronics

(a) (b) (c)

(d)

Majority Voting

Figure 5.6: Random forest prediction results, (a) Prediction of RF8 (b) Prediction of RF32 (c) Prediction

of RF64 (d) Combination of three predictions by majority voting.

first time, the label correction is based on a majority vote, where in case of a tie for the most

frequent label, again, the preference relation B � T � W � R is used. The second time the

aggregation is based only on a preference relation, namely T � R � W ∼ B, where W ∼ B

denotes indifference between W and B, such that not the most frequent label decides on the

label adjustment i.e. majority voting, but the highest ranked label according to the preference

relation.

The cross-shape of the kernel is mandatory to not loose the properties of for example a

vertical wire surrounded by blank space. Given a wire size smaller than the patch resolution,

the wires would always disappear if the diagonally adjoint patches would be included in the

kernel, since six blank patches could overpower three wire patches. Note that, excluding the

first, majority-vote based step and modifying the label dominance from W ∼ B to W � B

would also solve this problem but could in turn lead to connecting two wires separated by

blank space which would shorten a connection. As can be seen in Figure 5.8, the kernel-based

post-processing steps can drastically increase the quality of the detection of the components

and the connections.
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Figure 5.7: The filter kernel set up around the green patch. The label is adjusted based on its value

and the labels of the four horizontally and vertically adjoint patches. This is done for every

patch in the image.

Post-processing

(a) (b)

Figure 5.8: Illustration of classification and post-processing results of C171 circuit. (a) classification

results, (b) post-processing results

5.2.7 Extraction of Netlist from Patches

After the detection of circuit components and their wires in terms of patches, this information

has to be transformed into circuit netlist. For this reason, The connected component labeling

(CCL) algorithm [137] is applied to classified patches in order to label each transistor, resistor

and wire so that they are automatically annotated. A reverse engineer should manually anno-

tate the power supply (VDD) and ground (GND) to extract the netlist accurately. After the

annotation, the method given in Algorithm 1 is used to extract the text-based netlist.

The annotation step extracts the nets (wires) and their patches using CCL. The patches

(or pixels) can be addressed via n.patches for a given net n. Every patch p has access to

its horizontal and vertical neighbours through the attribute p.neighbours. Furthermore, p

can access the component it belongs to, (through p.component) as well as its label p.label.

The brackets [] indicate a list, while {} indicates a set (note the uniqueness property of the

set). It should be noted that the netlist extraction algorithm extracts the connections without

their input/output directions which have to be manually given by the reverse engineer. This
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Labeling Extraction

Net0: VDD, R0
Net1: R0, T0
Net2: T0, T1,
Net3: T1, GND

(a) (b) (c)

Figure 5.9: Netlist extraction from patches to netlist. (a) Classified patches, (b) Labeled patches for

annotation, and (c) Netlist of NAND gate.

Figure 5.10: Negative semi-real image of a C432 circuit. Randomly selected the preprocessed images of

circuit elements are placed to noisy blank image, and connected using wires.
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Algorithm 1 Netlist Extraction

1: procedure NetlistExtraction(input nets)

2: net lists = []

3: for n in nets:

4: net = {}
5: for patch in n.patches:

6: for nb in patch.neighbours:

7: if nb.label in [’T’,’R’]:

8: net.append(nb.component)

9: net list.append(net)

10: return net list

is sufficient to construct a schematic and/or conduct further analysis such as inferring the

functionality of the circuit [16, 90, 91]. An example netlist extraction of a NAND gate from

patches to text-based netlist is shown in Figure 5.9.

5.3 Evaluation Results

In the following, we describe the test setup including the circuits and their images used to

validate the methodology. We explain the evaluation metrics, and discuss the results obtained

by applying the proposed methodology to real and semi-real images of various circuits.

5.3.1 Test Setup

Due to the infancy stage of the technology and the costs associated with the design and

fabrication, we are currently only able to fabricate limited and small-size test structures.

Because of these practical limitations, we used the images of several individually fabricated

components (transistors, resistors and wires) to construct synthetic images, namely ”semi-real

image”, of larger designs. Figure 5.10 is an example of a negative semi-real image of a C432

circuit. The images of fabricated components and circuits are acquired using an optical camera

integrated to a microscope.

To generate semi-real images, first, Gaussian noise is added to a blank image to imitate

the noise of camera and the imperfectness of the substrate (e.g. dust). Then, randomly

selected preprocessed images of several transistors and resistors are placed and connected by

the images of wires to form the pictures of our evaluation circuit. Furthermore, the images

of the transistors and resistors are manipulated via scaling and flipping. Through this, a

diverse set of transistor and resistor images can be achieved and it can be guaranteed that

no exact copies of training set images are in the test set. We have generated the semi-real

images of a NAND gate, a flip-flop and several ISCAS’85 circuits [138] which contains up to

644 gates using the method. In addition, we obtained two fabricated printed PUF images

(PUF1, PUF2), which are based on EGT-based inorganic PE technology [13]. The images

used in evaluation are summarized in Table 5.1. The image of PUF1 circuit is used to train

the ML model, which is subsequently used in the reverse engineering of PUF2, NAND gate,

C171 and C172 circuits, while other circuit images are reverse engineered with the ML model
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Table 5.1: Circuit images used in evaluation, their explanations, and types

Circuit Name Explanation Image Type

PUF1 Fabricated PE-PUF Real

PUF2 Fabricated PE-PUF Real

NAND Gate Generated NAND gate Semi-real

Flip-flop Generated Latch-based flip-flop circuit Semi-real

C171
Generated ISCAS’85 C17 circuit

containing 6 NAND gate
Semi-real

C172
Generated ISCAS’85 C17 circuit

containing 6 NAND gate
Semi-real

C173
Synthesized ISCAS’85 C17 circuit

containing 7 NAND gate
Semi-real

C432

Synthesized ISCAS’85 C432 circuit

containing 148 NAND, 50 NOT

and 7 NOR gate

Semi-real

C499

Synthesized ISCAS’85 C499 circuit

containing 411 NAND, 227 NOT

and 6 NOR gate

Semi-real

C880

Synthesized ISCAS’85 C880 circuit

containing 301 NAND, 114 NOT

and 13 NOR gate

Semi-real

C1908

Synthesized ISCAS’85 C1908 circuit

containing 351 NAND, 154 NOT

and 14 NOR gate

Semi-real

trained with 10% of themselves.

