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Abstract Analysis of smart devices’ sensor data for the classification of human
activities has become increasingly targeted by industry and motion research.
With the popularization of smartwatches, this data becomes available to everyone.
The user’s data from accelerometers and gyroscopes is conventionally analyzed
as a multivariate time series to obtain reliable information about the user’s
activity at a specific moment. Due to the particular sampling rate instabilities of
each device, previous approaches mainly work with feature extraction methods
to generalize the information independently of the gear, which requires a lot of
time and expertise. To overcome this problem, we present an end-to-end model
for activity classification based on convolutional neural networks of different
dimensions without extensive feature extraction. The data preprocessing is not
computationally intensive and the model can deal with the irregularities of the
data. By representing the input as twofold – both, interpolated 1D time series
and encoded time series as images with the help of Gramian Angular Summation
Fields – the use of computer vision techniques is enabled. In addition, an online
prediction is possible and the accuracy is comparable to feature extraction
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approaches. The model is validated with random 10-fold and leave-one-user-out
cross-validation showing improvement regarding the generalization of the task.

1 Introduction

Today’s possibilities in recording and expressing human motion as data has
led to a rapidly growing interest in automatically recognizing and classifying
these movements’ data as activities using different machine learning techniques.
Various approaches in research show that the monitoring and recognition of
human activities can be applied to diverse contexts, such as the gaming industry,
where motion data of the player can be used for human-computer-interaction or
in healthcare, where knowledge about a patient’s motions can be included in the
research for bionics or neuro-engineering.

The data available for this purpose can come from different sources and in
various formats, where the two most common ones are images or videos from
cameras and some time series data from sensors. Research has already been
conducted in classifying a user’s activity from images, where all of them require
a specific set up area with cameras installed. The inevitable condition in such a
setting is that the user stays in that spatially limited area in the visual range of
the cameras.

Since more and more users have access to devices like smartphones or
smartwatches featuring sensors like accelerometer or gyroscope, the collection
of data of a user’s motion is easily accessible in everyday life. In contrast to
working with cameras, sensors in wearable devices allow the user to move freely
and monitoring is not bound to the visual range of the devices. According to
our knowledge and literature review, early research which has been done in
this field mostly revolves around the methodology of feature extraction to clas-
sify sensor data which comes under the category of time series data classification.

Deep neural networks or Convolutional Neural Networks (CNNs) are capable
to classify such time series data coming from different sources like sensors
from an electronic device. These models can perform classification tasks with
comparable or better accuracy for different classes like activities in our case.
Now a research question "Is feature extraction still necessary in the era of
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deep learning along with advanced machine learning techniques" needs to be
answered. The objective of the methodology introduced in this paper is to
answer the research question. End-to-End learning where feature extraction
is not needed allows fast classification with the help of trained models on the
incoming data stream created by the devices. The approach presented in this
work combined with automated preprocessing techniques to handle irregularities
in the time series data thus allows implementing stream processing using minor
adjustments in future work.

We propose an end-to-end CNN model with different dimensions for human
activity classification. Convolutional kernels in CNNs allow the model to learn
varieties in the data and are a better choice compared to simple Multi-Layer
Perceptrons. Experiments are conducted on both 1D-CNN and 2D-CNN. The
results from both models were then merged yielding a better accuracy than
each model alone. Due to the structural nature of the data, which consists
of one-dimensional time series, a 1D-CNN is used first. The work of Wang
and Oates (2015a) is adopted to build the 2D-CNN, where the time series are
encoded into 2D images using Gramian Angular Summation Fields (GASF).
The results obtained from the merged model are slightly better than feature
extraction approaches. Hence, the study supports the assumption that deep
learning models and especially CNNs can be used to classify time series data
with comparable accuracy, also reducing the effort of feature extraction from
the data.

This paper has the following contributions:

• We combine two different convolutional architectures for the time series
classification problem.

• They are able to deal with complex heterogeneous data.

• The result is an end-to-end model performing slightly better as the state
of the art, but without the need for feature extraction.

