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Abstract: This paper is concerned with optimal approximation of a given Dirac mixture
density on the S2 manifold, i.e., a set of weighted samples located on the unit sphere,
by an equally weighted Dirac mixture with a reduced number of components. The sample
locations of the approximating density are calculated by minimizing a smooth global distance
measure, a generalization of the well-known Cramér-von Mises Distance. First, the Localized
Cumulative Distribution (LCD) together with the von Mises–Fisher kernel provides a continuous
characterization of Dirac mixtures on the S2 manifold. Second, the L2 norm of the difference
of two LCDs is a unique and symmetric distance between the corresponding Dirac mixtures.
Thereby we integrate over all possible kernel sizes instead of choosing one specific kernel size.
The resulting approximation method facilitates various efficient nonlinear sample-based state
estimation methods.

Keywords: Probability density function, function approximation, optimization problems,
least-squares approximation, parameter estimation, Dirac mixture approximation, samples,
manifolds, target tracking, system state estimation, Kalman filters, density approximation

1. INTRODUCTION

Context: Exact Bayesian state estimation for nonlinear
systems is a nontrivial task, because analytic represen-
tations of the occurring densities can become arbitrarily
complex over time, or closed-form expressions may not even
exist. Therefore, samples instead of density functions are
often used as stochastic state representation in applications
of state estimation and control.
In the prediction step, samples can simply be inserted
individually into any nonlinear generative state transition
model. However, incorporating additive or non-additive
noise multiplies the number of samples in every time step.
To keep the algorithm tractable, the number of samples
must be reduced for further processing, while maintaining
as much information as possible. In the update step, one
method is to re-weight state samples according to the
measurement likelihood. Over time, repeated re-weighting
will result in samples with vanishing weight, i.e., sample
degeneration. Thus, individually weighted samples should
be re-approximated by equally weighted samples for further
processing. In this context, our method could provide a
more faithful resampling than many existing bootstrap
resamplings.
In general, wherever a cloud of many randomly drawn
samples is employed, be it in assumed density filters or
sequential Monte Carlo (SMC) state estimators, similar
results can be achieved with far less deterministically chosen
samples, see Fig. 1.
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Fig. 1. A von Mises–Fisher density with κ = 7 (black mesh)
is defined on a 2-sphere (green object). Initially, 5000
samples (blue points) are drawn randomly from this
density. Using the proposed method, a reduction to
30 samples (red points) is performed.

State variables that describe directions or orientations,
cannot be faithfully described in the Euclidean space RD.
They require spaces with different topologies, for example
the 2-sphere S2. As a manifold, it is locally homeomorphic
to R2, so for small uncertainties, linearization of the
space (“tangent plane”) at the point of interest is actually
an adequate approximation. Of course, probability mass
far apart from this linearization point will increasingly
deteriorate estimation results.
Directional estimation problems occur in many practical
problems, for example crystal orientation estimation using
electron backscatter diffraction, Bingham et al. (2010), fiber
tracking in biomedical image analysis, Zhang et al. (2009),
or path planning in robotics, Sánchez and Latombe (2002).