Accuracy =
# correctly labeled instances

# all instances
(5.1)

Precision of label ȳ =
# correctly labeled instances of ȳ

# all instances labeled as ȳ
(5.2)

Recall of label ȳ =
# correctly labeled instances of ȳ

# all instances of ȳ
(5.3)

5.3.2 Evaluation Metrics

To judge the classification quality of the methodology, we report the Accuracy (see Equation

5.1) for the patches extracted from the circuit images. The Accuracy is the number of correctly

predicted patch labels by the classifier. To further investigate the classification quality for

individual labels, we additionally report Precision and Recall. The Precision of a prediction

(see Equation 5.2) for a given label ȳ (e.g. transistor, resistor, etc.) measures how many of

the instances that were assigned the label ȳ are truly of label ȳ, while Recall (Equation 5.3)

is the ratio of true instances of ȳ that were assigned ȳ. Generally, there is a trade-off between
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Table 5.2: Accuracy of patch detection.

Classification indicates the accuracy before post-processing steps while post-processing indi-

cates the accuracy after post-processing steps.

Training Data Circuit
Accuracy (%)

Classification Post-processing

PUF1 PUF2 80.86 86.51

PUF1 Flip-flop 89.08 94.06

PUF1 NAND Gate 85.75 93.15

PUF1 C171 86.62 92.10

PUF1 C172 91.38 94.94

10% of itself C173 96.40 96.61

10% of itself C432 92.66 91.88

10% of itself C499 84.55 84.94

10% of itself C880 84.84 85.17

10% of itself C1908 86.75 87.15

Table 5.3: C171 circuit precision and recall results before (Classification) and after (Post-processing)

post-processing steps.

Label
Precision Recall Number of

patchesClassification Post-processing Classification Post-processing

Blank 0.9052 0.9389 0.9741 0.9868 30968

Transistor 0.9806 0.9689 0.2947 0.5687 5096

Wire 0.5384 0.7356 0.8552 0.9106 2952

Resistor 0.9625 0.8740 0.5225 0.7414 1160

Avg / Total 0.8895 0.9259 0.8662 0.9210 40176

Precision and Recall and it is almost always possible to decrease either in favor of the other

one, e.g. label everything as transistor to detect all transistors and maximize Recall while

obtaining low Precision.

The aforementioned metrics provide insights about the patch-based detection of the machine

learning and post-processing steps. However, since the main goal of our RE is to detect circuits

elements and their connections (netlist), the focus of the evaluation should be on the number

of correctly identified components and wires. Therefore, we report the number of detected

transistors, resistors and connections.

5.3.3 Discussion of Results

The classification results for the accuracy before (Classification) and after the post-processing

(Post-processing) for all circuits are given in Table 5.2. The results show that the classification

and post-processing accuracies of all images are higher than 80.86% and 84.94% respectively.

The average classification and post-processing accuracies are 87.89% and 90.65% respectively.

Through post-processing, for most of the tested circuits, we considerably improve the other

metrics for the individual components. For instance, for C171, it is evident from Table 5.3

that, while the Precision of the detection of transistors (98 %) and resistors (96%) is quite
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Table 5.4: Number of detected and total transistors, resistors and connections.

Training

Data

Target

Circuit

# of

Detected/Total

Transistor

# of

Detected/Total

Resistor

# of

Detected/Total

Connection

Manual

Correction

from

Reverse

Engineer

PUF1 PUF2 3 / 3 2 / 2 6 / 9 Minor

PUF1 NAND 2 / 2 1 / 1 4 / 4 No

PUF1 Flip-flop 18 / 18 10 / 10 53 / 53 No

PUF1 C171 12 / 12 6 / 6 31 / 31 No

PUF1 C172 12 / 12 6 / 6 31 / 31 No

10% of itself C173 14 / 14 7 / 7 37 / 37 No

10% of itself C432 360 / 360 205 / 205 1101 / 1101 No

10% of itself C499 1061 / 1061 644 / 644 3375 / 3375 No

10% of itself C880 742 / 742 428 / 428 2293 / 2293 No

10% of itself C1908 884 / 884 519 / 519 2787 / 2787 No

high, it suffers from low Recall with 29% and 52% respectively. As for wires, the Precision is

only 53% while a Recall of 85% is achieved. The improvement of post-processing is especially

noticeable in the increased Recall for transistors and resistors from 29% to 56% and 52%

to 74%, while losing only 2% and 9% in Precision respectively. Also, the previously low

Precision for wires with 53% is increased to 73% while also increasing the Recall from 85% to

91%. Both metrics are also improved slightly for blank. Therefore, through post-processing,

the average Precision and Recall are improved from 88% to 92% and 86% to 92% respectively

on the C171 semi-real test circuit.