Our work is structured as follows: Section 2 introduces the related work that
serves as a baseline for generating and preprocessing the time series data coming
from sensors as well as setting up the models used. Section 3 describes the data
itself in more detail and shows which challenges occurred working with it that
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led to the necessary preprocessing procedures shown in Sect. 4. The proposed
model that is mainly an adjustment and extension of the technique proposed by
Wang and Oates (2015b), is presented in Sect. 5. Sections 6 and 7 describe the
experimental setup and display the results. Finally, Sect. 8 gives a conclusion
on the techniques examined in this work and shows how they can be employed
for future research and applications.

2 Literature Overview

There has been a significant development in the study of sensor-based human
activity recognition in the past years, and extensive research has been undertaken
to select and develop reasoning algorithms to infer activities from wearable
sensor data. Bulling et al (2014) provide an extensive introduction to the problem.
This has also shown am ubiquitous increase in the use of smart devices like
smartwatches for the detection of a user’s current activity. Smartwatches and
smartphones are embedded with a rich set of sensors such as accelerometer,
gyroscope, GPS, microphone, and camera. However, the diversity in smartwatch
devices and sensor hardware also has huge impacts, e.g., different accelerometer
sensors frequently experience various biases and hence vary in density and
exactness (Stisen et al, 2015). Combined with the sampling rate instability
of each device, this problem poses a lot of challenges for the human action
recognition system design (Blunck et al, 2016).

When dealing with classification-oriented problems like activity recognition,
typical approaches involve computing suitable features which are derived from
raw sensor data. Past approaches involved solving this by extraction of segments
from an input sequence followed by the computation of hand-crafted features
which are then used for predicting class labels. Statistical features like maximum,
minimum, median, or mean are computed for each data segment. The calculated
statistical elements are segmented from the input signal using a sliding window
approach (Feldhorst et al, 2016; Blunck et al, 2016). These extracted features are
then fed into a classifier for training and to predict class labels (Yao et al, 2017;
Jiang et al, 2017). Classifiers like Random Forest (Breiman, 2001) or Support
Vector Machines (SVMs, Smola and Schölkopf, 2004) are commonly used in
the literature in order to do this. However, this classification workflow requires
extensive expertise and is most likely time consuming because of the diverse
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device settings like sensor heterogeneity or noise (Stisen et al, 2015). Huynh
and Schiele (2005) also show that overfitting can be a problem when using
approaches that include handcrafted features. Hence, this requires traversing
through different combinations of features to be selected for the training process.

Recent techniques from the deep learning area have significantly transformed
human activity recognition and computer vision research. The main advantage
of using deep learning is the identification and analysis of representative features
from enomous data (Najafabadi et al, 2015). An earlier approach to human
activity recognition based on deep learning is developed by Alsheikh et al (2015).
Here spectrogram images are generated from an inertial signal to feed images
to a CNN, therefore, discarding the need to reshape the signals in a suitable
format. Through learning with weight sharing strategies and local connectivity,
CNNs can exploit translational invariances making them a widely used approach
in several deep learning tasks (Lecun et al, 1998; Krizhevsky et al, 2012).
However, this step of generating spectrogram images adds initial overhead to
the training of the network by replacing the process of feature extraction. Even
though work by Alsheikh et al (2015) provides better recognition accuracy for
human activities by focusing on triaxial accelerometers, it does not consider
sensor heterogeneity or some type of validation like cross-validation to evalute
the model proposed, which can have a huge impact on the data and the results
obtained.

Wang and Oates (2015a) suggest a similar technique. In their work, they
propose a method of encoding time series data as images using specific imaging
methods such as Gramian Angular Fields (GAF) which are then fed into a
CNN. This approach permits the use of computer vision techniques for time
series classification. Their method has two main steps: The first step involves
normalization and transformation of the time series into a polar coordinate
system. Afterward, the angular perspective is exploited by taking into account
the trigonometric difference for each point within different time intervals to
distinguish the temporal correlation. Given a time series of size n, the resulting
image will be a matrix of size n×n. For larger time series, its size can be reduced
and smoothed using Piecewise Aggregation Approximation (PAA, Keogh and
Pazzani, 2000). However, this work is not evaluated on complex datasets, for
example a dataset from different sensors for human activity recognition. The
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proposed model also does not take adavantage of ensemble learning (Opitz and
Maclin, 1999), which helps to improve machine learning results by combining
several models.