State of Art: Measures to compare two continuous density
functions are for example the Kullback-Leibler-divergence,
Kullback and Leibler (1951), or simply the L2 norm of the
difference of the density functions. If at least one of the
densities is discrete, i.e., a Dirac mixture density, and the
samples are not equidistant, said distance measures cannot
be applied anymore: the local concentration of samples
must be involved in some way into the distance measure,
in addition to the sample weight. The Cramér-von Mises
distance as the L2 norm of the difference of the cumulative
distribution functions, see Darling (1957) and Choi and
Bulgren (1968), is well suited to compare discrete densities
on a one-dimensional domain. However for multivariate
densities, the definition of the cumulative distribution is
ambiguous, and the Cramér-von Mises distance cannot be
employed directly.
Hanebeck and Klumpp (2008) proposed a localized cumu-
lative distribution (LCD). Given a continuous or discrete
density function, it provides a representation of that density
that is unique and symmetric also in the multivariate case.
The LCD of continuous or discrete densities is always
continuous, so the L2 norm of the difference of two LCDs
can be calculated. This is called the modified Cramér-von
Mises distance, and serves as an objective function to match
two multivariate densities, regardless whether they are
continuous or discrete. It has been used to vastly reduce
numbers of samples while keeping most of the relevant
information, see Eberhardt et al. (2010) and Hanebeck
(2015). On the other hand, the LCD has been applied to
obtain deterministic samples of given multivariate Gaussian
densities in Hanebeck et al. (2009). Using these determinis-
tic samples, some Gaussian filtering algorithms have been
developed, for example the Smart Sampling Kalman Filter
(S2KF) in Steinbring and Hanebeck (2013) and Steinbring
et al. (2016), or progressive Gaussian filters in Steinbring
and Hanebeck (2014) and Hanebeck and Pander (2016).
All of the publications mentioned so far applied the LCD
in D-dimensional Euclidean space RD. Now the question
arises whether the LCD can also be used for sample
reduction on non-Euclidean manifolds. The first idea was
proposed in Li et al. (2019a), where the LCD was applied in
the Euclidean tangent space RD−1 of a hypersphere SD−1.
Deterministic samples were placed on the principle axes
only. This limitation was overcome in Li et al. (2019b), as
samples were placed not only on the principle axes but in
the entire tangent space of the hypersphere. The resulting
Bingham filter can bee seen as spherical equivalent to the
S2KF. The linearization point for the tangent space was
always placed at the mode of the spherical (Bingham)
distribution, and various projection methods were used to
transform samples between hypersphere and tangent space.
Finally we want to address some of the literature about
non-parametric density function estimation on manifolds.
Methods for spheres, Ruymgaart (1989), or more generally,
closed manifolds, Hendriks (1990), have been proposed
based on Fourier expansions, for example. Furthermore,
there are Bayesian nonparametric density estimators based
on mixtures of parametric densities like the vMF for
spheres (Bhattacharya and Bhattacharya, 2012, Sec. 13.2),
Bhattacharya and Oliver (2019). These methods allow to
compute an adequate continuous representation of a given
set of samples.

Contribution: We propose a definition of the LCD for
DMDs directly on the S2 sphere. We choose the vMF
density as kernel function and it will become obvious that
it can be seen as a spherical equivalent to the Gaussian
kernel. Furthermore, a modified Cramér-von Mises distance
is formulated on the sphere. It provides a scalar distance
measure between two spherical LCDs. With these tools, we
propose a distance measure between two sets of samples
on the sphere. This distance measure is then minimized
using nonlinear optimization. Altogether, a deterministic
method for optimal sample reduction on the S2 sphere is
proposed, see Fig. 1 for an example.

Outline: In a first step, a distance measure between two
DMDs, i.e., sets of samples, that are located on the unit
sphere, is introduced. The numbers of samples are fixed
beforehand, as well as the sample locations of one of the
sets. In a second step, by minimizing the distance measure
we propose a deterministic resampling method. Thereby
it is possible to i) reduce the number of samples, and/or
to ii) approximate weighted samples with unweighted ones.
No local linearization of S2 is necessary to calculate the
distance measure. The distance measure is given in closed
form as a nonlinear function of the sample locations. The
computational effort lies in numerical optimization of the
distance measure. The unknown variables to be optimized
are the sample locations of the smaller set of samples.

2. PROBLEM FORMULATION

Consider a given and fixed Dirac mixture density (DMD)
f̃(x), x ∈ S2 ⊂ R3, with M components, given by

f̃(x) =
M∑
j=1

wyj δ(x− yj) , (1)

with positive weights wyj , i.e., w
y
j >0 for j ∈ {1, 2, . . . ,M},

and
∑M
j=1 w

y
j = 1. Samples are located at

y
j

=
[
yj,x
yj,y
yj,z

]
y
j

=
[
yj,ϑ
yj,ϕ

]
on the unit sphere, in Cartesian and spherical coordinates,
respectively. This density is approximated by another DMD
f(x) with L components, given by

f(x) =
L∑
i=1

wxi δ(x− xi) , (2)

again with positive weights wxi that sum up to one. Sample
locations on the unit sphere are

xi =
[
xi,x
xi,y
xi,z

]
xi =

[
xi,ϑ
xi,ϕ

]
in Cartesian and spherical coordinates, respectively. Typi-
cally, the approximating density f(x) has much less com-
ponents than the approximated density f̃(x), i.e., L�M .
The goal is to select the location parameters xi, i ∈
{1, 2, . . . , L} of the approximating density f(x) such that a
distance measure D between the true density f̃(x) and its
approximation f(x) is minimized. L is assumed to be given
and fixed. The corresponding weights wxi are assumed to
be either given or set to be equal, i.e., wxi = 1/L.



The true DMD f̃(x) might already have equally weighted
components, so that the information is solely stored in
the component locations. In this case, the goal of the
approximation is a pure reduction of the number of
components. On the other hand, the components of f̃(x)
might have different weights, e.g. as a result of weighting
some prior DMD with a likelihood function in a Bayesian
filtering setup. In that case, the approximation replaces an
already weighted DMD by an equally weighted one.

