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Abstract: In this paper, we present a novel low-cost technique to estimate both the position and
the speed of a permanent magnet synchronous motor (PMSM) by sensing its stray magnetic
field. At an optimal radial and axial distance, a low-cost magnetoresistive sensor is placed
outside at the back of the PMSM. The magnetic field values are recorded for one complete
rotor revolution at a resolution of less than a degree for different speeds of operation. Gaussian
Processes (GPs) are employed to find a mapping function between the magnetic field values of
the permanent magnet and the absolute angular positions. Then, by using the learned GP as a
measurement function with an Extended Kalman Filter (EKF), both the angular position and
speed of a PMSM can be estimated efficiently. Furthermore, we observe that the magnetic field
depends not only on the position but also on the angular speed. To address this, we extend the
GP to incorporate multivariate inputs. In order to take the periodicity of the data into account,
we employ a periodic kernel for the GP. Additionally, a linear basis function model (LBFM) is
introduced to incorporate more training points while maintaining the same computational cost.
The GP and LBFM approaches are evaluated with data from a real PMSM experiment setup,
and the accuracy of the position and speed state estimation is verified against a high-resolution
optical encoder used as ground truth.

Keywords: Machine learning, estimation and filtering, experiment design, magnetic
measurements, electric motor.

1. INTRODUCTION

Permanent Magnet Synchronous Motors (PMSMs) have
found widespread applications owing to their high power-
to-weight ratio and their availability in various compact
forms. Unlike DC motors, PMSMs are not simple electrome-
chanical systems, and require complex algorithms such
as the Field Oriented Control (FOC), introduced in Lee
et al. (2009), for efficient commutation. For variable speed
drives, additional cascaded PI loops are used for PMSMs
as mentioned in Microsemi (2012). These approaches,
however, introduce important requirements: FOCs require
high resolution angular position information, and PI loops
demand accurate velocity information.

Solutions to these requirements need to keep cost con-
straints in mind. Many applications use only angular posi-
tion sensors, and derive the velocity information from these.
Most commonly, PMSMs are fitted with three Hall-sensors
that provide low resolution angular position information.

This work was partially supported by the German Research Founda-
tion (DFG) under grant HA 3789/17-1 and by the Ministry of Eco-
nomic Affairs, Labour, and Housing of the state Baden-Wuerttemberg,
Germany.

However, as a consequence of this low resolution, FOCs
cannot commute efficiently, and PI loops fail to operate at
low-speed, as shown in Gu et al. (2013).

Alternatives to inbuilt Hall-sensors include external mag-
netic resolvers, such as Ams AG (2019); Melexis (2019), and
optical encoders, for example Trinamic (2019). External
magnetic resolvers work by combining a magnetic piece
of known characteristics together with a magnetic sensor
tasked with measuring the magnetic field. The magnetic
piece is usually mounted on the shaft of the motor, and the
magnetic sensor is placed near the magnetic piece. Then,
the angular position is derived by measuring the changes in
the magnetic field. While these magnetic resolvers produce
high resolution measurements, they do not offer absolute
position information, because they are external to the
system. Furthermore, angular velocity information needs
to be calculated explicitly from position data. Another
disadvantage is that magnetic resolvers might not be
suitable if the end application has real space limitations
because of the accompanying magnetic piece.

Alternatively, optical encoders can provide very high
resolution angular data from visual information. Depending
on the type of optical encoder, they can produce both
relative and absolute angular positions. However, the



biggest disadvantage of these sensors are their size and
cost, as they are usually bulky and have to be mounted on
the shaft. This may be undesirable if the end application
has real space constraints and limited budget. Similarly
to magnetic resolvers, the velocity information is derived
from the position data, as shown in Merry et al. (2010);
Pu and Wang (2012).

Approaches for estimating the angular velocity directly
include the zero-crossing method introduced by Liu et al.
(2017). Here, the number of times the magnetic field crosses
its mean value is counted in a given period of time, and the
velocity is estimated from this value. This type of velocity
estimation has drawbacks similar to the optical encoder
interface, as shown in Pu and Wang (2012).