The dataset used for this work (Stisen et al, 2015) has achieved (weighted)
F1-scores of up to 90% (random 10-fold cross validation) and 67% (leave-
one-user-out cross validation). This results are achieved by extensive feature
engineering and the use of basic machine learning algorithms like Random
Forests, K-Nearest Neighbor (Mucherino et al, 2009), or Support Vector
Machines. The paper at hand proposes an end-to-end model for this problem
using deep learning without the need for manual feature extraction. To the
best of our knowledge, the methodology presented in this paper is one of the
first approaches to merge CNNs of different dimensions in the field of activity
classification. The uniqueness of this research is that we forgo manual feature
extraction and focus on automated preprocessing.

3 Data Description

This work uses the Heterogeneity Human Activity Recognition (HHAR) dataset
created by Stisen et al (2015). It consists of motion sensor data, specifically
gyroscope and accelerometer, acquired from smartphones and smartwatches
of various device models. The readings are recorded while 9 users execute 6
activities (bike, sit, stand, stairsdown, stairsup, and walk) carrying smartwatches
and smartphones. For the scope of this research, only the smartwatch data is
used for time series motion classification.
The labels are determined before performing the activity, and the smartwatches
are worn on both wrists. Four smartwatches from two different brands (Samsung
and LG) are used for this purpose. All devices used differ in their supported
maximum sampling rate. For the LG watches the sampling rate is 200 Hz, and
for the Samsung Galaxy Gear it is 100 Hz. The data for both sensors (gyroscope
and accelerometer) has a similar structure. For each, there are 7 attributes,
namely: index, creation time (OS time), arrival time (data logging time), user
(a − i), model (watch model, e.g., Samsung or LG), device (specific device
details, e.g., lgwatch1 or lgwatch2), and “gt” (ground truth, here: activity).
The data also consists of three feature axes x, y, and z. These are the values
provided by the respective sensor used to build the time series instances in the
experiment.



End-to-End Motion Classification Using Smartwatch Sensor Data 7

Table 1: Number of accelerometer measurements per user-device-activity combination.

device user bike sit stairsdown stairsup stand walk

gear1 a 5,547 5,643 3,574 4,532 5,061 4,825
b 5,985 7,280 3,960 5,930 5,290 6,347
c 5,175 4,416 6,205 7,346 4,202 5,246
d 4,385 5,990 4,631 5,988 4,952 5,698
e 7,437 5,714 5,585 7,844 5,950 6,304
f 9,528 0 8,971 20,068 0 0
g 3,820 4,160 5,060 3,857 4,516 6,757
h 4,680 0 29,884 27,158 0 26,977
i 0 0 0 0 0 0

gear2 a 324 1,488 201 193 1,822 3,533
b 1,640 214 206 214 312 228
c 804 824 1,075 1,128 1,140 1,290
d 2,124 379 108 415 732 225
e 218 866 1,644 732 807 1,390
f 112 1,250 1,060 3,701 482 3,060
g 329 214 198 213 506 2,108
h 200 1,389 324 293 217 237
i 0 0 0 0 0 0

lgwatch1 a 60,489 62,660 53,212 45,539 60,798 55,467
b 78,049 62,567 53,876 60,298 63,978 66,758
c 56,503 59,678 53,386 53,758 62,794 60,886
d 51,629 60,543 47,099 54,521 58,066 63,432
e 69,512 60,098 53,984 54,339 62,959 65,605
f 74,608 61,307 55,682 59,582 63,644 62,066
g 1 0 0 0 0 0
h 21,826 0 2,737 3,516 6,405 196
i 380 737 20,847 11,170 797 1,488

lgwatch2 a 21,842 1,318 2,239 1,565 23,907 20,435
b 1 0 0 0 0 0
c 22,666 1,555 13,289 14,151 6,032 4,573
d 9,459 0 0 0 0 19,884
e 35,110 2,394 23,667 7,656 1,310 20,459
f 15,432 7,759 8,867 1,750 1,256 23,438
g 56,375 1,566 12,880 3,288 2,208 10,179
h 1 0 0 0 0 0
i 9,339 1,986 11,925 13,009 1,046 670

overall 635,530 423,995 486,376 473,754 451,189 549,761
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Figure 1: Distribution of the proportion of measurements per user.

