

 Karlsruhe Reports in Informatics 2020,3
Edited by Karlsruhe Institute of Technology,
Faculty of Informatics

 ISSN 2190-4782

A Formal Approach to Prove Compatibility
in Transformation Networks

Heiko Klare, Aurélien Pepin, Erik Burger, Ralf Reussner

 2020

KIT – University of the State of Baden-Wuerttemberg and National

Research Center of the Helmholtz Association

Please note:
This Report has been published on the Internet under the following
Creative Commons License:
http://creativecommons.org/licenses/by-nc-nd/4.0/

A Formal Approach to Prove Compatibility in Transformation Networks

Heiko Klare · Aurélien Pepin · Erik Burger · Ralf Reussner

Institute for Program Structures and Data Organization, Karlsruhe Institute of Technology (KIT), Germany
{klare, burger, reussner}@kit.edu, {aurelien.pepin}@alumni.kit.edu

Abstract The increasing complexity of software and cyber-
physical systems is handled by dividing the description of
the system under construction into different models or views,
each with an appropriate abstraction for the needs of specific
roles. Since all such models describe the same system, they
usually share an overlap of information, which can lead to
inconsistencies if overlapping information is not modified
uniformly in all models. A well-researched approach to make
these overlaps explicit and resolve inconsistencies are incre-
mental, bidirectional model transformations. They specify
the constraints between two metamodels and the restoration
of consistency between their instances. Relating more than
two metamodels can be achieved by combining bidirectional
transformations to a network. However, such a network may
contain cycles of transformations, whose consistency con-
straints can be contradictory if they are not aligned with each
other and thus cannot be fulfilled at the same time. Such
transformations are considered incompatible.

In this article, we provide a formal definition of consis-
tency and compatibility of transformations and propose an
inductive approach to prove compatibility of a given network
of transformations. We prove correctness of the approach
based on these formal definitions. Furthermore, we present an
operationalization of the approach at the example of QVT-R.
It detects contradictions between relations by transforming
them into first-order logic formulae and evaluating them with
an SMT solver. The approach operates conservatively, i.e., it
is not able to prove compatibility in all cases, but it identi-
fies transformations as compatible only if they actually are.
We applied the approach to different evaluation networks
and found that it operates conservatively and is able to prop-
erly prove compatibility in 80% of the cases, indicating its
practical applicability. Its limitations especially arise from
restricted capabilities of the used SMT solver, but not from
conceptual shortcomings. Our approach enables multiple do-
main experts to define transformations independently and to
check their compatibility when combining them to a network,
relieving them from the necessity to align the transformations
with each other a priori and to ensure compatibility manually.

Keywords model consistency · model transformation ·
transformation networks · transformation decomposition ·
transformation compatibility

1 Introduction

The scale of modern software systems and their embedding
into cyber-physical systems leads to a high and even increas-
ing complexity of systems to be built. To handle that com-
plexity, different roles operate on appropriate extracts and
abstractions of the system under construction described by
different models or views. Such a fragmentation of informa-
tion across different models is common at a high level, i.e.,
mechanical, electrical and software engineers usually use
different models and associated tools to describe a system
in their domain. Additionally, different models can be used
on a low level by engineers from the same domain, such as
software engineers using different models for architecture
specification, behavior development and deployment. For ex-
ample, the development of Electronic Control Units (ECUs)
software in automotives comprises different tools or stan-
dards for specifying the system and software architecture,
such as SysML [49] or AUTOSAR [59], for defining the be-
havior, such as MATLAB/Simulink [42] or ASCET [20], and
for defining the deployment on multi-core hardware archi-
tectures, such as Amalthea [24, 75]. Since all these models
describe the same system, they usually share an overlap of
information in terms of dependencies or redundancies, which
can lead to inconsistencies if overlapping information is not
modified properly in all models. Recent research investigated
such dependencies between ASCET and SysML [22], as well
as Amalthea and how to resolve them [44, 43].

Incremental model transformations are a common ap-
proach to resolve such inconsistencies by enabling develop-
ers to explicitly specify how inconsistencies can be resolved
(semi-)automatically. Especially bidirectional model trans-
formations [63], which specify the relations between two
metamodels and routines how consistency of their instances
can be restored, are well suited and well researched. Relating
more than two metamodels can either be achieved by defin-
ing a multi-directional transformation between all of them
or by specifying bidirectional transformations between pairs
of them in a modular way and combine them to a network
that is able to check and preserve consistency between sev-
eral models. Figure 1 exemplifies these different possibilities
at the example of relation of transformations between three

2 H. Klare, A. Pepin, E. Burger, R. Reussner

Person

firstname
lastname
address
income

Employee
name
socsecnumber
salary

Resident
name
address
socsecnumber

p

RPE e

e

RER /
R′ER

r

rRPR

p

p RPER

e

r

RPER = {〈p,e,r〉 |
p. f irstname+ ” ”+ p.lastname = e.name = r.name

∧ p.address = r.address∧ p.income = e.salary

∧ e.socsecnumber = r.socsecnumber}

RPE = {〈p,e〉 | p. f irstname+ ” ”+ p.lastname = e.name

∧ p.income = e.salary}

RPR = {〈p,r〉 | p. f irstname+ ” ”+ p.lastname = r.name

∧ p.address = r.address}

RER = {〈e,r〉 | e.name = r.name

∧ e.socsecnumber = r.socsecnumber}
R′ER = {〈e,r〉 | e.name.toLower = r.name

∧ e.socsecnumber = r.socsecnumber}

Fig. 1: Three simple metamodels for persons, employees and
residents, one ternary relation RPRE between them and three
binary relations RPE ,RPR,RER for each pair of them, with
R′ER as an alternative for RER.

simple metamodels for persons, employees and residents.
We use an informal notion of consistency, defined more pre-
cisely later on, which requires that if any person, employee
or resident is contained in a model, there must also be the
other two elements with the same names, addresses, incomes
and social security numbers. This relation can either be ex-
pressed as a ternary relation, denoted as RPER, or as three
binary relations RPE ,RPR,RER. In such a simple scenario a
single developer may be able to define all these relations.
However, in a more complex scenarios, like the relations
between the previously mentioned SysML, Amalthea and
ASCET metamodels, there may not be a single person having
the knowledge about all these dependencies [52], but there
may be different domain experts knowing about relations
between subsets of the metamodels [26]. Additionally, it is
difficult to think about complex multiary relations [62]. In
consequence, building networks of bidirectional transforma-
tions provides several benefits over building multi-directional
transformations.

Such a network of bidirectional transformations may con-
tain cycles of transformations. Figure 1 exemplifies why it
may be unavoidable to have such cycles. There is no pair of
binary relations, such that it is equivalent to the ternary rela-
tion RPER, because each pair of metamodels shares unique
information that is not represented in the third one. An essen-
tial issue with such cycles is that they impose the possibility
of defining contradictory constraints, such that the relations
cannot be fulfilled at the same time. In such a case, the rela-
tions are considered incompatible. Consider the three binary
relations RPE ,RPR,R′ER in Figure 1. These relation cannot
always be fulfilled, because R′ER requires the resident name
to be lowercase, whereas the other relations relate the names
as they are and thus allow the lowercase names. In conse-
quence, for a resident with a non-lowercase name it is not
possible to find a consistent person and employee. However,
in a transformation network, compatibility of the relations
defined by the transformations is a necessary requirement for
their repair routines to properly restore consistency [28].

In this article, we consider the relations defined by bidi-
rectional transformations. We clarify a notion of compatibil-
ity for such relations and develop an approach to prove com-
patibility of relations in a given network of transformations.
To achieve this, we formally define a notion of consistency,
based on fine-grained consistency relations, as well as com-
patibility. Building on this formalism, we are able to derive
an inductive, formal approach for proving compatibility of
relations by identifying those that are redundant. Its essential
idea is that if consistency relations have a specific kind of tree
structure, we are able to show that they are inherently compat-
ible. Furthermore, we show that adding redundant relations to
such a tree preserves compatibility. In consequence, reducing
an arbitrary network of relations to a tree by removing redun-
dant relations proves compatibility. Finally, we present an
operationalized approach at the example of QVT-R, which
proves compatibility in a network of QVT-R relations. It
transforms QVT-R relations into first-order logical formulae
and finds redundant relations by applying an SMT solver. In
detail, we make the following contributions:

Compatibility Formalization (C1): We formalize a notion
of consistency and precisely define compatibility of rela-
tions in a network of transformation.

Formal Approach (C2): We define a formal, inductive ap-
proach for proving compatibility of relations based on a
notion of redundancy and relation trees.

Operationalized Approach (C3): We propose an approach
that applies the formalism to QVT-R and show how a
translation to logical formulae and the usage of SMT
solver can be used to prove compatibility.

Applicability Evaluation (C4): While correctness of the
approach is given by construction and proven on the
formalism, we apply the approach to case studies to show
applicability of the approach.