While these metrics give insight about the performance of the ML model and the post-

processing, the main goal of this work is to detect the circuit elements and their connections

so that the circuit netlist can be extracted automatically. For this reason, the number of

detected and total transistors, resistors and connections are given in Table 5.4. It can be seen

that all transistors and resistors (100%) were identified, and 99.97% of the connections are

detected successfully. Even though there are some misclassified patches resulting in erroneous

netlists, most of them, such as floating wires, can be corrected automatically in the netlist

with the help of commonly used design rule checks (DRC). However, very rare errors such as

shorted wires cannot be mitigated by DRC. Therefore, a reverse engineer can automatically

spot these errors by overlaying the target circuit image and the patch results, and correct

them manually. Thus, the erroneously detected three connections in PUF2 image due to the

shortening of wires are corrected with comparably small manual effort. After all, the proposed

RE methodology successfully extracts all circuit netlists in our dataset.

5.4 Summary and Future Work

Compared to silicon ICs, the customizable fabrication of PE leads to several differences such as

non-standard circuit elements, customized layouts, and high variation. These differences leads

to a new RE methodology requirement. In this chapter, we have defined these differences and
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proposed a new robust RE methodology for PE circuits. The proposed methodology contains

a preprocessing step which mitigates noise, dust and other environmental conditions. Then,

a robust supervised learning based classification is exploited which classifies patches. Finally,

a post-processing step is utilized which mitigates erroneous classifications and perform netlist

extraction. The results show that the proposed methodology can reverse engineer the given

PE circuits with very limited manual effort.

As we have demonstrated that the given PE circuits can be reverse engineered, counter-

measures have to be taken to prevent dishonest intentions. The investigation of such coun-

termeasures against RE, such as camouflaging schemes, for PE should be investigated. The

following chapter proposes a scheme that can be used for camouflaging, split manufacturing

and hardware watermarking for various attacks including RE.
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Printed Digital Circuit

The unique features of Printed Electronics (PE) such as large feature sizes and rather simple

circuit structures bring security threats in the supply chain of PE applications [36]. These

security threats are reverse engineering, counterfeiting, malicious modifications, IP piracy,

and overbuilding which can lead to severe problems. For instance, inaccurate or erroneous

functionality of a medical application may lead to false diagnosis [139, 140, 141]. Therefore,

countermeasures against such threats must be considered in the design and fabrication flow of

such applications. The countermeasure methods such as camouflaging, split manufacturing,

and hardware watermarking can be realized with the help of a programmable printed circuit.

On the other hand, in many cases of PE applications, functional customization by end-

users or other parties in the supply chain is needed. Therefore, enabling such customization

through programmability is desired. Also, due to high intrinsic variations in this technology,

manufacturing yield and performance metrics could be very low especially for low-cost printing

processes [13, 61, 62]. A programmable circuit can improve the yield and performance metrics,

and help to bypass defects to provide correct functionality despite the low manufacturing yield,

performance and defects resulting from the low-cost printing processes.

For all these reasons, it is desired to have a (one-time) programmable building blocks for this

technology to address security, yield, and performance challenges. The work in [142] presents

a transistor level method utilizing functional transistors in a sea of transistors to improve

the yield of printed circuits, but it requires a large amount of error-prone inkjet-printing and

transistor characterization effort to provide large scale integration.

In this chapter, we propose the first one-time programmable printed Look-up Table (pLUT)

design to implement virtually any printed digital circuits while addressing the aforementioned

challenges. The pLUT can be fabricated using high throughput advanced techniques in a

production center, then, the pLUT can be programmed using printing conductive inks to

corresponding connections based on user requirements using an inkjet-printer. In this way, the

programmable pLUT can be used to countermeasure against security attacks, and mitigate

low performance and low yield. Besides, users can realize any on-demand printed circuits with

minimum effort. Furthermore, the programmability feature of this approach can also be used

to mitigate failures by bypassing defective components through re-routing. The suitability of

the existing and the proposed LUT implementations to the proposed scheme is reviewed and

compared in terms of area usage, worst-case delay, and power consumption. The proposed

pLUT implementation is simulated and fabricated using inorganic electrolyte-gated printed

transistors, and programmed with inkjet-printed conductive ink to implement XNOR, XOR,

and AND gates to prove the programmability of the proposed design. The characterization

results show that the fabricated pLUT operates at 1 V. Furthermore, the usage cases of the

proposed pLUT in the context of security, yield, and performance improvement are discussed.
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The summary of the contributions of the work is as follows:

• We propose the first one-time programmable printed Look-up Table (pLUT) design and

compare it with existing LUTs in terms of area usage, worst-case delay, and power

consumption,

• We present the efficient scaling of pLUT and chip architecture for complex circuit im-

plementations,

• We synthesize several benchmark circuits with pLUT cells and standard cells, and present

a comparison in terms of maximum frequency, area usage, and power consumption,

• We provide fabrication and characterization results of 2-input pLUT (pLUT2), configured

as AND, XOR, and XNOR gates,

• We discuss the usage cases of the proposed design for security solutions, yield, and

performance improvements in PE.

The rest of the chapter is organized as follows: Section 6.1 presents the design, architecture,

and fabrication and configuration flow of the proposed pLUT while in Section 6.2, simulation

and fabrication results are reported and discussed. Section 6.3 discusses the usage cases of

proposed pLUT in PE applications, and Section 6.4 concludes the chapter.

6.1 Proposed Printed Look-up Table (pLUT)

This section explains the analysis of the existing look-up table (LUT) circuits in the context of

printed electronics, and the proposed printed LUT (pLUT) design. Furthermore, the scaling

of the design is elaborated to realize high volume production of printed digital circuits with

minimum overhead.
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Figure 6.1: Logic Gate(LG)-based Look-up Table. (a) LUT2 implementation, (b) LG-based multiplexer

implementation.
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Figure 6.2: Pass Transistor(PT)-based Look-up Table.
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Figure 6.3: (a) Proposed 1-input printed look-up table (pLUT1) in which functionality is set using

inkjet-printed conductive inks, (b) Illustration of pLUT1 programmability in table form.

(pad colors indicate corresponding configuration in table.)