The dataset contains partially missing data for some user/device-combinations,
as it can be seen in Table 1 which shows aggregated instance counts for each
device w.r.t. activities and users for the smartwatch accelerometer sensors. Many
cells show activities for some particular users where either the sensor failed to
record measurements or the OS failed to log it such as in the case for gear1,
user f , where data is missing for activities sit, stand, and walk. In more dire
cases, such as for user g for the device lgwatch1, some users only have one
instance per activity. For gear1 and gear2 the accelerometer recordings for user
i and some activities are completely missing. In general, the instance counts for
users g, h, and i are relatively low in comparison to other users, as shown in the
pie chart in Figure 1. Furthermore, the log rate or the rate at which the OS of
the devices timestamped the data instances are often irregular. Training on time
series with an irregular time step would become a challenge since large gaps in
the data sequence cause poor learning of the algorithms. These gaps in the time
series and data sequences are treated through various techniques such as inter-
polation or GramianMatrices fromGASFwhich are discussed later in this paper.
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Figure 2: Distribution of instance counts per device.

The uneven distribution of the instance counts can be seen in the bar graph in
Figure 2. It also shows the disparity in distribution of rows amongst the devices.
In case of gear1, the highest number of instances is for the activity stairsup
with 82k samples across all users. The class with the lowest number of recorded
samples is the activity stand with 29k frames. There is a big difference between
the minimum and maximum number of measurements for all devices. This
uneven distribution could cause biased learning by the algorithm for specific
users, devices or activities. There is a considerable difference in the case of
lgwatch2 where the most instances are recorded for the activity bike with 170k
frames whereas the least instances are recorded for the activity sit with instances
a little more than 16k.

Additionally, even within the same device, each activity was recorded over
differing timespans. Some activities are executed for a longer time (e.g., 5
minutes)whereas some only last for a shorter period (e.g., 1minute). A significant
difference in the models is that the lgwatch has a higher sampling rate than the
gear (200 Hz vs. 100 Hz), but this does not explain the disproportionality of the
absent magnitude between the instance counts of the devices. Another interesting
finding in the data profiling is that the data from both sensors (accelerometer and
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gyroscope) is not aligned in many cases, which impedes the preparation of data
for classification. Stisen et al (2015) explain these irregularities with sampling
rate heterogeneities and sampling rate instabilities and go into any more detail
in their paper. Here they provide specific sections to the data collection process
and its characteristics. Because of the properties of the data, some preprocessing
techniques should be applied before the classification procedure.

4 Data Preprocessing

Due to the described characteristics of the dataset, a complete data preprocessing
is required. The first challenge is to align the two sensors as they lack any direct
connectivity. Therefore a full outer join is used on the attribute creation time per
each combination of device, user, and activity. It also handles the instances for
some activities within a user that are present for one sensor but missing on the
other. The resulting empty rows are imputed using linear interpolation for such
cases on both sensors. This data is then saved in 6 separate structures for each
sensor axis in the form of time series. The final step is to split the initial time
series into smaller subsets of the lengths 16, 32, 64, 128, 256, and 512 using
a 50% overlapping sliding window since the activity over the whole timespan
behaves periodically. The purpose of this is to augment the dataset by increasing
the number of samples.

5 Model Structure

For time series data, the use of CNNs is highly beneficial as they can learn
directly from raw time series and hence do not require extensive expertise to
engineer the input features manually. In this work, a combination of a one
dimensional CNN (1D-CNN) and a two dimensional CNN (2D-CNN) is used.
The structures of the models are introduced in detail in the following.



End-to-End Motion Classification Using Smartwatch Sensor Data 11

5.1 1D-CNN

The 1D-CNN consists of one-dimensional layers and filters of order m. The
primary motivation behind applying this model is the structural nature of the
data. As mentioned before, the data is a one-dimensional time series with
six axes which are used as input channels x, y, z (accelerometer) and x, y, z
(gyroscope).