A Formal Approach to Prove Compatibility in Transformation Networks 3

Notations

S= {a,b, . . .} Notation for a set S of elements

T = 〈a,b, . . .〉 Notation for a tuple T of elements

Properties and Classes

P Property (attribute or reference)

IP = {p1, p2, . . .} Property values of a property P

C = 〈P1, . . . ,Pn〉 Class

IC = {o= 〈p1, . . . , pn〉 | pi ∈ IPi} Instances (objects) of a class C

o ∈ IC Object of a class C

(Meta-)Models

M = {C1, . . . ,Cm} Metamodel

IM = {m | m⊆
⋃

C∈M IC} Instances of a metamodel

M= {M1, . . . ,Mk} Set of metamodels

IM = {{m1, . . . ,mk} | mi ∈ IMi} Instances of a metamodel setM

m ∈ IM Model of metamodel M

m ∈ IM Model set of a metamodel setM

Table 1: Notations and elements

It is, in general, not possible to prove that transformations
are incompatible if the language used to describe consistency
relations has sufficient expressiveness and is thus undecid-
able, such as QVT-R. On the other hand, it is possible to
prove that transformations are compatible. Our approach is
designed to operate conservatively, thus in cases it claims
compatibility, the transformations actually are compatible.
However, there may be cases in which relations are compati-
ble but the approach is not able to prove that.

The main benefit of our approach is that it enables do-
main experts to define transformations independently and to
automatically detect their compatibility. This supports two
development scenarios: First, when transformations are de-
veloped concurrently, they can be analyzed for compatibility
continuously or even on the fly. Second, when transforma-
tions are developed independently, in the extreme case as
reusable components to be applied in various contexts, i.e.,
with different sets of other transformations, compatibility
can be analyzed whenever transformations are combined to a
network. In both scenarios, our approach releases developers
them from the necessity to align the transformations with
each other a priori and ensuring compatibility manually.

2 Notation and Assumptions

In this section, we introduce basic terminology, notations and
assumptions that we make throughout the article. We give an
overview of the used notation and elements in Table 1.

2.1 Notation

We usually denote variables representing sets of any kinds
of elements in blackboard bold font S, those representing
tuples of any kinds of elements in gothic font T and write
the elements of a tuple in angle brackets 〈a,b, . . .〉.

We define the following operators for concise expres-
sions on tuples, which basically allow to treat tuples as sets
wherever necessary: For a tuple t = 〈t1, . . . , tn〉, we say that:

t ′ ∈ t :⇔∃ i ∈ {1, . . . ,n} : t ′ = ti

For two tuples t1, t2, we define:

t1∩ t2 := {t | t ∈ t1∧ t ∈ t2}

Note that the intersection of tuples is not a tuple but a set, be-
cause we are only interested in getting the elements contained
in both tuples but do not need to match their order.

Furthermore, we use variables of uppercase letters for all
elements at the metamodel level, such as M for a metamodel
or C for a class, whereas we use lowercase letters for all
elements at the model level, such as m for a model and o for
an object. If not further specified, we use the same indices on
related elements on the metamodel and the model level, such
as model m1 being an instance of metamodel M1.

2.2 Elements

In general, we consider metamodels as a composition of
meta-classes, which in turn are composed of properties rep-
resenting attributes or references. Models instantiate meta-
models and are composed of objects, which are instances of
meta-classes and in turn consist of property values, which
instantiate properties.

We denote properties, which are the information a meta-
class consists of, such as attributes or references, as P and the
property values as instances of a property as IP = {p1, p2, . . .}
of property P. We do not need to further differentiate different
types of properties into attributes and references, like it is
done in other formalizations, such as the OCL standard [47,
A.1] or the thesis of Kramer [31, 2.3.2].

We denote meta-classes, in the following shortly called
classes, as tuples of properties C = 〈P1, . . . ,Pn〉. Instances
of a class are objects, each being a tuple of instances of the
properties of the class and we denote all instances of a class
C as IC = {o = 〈p1, . . . , pn〉 | pi ∈ IPi}.

We denote a metamodel M = {C1, . . . ,Cm} as a finite
set of classes. The instances of a metamodel are sets of ob-
jects IM = {m | m⊆

⋃
C∈M IC}. Each instance, denoted as a

model, is a finite set of objects that instantiate the classes in
the metamodel. For a set of metamodelsM= {M1, . . . ,Mk},
we denote the set that contains all sets of instances of that
metamodels as IM = {{m1, . . . ,mk} | mi ∈ IMi}.

4 H. Klare, A. Pepin, E. Burger, R. Reussner

2.3 Assumptions

We assume models to be finite, so for each model m, we
assume that |m|< ∞. Additionally, our formalism assumes
objects to be unique within a model m. This is already im-
plicitly covered by the definition of IM for the instances of a
metamodel M. In practice, it is usually allowed to have the
same object, i.e., an element with the same type, attribute and
reference values, multiple times within the same model. This
is, however, only a matter of identity, which we assume, with-
out loss of generality, to be represented within the objects. In
practice, identity is usually given by different objects being
placed at specific places in memory or by assigning unique
IDs to them, which allow the existence of and the possibility
to distinguish multiple objects with the same attribute and
reference values.

Finally, we assume consistency to be defined in terms of
multiple bidirectional transformations, even if more than two
metamodels are related. It has to be noted that not all mul-
tiary relations can be expressed by binary ones [62]. Thus,
in theory, combining multiple bidirectional transformations
is less expressive than using a multi-directional transforma-
tion. We have, however, already discussed in Section 1 why
using multiple bidirectional transformations is still a reason-
able approach in comparison to defining multi-directional
transformations from a practical perspective: complexity and
distributed knowledge foster the modular development of
transformations, as argued in existing work [62, 26]. Finally,
our assumption is especially for reasons of simplicity in un-
derstanding the concepts but can also be extended to the
multiary case. Even if multi-directional transformations are
to be used, there will not only be a single one, but potentially
a combination of multiple such transformations. Thus, there
is still need for checking compatibility.

3 Compatibility in Transformation Networks

In this section, we precisely define our notion of consistency,
and motivate and formally introduce the term compatibil-
ity. We first discuss properties of transformation networks
with an intuitive notion of compatibility, based on consider-
ations in existing work. We then define consistency based
on fine-grained consistency relations and, finally, derive a
compatibility notion from the consistency formalization and
its pursued perception. This serves as our contribution C1.

3.1 Properties of Transformation Network

Keeping pairs of models consistent by means of incremen-
tal, bidirectional transformations has been well researched
in recent years [63, 33, 11]. A bidirectional transformation
consists of a relation that specifies which pairs of models

are considered consistent and a pair of directional transfor-
mations, denoted as consistency repair routines, that take
one modified and one originally consistent model and de-
liver a new model that is consistent to the modified one [63].
Several well-defined properties of such transformations have
been identified. The essential correctness property states that
a consistency repair routine delivers a result such that the
models are actually consistent according to the defined re-
lation [63]. Another important property is hippocraticness,
which states that a consistency repair routine returns the input
model if it was already consistent to the modified one [63].

When we combine several transformations to a network
to achieve consistency between multiple models, those prop-
erties of the single transformations are still relevant, as each
transformations on its own has to be at least correct to work
properly in a network of transformations. However, correct-
ness of the single transformations does not induce correctness
of the transformation network. Taking an arbitrary set of cor-
rect transformations and executing them one after another
does not necessarily constitute a terminating approach that
delivers a result, in which all models are consistent according
to the relations of the transformations, because the result of
one transformation may violate the relation of another. It is
possible that the approach does either not terminate, because
there is a divergence or alternation in values changed or ele-
ments created, or terminates in a state that is not consistent
regarding the relations of all transformations [28]. The prop-
erty of a network to always result in a state in which the
models are consistent to all relations of the transformations
if they are executed in a specific order, can be seen as a cor-
rectness property for transformation networks. In this work,
we focus on that correctness property and do not discuss
further quality properties of transformation networks, such
as modularity, evolvability and comprehensibility [26].

A single transformation can only be incorrect in terms of
its repair routines, because there are no restrictions regarding
its relation that may prevent the repair routine from being
able to produce a correct result. In previous work, however,
we identified that transformation networks can be incorrect
at different levels [28]. Networks can also be incorrect at the
level of relations rather than repair routines, because multiple
relations can be contradictory, i.e., they can relate elements
in different ways such that the relations cannot be fulfilled at
the same time. In such a case, the consistency repair routines
cannot be result in a state that is consistent according to the
relations anymore, thus they may not terminate anymore. We
call the relations of such transformations incompatible.

In consequence, compatibility of relations is a necessary
prerequisite for consistency repair routines to produce cor-
rect results in transformation networks. We also found that
correctness of the consistency repair routines can already be
achieved by construction, whereas compatibility of the rela-
tions cannot be achieved by construction but in the best case

A Formal Approach to Prove Compatibility in Transformation Networks 5

be checked for a set of relations. In this work, we focus on the
possibility to check compatibility of the relations of a set of
transformations. In the following, we therefore precisely de-
fine the notion of compatibility of relations, which excludes
contradictions in relations that can prevent consistency repair
routines from fulfilling the relation.

Finally, the topology of a transformation network directly
influences how prone it is to incompatibilities of its relations.
Contradictions of consistency relations, as exemplified with
the relations RPE ,RPR,R′ER in Figure 1, can only occur if the
same classes are related to each other by different (sequences
of) transformations in a different way. For example, in Fig-
ure 1, each combination of two relations puts the same classes
into relation as the third one. This means that a transforma-
tion network, in which each pair of classes is only related by
one sequence of transformations, cannot have contradictory
relations and is thus inherently compatible.