3. LOCALIZED CUMULATIVE DISTRIBUTION

DMDs cannot easily be compared to each other, especially
when they do not share a common support. Not the
“vertical” difference of density values can be considered here,
but the “horizontal” distance between samples and clusters
of samples is essential. Therefore each DMD, f(x), is first
transformed to its LCD, F (m, b), which is a continuous
characterization of the DMD. Intuitively, a kernel function
K(x,m, b) is placed on each component of the DMD. The
kernel attains a maximum at x = m (location parameter),
and b controls the kernel size (scale parameter). We consider
the LCD as cumulative distribution because we take b as an
equivalent to the “upper integration limit” of the traditional
scalar cumulative distribution

∫ x
−∞ f(t) dt. Instead from

−∞, we integrate around m in the LCD.
We propose to define the LCD F (m, b) for arbitrary
densities f(x) on S2 as

F (m, b) =
∫
S2
f(x)K(x,m, b) dx .

In particular, the LCD F (m, b) of the approximating DMD
f(x) from (2) is

F (m, b) =
∫
S2

f(x)︷ ︸︸ ︷(
L∑
i=1

wxi δ(x− xi)
)
K(x,m, b) dx

=
L∑
i=1

wxi

∫
S2
δ(x− xi)K(x,m, b) dx . (3)

With the Dirac delta distribution for spheres

δ(x− xi) = δ(xϑ − xi,ϑ)δ(xϕ − xi,ϕ)
sin(xϑ) ,

dx = sin(xϑ) dxϑ dxϕ ,

or by just using the general definition of the Dirac delta
distribution for any manifold∫

X

f(x) δ(x− xi) dx = f(xi) ,

the LCD (3) becomes

F (m, b) =
L∑
i=1

wxi K(xi,m, b) . (4)

Similarly, the LCD F̃ (m, b) of the true density f̃(x) (1) is

F̃ (m, b) =
M∑
j=1

wyj K(y
j
,m, b) . (5)

The LCDs F̃ (m, b) and F (m, b) are continuous in m and b
and can thus be used to easily calculate a distance between
f̃(x) and f(x).

4. A MODIFIED CRAMÉR-VON MISES DISTANCE

A straightforward distance measure D between two LCDs
F̃ (m, b) and F (m, b) is their L2 norm. We also integrate
this over b, thereby becoming independent of a specific
choice of kernel width and instead using the information
from all possible kernel widths,

D2 =
∫
R+

w(b)
∫
S2

(
F̃ (m, b)− F (m, b)

)2 dm db (6)

= Dxx − 2Dxy +Dyy (7)
with

Dxx =
∫
R+

w(b)
∫
S2
F 2(m, b) dm db ,

Dxy =
∫
R+

w(b)
∫
S2
F (m, b) F̃ (m, b) dm db ,

Dyy =
∫
R+

w(b)
∫
S2
F̃ 2(m, b) dm db . (8)

Inserting the definitions (4) and (5) of the particular LCDs,
the products between any two LCDs yields

F 2(m, b) =
L∑
i=1

L∑
j=1

wxi w
x
j K(xi,m, b)K(xj ,m, b) ,

F (m, b) F̃ (m, b) =
L∑
i=1

M∑
j=1

wxi w
y
j K(xi,m, b)K(y

j
,m, b) ,

F̃ 2(m, b) =
M∑
i=1

M∑
j=1

wyi w
y
j K(y

i
,m, b)K(y

j
,m, b) .

The following integral Ds(x, y), depending on the locations
x and y of one pair of samples,

Ds(x, y) =
∫
R+

w(b)
∫
S2
K(x,m, b)K(y,m, b) dm db (9)

conveniently encapsulates most of the complexity and
allows for a very concise representation of the three main
parts (7) of the modified Cramér-von Mises distance (7)

Dxx =
L∑
i=1

L∑
j=1

wxi w
x
j Ds(xi, xj) ,

Dxy =
L∑
i=1

M∑
j=1

wxi w
y
j Ds(xi, yj) ,

Dyy =
M∑
i=1

M∑
j=1

wyi w
y
j Ds(yi, yj) .

