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Abstract Recently, deep artificial neural networks (DANNs) have been suc-
cessfully applied to various pattern recognition tasks with high industrial impact.
Their results are so convincing that neural nets are already tested in heavily
regulated fields like medicine or finance. However, these autonomous systems
are often deployed without evaluating the reasoning behind their decisions. Thus,
recent research has shifted towards methods that increase the interpretability
of DANNs. The goal of this paper is to explain the influence of input vari-
ables on the decision of a DANN. More precisely, we aim at improving the
linear weighting scheme for the contribution of input variables (LICON), a
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previously introduced method which estimates the contributions of inputs in a
local neighborhood, by combining it with the gobal sensitivity approach(GSA),
which uses sampling to examine multiple values of an input. This allows the
local influence estimation of LICON to be assessed in relation to estimates
obtained from sampled input values. The effectiveness of the proposed approach
is assessed via a comparative study of the involved explanation methods. Despite
the computational complexity, which has to be dealt with in the future, it is
shown that the proposed approach generates reasonable estimates for input
contributions.

1 Introduction

Machine learning (ML) currently has a high industrial impact, due to the
enormous success in applying deep artificial neural networks (DANNs) to
various pattern-recognition tasks (Goodfellow et al, 2016). However, it is
inherently difficult to explain the reasoning behind a network’s decision. In
confronting problems with many input variables and a complex neural network
structure, we need to develop methods for understanding the influence of
individual input variables on the decision of the neural net.

Thus, recent research was devoted to increase the interpretability of DANNs
(Papadokonstantakis et al, 2006; Lin andCunningham, 1995;Benitez et al, 1997;
Green et al, 2009; Gevrey et al, 2003; Smilkov et al, 2017; Baehrens et al, 2010).
Maybe the best-known system is the use of locally interpretable, model-agnostic
explanations (LIME, Ribeiro et al, 2016) which solve this problem by learning
local models that explain the predictions of an opaquemodel in the neighborhood
of a query point. For recent surveys of this quickly developing research area, we
refer to (Jair Escalante et al, 2018; Molnar, 2019).
A promising approach is the linear weighting scheme for the contribution

of input variables (LICON) method by Kasneci and Gottron (2016) which
is able to provide reasonable influences of an input on an output for a given
example. Furthermore, LICON is able to calculate general influence values for
the complete model which gives at least an indication of the overall influence of
an input variable. However, LICON suffers from a locality issue, as it uses linear
approximations to calculate the influence values. Linear approximations are only
reliable for a local interval around the examined input. This work tackles the
locality issue by combining the LICON approach with a sampling or profiling
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concept introduced by Cortez and Embrechts (2011) in their global sensitivity
approach (GSA), and thereby contributes to the current research regarding the
explanation of the decision of a DANN.
The remainder of this paper is organized as follows: Subsequently to this

Section, a short overview of the related methods LICON and GSA is given.
Thereafter, the new method, a combination of the two approaches, is presented
in detail in Section 3. Section 4 describes the general experimental setup and
discusses the evaluation results, before Section 5 concludes the paper.

2 Interpreting Deep Networks

As mentioned before, there are multiple ways to analyze the decision of DANNs.
The most intuitive method is the neural interpretation diagram which displays
the architecture of the net as a directed graph and the weights as the thickness
of the connection lines. Another way to explain the decision of a DANN is
the extraction of rule sets (Andrews et al, 1995; Zilke et al, 2016; González
et al, 2017). However, as complex DANNs tend to generate huge rule sets,
whose comprehensibility is questionable, this paper focused on approaches that
try to calculate aggregated influence values for the input variables. Connection
weight methods, based on Garson’s algorithm, were early approaches which
calculated aggregated influence values (Garson, 1991; Milne, 1995; Gevrey
et al, 2003). However, they only work with three-layer networks.More promising
approaches are sensitivity analysis and back-propagation-basedmethods (Gevrey
et al, 2003; Lek et al, 1996; Reddy et al, 2015; Baehrens et al, 2010; Kasneci
and Gottron, 2016; Smilkov et al, 2017; Kindermans et al, 2018; Springenberg
et al, 2015; Bach et al, 2015; Montavon et al, 2017). Two of them, the LICON
method by Kasneci and Gottron (2016) and the GSA approach by Cortez and
Embrechts (2011) are combined for the method proposed in this paper and thus
will be described in the following.