3.2 A Fine-grained Notion of Consistency

A common definition of consistency enumerates consistent
pairs of models in a relation [63]. However, for our stud-
ies on compatibility, we need a more fine-grained notion of
consistency. Considering transformations languages, such
as QVT-R, first, relations are defined at the level of classes
and their properties, i.e. how properties of instances of some
classes are related to properties of instances of other classes.
Second, they are defined in an intensional way, i.e., con-
straints specify which elements shall be considered consis-
tent, rather than enumerating all consistent instances, known
as an extensional specification. Both ways have equal expres-
siveness and especially each intensional specification can
be transformed into an extensional one by enumerating all
instances that fulfill the constraints. Since mathematical state-
ments are easier to make on extensional specifications, we
stick to them. However, we reuse the concept of specifying re-
lations at the level of classes and their properties. This makes
it easier to make statements about dependencies between con-
sistency relations. For example, two fine-grained consistency
relations considering completely independent sets of classes
cannot interfere, and thus especially do not introduce any
compatibility problems, which is not easy to express when
considering relations at the level of complete models. Finally,
from such a fine-grained specification, a holistic relation at
level of models can always be derived by enumerating all
models that fulfill all the fine-grained specifications, thus it
does not restrict expressiveness in any way and can be seen
as a compositional approach for defining consistency.

In the following, we start with introducing a fine-grained
notion of consistency relations. We proceed with consider-
ations on implicit relations, which are induced by a set of
consistency relations, such as transitive relations, to finally
precisely define a notion of compatibility.

3.2.1 Consistency

The first definitions on conditions and consistency relations
are based on the work of Kramer [31, sec. 2.3.2, 4.1.1]. The
central idea of the consistency notion is to have consistency
relations, which contain pairs of objects and, broadly speak-
ing, requires that if the objects in one side of the pair occur
in a model, the others have to occur in another model as well.

Definition 1 (Condition) A condition c for a class tuple
Cc = 〈Cc,1, . . . ,Cc,n〉 is a set of object tuples with:

∀〈o1, . . . ,on〉 ∈ c : ∀ i ∈ {1, . . . ,n} : oi ∈ ICc,i

An element c ∈ c is called a condition element. For a set
of models m ∈ IM of a metamodel set M and a condition
element c, we say that:

m contains c :⇔∃m ∈m : c ⊆ m

Conditions represent object tuples that instantiate the
same tuple of classes. They are supposed to occur in models
that fulfill a certain condition regarding consistency, i.e., they
define the objects that can occur in the previously mentioned
pairs of consistency relations, which we specify later. We
say that a set of models contains a condition element if any
of the models contains all the objects within the condition
element. This implies that the metamodel of such a model has
to contain all the classes in the class tuple of the condition.

Definition 2 (Consistency Relation) Let Cl,CR and Cr,CR be
two class tuples. A consistency relation CR is a subset of
pairs of condition elements in conditions cl,CR ,cr,CR with
Cl,CR = Ccl,CR and Cr,CR = Ccr,CR :

CR ⊆ cl,CR ×cr,CR

We call a pair of condition elements 〈cl ,cr〉 ∈CR a consis-
tency relation pair. For a set of modelsm and a consistency
relation pair 〈cl ,cr〉, we say that:

m contains 〈cl ,cr〉 :⇔m contains cl ∧m contains cr

Without loss of generality, we assume that each condition
element of both conditions occurs in at least one consistency
relation pair, i.e.

∀c ∈ cl : ∃〈cl ,cr〉 ∈CR : c = cl

∧∀c ∈ cr : ∃〈cl ,cr〉 ∈CR : c = cr

A consistency relation according to Definition 2 is a set
of pairs of object tuples, which are supposed to indicate the
tuples of objects that are considered consistent with each
other, i.e., if a model contains one of the left object tuples
occurs in the relation one of the related right object tuples has
to occur in a model as well. It is based on two conditions that
define relevant object tuples in each of the two metamodels
and defines the ones that are related to each other.

We can now define a notion of consistency for a set of
models based on the definition of consistency relations.

6 H. Klare, A. Pepin, E. Burger, R. Reussner

Definition 3 (Consistency) Let CR be a consistency rela-
tion and letm ∈ IM be a set of models of the metamodels in
M. We say that:

m consistent to CR :⇔
∃W⊆CR :

(
∀〈cl,1,cr,1〉,〈cl,2,cr,2〉 ∈W :

〈cl,1,cr,1〉= 〈cl,2,cr,2〉∨ (cl,1 6= cl,2∧ cr,1 6= cl,2)
)

∧∀〈cl ,cr〉 ∈W :m contains cl ∧m contains cr

∧∀c′l ∈ cl,CR :m contains c′l ⇒ c′l ∈ cl,W

We call such a W a witness structure for consistency of m
to CR, and for all elements 〈wl ,wr〉 ∈W, we call wl and wr
corresponding to each other.

For a set of consistency relations CR= {CR1,CR2, . . .},
we say that:

m consistent toCR :⇔
∀CR ∈CR :m consistent to CR

A consistency relation CR relates one condition element
at the left side to one or more other condition elements at
the right side of the relation. The definition of consistency
ensures that if one condition element c ∈ cl,CR in the left
side of the relation occurs in a set of models, exactly one of
the condition elements related to it by a consistency relation
CR occurs in another model to consider the set of models
consistent. If another element that is related to c occurs in the
models, this one has to be, in turn, related to another condition
element c′ ∈ cl,CR of the left side of condition elements by
CR, which also occurs in the models. This is a necessary
restriction, because usually a single corresponding element
is expected, as we will see in examples in the following.
To achieve that, the definition uses an auxiliary structure
W, which serves as a witness structure for those pairs of
condition elements that co-occur in the models.

Example 1 The definition of consistency is exemplified in
Figure 2, which is an alternation of an extract of Figure 1
only considering employees and residents. Models with em-
ployees and residents are considered consistent if for each
employee exactly one resident with the same name or the
same name in lowercase exists. The model pairs 1–3 are
obviously consistent according to the definition, because
there is always a pair of objects that fulfills the consistency
relation. In model pair 4, there is a consistent resident for
each employee, but there is no appropriate employee for the
resident with name = ”Alice”. However, our definition of
consistency only requires that for each condition element
of the left side of the relation that appears in the models an
appropriate right element occurs, but not vice versa. Thus, a
relation is interpreted unidirectionally, which we will discuss
in more detail in the following. In model pair 5, there are
two residents with names in different capitalizations, which

Employee
name

Resident
name

e

CR = {〈e,r〉 | e.name = r.name

∨e.name.toLower = r.name}

r

:Employee

name = "Alice"

:Resident

name = "Alice"

:Employee

name = "alice"

:Resident

name = "Alice"

:Employee

name = "alice"

:Employee

name = "Alice"

:Resident

name = "alice"

:Resident

name = "Alice"

:Employee

name = "Alice"

:Resident

name = "Alice"

:Resident

name = "John"

:Resident

name = "Alice"

:Resident

name = "alice"

:Employee

name = "alice"

:Resident

name = "alice"

:Employee

name = "alice"

:Employee

name = "Alice"

1.

2.

3.

4.

5.

6.

Fig. 2: A consistency relation between employee and resi-
dent and six example model pairs: model pairs 1–4 being
consistent with an appropriate witness structure W shown
in blue and model pair 5 and 6 being inconsistent with an
inappropriate mapping structure shown in red and dashed.

would both be considered consistent to the employee accord-
ing to the consistency relation. Comparably, in model pair
6, there is a resident that fulfills the consistency relations
for both employees, each having a different but matching
capitalization. However, the consistency definition requires
that each element in a model for which consistency is defined
by a consistency relation may only have one corresponding
element in the model. In this case, there are two residents
respectively two employees that could be considered consis-
tent to the employee respectively resident, thus there is no
appropriate witness structure with a unique mapping between
the elements as required by the consistency definition.

A Formal Approach to Prove Compatibility in Transformation Networks 7

As mentioned before, we define the notion of consistency
in a unidirectional way, which means that a consistency rela-
tion may define that some elements cr are required to occur
in a set of models if some elements cl occur, but not vice
versa. Such a unidirectional notion can also be reasonable
in our example, as it could make sense to require a resi-
dent for each employee, but not every resident might also
be an employee. To achieve a bijective consistency defini-
tion, for each consistency relation CR its transposed relation
CRT = {〈cl ,cr〉 | 〈cr,cl〉 ∈ CR} can be considered as well.
Regarding Figure 2, if we consider the relation between em-
ployees and residents as well as its transposed, the model pair
4 would also be considered inconsistent, because an appro-
priate employee for each resident would be required by the
transposed relation. We call sets of consistency relations that
contain only bijective definitions of consistency symmetric.

Definition 4 (Symmetric Consistency Relation Set) Let
CR be a set of consistency relations. We say that:

CR is symmetric :⇔
∀CR ∈CR : ∃CR′ ∈CR : CR′ =CRT

Any description of bijective consistency relations can be
achieved by defining a symmetric set of consistency relations.
We chose to define consistency in a unidirectional way due
to two reasons:

1. Some relevant consistency relations are actually not bijec-
tive. Apart from the simple example concerning residents
and employees, this situation always occurs when objects
at different levels of abstraction are related. Consider a
relation between components and classes, requiring for
each component an implementation class but not vice
versa, or a relation between UML models and object-
oriented code, requiring for each UML class an appropri-
ate class in code but not vice versa. These relations could
not be expressed if consistency relations were always
considered bidirectional for determining consistency.

2. We consider networks of consistency relations, in which,
as we will see later, a combination of multiple bijec-
tive consistency relations does not necessarily imply a
bijective consistency relation again. Thus, we need a uni-
directional notion of consistency relations anyway.