Obviously, in order to get an analytic representation of
the modified Cramér-von Mises distance (7), a closed form
solution of the integral (9) must be available. The inner
and outer part of the integral will be denoted separately as

Ds,b(x, y, b) =
∫
S2
K(x,m, b)K(y,m, b) dm , (10)

Ds(x, y) =
∫
R+

w(b)Ds,b(x, y, b) db . (11)



5. SYMMETRIC KERNEL FUNCTIONS

Only symmetric kernel functions will be considered from
now on. That means, the value of the kernel function
K(x, y, b) depends, except for b, only on the geodesic arc
length d(x, y) between x and y, and not on their absolute
location on the sphere,

K(x, y, b) = K(d(x, y), b) .

In this case, due to symmetry also the sample distance Ds

will depend solely on the geodesic between the samples
Ds(x, y) = Ds(d(x, y)) , (12)

Ds,b(x, y, b) = Ds,b(d(x, y), b) .

In order to obtain the geodesic of a pair of samples, the dot
product is calculated first. The value of the dot product of
two unit vectors u, v is

dc(u, v) = cos(d(u, v))
= u>v

= uxvx + uyvy + uzvz

from their Cartesian representation u = [ux, uy, uz]>, and
dc = sin(uϑ) sin(vϑ) cos(uϕ − vϕ) + cos(uϑ) cos(vϑ)

from their spherical coordinates.

6. VON MISES–FISHER KERNEL

The LCD has previously been developed for densities in
RN , where a Gaussian kernel

K(x,m, σ) = exp
{
− 1

2σ (x−m)>(x−m)
}

,

K(d(x,m), σ) = exp
{
− 1

2σ (d(x,m))2
}

(13)

provided good results together with the weighting function
w(σ) = 1/σ in the two-dimensional case, see Hanebeck
(2015).
Following (8), the integral over the product of two such
Gaussian kernel functions and said weighting factor is∫ σ2

σ=σ1

w(σ)K(d1, σ)K(d2, σ) dσ

=
∫ σ2

σ=σ1

w(σ)︷︸︸︷
1
σ

K(d1,σ)·K(d2,σ)︷ ︸︸ ︷
exp

{
−1

2
d2

1 + d2
2

σ2

}
dσ .

By substitution

b = σ−2 , σ = b−
1
2 , σ′ = −b

− 3
2

2 ,

this can be transformed into∫ σ−2
2

b=σ−2
1

1
b−

1
2

exp

−1
2
d2

1 + d2
2(

b−
1
2

)2


(
−b
− 3

2

2

)
db

= 1
2

∫ σ−2
1

b=σ−2
2

1
b

exp
{
b ·
(
−d

2
1 + d2

2
2

)}
db .

While the dot product in the exponent of (13) is a natural
squared distance of points in Euclidean space, the cosine
with its periodicity is tailored for spherical geometries.

b=0.01

b=0.10

b=0.25

b=0.50

b=1.00

b=4.00

b=100

Gauss

Fig. 2. Comparison of vMF kernel and Gaussian kernel.
Colored lines denote the vMF kernel function value
over the geodesic d to the kernel center. Individual
colors represent various kernel widths b, as indicated in
the legend. For each of these vMF kernel functions, the
corresponding Gaussian kernel function

(
σ = b−1/2

)
is

plotted as a dashed black line. Note that both kernels
are very similar near the kernel center, and the narrow
kernels (small σ, large b) are similar everywhere.

Incorporating (cos(d)− 1) as the “spherical version” of
(−d2

/2),

−d
2

2 ≈ cos(d)− 1 ,

where the approximation stands for second order Taylor
polynomial, one obtains∫ σ−2

2

b=σ−2
1

1
b
e−2b eb cos(d1) eb cos(d2) db

=
∫ σ−2

2

b=σ−2
1

w(b)K(d1, b)K(d2, b) db ,

with the vMF kernel function
K(d, b) = eb · cos(d)

K(d(x,m), b) = eb · cos(d(x,m))

= eb · x
>m

and the weighting factor

w(b) = 1
b
e−2b . (14)

Thus, the vMF kernel with w(b) = b−1e−2b can be seen
as the spherical equivalent to the Gaussian kernel with
w(σ) = 1/σ. See also Fig. 2 for a visual comparison between
Gaussian and vMF kernel. Note that the kernel function is
scaled such that it has a maximum value of one, as opposed
to the vMF distribution, which is normalized such that it
integrates to one, see Fisher (1953).
Having established the choice of kernel function and
weighting factor, the functionDs,b(u, v, b) will be calculated
by integrating the product of two vMF kernels on the sphere
according to (10)



(a) Mixture of three vMF distributions (b) vMF distribution with some samples
removed

(c) Bingham distribution

Fig. 3. Different examples for sample reduction on the 2-sphere. a) Mixture of three vMF distributions. 1000 random
samples with b = 50 in the upper left, 1500 samples with b = 30 in the upper right, and 500 samples with b = 70 in
the center, altogether approximated by 30 samples (red dots). b) vMF distribution with b = 7, where three strips
of samples are removed. The remaining 3333 samples are approximated by 30 deterministic samples. c) Bingham
distribution with Z = diag (−40,−3, 0). 5000 stochastic samples are reduced to 30 deterministic samples.