In this paper, we introduce a novel approach to address the
problem of angular position estimation that a) offers high
resolution angular position along with angular velocity
information, b) is low-cost c) has no requirement of
mounting a separate magnetic piece on the shaft, and d) has
small form factor to cater for the space constraints of the
end application. By estimating both the angular position
and velocity directly, we overcome all the mentioned
drawbacks.

The key idea is to place a sensor at a suitable radial
and axial distance outside of the PMSM housing, and
then measure the stray magnetic field of the permanent
magnets. Measurements taken with a real motor are shown
in Fig. 3. The functions have a complex shape and a
speed dependence is observed. Further discussions on
these properties are provided in the next section. However,
instead of calculating zero-crossings like Liu et al. (2017),
we model the complex relationship between the angular
position, the speed, and the measured magnetic field of
the permanent magnets explicitly with a Gaussian Process
(GP), described in Rasmussen and Williams (2006). Then,
during normal operation, we employ this function with a
recursive estimator to obtain both the position and the
velocity efficiently.

Our paper is divided into the following sections. First, we
start with the theoretical considerations of the Gaussian
Process, described in Section 2. Then, Section 3 introduces
the motor setup we have used for measurements and
evaluation. The evaluation results and the comparison
between different models are given in Section 4. Finally we
conclude the paper in Section 5.
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Fig. 1. Example of magnetic field strengths measured in a
real motor setup, with and without coils.

2. PROPOSED APPROACH

A key component of our contribution is that we want to
model the relationship between the angular position, the
speed, and the measured magnetic field. This allows us
to track them accurately even as they change in time.
However, this task is not straightforward. In Fig. 1 we see
the magnetic fields obtained at different rotor angles for
two PMSM setups: one with coils (red), and one without
(blue). The curve for the setup without coils is relatively
simple, and could be closely approximated with a Fourier
series with few coefficients, and computationally efficient
algorithms such as CORDIC from Volder (1959) could
be used for estimation. The coil winding profile and the
motor housing produce perturbations that depend strongly
on the characteristics of the specific motor setup being
used, and are very difficult to describe a priori. Most
importantly, the magnetic field measurements are speed
dependent. Sensor properties result in a speed dependent
phase shift as presented in Fig. 2. Additionally, the speed
also has an effect on the shape of the function (see Fig. 3).

It is reasonable to expect hardware setups in most real
applications to have artifacts and the influence of coil is
one of among them. This raises the need for a mechanism
to accurately describe the complex red curve for any setup.

To address this, we propose the following two-staged
approach. First, we will learn the relationship between
the angle, speed, and the magnetic field strength, i.e., the
measurement function, ‘offline’ with a GP. To achieve this,
we will use a set of reference measurements as training data.
The angle and speed are assumed to be known accurately,
while the strength of the magnet field is expected to be
noisy. Then, during normal operation (‘online’), we can
use this measurement function to estimate the absolute
angle of the rotor using a nonlinear recursive estimator,
such as the Extended Kalman filter (EKF). Note that the
measurement function only needs to be trained a single
time for one specific hardware setup.

This section is structured as follows. First, we will introduce
a mathematical formulation of our problem. Then, we
will describe how the GP works, and propose some
optimizations for it. Finally, keeping in mind applications
with limited resources, we will introduce an approximation
of the GP that keeps runtime constant and independent
from the number of training points.

2.1 Problem Formulation

At a given timestep k, the task is to estimate the angular po-
sition θk and speed ωk of the rotor based on measurements
bk from the magnetic field of the permanent magnets. The

state is defined as xk = [θk, ωk]
T ∈ R2. The measurement

equation, which maps the state to the measured magnetic
field, is determined by

bk = h (xk) + vk , (1)

where h : R2 → R is the measurement function, and
vk ∼ N (0, σ2

v,k) represents the measurement noise. If there
are multiple measurements available at the same timestep,
e.g. orthogonal components of the magnetic field vector bk,x,
bk,y and bk,z, they can be stacked vertically. Furthermore,
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Fig. 2. Magnetic field dependency on different angular speeds of a PMSM with coils.
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Fig. 3. Magnetic field measurements of a PMSM without motor coils.

we assume that each noise term is independent from other
noise terms and from the state.