3.2.2 Implicit Consistency Relations

Each set of consistency relations defines binary consistency
relations, each between two sets of classes. However, such
consistency relations imply further transitive consistency
relations. Having one relation between classes A and B and
one between B and C implies an additional relation between
A and C, for which we define a notion for the concatenation of
relations. The goal of this notion is to provide a relation that

is induced by the concatenated ones. This means, if a model
is consistent to the concatenation, it should also be consistent
to the single relations, as otherwise the concatenation would
introduce additional consistency constraints. To achieve this,
the following definition makes appropriate restrictions to the
derived consistency relation pairs.

Definition 5 (Consistency Relations Concatenation) Let
CR1,CR2 be two consistency relations. The concatenation is
defined as follows:

CR =CR1⊗CR2 := {〈cl ,cr〉 |
∃〈cl ,cr,1〉 ∈CR1 : ∃〈cl,2,cr〉 ∈CR2 : cr,1 ⊆ cl,2

∧∀〈cl ,c
′
r,1〉 ∈CR1 : ∃〈c′l,2,c′r,2〉 ∈CR2 : c′l,2 ⊆ c′r,1}

with Cl,CR = Cl,CR1 and Cr,CR = Cr,CR2

The concatenation of two consistency relations contains
all pairs of object tuples that are related across common el-
ements in the right respectively left side of the consistency
relation pairs. Such a concatenation may be empty. Two re-
quirements ensure that all models considered consistent to
the concatenated relation are also consistent to the single rela-
tions: First, it is important that a pair of consistency relations
CR1,CR2 is only combined if the left condition element of
the consistency relation pair from CR2 is a subset of the right
condition element of the consistency relation pair 〈cl ,cr〉 of
CR1. Second, it is necessary that for all elements cr in the
right side of CR1, to which a condition element cl is consid-
ered consistent, there must be a matching condition element,
i.e. a subset of cr, in the left condition of CR2. Otherwise, in
both cases the occurrence of cl in a model set would not nec-
essarily impose any consistency requirement by CR2. In the
following, we explain these two requirements at an example.

Example 2 Figure 3 extends the initial example (Figure 1)
with further classes in the consistency relations, such that
they do not only relate single classes to each other. It defines
an address for employees and in the second example also a
location for the address of residents, which are represented
in additional classes. Both examples contains a consistency
relation CR1 respectively CR3 between persons and residents,
which define that for each person a resident with the same
name has to exist. The examples provide different options for
consistency relation between residents (with locations) and
employees with addresses (CR2,CR′2,CR4), which exemplify
the necessity for the restrictions in Definition 5:

1. CR1⊗CR2: CR2 requires for each resident an employee
with the same name and an address with an arbitrary street
name. In consequence, CR1⊗CR2 defines a relation for
each person with an employee having the same name and
all addresses with possible street names. All models that
are consistent to the concatenation are also consistent to
the single relations.

8 H. Klare, A. Pepin, E. Burger, R. Reussner

Person
name

Resident
name
street

Employee
name

Address
street

address

p

CR1

r r
CR2 /
CR′2

e

a

CR1 = {〈p,r〉 | p.name = r.name}

CR2 = {〈r,(e,a)〉 | r.name = e.name∧ r.street = a.street}
CR′2 = {〈r,(e,a)〉 | 〈r,(e,a)〉 ∈CR2∧ r.street 6= ””}

Person
name

Resident
name

Location
street

address

Employee
name

Address
street

address

p

CR3

r r
CR4

e

l a

CR3 = {〈p,r〉 | p.name = r.name}

CR4 = {〈(r, l),(e,a)〉 | r.name = e.name∧ l.street = a.street}

Fig. 3: Two scenarios, each with two consistency relations:
Consistency relations CR1 and two options CR2,CR′2 with
CR1⊗CR2 6= /0 and CR1⊗CR′2 = /0, and consistency relations
CR3 and CR4 with CR3⊗CR4 = /0 and CRT

4 ⊗CRT
3 6= /0

2. CR1⊗CR′2: CR′2 is similar to CR2 but additionally re-
quires that the street of a resident must not be empty.
In consequence, for a resident with an empty address it
is not required that an employee exists. This results in
CR1⊗CR′2 = /0, because for any person, there must not be
an employee, as the person can be consistent to a resident
with an empty street name. This shows the necessity of
the second restriction in the definition.

3. CR3⊗CR4: The concatenation CR3⊗CR4 is obviously
empty, because CR3 requires a resident for each person,
but CR4 only requires an employee if there is also a
location. Such a location does not necessarily exist if a
person exists, thus if the models are consistent to CR3
and CR4 there must not necessarily be an employee for
any contained person. This shows the necessity for the
first restriction in Definition 5, which would require a left
condition element from CR4 (resident and location) to be
a subset of a right condition element in CR3 (resident).

4. CRT
4 ⊗CRT

3 : The concatenation of the transposed rela-
tions CRT

4 ⊗CRT
3 is not empty, but actually contains

all combinations of each possible employee with all ad-
dresses and relates them to a person with the same name.
This is reasonable, because CRT

4 requires for all exist-
ing employees and addresses that an appropriate resident
with the same name has to exist, which then requires a
person with that name to exist due to CRT

3 . The definition
does only cover that due to its first restriction, because
cl,2, i.e., the resident related to a person by CRT

3 is a
subset of cr,1, i.e., a tuple of resident and location.

We can formally show that the defined notion of con-
catenation does not lead to any restriction of consistency
regarding the single relations:

Lemma 1 Let CR1,CR2 be two consistency relations and let
CR =CR1⊗CR2 be their concatenation. For all model sets
m ∈ IM the following statement holds:

m consistent to {CR1,CR2}⇒m consistent to CR

Proof For any set of modelsm that is consistent to CR1 and
CR2, take the witness structure W1 that witnesses consistency
ofm to CR1 and W2 that witnesses consistency ofm to CR2.
Now consider the composed witness structure W =W1⊗W2.
Let us assume there were 〈cl ,cr〉,〈c′l ,c′r〉 ∈W with cl = c′l
and cr 6= c′r. Per definition cl only occurs in one 〈cl ,cr,1〉 ∈W1.
So there must be two 〈cl,2,cr〉,〈c′l,2,c′r〉 ∈CR2 with cl,2⊆ cr,1
and c′l,2 ⊆ cr,1. However, since cl,2 and c′l,2 contain instances
of the same classes and are both subsets of the same other
object tuples cr,1, we have cl,2 = c′l,2. So we know that:

∀〈cl,1,cr,1〉,〈cl,2,cr,2〉 ∈W :

〈cl,1,cr,1〉= 〈cl,2,cr,2〉∨ cl,1 6= cl,2∧ cr,1 6= cl,2

Additionally, since W1 and W2 are witness structures for con-
sistency of m to CR1 and CR2, the model set contains all
condition elements in W1 and W2. Consequentially, m also
contains the condition elements in W, as those in W are com-
posed of the ones in W1 and W2. This implies that:

∀〈cl ,cr〉 ∈W :m contains cl ∧m contains cr

Finally, let us assume that:

∃c′l ∈ cl,CR :m contains c′l ∧ c′l 6∈ cl,W

We know that cl,CR ⊆ cl,CR1 , because the left condition el-
ements in CR are taken from the left condition elements
in CR1 per definition and thus also contained CR1. Since
m contains c′l , there must be a consistency relation pair
〈c′l ,c′r,1〉 ∈W1, which witnesses consistency of c′l accord-
ing to CR1. There must be at least one consistency relation
pair 〈c′l,2,c′r,2〉 ∈CR2 with c′l,2 ⊆ c′r,1, because otherwise c′l
would per definition not occur in the left condition of CR.
For all such tuples 〈c′l,2,c′r,2〉, we know thatm contains c′l,2,
becausem contains c′r,1 due to its containment in W1 and due
to c′l,2 ⊆ c′r,1. In consequence, consistency to CR2 requires
that for one of those c′r,2 it holds that m contains c′r,2 and
that there is 〈c′l,2,c′r,2〉 ∈W2 that witnesses this consistency.
Summarizing, due to 〈c′l ,c′r,1〉 ∈W1 and 〈c′l,2,c′r,2〉 ∈W2
with c′l,2 ⊆ c′r,1 and due to the definition of W as the con-
catenation of W1 and W2, we know that 〈c′l ,c′r,2〉 ∈W, which
breaks our assumption. So we have shown that:

∀c′l ∈ cl,CR |m contains c′l : c′l ∈ cl,W

Summarizing, we have shown that W fulfills all requirements
to a witness structure according to Definition 3 form being
consistent to CR, so we know thatm consistent to CR. ut

A Formal Approach to Prove Compatibility in Transformation Networks 9

We can use this notion of concatenation to define a transi-
tive closure for sets of consistency relations, which contains
all relations in that set complemented by all possible concate-
nations of them, i.e., implicit relations of that set. Having
shown that our definition of consistency relations concate-
nation is well-defined in the sense that it does not introduce
further restrictions for consistency, we are also able to show
that the transitive closure does not restrict consistency in
comparison to the set of consistency relation itself.

Definition 6 (Transitive Closure of Consistency Relations)
Let CR be a set of consistency relations. We define its tran-
sitive closure CR+ as:

CR+ = {CR |∃CR1, . . . ,CRk ∈CR :

CR =CR1⊗ . . .⊗CRk}

The transitive closure of a set of consistency relations
CR contains all consistency relations ofCR and all concate-
nations of relations inCR. That means, the transitive closure
contains consistency relations that relate all elements that are
directly or indirectly related due to CR.