6.1.1 Existing LUT designs

In silicon technologies and for FPGAs, three different LUT designs have widely been used

[143]. These LUT designs are revised according to one-time inkjet-printing programmability

and resistor-transistor logic in printed electrolyte-gated transistor (EGT) technology. But, the

circuits can be realized with any PE technology.

Logic Gate (LG)-based LUT: The baseline implementation of LUT is based on logic

gates as shown in Figure 6.1. It has two inputs (IN0, IN1), four configurations (C0-C3) which

can be connected to either VDD or GND to configure its functionality, and three 2-input

multiplexers which contain two NAND, two INV and one NOR gates as shown in Figure 6.1b.

The disadvantage of this design is the large area usage.

Pass Transistor (PT)-based LUT: This implementation, shown in Figure 6.2, consists of

two inputs (IN0 and IN1), four configurations (C0-C3) which can be connected to either VDD

or GND to configure its functionality, six pass transistors (NMOS) to form the multiplexer, and

an inverter to strengthen the signal quality. The pass transistor implementation of multiplexer
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Figure 6.4: (a) Proposed 2-input printed look-up table (pLUT2) containing multiplexer (MUX2). Cross-

bar is used to program LUT2 to desired functionality, (b) Proposed 3-input pLUT3

saves area greatly. However, the pass transistors degrade logic-1 signals. So, an inverter (or a

half-latch) is required to improve the quality of logic-1 signals.

Transmission Gate (TG)-based LUT: This design replaces pass transistors with trans-

mission gates to improve the signal quality at the expense of PMOS transistors. However, due

to the high area usage and the constraint of resistor-transistor logic, this structure cannot be

realized in EGT technology.

6.1.2 Proposed pLUT circuit

The core of the proposed LUT implementation is printed look-up table (pLUT1) which is

shown in Figure 6.3a. The proposed pLUT1 contains an inverter and wires to realize any

1-input/1-output functionality by printing conducting inks between the corresponding node

and the output. The pads of ground (GND), input (IN), the inverse of input (IN) or power

supply (VDD) are placed close to the output pad of pLUT1 so that the output of pLUT1 can

easily be connected to either GND, IN, IN or VDD using inkjet-printed conductive inks to

realize any functionality as illustrated in Figure 6.3b.

Using a pLUT1 and existing pass transistor based multiplexer (MUX2) consisting of an

inverter and 2 pass transistors, N-input pLUT (pLUTN) can be constructed. Figure 6.4a shows

an LUT2 which is composed of a pLUT1, a MUX2 and an output inverter which improves the

voltage level quality. A crossbar is used to connect pLUT1 signals to multiple intermediate
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Figure 6.5: Illustration of a programmable printed chip using N-input Look-up Tables (LUTNs). Num-

ber of input, N, can be chosen based on requirements. Interconnections and I/O connections

contains crossbars that are programmable and connects LUTNs and I/Os.

outputs. As shown in Figure 6.4a, a pLUT1 and two intermediate outputs (OUT1 and OUT2)

are used in the crossbar for LUT2 while for N-input pLUTN, a pLUT1 and N intermediate

outputs are used. Moreover, with this way, larger LUTs can be efficiently implemented as

shown in Figure 6.4b. Therefore, the number of pLUT1 is constant for any input size LUT,

which reduces complexity.

6.1.3 Overall system Architecture

The proposed pLUT implementation can be scaled to construct any LUT with N-input (pLUTN).

Figure 6.5 shows the system architecture of a programmable printed digital chip which is fabri-

cated at the high-throughput fabrication center. I/O connections are to connect input/output

pad to pLUTNs and interconnections while pLUTNs are connected to each other through

interconnections. I/O connections and interconnections are constructed using a crossbar so

that the connectivity among pLUTNs, and between pLUTNs and I/Os are programmed by

inkjet-printed conductive inks. Based on the placement and routing (P&R) of the HDL de-

sign, the crossbars of I/O connections and interconnections are configured using inkjet-printed

conducting material inks (such as PEDOT:PSS) at the user-site. It should be noted that the

programmable circuit can be utilized in two ways. It can be some parts of a bigger PE design,

or complete programmable chip based on the usage scenario (see Section 6.3).

6.1.4 Fabrication and Configuration Flow

The fabrication and configuration flow of pLUT based programmable printed chip, to realize

high volume and high throughput fabrication of PE circuits without sacrificing on-demand and

point-of-use fabrication features, is illustrated in Figure 6.6 . In this flow, a programmable

printed chip is fabricated using advanced high-throughput and high-yield fabrication tech-
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Synthesis of 
HDL Design
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at Fabrication Center
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to Configure Programmable Circuit 

at user-site

Figure 6.6: Fabrication and configuration flow of pLUT based programmable printed chip. A pro-

grammable printed chip is fabricated in high-volume at fabrication center. At the user

site, the target design HDL is synthesized, and then placed and routed (P&R) according to

programmable chip. Finally, the programmable chip is configured using inkjet printing at

point-of-use.

niques, which due to high-costs, are only economical for high-volume production. In a sub-

sequent step, end-users are able to program it according to their specifications using low-cost

processes such as inkjet printing. This way, the best of two worlds, high-throughput and

high-yield fabrication as well as on-demand point-of-use customization, are achieved.

As illustrated in Figure 6.6, the programmable printed chip is fabricated with advanced

fabrication processes resulting in higher yield and better performance compared to low-cost

fabrication processes (inkjet-printing). At the point-of-use, the HDL (design.v) of the target

design is synthesized using the standard cells used in the programmable printed chip (pLUT).

The synthesized netlist (design with LUT.v) is converted into placement and routing file (P&R

file) that contains the configuration information (configuration of LUTs and interconnections).