The state is assumed to evolve according to the system
equation

xk+1 = Ak · xk + wk , (2)

where wk ∼ N (0,Rk) represents the system noise. For this
work, we will employ a constant velocity model, i.e.,

Ak =

(
1 ∆Tk
0 1

)
, (3)

where ∆Tk represents the time change. However, the ideas
presented here do not impose any constraints on the motion
model, and can incorporate other terms such as acceleration,
jerk, or even nonlinear components. In the following, we
will drop the index k for better legibility unless needed.

2.2 Choosing an Appropriate Kernel

In order to define a GP, first we need to determine an
appropriate kernel function κ : R2×R2 → R which tells us
how ‘similar’ the measurements generated by two arbitrary
states are assumed to be. In the following, we will define the
kernel function based on the angular position and speed.
Note that, under ideal circumstances, we would expect the
measured magnetic field to depend exclusively on the rotor
angle. However, as shown in Fig. 2 and Fig. 3, artifacts
like induction on the motor coils and sensor-related effects
cause the motor speed to also have an influence on the

magnetic field . In turn, this means that both the angle and
the speed can be observed from the measured magnetic
field.

Let xi∗ =
[
θi∗, ω

i
∗
]T

and xj∗ =
[
θj∗, ω

j
∗

]T
be two arbitrary

state inputs. The angular positions θi∗ and θj∗ are periodic
and defined on the interval [0◦, 360◦). Thus, we choose a
periodic kernel for the angle as presented in Rasmussen
and Williams (2006), i.e.,

κθ(θ
i
∗, θ

j
∗) = σκ · exp

−2 sin2
(
θi∗−θ

j
∗

2

)
l2θ

 . (4)

The angular speed is not periodic, and thus, the simpler
squared exponential kernel can be used, leading to

κω(ωi∗, ω
j
∗) = σκ · exp

−2
(
ωi∗ − ω

j
∗

)2
l2ω

 . (5)

To construct a kernel for both input properties, we use the
product of both kernels

κ(xi∗, x
j
∗) = σ2

κ exp

−2 sin2
(
θi∗−θ

j
∗

2

)
l2θ

−
2
(
ωi∗ − ω

j
∗

)2
l2ω

 .

(6)



The scalars σκ, lθ, and lω are hyperparameters to be learned.
In the following, we will refer to this combined kernel as
the Periodic Automatic Relevance Determination kernel
(PER-ARD).

2.3 Learning the Measurement Function

In order to train the GP, we proceed to measure the
magnetic field at N different angle-speed configurations.
This yields the state inputs X =

[
x1∗ · · · xN∗

]
with

the corresponding measurement vector b∗ =
[
b1∗ · · · bN∗

]T
,

where each entry is assumed to be a realization of the
measurement equation

bi∗ = h(xi∗) + vi, vi ∼ N (0, σ2
n) , (7)

for 1 ≤ i ≤ N , where vi is the measurement noise term,
and σn is an hyperparameter to be learned.

For the subsequent derivations, we introduce the following
extensions to the kernel function

κ(x∗,X) =
[
κ(x∗, x

1
∗) κ(x∗, x

2
∗) · · · κ(x∗, x

N
∗ )
]
,

κ(X, x∗) =
[
κ(x1∗, x∗) κ(x2∗, x∗) · · · κ(xN∗ , x∗)

]T
, and

K(X,X) =
[
κ(X, x1∗) κ(X, x2∗) · · · κ(X, xN∗ )

]
.