The transitive closure of a consistency relation set does
not further restrict consistency in comparison to the original
set by construction of concatenation, i.e., if a model set is
consistent to a set of consistency relations, it is also consistent
to their transitive closure. We show that in the following by
first extending the argument of Lemma 1, which shows that
concatenation does not further restrict consistency, to the
transitive closure, which is only a set of concatenations of
consistency relations.

Lemma 2 Let CR be a set of consistency relations for a set
of metamodelsM. Then:

∀CR ∈CR+ \CR : ∃CR1, . . . ,CRk ∈CR : ∀m ∈ IM :

m consistent to {CR1, . . .CRk}⇒m consistent to CR

Proof Per definition, any CR ∈CR+ is a concatenation of
consistency relations in CR, i.e.

∀CR ∈CR+ : ∃CR1, . . . ,CRk ∈CR :

CR =CR1⊗ . . .⊗CRk

We already know for any two consistency relations CR1,CR2
and all model sets m that if m consistent to {CR1,CR2},
thenm consistent to CR1⊗CR2 due to Lemma 1. Inductively
applying that argument to CR1, . . . ,CRk shows that for all
models m with m consistent to {CR1, . . . ,CRk} we know
thatm consistent to CR. ut

As a direct result of the previous lemma, we can now
show that the transitive closure of a consistency relation set
considers the same sets of models consistent as the consis-
tency relation set itself.

Lemma 3 Let CR be a set of consistency relations for a set
of metamodels M. Then for all sets of models m ∈ IM it is
true that:

m consistent toCR⇔m consistent toCR+

Proof Adding a consistency relation to a set of consistency
relations can never lead to a relaxation of consistency, i.e.,
models becoming consistent that were not considered con-
sistent before. This is a direct consequence of Definition 3
for consistency, which requires models be consistent to all
consistency relations in a set to be considered consistent, thus
only restricting the set of consistent model sets by adding
further consistency relations. In consequence, it holds that:

m consistent toCR+⇒m consistent toCR

Due to Lemma 3, we know that a set of models that is con-
sistent to CR is always consistent to all transitive relations
in CR+ as well. Thus, we know that:

m consistent toCR⇒m consistent toCR+

In consequence, models are considered consistent equally for
CR and its transitive closure CR+. ut

3.3 A Formal Notion of Compatibility

Based on the fine-grained notion of consistency in terms
of consistency relations, we can know precisely formulate
our initially informal notion of compatibility of consistency
relations. We stated that we consider consistency relation
incompatible if they are somehow contradictory, like the re-
lation between names in our initial example in Figure 1. In
that example, for residents with non-lowercase names no
consistent set of models could be derived. To capture that in
a definition, we consider relations compatible if for all condi-
tion elements in the consistency relations, i.e., for every tuple
of objects for which consistency is somehow constrained
by requiring further elements to exist in a set of models to
consider it consistent, a consistent model containing those
objects can be found. In consequence, a consistency relation
is not allowed to prevent objects for which other relations
specify consistency from existing in consistent models.

Definition 7 (Compatibility) Let CR be a set of consis-
tency relations for a set of metamodelsM. We say that:

CR compatible :⇔
∀CR ∈CR : ∀c ∈ cl,CR : ∃m ∈ IM :

m contains c∧m consistent toCR

We call a set of consistency relation CR incompatible if it
does not fulfill the definition of compatibility.

10 H. Klare, A. Pepin, E. Burger, R. Reussner

Person

firstname
lastname

Employee
name

Resident
name

p

CR2 / CR′2 / CR′′2
e

e
CR3 / CR′3

r
p

CR1

r

CR1 = {〈p,r〉 | r.name = p. f irstname+ ” ”+ p.lastname}

CR2 = {〈p,e〉 | e.name = p. f irstname+ ” ”+ p.lastname}
CR′2 = {〈p,e〉 | e.name = p. f irstname+ ”, ”+ p.lastname}
CR′′2 = {〈p,e〉 | e.name = p.lastname+ ” ”+ p. f irstname}

CR3 = {〈r,e〉 | r.name = e.name}
CR′3 = {〈r,e〉 | r.name = e.name.toLower}

Fig. 4: Three metamodels with different consistency
relations. The sets {CR1,CRT

1 ,CR2,CRT
2 ,CR3,CRT

3 }
and {CR1,CRT

1 ,CR′′2 ,CR′′T2 ,CR3,CRT
3 } are compatible,

whereas the sets {CR1,CRT
1 ,CR′2,CR′T2 ,CR3,CRT

3 } and
{CR1,CRT

1 ,CR2,CRT
2 ,CR′3,CR′T3 } are not.

Definition 7 formalizes the notion of non-contradictory
relations by requiring that a relation may not restrict that
an object tuple, for which consistency is defined in any con-
sistency relation, cannot occur in a model set anymore. We
exemplify this notion of compatibility on an extract of the
initial example with different consistency relations.

Example 3 Figure 4 shows an extract of the three metamod-
els from Figure 1 and several consistency relations, of which
different combinations are compatible or incompatible ac-
cording to the previous definition. We always consider the
actual relations together with their transposed ones to have a
symmetric set of consistency relations.

{CR1,CRT
1 ,CR2,CRT

2 ,CR3}: These relations are obviously
compatible, because they relate f irstname respectively
lastname and name in the same way. Thus, for each ob-
ject with any name, and thus any condition element in all
of the consistency relations, a consistent model set can
be found by adding instances of the other classes with
appropriate names.

{CR1,CRT
1 ,CR′2,CR′T2 ,CR3,CRT

3 }: These relations are ob-
viously not compatible, because for each person with
f irstname = f and lastname = l, another person with
f irstname = f + ”,” and lastname = l has to exist due
to CR′2 and the transitive relations requiring the addition
of a comma. Thus, each person would require an infi-
nite number of further persons to exist in a consistent
set of models. However, models are assumed to be fi-
nite, so there is no such model set and the relations are
incompatible.

{CR1,CRT
1 ,CR′2,CR′T2 ,CR3,CRT

3 }: These relations are com-
patible, although one might not expect that. The rela-
tions define that for a resident with f irstname = f and
lastname = l another resident with f irstname = l and
lastname = f has to exist, so that the set of models is
consistent. Although that behavior may not be intuitive,
it does not violate the definition of compatibility, because
for any object in the relations, a consistent model can be
constructed. In general, such a behavior cannot be for-
bidden, because comparable behavior might be expected,
such as that for a software component an implementation
class as well a utility class with different names are cre-
ated due to different relations, which leads to comparable
behavior as in the example. Finally, such a relation would
not prevent a consistency repair routine from finding a
consistent set of models. So this can be seen as a semantic
problem that requires further relation-specific knowledge,
as it is necessary to know that a first name should never
be mapped to a last name in our example.

{CR1,CRT
1 ,CR2,CRT

2 ,CR′3,CR′T3 }: These consistency rela-
tions reflect the ones of our motivational example in Fig-
ure 1. According to the informal notion of incompatibility
that we motivated in the introduction with that example,
our formal definition of compatibility also considers these
relations as incompatible, because it is not possible to
create a resident with an uppercase name, such that the
containing set of models is consistent. For a resident
with name = "A B" , a person with f irstname = "A"
and lastname = "B" has to exist, which requires exis-
tence of an employee with name = "A B" . Now CR′3
requires a resident with name = "a b" to exist, which
in turn requires a resident with f irstname = "a" and
lastname = "b" and an employee with name = "a b"
to exist. In consequence, there are two employees, one
with the uppercase and one with the lowercase name,
for which a resident with the lowercase name has to ex-
ist according to the relation CR′3. So there is no witness
structure with a unique mapping between the elements
that is required to fulfill Definition 3 for consistency.

To summarize, compatibility is supposed to ensure that
consistency relations do not impose restrictions on other
relations such that their condition elements, for which con-
sistency is defined, can never occur in consistent models.
The goal of ensuring compatibility of consistency relations
is especially to prevent consistency repair routines of model
transformation from non-termination, as may occur espe-
cially in the second scenario, where an infinitely large model
would be required to fulfill the consistency relations.

Finally, analogously to the equivalence of a set of consis-
tency relationsCR and its transitive closureCR+ in regards
to consistency of a set of models, we can show that a set
of consistency relations and its transitive closure are always
equal with regards to compatibility.

A Formal Approach to Prove Compatibility in Transformation Networks 11

Lemma 4 Let CR be a set of consistency relations for a set
of metamodelsM. It holds that:

CR compatible ⇔CR+ compatible

Proof The reverse direction of the equivalence is given by
definition, since compatibility of a sub of consistency rela-
tions implies compatibility of any subset by definition. So we
have to show the forward direction by considering the com-
patibility definition for all CR ∈ CR+. We partition CR+

into CR and CR+ \CR and consider their consistency re-
lations independently.