2.1 LICON

LICON approximates the function represented by a DANN through the aggrega-
tion of local behaviors of its neurons. For the explanation of the local behavior
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of a neuron, Kasneci and Gottron (2016) used gradients since the usual design of
neural networks (using backpropagation as a training method) involve derivable
activation functions.
LICON starts by initialising the influence value for every input variable to

1. Then, for each neuron in a layer, it calculates the weighted gradients of the
activation function. To aggreate the influence values through out the net, LICON
sums up the product of the weighted gradients and the calculated influence values
of the previous layer. Thus, we eventually receive a network-wide influence
value for every input on each output.

2.2 GSA

Cortez and Embrechts (2011) have developed the global sensitivity approach
(GSA) as a generalization of the works of Kewley et al (2000) and Embrechts
et al (2003). The GSA method is a sensitivity analysis using profiled inputs to
measure the influence of an input variable or a combination of input variables.
This means that the method generates input samples based on a base input
vector, predicts outputs for these input samples and aggregates them into an
influence value using a sensitivity measure.

The algorithm implemented for this research differs slightly from the algorithm
described by Cortez and Embrechts (2011) in two aspects. Firstly, to improve
comparability between LICON, GSA and the proposed method, a given input
example was used as the base input vector instead of an input vector consisting of
the mean or median values for every input variable, and the gradient metric was
used as a sensitivity measure. Secondly, in analogy to the LICON method, the
calculated influence value for the non-target class was interpreted as a negative
influence for the input variable on the target class. This was possible because
our work is limited to binary classifiers.

3 The Profiled LICON Analysis Approach

In the PLAY method, as seen in Figure 1, a number p of input samples X
are created based on a base input vector x (0) using the GSA approach. For
this research, samples were generated for each input variable individually.
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Afterwards, LICON is applied to every input sample generated in the profiling
process. The subsequently produced LICON influences Aj are used to calculate
the mean influence value µi and the variance σi over all samples Aji for an
input variable.

function PLAY(p, x(0))

X ← GSA.CreateProfiledInputs(p, x(0))

for (xj ∈ X) do

Aj ← LICON(xj)

end for

for i = 0 . . . |I| do
µi ← 1

|X|
∑|X|

j=0Aji

σi ← 1
|X|

∑|X|
j=0(Aji − µi)

2

end for

return {µ, σ}
end function

Figure 1: PLAY algorithm as implemented for this resarch.

As in LICON, only the influence values for the target class output are used
in the evaluation of the resulting data because we restrict ourselves to binary
classification. Furthermore, all influence values of discrete input variables are
aggregated by separately adding up positive and negative influences of a discrete
input variable on the target class.

4 Experimental Evaluation

To show the validity of the proposed PLAY method, we performed the following
experiments to compare the PLAY method to its components, LICON and GSA.
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4.1 General Experimental Setup

The experiments were limited to feed-forward neural networks containing a
softmax layer with two neurons as the output layer 1. However, restricting
the experiments to binary classifiers was no limitation in the application of
the methods since each multi-class problem can be solved by multiple binary
classifiers working in a one-versus-all manner. Additionally, discrete input
variables were one-hot-encoded.

In the experiments, three DANNs were trained on the following data sets: An
artificial data set (laboratory condition), the German credit data set (real-world
example) and the MNIST database of handwritten digits (easily interpretable
benchmark) (Dua and Karra Taniskidou, 2017; LeCun et al, 1998). The
architecture of the DANNs was chosen previously by 10-fold cross validation.
Subsequently to the training, each method was applied on chosen inputs of the
training data set. For the GSA and PLAY methods, six input samples for every
input feature were created by generating equally distributed profile points over
the complete input interval, following the approach by Kewley et al (2000). In
this way, every variable was profiled independently while the other variables
were fixed to their value in the base input vector. The resulting influences
were then assessed to identify the methods which calculate the influences most
accurately.
In a final step, the discriminatory power of the methods was evaluated, i.e.

the most selective method was determined by comparing weighted AUC and
GINI2 coefficient values of a 10-fold cross validation. The cross validation was
performed with logistic regression models trained on the produced influence
values (positive, negative, mean, and variance) for every input variable.

4.2 Artificial Data Set

The five input features of the 1000 instances for the artificial data set were
sampled from the Gaussian distribution. We ensured the correlations (0.8, 0.6,

1 The used nodes in each hidden layers were: Artificial: one layer, 5 logistic neurons; German credit:
two layers, 33 logistic and 23 rectifier neurons; MNIST: three layers, 33, 13 and 2 logistic neurons.
2 The GINI coefficient is defined as GINI = 2 · AUC − 1 (Hand and Till, 2001).
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0.4, 0.2, and 0.0) between the inputs and the output by the following process:
The probability of sampling the positive class depended linearly on the input
values and the given correlations as coefficients.