Finally, the customization of programmable printed chip is configured into desired functionality

by inkjet-printing conductive inks according to the P&R file. Therefore, the complex circuits

can easily be implemented without dealing with the yield and performance issues.
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(a) (b)

(c)

Figure 6.7: Comparison of various LUT implementations with different number of inputs in terms of

(a) area, (b) worst-case delay, and (c) power consumption.

6.2 Experimental Results

In this section we first provide a simulation-based analysis of the proposed pLUT and com-

pare it with EGT-based implementations of existing LUT designs. Afterwards, we provide

fabrication-based evaluation of proposed pLUT.

6.2.1 Simulation, Fabrication and Characterization Setup

The simulation and measurement results presented in this section are based on the EGTs which

have the channel geometry of 200µm width and 80µm length, and the 100 kΩ resistors. We

have employed the variation model of EGT and Process Developmennt Kit (PDK) presented

in [113, 144].

After the resistors, wires and transistor electrodes are structured using laser ablation on a

float glass substrate with 150 nm coated indium tin oxide (ITO), the substrates are cleaned

with 2-propanol and acetone. The channel semiconductor material, indium oxide (In2O3)

precursor, is inkjet-printed with Dimatix 2831 inkjet printer between drain and source elec-

trodes. Then, the substrates are annealed at 400◦ C for 2 hours. In the next step, composite

solid polymer electrolyte (CSPE) is inkjet-printed on top of channel to cover it. After the

CSPE is dried at room temperature, PEDOT:PSS is inkjet-printed on top of electrolyte to
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Figure 6.8: Monte Carlo simulation and measurement of CLUT1 programmed as inverter (IN).

Table 6.1: Comparison of various LUT2 implementations in EGT technology in terms of area, delay,

power and voltage level quality at 1 V.

LG-based PT-based pLUT

Area (mm2) 120 28.2 17.4

Worst case

delay (ms)
13.3 2.8 2.7

Average power

consumption (µW )
192.561 29.661 24.717

Logic-1 level at output (V) 1 0.6 0.8

form top-gate structure. In order to program circuits, PEDOT:PSS is inkjet-printed between

corresponding nodes. It should be noted that the inkjet-printed EGT technology used in the

fabrication of proposed method is an emerging technology in which there are many challenges

to be resolved for large scale circuit fabrication. Moreover, due to our lab setup, we can only

reliably fabricate and experimentally validate small scale circuits. For this reason, we have

only fabricated pLUT1 and pLUT2 to prove the concept.

The fabricated circuits are characterized and powered with Agilent 4156C semiconductor

parameter analyzer and Yokogawa DL6104 digital oscilloscope. The input signals are generated

with Keithley 3390 arbitrary waveform generator. The measurements were carried out at room

temperature and 70% relative humiditiy.

6.2.2 Simulation-based Comparison of LUT Circuits

We have compared the EGT-mapped LG-based, the PT-based and the proposed pLUT im-

plementations in terms of area, worst case delay and average power consumption to provide

the strengthens of different implementations. The comparison given in Table 6.1 is based on

2-input LUT (LUT2) implementation since it is the basic building block of the LUTs with

more inputs. Moreover, the area, worst case delay and average power consumption of various

input-length LUTs (LUT1-LUT4) are given in Figure 6.7.
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Table 6.2: Comparison of synthesis results of several ISCAS’85 and EPFL benchmark circuits with

standard cells (NOT, NOR and NAND gates) and proposed pLUT2 cell.

Fmax [Hz] Area [cm2]

Circuit Gates LUT2 Diff Gates LUT2 Diff

c17 336.01 336.23 0.07% 0.55 1.26 129.14%

c432 43.19 39.84 -7.76% 11.07 21.94 98.10%

c499 39.38 79.64 102.24% 33.06 32.66 -1.21%

c1908 28.98 55.27 90.72% 29.02 37.32 28.60%

c2670 32.40 41.83 29.10% 47.594 77.96 63.82%

c7552 20.52 21.96 7.04% 107.01 175.69 64.18%

adder 4.48 4.41 -1.57% 78.47 191.81 144.43%

barrel shifter 87.99 73.35 -16.63% 250.40 649.90 159.54%

max 2.07 1.87 -9.67% 222.35 504.91 127.08%

sine 5.60 7.71 37.68% 420.95 752.458 78.75%

Average 23.12% 89.25%

Total Power [W] Total Cells

Circuit Gates LUT2 Diff Gates LUT2 Diff

c17 0.00067 0.000368306 -45.03% 9 8 -11.11%

c432 0.003674 0.003936444 7.15% 183 133 -27.32%

c499 0.016668 0.006743485 -59.54% 547 190 -65.27%

c1908 0.0110684 0.0012733049 -88.50% 475 216 -54.53%

c2670 0.0142332 0.004219984 -70.35% 824 609 -26.09%

c7552 0.02973 0.033540835 12.82% 1762 1146 -34.96%

adder 0.015054 0.032469592 115.68% 1274 1194 -6.28%

barrel shifter 0.117369 0.149192 27.11% 3741 3742 0.03%

max 0.033004 0.078386967 137.51% 3643 3102 -14.85%

sine 0.086911 0.0237784098 -72.64% 6845 4651 -32.05%

Average 3.58% -27.24%

The results show that LG-based LUTs have much larger area usage, delay and power con-

sumption although it has high reliability as it has no signal degradation effect. The proposed

pLUTs are better than PT-based LUTs in terms of area and delay since it reduces the number

of pass transistor levels using pLUT1 in the first level. Moreover, since the number of pLUT1

used in the pLUTs remains one as explained before, the average power consumption and the

area usage of the pLUTs are increasing slower than the PT-based LUTs resulting in lower

power consumption and less area usage while the number of inputs of pLUTs increases. The

area usage of the proposed pLUT is 27%, 61%, 60% and 53% of the area usage of PT-based

LUT for the number of input of 1, 2, 3, and 4, respectively.