Our goal now is to determine the mean ĥt∗ and variance
σ2
h,t of the underlying function ht∗ that corresponds to

an arbitrary test input xt∗. The joint distribution of the
measurement vector b∗ and the function value ht∗ is given
by [

b∗
ht∗

]
∼ N

(
0,

[
κ(X,X) + σ2

nI κ(X, xt∗)
κ(xt∗,X) κ(xt∗, x

t
∗)

])
, (8)

assuming the mean of the measurements to be zero. Then,
from this joint distribution, a prediction for ht∗ can be given
as

ĥt∗ = κ(xt∗,X) ·K ′−1 · b∗ , (9)

σ2
h,t = κ(xt∗, x

t
∗)− κ(xt∗,X) ·K ′−1 · κ(X, xt∗) , (10)

using the helper term K ′ := K(X,X) + σ2
nI.

As a final step, the hyperparameters θ = [σn, σκ, lθ, lω]
T

are estimated maximizing the log marginal likelihood

log p(b∗|X, θ) = −1

2
bT∗K

′−1b∗ −
1

2
log |K ′| − n

2
log(2π)

(11)
as presented in Rasmussen and Williams (2006). The
derivation of this estimation is omitted for brevity.

2.4 Deriving a Measurement Equation

We will now formulate the measurement function required
by (1). The function h is provided by the predicted mean

function ĥt∗. Hence we obtain from (9) that

h(xk) = κ(xk,X) ·K ′−1 · b∗ . (12)

The measurement noise term vk ∼ N (0, σ2
v,k) follows from

σ2
v,k = κ(xk, xk)− κ(xk,X) ·K ′−1 · κ(X, xk) . (13)

The derivative of the measurement function can be cal-
culated analytically, allowing the use of efficient recursive
estimators such as the EKF. For more detailed information
on integrating a measurement function modeled by a
Gaussian process into the EKF, we refer to Ko and Fox
(2009).

2.5 Implementing an Efficient Approximation

An important concern when evaluating the measurement
equation from Sec. 2.4 is computational speed, especially
as the number of training state inputs N increases. We
propose the following speed-ups:

• The expression K ′−1 · b∗ in (12) is independent from
the state and the measurement, and thus, can be
precalculated. This allows the evaluation cost of the
measurement function to increase linearly to N . This
term can also be reused in the derivative.

• Another time consuming operation is the matrix multi-
plication calculating the variance of the prediction. In
the border case of infinite number of evenly distributed
training points the predicted variance of the Gaussian
process will converge to a constant value (the variance
of the training points) for all test points. Assuming
that the training state inputs are approximately evenly
distributed and cover the state space in a sufficient
way, we approximate the predicted variance into a
state-independent form as

σ2
v,k ≈ σ2

n . (14)

As a last resource, the number of training input states
N can be reduced, but this reduces the total amount of
information being used.

Alternatively, we apply an approach that can incorporate
an arbitrary number of training states while keeping the
runtime constant. The idea is to find an approximation
of a given measurement function (12) by employing a
linear combination of M basis functions, where M � N .
Interpreting the predicted mean of the Gaussian process
as a linear combination of kernel functions is presented in
Rasmussen and Williams (2006). We first select a list of M
representative samples X+ =

[
x1+ · · · xM+

]
from the state

space, for example by uniform sampling. Then, using an
arbitrary point x+ ∈ R2, we define the basis functions as

ψi(x+) := κ(x+, x
i
+) , (15)

for 1 ≤ i ≤M , by reusing the same kernel implemented for

Sec. 2.2. Given a list of scalar weights a :=
[
a1 · · · aM

]T
,

we obtain a new measurement function

h(x+) =
[
ψ1(x+) · · · ψM (x+)

]
· a . (16)

The task is now to determine the weights a that best
approximate the GP from Sec. 2.3 with input states
X =

[
x1∗ · · · xN∗

]
and magnetic field measurements b∗.

We define

Φ :=

ψ
1(x1∗) . . . ψM (x1∗)

...
. . .