This was used to assess how far the calculated input influences reproduce
real correlations. As the artificial data set provides a given correlation between
the input variables and the output, it was easy to determine the method which
calculated the influences the most accurately.

Figure 2:Mean influence values for all three methods (LICON, GSA, PLAY) applied to the artificial
data set.

As seen in Figure 2, the LICON method delivers a good approximation and
correctly identifies the order of the influences. Furthermore, it exhibits a low
variance for the inputs with a given correlation. For the input variable X0.8 the
variance is 0, and for the variables x0.6, x0.4 and x0.2 the variance is near 0.15.
However, the influence of the non-correlated input variable x0.0 is calculated
incorrectly and has a high variance of 10.676. This high variance implies that it
was not possible for LICON to accurately identify the non-correlated variable.

Similar to LICON, the GSA method identified the same order between the
input variables. However, the influence values differ considerably from those
calculated by the LICON method and from the expected values, as seen in
Figure 2. This poor performance of the GSA method is further confirmed by the
relatively high variance values (around 30). Thus, GSA was not able to calculate
the correct influence values for the artificial data set.

Finally, Figure 2 shows that PLAY calculated influences for the artificial data
set more accurately than GSA, but less so than LICON. Although PLAY made
the same mistake as LICON by overestimating the influence of the uncorrelated
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variable x0, it was nevertheless able to return the correct order of influence
values (x0.8 = 0.908, x0.6 = 0.903, x0.4 = 0.685, x0.2 = 0.479 and x0.0 = −1).
However, it also overestimated the influence of the input variables x0.6, x0.4
and x0.2. Due to the relatively high variances (approx. 25), the accuracy of the
calculated influence values could thus be questioned.
As seen in Figure 3, the PLAY approach achieved a higher AUC and GINI
value for the artificial data set than LICON. This indicates that PLAY is more
selective in this case, and it suggests that the combination of LICON with the
profile approach of the GSA method is useful.

Figure 3: Selectivity measures (AUC and GINI) for all three methods (LICON, GSA, PLAY) applied
to the artificial data set (left) and the german credit data set (right).

4.3 German Credit Data Set

To cover the domain of real-world data, the German credit data set was selected
(Dua and Karra Taniskidou, 2017). The data set was chosen because it mimics
the data of a heavily regulated field which requires reliable explanation methods
to be able to apply DANN in the credit decision process. It consists of 20 input
features (categorical and numerical data) and one binary output.

To assess the most accurate method, the calculated influences were compared
to the correlation coefficients of a linear regression applied on the German credit
data set. This was done because the German credit data set can be solved by
linear regression which is a commonly used and accepted method in practice
(van der Ploeg, 2010) and because no predefined correlation between the
variables existed.
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As seen in Figure 4, the LICON method correctly identified the variables
duration, credit amount, instalment commitment, personal status and existing
credits as negative influences. Furthermore, it correctly identified the variables
saving status, job and foreign worker as positive influences. However, besides
the correctly identified variables, LICON produced some reasonable differences
when compared to the expected values. For example, the variable credit history
did not only contain unpaid or delayed credit rates but also credits that were paid
on time. Hence, it makes sense that a consumer who does pay their credit rates
on time is considered a low risk and ,therefore, a good consumer. Furthermore,
if a customer has payment plans at other banks, it seems reasonable to expect
a basic trust in the reliability of the customer, because other banks trust the
customer.

Figure 4:Correlation coefficients of the linear regression (expected values) andmean influence values
for all three methods (LICON, GSA, PLAY) applied to the German credit data set.

The GSA method performed substantially worse than LICON. It essentially
estimated almost all influences to be negative. This neither fits to the expected
values nor do we have a reasonable explanation for this behavior.

In comparison, the PLAY method provides reasonable influence values. For
example, the variables other parties and property magnitude, whose influence
values differ from the expected values and the values calculated by the LICON
method, remain intuitively correct. If two people apply for a credit instead of
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only one person (other parties), the risk for the bank is lowered. Furthermore,
the risk is lowered if a customer can provide a property with an equivalent
value as a safety (property magnitude). Finally, it is interesting to consider
that the influence value for the variable purpose produced by PLAY differs
from the influence value produced by LICON, even though PLAY is based on
LICON. This difference, as well as the higher variances of the influence values
calculated by the PLAY method, could be caused by the profiling process and
could, therefore, indicate that PLAY is able to capture the relation between the
individual manifestations of the input variables.