First, we consider CR ∈CR+ \CR. According to Defi-
nition 6 for the transitive closure, each CR ∈CR+ \CR is a
concatenation of consistency relations CR1, . . . ,CRk ∈CR.
In consequence of that definition we know that cl,CR ⊆ cl,CR1 ,
so it is given that:

∀cl ∈ cl,CR : ∃c′l ∈ cl,CR1 : ∀m ∈ IM :

m contains cl ⇒m contains c′l (1)

Since CR is compatible, we especially know from Defini-
tion 7 for compatibility that:

∀c′l ∈ cl,CR1 : ∃m ∈ IM :

m contains c′l ∧m consistent toCR (2)

Because of Equation 1 and Equation 2, we know that:

∀cl ∈ cl,CR : ∃m ∈ IM :

m contains cl ∧m consistent toCR (3)

Furthermore, Lemma 3 states that for all model setsm ∈ IM
it is true that:

m consistent toCR⇔m consistent toCR+ (4)

In consequence of equations 3 and 4, we know that:

∀CR ∈CR+ \CR : ∀c′ ∈ cl,CR : ∃m ∈ IM :

m contains c′ ∧m consistent toCR+ (5)

Second, we consider CR ∈ CR. Due to the definition
of compatibility of CR and Lemma 3 showing equality of
consistency ofm regarding CR and CR+ it is true that:

∀CR ∈CR : ∀c′ ∈ cl,CR : ∃m ∈ IM :

m contains c′ ∧m consistent toCR+ (6)

With Equation 5 and Equation 6, we have shown compat-
ibility of CR+ if CR is compatible. ut

4 A Formal Approach to Prove Compatibility

In this section, we use the definition of compatibility to derive
a formal approach for proving compatibility of consistency
relations. The approach bases on two ideas:

1. A set of consistency relations in which each pair of
classes is only related across one concatenation of re-
lations is inherently compatible, because there cannot be
any contradictory relations. We precisely define this in a
specific notion of consistency relation trees.

2. A consistency relation that is redundant in a set of re-
lations, i.e., a relation that does not alter the notion of
consistency for models regarding the other relations in
that set, does not affect compatibility and can thus be
removed from that set of relations.

Given a set of consistency relations, compatibility can be
proven inductively if a consistency relation tree that is equiv-
alent to the set of relations can be found by only removing
redundant relations from that set. Finding such an equivalent
consistency relation tree serves as a witness for compatibility
of a set of relations. In the following, we formalize and prove
this inductive approach to check compatibility of a set of
consistency relations. This constitutes our contribution C2.

The sketched approach for witnessing compatibility is
based on a definition of equivalence for sets of consistency
relations. We consider two sets of consistency relations equiv-
alent if they consider the same sets of models as consistent:

Definition 8 (Equivalence of Consistency Relations) Let
CR1,CR2 be two sets of consistency relations defined for a
set of metamodelsM. We say that:

CR1 equivalent toCR2 :⇔∀m ∈ IM :

m consistent toCR1⇔m consistent toCR2

The goal of our approach is to find a set of consistency
relations that is compatible and equivalent to a given consis-
tency relation set. We will later use equivalence to introduce a
specific notion of redundancy that is compatibility-preserving.
In the following, we first consider structures of consistency
relation sets that are inherently compatible and afterwards
consider redundancy as a means to find an equivalent repre-
sentation of a relation set that has such a structure.

4.1 Compatible Consistency Relation Set Structures

We first consider two essential properties of a consistency
relation set that lead to its inherent compatibility:

1. Composability: We show that the union of independent,
compatible sets of consistency relations is compatible.

2. Trees: We show that relations fulfilling a special notion
of consistency relation trees are inherently compatible.

12 H. Klare, A. Pepin, E. Burger, R. Reussner

Resident
name

Employee
name

Location
street

Address
street

e
CR1 =

{〈r,e〉 | e.name = r.name}

r

l
CR2 =

{〈l,a〉 | l.street = a.street}

a

Fig. 5: Two independent (sets of) consistency relations

In consequence, we know that a consistency relation set that
is composed of independent subsets of consistency relation
trees is inherently compatible.

We consider consistency relation sets as independent
if there are no transitive consistency relations induced by
relations from both sets, i.e., for each object in a model
consistency is only restricted by one of those sets.

Definition 9 (Independence of Consistency Relation Sets)
Let CR1 and CR2 be two sets of consistency relations. We
say that:

CR1 andCR2 are independent :⇔
∀CR ∈CR1 : ∀CR′ ∈CR2 :

∀CR1, . . . ,CRk ∈CR1∪CR2 :

CR⊗CR1⊗ . . .⊗CRk⊗CR′ = /0

∧CR′⊗CR1⊗ . . .⊗CRk⊗CR = /0

We callCR connected if there is no partition of a consistency
relation set CR into two subsets that are independent, i.e.

∀CR1,CR2 ⊆CR :

CR1∩CR2 = /0∧CR1∪CR2 =CR

⇒¬(CR1 andCR2 are independent),

Example 4 Figure 5 depicts a simple example with two con-
sistency relations CR1 and CR2, each relating instances of
two disjoint classes with each other. Since there is no overlap
in the objects that are related by the consistency relations,
they are considered independent according to Definition 9.

An important property of independent sets of consis-
tency relations is that computing their union is compatibility-
preserving, i.e., the union of compatible, independent consis-
tency relation sets is compatible as well:

Theorem 1 Let CR1 and CR2 be two compatible sets of
consistency relations. Then CR1∪CR2 is compatible.

Proof Since CR1 is compatible, per definition there is a
model setm for each condition element c of the left condi-
tion of each consistency relation in CR1 that contains c and
that is consistent toCR1. Taking such anm, we create a new
m′ by removing all elements fromm, which are contained in

any condition elements in any consistency relation in CR2
and thus potentially require other elements to occur to be
considered consistent to that consistency relation. In conse-
quence, m′ does not contain any condition elements from
consistency relations in CR2 and is thus consistent to CR2
by definition. Additionally, m′ is still consistent to CR1,
because due to the independence of CR1 and CR2, there
cannot be any consistency relations in CR1, which require
the existence of the removed elements. In consequence, for
each condition element c of each consistency relation inCR1
there is a model set that contains c and that is consistent to
CR1 ∪CR2. The analogous argumentation applies to the
consistency relations in CR2, which is why the definition
of compatibility is fulfilled for all condition elements of all
consistency relations in CR1∪CR2. ut

The constructive proof can also be reflected exemplarily
in Figure 5: Take any set of models that, for example, contains
a resident with an arbitrary name and is consistent to CR1, i.e.,
that also contains an employee with the same name. If that
set of models contains any addresses or locations, they can
be removed without violating consistency to CR1, because
addresses and locations are independently related by CR2.

Definition 10 (Consistency Relation Tree) Let CR be a
symmetric, connected set of consistency relations. We say:

CR is a consistency relation tree :⇔
∀CR =CR1⊗ . . .⊗CRm ∈CR+ :

∀CR′ =CR′1⊗ . . .⊗CR′n ∈CR+ \CR :

∀s, t | s 6= t : CRs 6=CRT
t ∧CR′s 6=CR′Tt

⇒ Cl,CR ∩Cl,CR′ = /0∨Cr,CR ∩Cr,CR′ = /0

The definition of a consistency relation tree requires that
there are no sequences of consistency relations that put the
same classes into relation, i.e. between all pairs of classes
there is only one concatenation of consistency relations that
puts them into relation. Since we assume a symmetric set
of consistency relations, we exclude the symmetric relations
from that argument, as otherwise there would always be two
such concatenations by adding a consistency relation and its
transposed relation to any other concatenation.

Example 5 Figure 6 depicts a rather simple consistency re-
lation tree. Persons are related to residents and residents are
related to employees, all having the same names respectively
a concatenation of f irstname and lastname, by the relations
CR1,CR2, as well as their transposed relations CRT

1 ,CRT
2 .

There are no classes that are put into relation across differ-
ent paths of consistency relations, thus the definition for a
consistency relation tree is fulfilled. If an additional rela-
tion between persons and employees was specified, like in
Figure 1, the tree definition would not be fulfilled.

A Formal Approach to Prove Compatibility in Transformation Networks 13

Person

firstname
lastname

Employee
name

Resident
name

p

CR1

r

r
CR2

e

CR1 = {〈p,r〉 | r.name = p. f irstname+ ” ”+ p.lastname}
CR2 = {〈r,e〉 | r.name = e.name}

Fig. 6: A consistency relation tree {CR1,CRT
1 ,CR2,CRT

2 }

The definition also covers the more complicated case in
which multiple classes may be put into relation by consis-
tency relations but there is only a subset of them that is put
into relation by different consistency relations. We can now
prove that a set of consistency relations that is a consistency
relation tree is always compatible. We first present a lemma
that shows that in a consistency relation tree you can always
find an order of the relations such that the classes at the right
side of a relation do not overlap with the classes at the left
side of a relation that preceded in the order, i.e. there is no
cycle in the relations between classes.