...
ψ1(xN∗ ) . . . ψM (xN∗ )

 ∈ RN×M . (17)

An optimal solution for a can then be determined by a
regularized least squares solution as presented in Bishop
(2006), yielding

a = argmin
a′∈RM

‖b∗ −Φ · a′‖22 +
λ

2
‖a′‖22 , (18)

where the regularization coefficient λ is added to prevent
over-fitting. Setting the gradient with respect to a′ to 0
leads to the closed form solution

a =
(
ΦTΦ + λ · I

)−1
·ΦT · b∗ . (19)



The hyperparameters are estimated in the same manner
as in the Gaussian process based on the training data. We
denote this approach as the Linear Basis Function Model
(LBFM).

3. EXPERIMENT SETUP

In 4, a schematic illustration of the experiment setup used
to evaluate our proposed approach is shown. The setup
consists mainly of a PMSM/BrushLess DC (BLDC) motor
with a corresponding controller board. The Anisotropic
MagnetoResistive (AMR) sensor is placed at the back
of motor at a suitable axial and radial distance, as
described in Sec. 3.1, and measures the magnetic field of the
permanent magnets mounted on the rotor in both x and
y directions. A high-resolution optical encoder, employed
only to obtain ground-truth values of the angular position
for the evaluation, is mounted on the shaft in front of motor.
Based on the measured angular positions the ground truth
angular speed is calculated using a numerical differentiation
presented in Merry et al. (2010). The optical encoder
outputs its results using the ABZ interface, while the
magnetic sensor outputs analog values.

The hardware components used for the experiment setup
are given in Table 1. For the software, a program was
written in the prototyping platform Arduino Due to capture
both the analog signals and optical encoder data at a
sampling rate of 450 Hz. The used hardware setup is shown
in Fig. 5.

Table 1. Components used in the experiment
setup.

Component Hardware Used

Controller Board Nucleo-F746ZG and IHM07M1

Magnetic Sensor HMC1052 Honeywell (2019)

Optical Encoder TMCS-28

PMSM Motor 24 V Brushless DC Motor

In the following, we will describe the approach we used
to find a suitable position of the sensor, and discuss the
characteristics of the obtained measurements.

3.1 Positioning of Magnetic Sensor

In principle, the magnetic sensor can be placed anywhere
on the motor, but we aim for a position that maximizes
the signal quality while reducing the measurement noise.
A simulated cross-section view of the magnetic field
distribution of a PMSM while in operation, presented by
Ishak et al. (2010), is shown in Fig. 6. The magnetic field
distribution towards the center is caused by the permanent
magnets of the rotor, while the distribution at the outer
part of the stator is caused by the electromagnets. However,
we are interested in measuring the magnetic field caused
by the permanent magnets mounted on the rotor. For this
reason, a suitable radial distance r from the center, and a
suitable axial z distance from the motor have to be found,
to place the high-bandwidth magnetic sensor.

We employed the following heuristic approach. For the
radial distance, the position of the sensor depends entirely
on the location of the permanent magnets and its vicinity
to the electromagnetic coils. Placing the sensor between the

Fig. 4. Schematic illustration of the experiment setup.

Fig. 5. Hardware setup used for magnetic field measure-
ments of a PMSM.

Fig. 6. The magnetic flux distribution of a typical 2-
pole PMSM, taken from Ishak et al. (2010). The
white center is the shaft, the green ring in the middle
represents the permanent magnets, and around it are
located the six electromagnets.

permanent magnets and the electromagnets (underneath
the air gap of a PMSM) would increase the recorded noise.
However, if the sensor is placed too close to the center of
rotation axis, the signal amplitude would be smaller. Thus,



any radial position r between the permanent magnets and
rotation axis along the radial distance would be satisfactory.

In case of the axial distance, the signal becomes stronger if
the sensor is placed very close to the housing, but very weak
and noisy if the sensor is placed far away from the housing.
Therefore, the optimal axial distance depends upon the
dynamic range of the chosen magnetic sensor. If the sensor
has a higher dynamic range, a closer distance should be
preferred.