Ds,b(u, v, b) =
∫
S2
eb · u

>m · eb · v
>m dm

=
∫
S2
eb · (u+ v)>m dm . (15)

Due to symmetry, it is not important where u and v are
located on the sphere, only their geodesic distance d has
an influence on the result. One convenient choice of u and
v with geodesic distance d between them is[

uϑ
uϕ

]
=
[
d/2
0

]
⇔

[
ux
uy
uz

]
=
[sin(d/2)

0
cos(d/2)

]
,

[
vϑ
vϕ

]
=
[
d/2
π

]
⇔

[
vx
vy
vz

]
=
[− sin(d/2)

0
cos(d/2)

]
.

The integration variable m will be denoted as[
mϑ

mϕ

]
=
[
ϑ
ϕ

]
⇔

[
mx

my

mz

]
=
[sin(ϑ) cos(ϕ)

sin(ϑ) sin(ϕ)
cos(ϑ)

]
.

Then,
(u+ v)>m = 2 cos(d/2) cos(ϑ) ,

and the integral (15) becomes

Ds,b(d, b)

=
∫ 2π

ϕ=0

∫ π

ϑ=0
e2 b cos(d/2) cos(ϑ) sin(ϑ) dϑ dϕ

= 2π
∫ π

ϑ=0
e2 b cos(d/2) cos(ϑ) sin(ϑ) dϑ

| u = cos(ϑ), u′ = − sin(ϑ)

= −2π
∫ −1

u=1
e2 b cos(d/2)u du

= 2π
2 b cos(d/2)

[
e2 b cos(d/2)u

]1

u=−1

= π

b cos(d/2)

(
e2 b cos(d/2) − e−2 b cos(d/2)

)

= π

b cos(d/2) 2 sinh(2b cos(d/2)) .

Multiplication with the weighting function (14) and in-
tegration (11) over b yields the sample distance function
Ds(d) (12)

Ds(d) = π

cos(d/2)

∫ b2

b1

e−2b

b2 2 sinh(2 b cos(d/2)) db .

Using the relationships from Zeidler (2013)
d

dxEi(x) = ex

x
,

∫ 1
b2 e

abdb =

aEi(ab)−
eab

b
, a 6= 0 ,

−1
b

, a = 0 ,

the integral can be solved analytically. Then Ds(d) for the
vMF kernel calculates to

Ds(d) =



π

[
4Ei(−4b) + 1

b

(
e−4b − 1

)]b2

b1

, d = 0 ,

π

cos (d/2)

[
c1Ei(c1b)− c2Ei(c2b)

+1
b

(
ec2b − ec1b

) ]b2

b1
, d ∈ (0, π) ,

[4πEi(−2b)]b2
b1
, d = π ,

where
c1 = +2 cos(d/2)− 2 ,

c2 = −2 cos(d/2)− 2 .

Bounds of integration were set to b1 =0.001 and b2→∞.

7. EVALUATION

In order to demonstrate and visualize the performance of
this method, various sets of samples were first randomly
drawn by stochastic sampling, see blue points in Fig. 3.
For the vMF distribution, the stochastic sampling method
by Kurz and Hanebeck (2015) was used, and for the
Bingham distribution Kent et al. (2013). In both cases,



the implementation in the libDirectional library, Kurz
et al. (2015) and Kurz et al. (2019) was employed. Each
DMD (1) consisting of M = 3000 . . . 5000 stochastic points
y
j
was then compared to a DMD (2) of L = 30 points xi,

that were as well randomly chosen as an initial guess, using
the distance measure (6). The (2 · L) parameters xi,ϑ and
xi,ϕ were subsequently optimized using Matlab’s fminunc.
Analytical gradients were provided for better optimization
performance. The code of the presented method will be pub-
lished as part of libDirectional as well and can be found
in the class AbstractHypersphericalDistribution.

8. CONCLUSION

We propose a distance measure between two sets of samples
on the sphere. Minimizing this distance using off-the-shelf
numerical optimization algorithms provides an efficient
method for optimal sample reduction, deterministic sam-
pling, and resampling of weighted samples by unweighted
samples.
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