Lemma 5 Let CR = {CR1,CRT
1 , . . . ,CRk,CRT

k } be a sym-
metric, connected set of consistency relations. CR is a con-
sistency relation tree if and only if for each CR there ex-
ists a sequence of consistency relations 〈CR′1, . . . ,CR′k〉 with
CR′1 =CR, containing for each i either CRi or CRT

i , i.e.,

∀ i ∈ {1, . . . ,k} :(
CRi ∈ 〈CR′1, . . . ,CR′k〉∧CRT

i 6∈ 〈CR′1, . . . ,CR′k〉
)

∨
(
CRT

i ∈ 〈CR′1, . . . ,CR′k〉∧CRi 6∈ 〈CR′1, . . . ,CR′k〉
)

such that:

∀s ∈ {1, . . . ,k−1} : ∀ t ∈ {i+1, . . . ,k} :

Cr,CR′s ∩Cr,CR′t = /0∧Cl,CR′s ∩Cr,CR′t = /0

Proof We start with the forward direction, i.e., given a consis-
tency relation tree CR we show that there exists a sequence
according to the requirements in Lemma 5 by constructing
such a sequence 〈CR′1, . . . ,CR′k〉 for any CR ∈ CR. Start
with CR′1 =CR for any CR ∈CR. We now inductively add
further relations to that sequence. Take any consistency rela-
tion CRs =CRs,1⊗ . . .⊗CRs,m ∈CR+ with Cl,CRs,1 ⊆ Cr,CR .
Such a sequence must exist because of CR being connected.
Now add all CRs,1, . . . ,CRs,m to the sequence, which fulfills
both requirements to that sequence in Lemma 5 by definition.
The following addition of further consistency relations can
be inductively applied. Take any other consistency relation
CRt =CRt,1⊗ . . .⊗CRt,n ∈CR+ such that:

∃CR′ ∈ {CR,CRs,2, . . . ,CRs,m} : Cl,CRt,1 ⊆ Cr,CR′

∧CRt,1,CRT
t,1 6∈ {CR,CRs,2, . . . ,CRs,m}

In other words, take any concatenation in the transitive clo-
sure of CR that starts with a relation with a left class tu-
ple that is contained in a right class tuple of a relation al-
ready added to the sequence. Again, such a sequence must
exist because of CR being connected and, again, add all
CRt,1, . . . ,CRt,n to the sequence. Per construction, for each
CR′ in the sequence, there is a non-empty concatenation
of relations within the sequence CR ⊗ . . .⊗CR′, because
relations were added in a way that such a concatenation
always exists. Since all relations in the sequence are con-
tained in CR, such a concatenation was also contained in
CR+. First, we show that the sequence still contains no
duplicate elements (1.), i.e., that none of the CRt,i or CRT

t,i
is already contained in the sequence 〈CR,CRs,1, . . . ,CRs,m〉.
Second, we show that both further conditions for the se-
quence defined in Lemma 5 are still fulfilled for the sequence
〈CR,CRs,1, . . . ,CRs,m,CRt,1, . . . ,CRt,n〉 (2. ,3.).

1. Let us assume that the sequence 〈CR,CRs,1, . . . ,CRs,m〉
already contained one of the CRt,i or CRT

t,i. If CRt,i is con-
tained in the sequence, there is a concatenation CR⊗ . . .⊗
CRt,i with relations in 〈CR,CRs,1, . . . ,CRs,m〉, as well
as a concatenation CR⊗ . . .⊗CRt,1⊗ . . .⊗CRt,i. Since
CRt,1 6∈ {CR,CRs,2, . . . ,CRs,m} by construction, these two
concatenations relate the same class tuples, i.e., they con-
tradict the definition of a consistency relation tree. If CRT

t,i
was contained in the sequence 〈CR,CRs,2⊗ . . .⊗CRs,m〉,
there is a concatenation CR⊗ . . .⊗CRw⊗CRT

t,i with rela-
tions in 〈CR,CRs,1, . . . ,CRs,m〉 and, like before, the con-
catenation CR ⊗ . . .⊗CRt,1, . . . ,CRt,i. Due to Cr,CRw ∩
Cl,CRt,i 6= /0 and CRT

t,1 6∈ {CR,CRs,2, . . . ,CRs,m} by con-
struction, the two concatenations CR⊗ . . .⊗CRw and
CR⊗ . . .⊗CRt,1⊗ . . .⊗CRt,i have an overlap in both their
left and right class tuples, i.e., they contradict the defini-
tion of a consistency relation tree. In consequence, the
sequence 〈CR,CRs,1, . . . ,CRs,m〉 cannot have contained
any CRt,i or CRT

t,i before.
2. Let us assume there were any CR′u and CR′v in the se-

quence 〈CR,CRs,1, . . . ,CRs,m,CRt,1, . . . ,CRt,n〉 such that
Cr,CR′u ∩Cr,CR′v 6= /0. As discussed before, for each of these
relations exists a concatenation of relations in the se-
quence CR ⊗ . . .⊗CR′u and CR ⊗ . . .⊗CR′v, which is
contained in CR+. This contradicts the definition of a
consistency relation tree, so there cannot be two such
relations with overlapping classes in the right class tuple.

3. Let us assume there were any CR′u and CR′v (u < v)
in the sequence 〈CR,CRs,1, . . . ,CRs,m,CRt,1, . . . ,CRt,n〉
such that Cl,CR′u ∩ Cr,CR′v 6= /0. Again per construction,
there must be a non-empty concatenation CR ⊗ . . .⊗
CR′w⊗CR′u with w < u. Since Cl,CR′u ⊆ Cr,CR′w per defini-
tion, it holds that Cr,CR′w ∩Cr,CR′v 6= /0. In other words, the
relation CR′v introduces a cycle in the relations. We have
already shown in (2.) that this contradicts the definition
of a consistency relation tree.

14 H. Klare, A. Pepin, E. Burger, R. Reussner

The previous strategy for adding relations to the sequence can
be continued inductively by adding relations of the transitive
closure of CR if their relations were not already added to
the sequence. This process can be continued until finally
all relations in CR are added to the sequence. Inductively
applying the same arguments as before, the final sequence
still fulfills all requirements for the sequence in Lemma 5.

We proceed with the reverse direction, i.e., given that
a sequence according to the requirements in Lemma 5 ex-
ists for all CR ∈ CR, we show that the set of consistency
relations fulfills the definition of a consistency relation tree.
Let us assume that the tree definition was not fulfilled, i.e.,
that there were two consistency relations CRs = CRs,1 ⊗
. . .⊗CRs,m ∈ CR+ and CRt = CRt,1⊗ . . .⊗CRt,n ∈ CR+

such that Cl,CRs ∩Cl,CRt 6= /0 and Cr,CRs ∩Cr,CRt 6= /0. With-
out loss of generality, we assume that CRs,m 6= CRt,n, be-
cause otherwise we could instead consider the sequence with-
out those last relations and still fulfill the defined require-
ments. Any sequence according to Lemma 5 containing both
CRs,m and CRt,n would contradict the assumption, because
Cr,CRs,m ∩Cr,CRt,n 6= /0 in contradiction to the assumptions re-
garding the sequence. Thus, the sequence has to contain ei-
ther CRT

s,m or CRT
t,n. Let us assume that the sequence contains

CRT
s,m. Then the sequence cannot contain CRs,m−1, because

Cr,CRT
s,m
∩Cr,CRs,m−1 6= /0, which, again, would contradict the

assumptions regarding the sequence. This argument can be
inductively applied to all CRs,i, such that the sequence has to
contain all CRT

s,i. Since the sequence contains CRT
s,1, it must

contain CRt,1, because Cr,CRT
s,1
∩Cr,CRT

t,1
6= /0. In consequence

of CRt,1 being contained in the sequence, all CRt,i have to be
contained as well, due to the same reasons as before. So we
have these conditions, which introduce a cycle in the overlaps
of the class tuples of the relations within the sequence:

Cl,CRT
s,i−1
∩Cr,CRT

s,i
6= /0∧Cl,CRt,1 ∩Cr,CRT

s,1
6= /0

∧Cl,CRt,i ∩Cr,CRt,i−1 6= /0∧Cl,CRT
s,m
∩Cr,CRt,n 6= /0

Because of that cycle in the overlap of class tuples, there is
no order of these relations CR′′1 , . . . ,CR′′m+n such that for all
of them it holds that Cl,CR′′u ∩Cr,CR′′v 6= /0 (u < v), which con-
tradicts the assumptions regarding the sequence in Lemma 5.
The analog argument holds when we assume that the se-
quence contains CRT

t,n instead of CRT
s,m. In consequence, there

cannot be two such concatenations CRs and CRt without
breaking the assumptions for the sequence in Lemma 5. ut

The previous lemma shows that the definition of con-
sistency relation trees based on unique concatenations of
the same class tuples is equivalent the possibility to find
sequences of the relations that do not contain cycles in the
related class tuples. The definition is supposed to be easier to
check in practice. However, we can now show that a consis-
tency relation tree is always compatible with a constructive
proof that requires the equivalent definition from Lemma 5.

:Person

firstname = "Alice"
lastname = "Do"

:Employee

name = "Alice Do"

:Resident

name = "Alice Do"
p

CR1

r

r
CR2

e

CR1 = {〈p,r〉 | r.name = p. f irstname+ ” ”+ p.lastname}

CR2 = {〈r,e〉 | r.name = e.name}

(1) (2)
(3)

Fig. 7: An example for constructing a model with the condi-
tion element of CR1 containing the person named "Alice Do"
for a consistency relation tree according to the consistency
relations in Figure 6.

Theorem 2 LetCR be a consistency relation tree, thenCR
is compatible.

Proof We prove the statement by constructing a set of mod-
els for each condition element in the left condition of each
consistency relation that contains the condition element and
is consistent, i.e., that fulfills the compatibility definition. The
basic idea is that because CR is a consistency relation tree,
we can simply add necessary elements to get a model set
that is consistent to all consistency relations, by following an
order of relations according to Lemma 5. Thus, we explain
an induction for constructing such a model set, which is also
exemplified for a simple scenario in Figure 7, based on the
relations in the consistency relation tree in Figure 6.