For our setup, the determined values are r = 10.6 mm
and z = 13.0 mm. We adjusted the dynamic range of our
magnetic sensor data using an operational amplifier to be
compatible with the analog-to-digital converter of Arduino
Due.

3.2 Magnetic Field Measurements

In the following, we will discuss the properties of the ob-
tained magnetic field measurements. Taking measurements
at different rotational speeds of the PMSM an unexpected
behaviour of the measurements was observed as illustrated
in Fig. 2. The magnetic field values show a speed dependent
phase lag and shape deformation. In order to understand
these artifacts, a simple setup was created with coils
detached from the motor as shown in Fig. 7. In this case,
the signal is approximately perfectly sinusoidal (Fig. 3),
and there is no shape deformation. However, the phase shift
is still observed. It could be due to the combined frequency
response of the magnetic sensor and the amplifier board.
The results obtained with the additional setup without coils,
prove that shape deformation is attributed to the presence
of coils and the housing. Fortunately, our approach does
not need to model the cause of these artifacts explicitly,
as both techniques introduced in Sec. 2 can describe the
distorted shapes.

At every timestep, the Honeywell magnetic sensor provides
two orthogonal measurements simultaneously, in the x and
y directions. The values for a whole rotation of the motor
are shown in Fig. 8. It is important to note that magnetic

Fig. 7. Hardware setup used for magnetic field measure-
ments of a PMSM without coils.
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Fig. 8. Magnetic field in x and y directions from the two-
axis magnetic sensor.

field values bx and by are not exact shifted versions of each
other. The reason for this is that the magnetic sensor is not
placed at the center of the back surface of electric motor,
but rather at a certain distance away from the center as
shown in Fig 4.

Furthermore, each of the signals bx and by have a period
of 2π instead of π. This is clearly visible in both Fig 2
and Fig 3. This could be attributed to the asymmetric
profile of the magnets being measured. Note that both
characteristics are actually an advantage for the estimator,
as they reduce ambiguities and provide more information
for the calculation of the position and speed.

4. EVALUATION

We evaluate the proposed approach using the hardware
setup introduced in Sec. 3. For the state estimation, we
employ the EKF implementation provided in the Nonlinear
Estimation Toolbox by J. Steinbring (2017), using ideas
drawn from Ko and Fox (2009). To describe the evolution of
the state, we apply a constant velocity model as introduced
in (2). For the evaluation, we recorded two data sets, one
for training and validation, and the other for testing. Each
set contains angular position values and the corresponding
magnetic field measurements consisting of two orthogonal
components bx and by. The angular speed is calculated
based on the angular position measurements. In order to
apply a zero mean Gaussian process, the magnetic field
measurements are centered by subtracting the mean of the
training data. The hyperparameters of the Gaussian process
are optimized using the Gaussian Processes for Machine
Learning (GPML) Toolbox presented in Rasmussen and
Nickisch (2010).

We evaluate our approach with both regression techniques,
the GP regression from Sec. 2.3, and the LBFM from
Sec. 2.5. Each of them is also tested with two different ker-
nels, namely the Squared Exponential Automatic Relevance
Determination kernel (SE-ARD) presented in Duvenaud,
D. (2014), and the Periodic Automatic Relevance Determi-
nation Kernel (PER-ARD) that we introduced in Sec. 2.2.
In the GP, we use 1200 training points for the SE-ARD
kernel, and 800 training points for the PER-ARD kernel.
In the LBFM, we use 9800 training points with 1200 basis
functions for the SE-ARD kernel. For the PER-ARD kernel,
we use 10200 training points with 800 basis functions. The
idea behind choosing a different number of training points
was to make a fair comparison by keeping the execution
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Fig. 9. Position and speed estimation error for different operating motor speeds.

time of each of the model pretty much the same (in the
range of 0.49 ms to 0.52 ms in MATLAB R2019a on an
Intel(R) Core(TM) i7-8700 at 3.20 GHz under Windows 10).
All models are trained with the data from the same training
set. In the course of training, the measurement noise σ2

n
is learned, as described in Sec. 2. After incorporating the
validation data set, we also adjust the system noise matrix
Rk and the regularization coefficient λ used for the LBFM.
The values determined for λ, σ2

n, and Rk are summarized
in Table 2.