The input to the first convolutional layer has the shape [batch size, sequence
length, channels]. The number of channels is equal to 6 (gyroscope and
accelerometer axes). The sequence length for a whole training cycle is the
respective length of the subsets. This input is fed to four convolutional layers
with the filter size of 12, 24, 48, and 96, respectively, followed by a max-pooling
layer with a pooling size of 3 and a stride of 1. After each max-pooling layer
batch normalization is applied. The last layer is fully connected with a flattened
output that uses the softmax function to classify the given time series as an
activity.

5.2 2D-CNN

As convolutional networks for image classification advanced in the last years,
these techniques are applied to the HHAR dataset as well. To enable the use
of techniques from the computer vision domain, we follow the work of Wang
and Oates (2015b) by converting the time series into 2D-images. A time series
X = {x1, x2, . . . , xn} rescaled to the interval [−1, 1] is used to compute the
Gramian Matrix G:

G =



cos(φ1 + φ1) · · · cos(φ1 + φn)
cos(φ2 + φ1) · · · cos(φ2 + φn)

...
. . .

...

cos(φn + φ1) · · · cos(φn + φn)



with φi = arccos(xi) (1)

This 2D representation of the original time series has the advantages of pre-
serving spatial and temporal dependencies since time increases from top-left
to bottom-right (Wang and Oates, 2015a). Moreover, G contains temporal
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correlations and the original time series can be reconstructed by the main
diagonal in the neural network. A major disadvantage is the squared size n × n
in relation to the original time series X with length n.

The data from both sensors is processed in this way, which results in a 4D-
tensor with the shape [batch size, sequence length, sequence length, channels].
According to the various channels from both sensors the last dimension is also
6. The 2D-CNN used for classification is analogous to the popular Xception
model including depth-wise separable convolutions (Chollet, 2016) with the
only difference that the size of the input channels is equal to six as opposed to
three in the original model for RGB-images.

5.3 Merging 1D & 2D-CNN

Figure 3: General structure of the “hybrid” CNN.

As described later in Sect. 7, the results from both CNN approaches are different.
With leave-one-user-out cross-validation, the F1-scores per user and the ranks
from best to worst scores differ between 1D and 2D-CNN. To verify that an
ensemble of both models would result in better classification since the models’
predictions do not correlate, the results of both, 1D& 2D-CNN, are concatenated
followed by a Dense Mixture of Experts (MoE) layer (see Figure 3). The new
final model consists of 10 feed-forward neural networks (experts) and a trainable
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gating network which selects a combination of the experts to process each input
(Kaiser et al, 2017).

6 Experiments

In the experiments data from all four available smartwatch devices gear1, gear2,
lgwatch1, and lgwatch2 is considered. To validate the trained model, two cross-
validations (CV) methods are used: random 10-fold CV and leave-one-user-out
CV. In the random 10-fold CV, the complete dataset is randomly split into
ten subsamples of equal size, where one of them is used as test data, and the
remaining nine subsamples are used as training/validation data. This process
is performed ten times with each of the subsamples used once for testing. The
results of all ten folds are then averaged into a single estimate.

The leave-one-user-out CV is considered for comparison because a model
trained with 10-fold CV is likely to learn the classification based on user-
specific patterns in the time series. Here, the data is split user-wise, so that
each user is used once for testing and the remaining eight users are used for
training/validation. This process is also executed nine times with each of the
nine users being used once for testing. The results of all nine folds are then
averaged by their respective weights (see Figure 1) which is in line with standard
HAR research practices (Bieber et al, 2009; Sagha et al, 2011).

The hyper-parameter configuration is as follows: We choose a very small
learning rate of α = 0.00005, since we have experienced a high variance in
validation performance with higher numbers. The training epochs are set to
500, and at the last layer of each submodel is a 40% Dropout layer. With
categorical crossentropy as loss function, the model is trained for accuracy and
afterwards the respective F1-scores are calculated. The results with the window
length of 256 measurements with 50% overlap have shown to be the best within
several window lengths (see Sect. 4). These windows are interpolated to an
even distribution over time with a rate of 100 Hz. Due to hardware capacities,
PAA with a factor 4 is applied on the input windows for the 2D-model. Hence,
the sequence length for the 1D-part of the model is equal to 256, whereas the
Gramian Matrix G has a dimension of 64 × 64 for the 2D-part.
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7 Results