6.2.3 Circuit Synthesis Results with pLUT2

We synthesized various combinational circuits from ISCAS’85 [138] and EPFL [145] bench-

marks using the proposed pLUT2 cells, and have compared with custom synthesis using EGT

standard cells (NOT, NAND and NOR gates). The results are given in Table 6.2. Since the
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Figure 6.9: LUT2s programmed with inkjet-printed conductive inks as (a) XOR gate, (b) AND gate.

pLUT2 has more area usage, latency and power consumption than standard gates, it is ex-

pected that the synthesis results are worse than custom implementation using standard cells.

However, such overheads are justified due to programmability features. This is the same in

silicon-based technologies where FPGA-based implementations have higher area, delay and

power consumptions compared to full-custom ASIC implementations.Typically, for the imple-

mentation of complex boolean functions such as XOR and XNOR, the pLUT2 is more efficient

since only one pLUT2 cell is sufficient to realize these functions. For instance, c499, which is

an XOR intensive circuit, has higher maximum operating frequency (Fmax), less area usage

and less power consumption compared to custom synthesis.

The average improvement of the maximum frequency is 10.53% resulting from the efficient

implementation of complex gates with the pLUT2 and the less delay overhead of the pLUT2.

The average overhead of the area usage and the power consumption are 103.04% and 27.96%

caused from the high area and power overhead of the pLUT2 compared to standard gates.

Since the pLUT2 can implement complex boolean functions with less number of cells, the

average reduction of the number of cells is 22.82%.
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(a) (b)

(c)

Figure 6.10: Timing diagram of fabricated programmable LUT2s programmed as (a) XNOR, (b) XOR,

(c) AND at 1 V.

6.2.4 Fabrication Results of Proposed pLUT

We have fabricated four pLUT1 and programmed them for four different configuration which

are all-0 (GND), buffer (IN), inverter (IN) and all-1 (V DD) as in Figure 6.3a-6.3b. Figure 6.8

shows that the DC measurement of a pLUT1 programmed for inverter functionality matches

with the range of simulation results extracted from 100 Monte Carlo samples using the EGT

variation model [113]. The other three functionality measurements of pLUT1 are also as

expected.

We have also fabricated multiple pLUT2s to demonstrate the preliminary results of the

programmability of the proposed design. One of the pLUT2 is programmed as XNOR gate

while others are programmed as XOR and AND gates to construct half-adder. The images of

pLUT2 programmed as XOR and AND are shown in Figure 6.9. The programmed pLUT2s

are characterized to prove their functionality at 1 V. Figure 6.10 shows the behaviour of three

programmed pLUT2s in all input conditions at the supply voltages of 1 V. The level of logic-1

at the output does not reach to VDD due to the pass transistors and resistor-transistor logic,

as the pass transistors reduce the voltage level by threshold voltage (Vth), and the logic-0

for the inverters controlling the pass transistors is slightly more than 0 V (GND) resulting in

higher leakage current in disabled pass transistors. For instance, as shown in the waveform of

pLUT2 programmed as XOR, the output levels for ’01’ and ’10’ input values are 0.55 V and

0.8 V. For ’01’, the pass transistor transmitting the signal reduces 1 V (VDD) by Vth, whose

mean value for EGTs is 0.2 V, and the other pass transistor disabled by above 0 V signal leaks

more current resulting in low logic-1 (0.55 V). To solve this problem, an inverter or a half-latch
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can be used to improve logic-1 voltage level. Please note that the fabrication results of the

pLUT2 do not contain inverter/half-latch at the output.

Moreover, the average power consumption of the fabricated pLUT2 is 25.12µW while the

worst case delay is 73.28 ms. Additionally, the area usage of a pLUT2 is 60mm2 which is

higher than the area usage value given in Table 6.1 due to the test pads and exaggerated wire

widths for the prototype.

6.3 Programmable Components in PE Applications

The proposed programmable circuit can be utilized for different purposes. As explained before,

since the yield of PE circuits fabricated with low-cost fabrication processes is low, the chip

can be fabricated in an advanced production center resulting in high yield, and programmed

using a low-cost and on-demand processes (e.g., inkjet-printing). Additionally, the failures can

be mitigated bypassing defective part of the circuit through rerouting. For instance, after the

initial configuration is done, the defective parts are identified using digital testing methods.

Then, these part of the design are rerouted and configured into functional elements left in the

neighbourhood for this purpose. In this way, the yield can be improved while maintaining

point-of-use functionality customization. This concept is similar to what has been done in the

research direction of the defect and fault tolerance in FPGAs and reconfigurable computing in

which several methods and defect-aware P&R have been proposed [146, 147, 148]. Moreover,

in the context of high volume fabrication, this enables high throughput fabrication, which

lowers the overall fabrication cost. Therefore, the proposed LUT-based printed digital circuit

can be used to improve yield, performance and fabrication throughput.

Another usage scenario of the proposed programmable circuit is that the end-customers of

the programmable circuit buy soft IPs (RTL level) from a central IP provider, follow the fabri-

cation and configuration flow in Figure 6.6, to convert the IP into the configuration information

of the chip, and then print the connections of programmable circuits in the point-of-use (user

site). This allows the decentralized manufacturing of printed circuits. However, this scheme

is vulnerable to IP piracy where one end-customer share the IP with other unauthorized end-

customers. The countermeasure against IP piracy is hardware watermarking where IP owners

introduce a watermark into their design at different levels to claim their ownership [149, 150].

In this scenario, the IP owner can constraint the IP at placement & routing level such that

it uses different certain pLUTs in the chip for different end-customer as a watermark, which

allows tracing the source of IP piracy [69].