Table 2. Parameter values for the evaluation.

Model σ2
n Rk λ

GP, SE-ARD 0.1 diag(0.0082, 0.012) -

GP, PER-ARD 0.001 diag(0.00252, 0.0092) -

LBFM, SE-ARD 0.1 diag(0.0082, 0.012) 10

LBFM, PER-ARD 0.001 diag(0.032, 0.12) 1

The angular position measured with the optical encoder
is utilized as ground truth. The ground truth speed is
calculated by using the two previous angular positions and
their corresponding time difference. For the evaluation, we
determine the Root Mean Square Error (RMSE) between
the estimated values (both speed and position) and the
ground truth using the test data set. The results are
presented in Fig. 9.

We run the EKF on a sequence with stepwise changing
angular speed, and evaluate the performance separately for
different speeds. For the position estimation, the LBFM
with the PER-ARD kernel shows the best results across all
speeds. All models perform more or less equally except for
the LBFM with the SE-ARD kernel. This model and kernel
combination has large position errors for higher positive
speeds.

For the speed estimation, the models using the PER-ARD
kernel perform clearly better compared to the models with
the SE-ARD kernel. The speed estimation approach is
also compared against the zero-crossings method given by
Liu et al. (2017). The error of our speed estimation is
bounded and it is less than 20 rpm for all the operating
speeds of the motor. The error of the zero-crossing approach
increases with the operating speed of the motor, and
perform significantly worse at higher speeds. The reason

might be the availability of few measurement points causing
the zero-crossing detection to become less reliable.

Overall, GP and the LBFM with the PER-ARD kernel
provided highly accurate position and speed estimation for
all the covered operating speeds of the motor.

5. CONCLUSION AND FUTURE WORK

Electrical motors such as PMSMs contain permanent
magnets attached to their rotors, which produce magnetic
fields that can be exploited for absolute angular position
and speed estimation. State-of-the-art position sensors,
such as external magnetic resolvers or optical encoders,
are either too bulky for setups with space limitations, or
are too costly. Furthermore, they are unable to measure
the speed directly. To address this, we proposed a new
approach that only requires an external magnetic sensor
to be placed outside of the motor, and provides highly
accurate estimates by modeling the relationship between
angular position, speed, and magnetic field strength using
a Gaussian Process.

For our hardware setup, we used a low-cost high bandwidth
anisotropic magnetoresistive sensor to record the magnetic
field of the permanent magnets at different angles. However,
the produced field values were not a simple sinusoidal shape,
as expected, due to the inherent structure and construction
of the motor itself. In order to describe these non-sinusoidal,
distorted, and speed dependent signals, a GP regression
technique was employed. Then, we introduced alternative
model based on a linear combination of basis functions,
the LBFM, to accommodate a large number of training
points while maintaining low estimation runtime. Finally,
in order to incorporate the periodic nature of the rotor
angle, both the GP and the linear basis functions were
trained with a combination of a periodic kernel for the
positional angle, and a squared exponential kernel for the
speed. The learned GP and LBFM measurement models
were then used to estimate the angular position and speed
of the motor, using an Extended Kalman Filter.

Evaluations showed that all of the models estimated the
position with an accuracy of less than one degree for
most of the speeds. Additionally, the models trained



with the periodic kernel performed better compared to
models trained with the non-periodic kernel. The speed
estimation was also better compared with the approach Liu
et al. (2017). Overall, the position and speed estimation
using linear basis function model with the periodic kernel
fared well compared to the other implemented models in
this paper. The evaluation showed that our contributions
provided highly accurate estimation for all of the considered
speed ranges.

As future work, we plan to test our approach under large
and varying load conditions of the motor. Additionally, we
plan to extend the existing constant velocity model to a
constant acceleration model in order to move closer to the
operating conditions of the motor.
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