KIT | KIT-Bibliothek | Impressum | Datenschutz

Microwave tomography for estimating moisture content distribution in porous foam using neural networks

Yadav, Rahul; Vauhkonen, Marko; Link, Guido; Betz, Stefan; Lahivaara, Timo

Selective heating in industrial microwave drying could be more efficiently addressed by intelligent control of distributed microwave sources. As a result, increasing system efficiency and reducing thermal runaway while processing low loss dielectric samples. However, applying such a precise microwave control requires non-invasive in-situ measurement of the unknown distribution of moisture inside the material. In this work, the feasibility of integrating a microwave tomography (MWT) with the drying system is demonstrated. The studied imaging modality is applied to estimate the moisture content distribution in a polymer foam. To solve the estimation problem in a fast way, a neural network based approach is proposed in this work. Promising estimation results are shown using synthetic measurement data.

DOI: 10.23919/EuCAP48036.2020.9135296
Zugehörige Institution(en) am KIT Institut für Hochleistungsimpuls- und Mikrowellentechnik (IHM)
Publikationstyp Proceedingsbeitrag
Publikationsmonat/-jahr 03.2020
Sprache Englisch
Identifikator ISBN: 978-88-312-9900-8
KITopen-ID: 1000121200
HGF-Programm 34.12.01 (POF III, LK 01) Multiphasen und thermische Prozesse
Erschienen in IEEE 14th European Conference on Antennas and Propagation (EuCAP)
Veranstaltung 14th European Conference on Antennas and Propagation (EuCAP 2020), Online, 15.03.2020 – 20.03.2020
Verlag Institute of Electrical and Electronics Engineers (IEEE)
Seiten 1–5
Projektinformation TOMOCON (EU, H2020, 764902)
Nachgewiesen in Scopus
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page