For the German credit data set PLAY achieved higher AUC and GINI values
than LICON, as can be seen in Figure 3. This indicates that the PLAY method is
more selective, in this case, and confirms that the combination of LICON with
the profile approach of GSA is useful.

4.4 MNIST Database of Handwritten Digits

As a final benchmark, we selected the MNIST database of handwritten digits
(LeCun et al, 1998) which is a commonly accepted and frequently used dataset
in the research field of DANNs (Keysers, 2007; Mizukami et al, 2010).
The classification task is easily solvable for humans, and, thus, the calculated
influences can be assessed for being plausible by visual inspection. Therefore,
following Kasneci and Gottron (2016), the resulting influences were displayed
as images for visual inspection. In the resulting images, positive or supporting
influences are colored in blue, while negative or rejecting influences are displayed
in red. Furthermore, the original input, for which the influence values were
calculated, is projected on the influence image. In doing so, it is possible
to examine, if the pixel expected to support/reject the classification match
the calculated supporting/rejecting pixel. Thus, it is possible to compare the
calculated influence values against the human intuition.
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Table 1: Custom illustration of advantages and disadvantages of the three methods in comparison.

LICON GSA PLAY

Complexity of the algorithm O(L · N3) O(P · L · N3) O(P · L · N4)
Intuition of explanation (based on MNIST) 5/5 0/5 5/5
Accuracy of explanation 4/5 0/5 3/5
Information content of explanation 3/5 –* 4/5

L Number of layers.
N (Maximum) number of neurons for each layer (including input neurons).
P Number of profile/sample points.
x/5 Rating of the method (0 = not intuitive / accurate / informative; 5 = perfectly intuitve /
accurate / informative).
∗ Not applicable, because the results of the method were not accurate.

Due to the high sampling costs (as seen in Table 1) because of the relatively high
number of input variables (compared to the previous data sets), we restricted
our analysis to 100 records per digit-specific data set. To obtain a well-balanced
data set for the evaluation, the first 50 records of the target class and the first
50 records of the non-target class were taken. The selected records were then
shuffled to prevent any bias or semi-optimal solution for the selectivity test.

Figure 5: Influence values for each digit from 0 to 9 (first row) calculated by the LICON (second row)
and the PLAY (third row) method on the MNIST database. Shown are three examples for each digit.

Figure 5 shows the influences estimated by they PLAY method compared to
the influences calculated by the LICON approach. They are similar to those
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presented by Kasneci and Gottron (2016). A notable difference is, however, a
greater distinction between the individual positive and negative influence areas.
The blue and red pixels in the images created by the LICON method often join
together, with only a few white pixels in between. In comparison, pixels in the
images produced by the PLAY method are more concentrated and thus provide
a clearer picture of the significant influence areas.

Furthermore, similar to the selectivity tests performed with the influence data
sets that were calculated from the artificial and the German credit data sets, a
selectivity test was performed for the influence data sets produced from the
digit-specific MNIST data sets. However, the results were unsatisfactory because
the digit-specific MNIST data sets contained only 100 records each, whereas
the logistic regression model had a degree of freedom of 3,137; allowing it to
remember the class values for every record. Thus, all of the performed logistic
regressions achieved AUC and GINI values of ∼ 1. As a consequence it was
not possible to draw any useful or reliable conclusions from this part of the
experiment.

5 Conclusion and Outlook

The overall aim of this paper was to improve the LICON method, tackle its
locality issue and thereby contribute to the research regarding the explanation
of the influence of input variables on the decision of a DANN. Based on
three different experiments it was shown that PLAY calculates reasonable and
understandable influence values. Additionally, PLAY achieved higher selectivity
measures compared to the LICON method. Furthermore, the profiling approach
used in the PLAY method allows for a closer look into the influences of an input
variable and provides a more detailed trend of the influence value.

Even though the PLAY method presented itself with overall good results in
this research, a few points for possible improvement have to be mentioned. First
of all, some of the evaluated results showed that the PLAY method is imprecise
in certain cases (overestimation of variables). Another limitation of PLAY is
its computational cost. Therefore, its use can currently only be recommended
if applied as an in-depth examination of a single classification example. For a
time-efficient overview of the influences for a complete data set, this research
revealed that, as of now, the LICON method should be prefered. Finally, this
research was not able to test the PLAY method with a combination of inputs or
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for other domains. Thus, future research will try to reduce the computational
complexity, as well as look into input combinations and data sets of other
domains.
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