This section presents the results obtained from the models compared to the F1-
scores that are achieved in the baseline paper. As mentioned earlier, the baseline
as well as the approach presented in this paper, both use random-10-fold CV and
leave-one-user-out CV. Using LSTM networks does not provide a satisfactory
result, so this model is not further considered. Using the preprocessing technique
on the data that was presented in Sect. 4 and feeding this data to a 1D-CNN
improves the average score significantly. However, it is still not comparable to
the results mentioned in the baseline using feature extraction.
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Figure 4: F1-scores of random 10-fold CV.
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Figure 5: F1-scores of leave-one-user-out CV.

The technique presented in Subsection 5.2 using GASF for transforming the
time series data to an image and feeding this image to a 2D-CNN achieves a
weighted average F1-score of 66.3% using the leave-one-user-out CV, being
almost as high as the baseline. To further improve the prediction quality of
the model, an ensemble technique was applied, combining the results of the
1D-CNN and 2D-CNN as described in Subsection 5.3.
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Figure 6: Confusion matrix of an example random fold result from the merged CNN.

Table 2: F1-scores of the different approaches.

Model Random 10-Fold Leave-One-User-Out

Baseline (Feature Extraction) 90% 67%

1D-CNN 90% 61%
2D-CNN 90% 66%

1D & 2D-CNN 91% 70%

Figures 4 and 5 show the overall F1-scores per fold that are achieved by this
“hybrid” model. The results illustrate that the weighted F1-score achieved by
leave-one-user-out CV (69.9%) is significantly lower than the one achieved by
random 10-fold CV (90.6%, see Table 2). This score confirms that the time
series data is dependent on a respective user and a random 10-fold CV does
not generalize the time series for each activity enough. As a consequence, this
would not allow the model to be utilized in a wide range of scenarios. The
high variation in the F1-scores per user (see Figure 5) further emphasizes the
discrepancy in the data quality of the time series as discussed in Sect. 3.
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The confusion matrix in Figure 6 shows that the majority of activities are
recognized correctlywith an acceptable confidence.Due to similar characteristics
in the sensor data, the classification among the activities bike, sit, and stand
can not always be performed unequivocally. The same can be observed for the
distinction between the activities stairsdown, stairsup, and walking.

8 Conclusion

In this work, we demonstrate a competitive fusion technique for efficiently
classifying human activity using an ensemble of Convolutional Neural Networks
with different dimensions. Due to many irregularities in the recordings of the
gyroscope and accelerometer sensors, e.g., missing values and model specific
gaps, an efficient way of handling the difficulties associated with smartwatch
sensor data is presented.

We found out that the measurements are very user-specific and require the
leave-one-user-out CV approach to train a model to generalize on activities
instead of users or devices. Through the use of interpolated 1D time series
and 2D encoded times series as images, the model presented in this work
combines two approaches of dealing with time series data, resulting in a better
classification score than each model alone and performs slightly better than the
baseline, which uses extracted features as input for basic classifiers.

Although our approach covers the area of time series classification with
CNN models along with strong evaluation using cross-fold and leave-one-out
validation, deep learning has other models as well like Multi-Layer Perceptrons
or Recurrent Neural Networks. The task at hand could be trained on the same
data to have a comparison with CNNs, although it is well-known that the
performance of CNNs is higher than that of the other models for a majority
of tasks. Accuracy, performance, and training time of all these models should
be compared as well to summarize the study in the deep learning domain in a
broader spectrum. Unfortunately, our research scope did not cover that hence
leaving room for potential future work.

In addition to the methodology presented in this paper, future work can
include adjustments of the proposed model to classify on streaming data and the
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use of different ensemble methods. Especially the performance of time series
with missing values could be explored. The model could be applied to different
datasets from the Human Activity Recognition field as well as to time series
datasets of other domains which will prove the methodology to its new heights.
Future steps can be to use light deep learning models including CNNs and others
as mentioned earlier for embedded devices. As a consequence, these devices do
not need to connect to servers where heavy models are deployed. In contrast,
they would be able to perform classification tasks on the devices itself. It would
be interesting to find out if these computationally light models have an effect on
performance or accuracy.
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