Last but not least, in the scenario where the entire design is manufactured in a fabrication

center, the attacker can overproduce the circuit and sell it on the market or reverse engi-

neer the design [36, 69]. To prevent this, the designer can use the programmable circuit to

prevent this security threat using two separated manufacturing steps. At the fabrication cen-

ter, programmable circuit is fabricated, and the configuration is implemented at point-of-use.

Therefore, the fabrication center cannot overproduce or reverse engineer the design since there

is no functionality implemented at this step, which will be performed by the designer at the

point-of-use [69].

The above mentioned security countermeasure is resulted from the intrinsic feature of pro-

grammable printed circuit, and targets the attack performed at production center. However,
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after the connections of the circuit are fabricated, one can buy the product, reverse engineer

the design, and counterfeit it [36, 69]. Since the connections are optically visible, it is com-

parably easy to automatically reverse engineer design. To conceal the connections, a simple

countermeasure is to fabricate a non-conductive ink, which looks optically similar to the con-

ductive one, to other nodes. In this way, the connectivity information is optically camouflaged,

which dramatically increases the reverse engineering effort of the attacker.

6.4 Summary

In this chapter, we have presented a printed Look-up Table (pLUT) which is suitable to

combine advanced high-throughput and high-yield fabrication processes and low-cost inkjet-

printing for on-demand customization to realize high volume printed circuits while improving

performance and yield without sacrificing on-demand point-of-use customization. The pro-

posed pLUT has been fabricated, programmed with inkjet-printing, and characterized. The

results show that the proposed circuit is programmable to realize any digital functionality, and

operates at 1 V. Moreover, we have discussed the pLUT utilization for security countermea-

sures, yield and performance improvements.
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Printed Electronics (PE), as a complementary solution to conventional technologies, has demon-

strated exponential market growth in recent years. PE combines printing techniques and

electronic functionality to enable the usage of numerous materials in the fabrication of elec-

tronic components on a wide range of rigid and flexible substrates. The unique features of PE

enable emerging applications that can be flexible, stretchable, lightweight, large-area, and im-

plantable, and manufactured using cost-effective, customizable, and environmentally friendly

processes. Hence, several applications such as e-skin, smart packaging, healthcare patches can

be realized using promising features of PE technology.

Since PE is an emerging technology, experts from different scientific fields have been inten-

sively addressing the fundamental challenges such as yield, performance, cost, and reliability

to advance the technology. The security aspects of PE were disregarded as in the early phase

of existing technologies. However, numerous destructive hardware-based attacks have recently

proved that securing hardware platforms is as important as other aspects of technology devel-

opment. So, security aspects of PE and its applications should be primarily investigated to

offer trusted and secure applications.

7.1 Conclusions

This thesis provides a technology-specific assessment of hardware-level attacks and their coun-

termeasures in the form of compact circuits to secure the supply-chain and functionalities of

PE applications at the hardware level. In this regard, we have proposed a printed Physical

Unclonable Function (pPUF) and a printed True Random Number Generator (pTRNG) that

generates unclonable and random keys to utilize in several countermeasures against hardware-

based attacks and provide secure communication and authentication to PE applications. More-

over, we have proposed a reverse engineering method for PE circuits and demonstrated their

vulnerability. Furthermore, we have proposed a printed Look-up Table based programmable

circuit (pLUT) to thwart hardware-level attacks including reverse engineering, IP piracy, and

overbuilding in the supply-chain. The main property of proposed hardware primitives is their

low-overhead designs achieved by exploiting the technology-specific features of PE.

Chapter 3 presents the pPUF to produce secure keys and analysis framework to evaluate the

proposed pPUF. The simulation-based analysis shows that the pPUF has adequate uniqueness

and reliability. Moreover, a multi-bit pPUF design is presented to optimize the area usage. The

multi-bit pPUF reduces the area usage by 31.02% for the 16-bit key generation. Furthermore,

the fabrication-based results prove that the functionalities of the fabricated pPUFs are similar

to the simulation, and they can operate at 0.5 V.

Chapter 4 presents compact pTRNG enabled by the customizable fabrication feature of the

inkjet-printing to tune the circuit to mitigate the bias resulted from high process variation,
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and additive resistor tuning flow to efficiently perform the mitigation of the process variation.

The simulation-based analysis shows that the tuning flow reduces the overall process variation

of the TRNGs by 110 times, and the generated bitstream of tuned pTRNGs pass the National

Institute of Standards and Technology Statistical Test Suite. Moreover, the fabrication-based

analysis demonstrates that the tuned pTRNGs generate random bitstreams, and can operate

at 0.5 V.

Chapter 5 describes the differences between conventional circuits and PE circuits to assess

the vulnerability level of PE circuits to reverse engineering (RE) attacks and presents a RE

methodology based on supervised machine learning that starts from image acquisition until

netlist extraction of PE circuits. The results prove that the proposed RE methodology can

reverse engineer various PE circuits without complex and expensive tools, thus, PE circuits are

highly vulnerable to RE attacks, and countermeasures against such attacks have to be taken.

Chapter 6 presents a one-time programmable pLUT that implements any printed digital

circuits and can be used for camouflaging, split manufacturing and IP watermarking to thwart

hardware attacks including RE in the supply-chain of PE. The simulation and fabrication-

based analyses prove that the proposed pLUT outperforms the existing LUT designs in terms

of area, power, and delay while it is operable at 1 V. Furthermore, the usage scenarios of the

pLUT in the context of security countermeasures, yield, and performance improvements are

discussed.

7.2 Outlook

This thesis provides the assessment of potential hardware-level attacks of PE applications and

countermeasures in the form of resource-constrained hardware primitives for the first time.

Therefore, it highlights the importance of security aspects of PE applications and provides a

basis for future investigations to secure PE applications. Therefore, several research directions

are foreseen to improve the security of such applications. The investigation of different hard-

ware primitive designs, the attack-resistance assessment of the primitives, and the optimization

of the primitives in terms of attack-resistance, reliability, and performance are paramount re-

search directions that should be taken to further advance the countermeasures against threats.

Moreover, new types of countermeasures at different levels should be examined to secure the

decentralized manufacturing of PE applications which is a unique concept for this technol-

ogy. Furthermore, more compact countermeasure solutions considering application-specific

features such as communication interface, type of functionalities, and usage scenario should

be investigated to lower the overhead of security measures.
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[27] Paulo Rosa, António Câmara, and Cristina Gouveia. The potential of printed electronics

and personal fabrication in driving the internet of things. Open Journal of Internet Of

Things (OJIOT), 1(1):16–36, 2015.

[28] Vivek Subramanian, Josephine B Chang, Alejandro de la Fuente Vornbrock, Daniel C

Huang, Lakshmi Jagannathan, Frank Liao, Brian Mattis, Steven Molesa, David R

Redinger, Daniel Soltman, et al. Printed electronics for low-cost electronic systems:

Technology status and application development. In Solid-State Device Research Confer-

ence, 2008. ESSDERC 2008. 38th European, pages 17–24. IEEE, 2008.

[29] Christos D Dimitrakopoulos and Patrick RL Malenfant. Organic thin film transistors

for large area electronics. Advanced materials, 14(2):99–117, 2002.

[30] Henning Sirringhaus. 25th anniversary article: Organic field-effect transistors: the path

beyond amorphous silicon. Advanced materials, 26(9):1319–1335, 2014.

[31] Lay-Lay Chua, Jana Zaumseil, Jui-Fen Chang, Eric C-W Ou, Peter K-H Ho, Henning

Sirringhaus, and Richard H Friend. General observation of n-type field-effect behaviour

in organic semiconductors. Nature, 434(7030):194, 2005.

[32] Sujeong Kyung, Jimin Kwon, Yun-Hi Kim, and Sungjune Jung. Low-temperature,

solution-processed, 3-d complementary organic fets on flexible substrate. IEEE Trans-

actions on Electron Devices, 64(5):1955–1959, 2017.

[33] Ahmet Turan Erozan, Mohammad Saber Golanbari, Rajendra Bishnoi, Jasmin Aghassi-

Hagmann, and Mehdi B Tahoori. Design and evaluation of physical unclonable function

for inorganic printed electronics. In 2018 19th International Symposium on Quality

Electronic Design (ISQED), pages 419–424. IEEE, 2018.

[34] Ahmet Turan Erozan, Rajendra Bishnoi, Jasmin Aghassi-Hagmann, and Mehdi B

Tahoori. Inkjet-printed true random number generator based on additive resistor tuning.

In 2019 Design, Automation & Test in Europe Conference & Exhibition (DATE), pages

1361–1366. IEEE, 2019.

[35] Kyungroul Lee, Sun-Young Lee, Changho Seo, and Kangbin Yim. Trng (true random

number generator) method using visible spectrum for secure communication on 5g net-

work. IEEE Access, 6:12838–12847, 2018.

[36] Ahmet Turan Erozan, Michael Hefenbrock, Michael Beigl, Jasmin Aghassi-Hagmann,

and Mehdi B Tahoori. Reverse engineering of printed electronics circuits: From imaging

to netlist extraction. IEEE Transactions on Information Forensics and Security, 15:475–

486, 2019.

[37] Ahmet Turan Erozan, Dennis D Weller, Farhan Rasheed, Rajendra Bishnoi, Jasmin

Aghassi-Hagmann, and Mehdi B Tahoori. A novel printed look-up table-based pro-

grammable printed digital circuit. IEEE Transactions on Very Large Scale Integration

85



Bibliography

(VLSI) Systems, 2020.

[38] Robert A Street, TN Ng, David E Schwartz, Gregory L Whiting, JP Lu, RD Bringans,

and Janos Veres. From printed transistors to printed smart systems. Proceedings of the

IEEE, 103(4):607–618, 2015.

[39] YJ Chan, CP Kung, and Z Pei. Printed rfid: technology and application. In Radio-

Frequency Integration Technology: Integrated Circuits for Wideband Communication and

Wireless Sensor Networks, 2005. Proceedings. 2005 IEEE International Workshop on,

pages 139–141. IEEE, 2005.

[40] Vivek Subramanian, Paul C Chang, Daniel Huang, Josephine B Lee, Steven E Molesa,

David R Redinger, and Steven K Volkman. All-printed rfid tags: materials, devices,

and circuit implications. In VLSI Design, 2006. Held jointly with 5th International

Conference on Embedded Systems and Design., 19th International Conference on, pages

6–pp. IEEE, 2006.

[41] Vivek Subramanian, Paul C Chang, Josephine B Lee, Steven E Molesa, and Steven K

Volkman. Printed organic transistors for ultra-low-cost rfid applications. IEEE transac-

tions on components and packaging technologies, 28(4):742–747, 2005.

[42] Li Yang and Manos M Tentzeris. Design and characterization of novel paper-based inkjet-

printed rfid and microwave structures for telecommunication and sensing applications.

In Microwave Symposium, 2007. IEEE/MTT-S International, pages 1633–1636. IEEE,

2007.

[43] Kevin C Honeychurch and John P Hart. Screen-printed electrochemical sensors for

monitoring metal pollutants. TrAC Trends in Analytical Chemistry, 22(7):456–469, 2003.

[44] Serena Laschi, Ilaria Palchetti, and Marco Mascini. Gold-based screen-printed sensor for

detection of trace lead. Sensors and Actuators B: Chemical, 114(1):460–465, 2006.

[45] Bo Li, Suresh Santhanam, Lawrence Schultz, Malika Jeffries-El, Mihaela C Iovu,
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