Base case: Take any CR ∈ CR and any of its left side
condition elements cl = 〈ol,1, . . . ,ol,m〉 ∈ cl,CR . Select any
cr = 〈or,1, . . . ,or,n〉 ∈ cr,CR , such that cl and cr constitute a
consistency relation pair 〈cl ,cr,〉 ∈ CR. Now construct the
model setm that contains only ol,1, . . . ,ol,m and or,1, . . . ,or,n.
In consequence, we have a minimal model setm, such that
m contains cl and m consistent to CR. Additionally, m is
consistent to CRT due to symmetry of CR and CRT : It is
cr ∈ cl,CRT and 〈cr,cl〉 ∈ CRT and no other condition ele-
ment of cl,CRT is contained in m by construction, thus m
is consistent to CRT . In consequence, we know that for all
CR ∈CR, {CR,CRT} is compatible. Considering the exam-
ple in Figure 7, for the selection of any person as a condition
element in cl,CR1 (1), we select a resident in cr,CR1 with the
same name (2), such that the elements are consistent to CR1.

Induction assumption: According to Lemma 5, there is a
sequence 〈CR1, . . . ,CRk〉 of the relations in CR with CR1 =

CR, such that:

∀s ∈ {1, . . . ,k−1} : ∀ t ∈ {i+1, . . . ,k} :

Cr,CR′s ∩Cr,CR′t = /0∧Cl,CR′s ∩Cr,CR′t = /0

A Formal Approach to Prove Compatibility in Transformation Networks 15

Considering the example in Figure 7, such a sequence would
be 〈CR1,CR2〉, because the elements in the right condition of
CR2 are not represented in the left condition of CR1. If, in gen-
eral, we know that {CR1,CRT

1 . . . ,CRi,CRT
i } (i < k) is com-

patible, for every cl ∈Cl,CR , we can find a model setm that
contains cl and is consistent to {CR1,CRT

1 , . . . ,CRi,CRT
i } by

definition. We can especially create a minimal model accord-
ing to our construction for the base case and the following
inductive completion.

Induction step: Consider CRi+1. There is at most one con-
dition element cl ∈ cl,CRi+1 withm contains cl . If there were
at least two condition elements cl ,c

′
l ∈ cl,CRi+1 , both con-

tained in m, then by construction there is a consistency re-
lation CRs (s < i + 1) with cl ,c

′
l ∈ cr,CR j . Let us assume

there were two consistency relations CRs,CRt , each contain-
ing one of the condition elements in the right condition, then
there would be non-empty concatenations CR⊗ . . .⊗CRs and
CR′⊗ . . .⊗CRt with Cl,CR ∩Cl,CR′ 6= /0, because we started
the construction with elements from the left condition of CR,
so every element is contained because of a relation to those el-
ements, and with Cr,CRs ∩Cr,CRt 6= /0, because both condition
elements cl and c′l instantiate the same classes, as they are
both contained in cl,CRi+1 . This would violate Definition 10
for a consistency relation tree, thus there is only one such con-
sistency relation CRs. Consequently, there must be two con-
dition elements cll ,c

′
ll ∈ cl,CRs with 〈cll ,cl〉,〈c′ll ,c′l〉 ∈CRs,

because per construction m was consistent to CRs and so
there must be a witness structure with a unique mapping
between condition elements contained in m. The above ar-
gument can be applied inductively until we finally find that
there must be two condition elements clll ,c

′
lll ∈ cl,CR , which

are contained in m. This is not true by construction, as we
started with only one element from cl,CR , so there is only one
such condition element cl ∈ cl,CRi+1 withm contains cl .

For this condition element cl ∈ cl,CRi+1 , select an arbitrary
cr = 〈o1, . . . ,os〉 ∈ cr,CRi+1 , such that 〈cl ,cr〉 ∈ CRi+1. Now
create a model setm′ by adding the objects o1, . . . ,os tom.
Since cl is the only of the left condition elements of CRi+1
thatm contains, model setm′ is consistent to CRi+1 per con-
struction.m′ is also consistent to CRT

i+1, because due to the
symmetry of CRi+1 and CRT

i+1, it is cr ∈ cl,CRT
i+1

and due to

〈cr,cl〉 ∈CRT
i+1, a consistent corresponding element exists in

m′. Furthermore, there cannot be any other c′ ∈ cl,CRT
i+1

with
m′ contains c′ , because otherwise there would have been an-
other consistency relation CR′ that required the creation of
c′ , which means that there are two concatenations of con-
sistency relations CR⊗ . . .⊗CR′ and CR⊗ . . .⊗CRi+1 that
both relate instances of the same classes, which contradicts
Definition 10 for a consistency relation tree.

Additionally, due to Lemma 5, for all CRs (s < i+1), we
know that Cl,CRs ∩Cr,CRi+1 = /0. Since the newly added ele-
ments cr are part of cr,CRi+1 , these elements cannot match the

left conditions of any of the consistency relations CRs (s <
i+ 1). So m′ is still consistent to all CRs (s < i+ 1). Fi-
nally, due to Lemma 5, for all CRs (s < i+1), we know that
Cr,CRs ∩Cr,CRi+1 = /0. Again, since the newly added elements
cr are part of cr,CRi+1 , these elements cannot match the left
conditions of any of the consistency relations CRT

s (s < i+1).
Som′ is still consistent to all CRT

s (s< i+1). In consequence,
we know thatm′ consistent to {CR1,CRT

1 . . . ,CRi+1,CRT
i+1}.

Considering the example in Figure 7, we would select
CR2 and add for the resident, which is in the left condition
elements of CR2, an appropriate employee to make the model
set consistent to CR2 (3).

Conclusion Taking the base case for CR and the induction
step for CRi+1, we have inductively shown that

m′ consistent to {CR1,CRT
1 . . . ,CRk,CRT

k }=CR

Since the construction is valid for each condition element in
every consistency relation inCR, we know that a consistency
relation tree CR is compatible. ut

Summarizing, Theorem 1 and Theorem 2 have shown that
consistency relation sets fulfilling a special notion of trees
are compatible and that combining compatible independent
sets of relations is compatibility-preserving. In consequence,
having a consistency relation set that consists of independent
subsets that are consistency relation trees, this set of relations
is inherently compatible. An approach that evaluates whether
a given set of consistency relations fulfills Definition 9 and
Definition 10 for independence and trees can be used to prove
compatibility of those relations.

However, consistency relations fulfill such a structure
only in specific cases. In general, like in our motivational
example in Figure 1, there may be different consistency rela-
tions putting the same elements into relation, such that the
definition for consistency relation trees is not fulfilled. In the
following, we discuss how to find a consistency relation tree
that is equivalent to a given set of consistency relations, such
that this equivalence witnesses compatibility.

4.2 Redundancy as Witness for Compatibility

We have introduced specific structures of consistency rela-
tions that are inherently compatible. If a given set of con-
sistency relations does not represent one of those structures,
especially because there are multiple consistency relations
putting the same classes into relation, it is unclear whether
such a set is compatible.

In the following, we present an approach to reduce a set
of consistency relations to a structure of independent con-
sistency relation trees. The essential idea is to find relations
within the set, which do not change compatibility of the
consistency relation set whether or not they are contained

16 H. Klare, A. Pepin, E. Burger, R. Reussner

in it. An approach that finds such relations and—virtually—
removes them from the set until the remaining relations form
a set of independent consistency relation trees, proves com-
patibility of the given set of relations. We first define the term
of a compatibility-preserving relation.

Definition 11 Let CR be a compatible set of consistency
relations and let CR be a consistency relation. We say that:

CR compatibility-preserving toCR :⇔
CR∪{CR} compatible

To be able to find such a compatibility-preserving rela-
tion, we introduce the notion of redundant relations and prove
the property of being compatibility preserving. Informally
speaking, a relation is redundant if it is expressed transitively
across others, i.e., if it does not restrict or relax consistency
compared to a combination of other relations. We precisely
specify a notion of redundancy in the following.

Definition 12 (Redundant Consistency Relation) LetCR
be a set of consistency relations for a set of metamodelsM.
For a consistency relation CR ∈CR, we say that:

CR redundant inCR :⇔
∃CR′ ∈ (CR\{CR})+ : ∀m ∈ IM :

m consistent to CR′⇒m consistent to CR

The definition of redundancy of a consistency relation CR
ensures that there is another consistency relation, possibly
transitively expressed across others, such that if a model is
consistent to that other relation, it is also consistent to CR.
This means that there are no model sets that are considered
inconsistent to CR, but not to another relation, thus CR does
not restrict consistency. Actually, the definition of redundancy
implies that the set of consistency relations with and without
the redundant one are equivalent according to Definition 8,
thus both consider the same model sets as consistent.

Lemma 6 Let CR ∈CR be a redundant consistency relation
in a relation set CR. Then CR is equivalent to CR\{CR}.

Proof Like discussed in Lemma 3, adding a consistency re-
lation to a set of consistency relations can never lead to a
relaxation of consistency, i.e., models becoming consistent
that were not considered consistent before. This is a direct
consequence of Definition 3 for consistency, which requires
models be consistent to all consistency relations in a set to
be considered consistent, thus restricting the set of consis-
tent model sets by adding further consistency relations. In
consequence, it holds that:

m consistent toCR⇒m consistent toCR\{CR}

Additionally, a direct consequence of Definition 12 for re-
dundancy is that a redundant consistency relation does not

Resident
name

Employee
name

Location
street

Address
street

r CR1 e

l

r CR2 e

a

CR1 = {〈(r, l),e〉 | r.name 6= ””

∧ (r.name = e.name∨ r.name = e.name.toLower)}

CR2 = {〈r,(e,a)〉 | r.name = e.name∧a.street 6= ””}

Fig. 8: Redundant consistency relation CR1 in {CR1,CR2}

restrict consistency, as it considers all models to be consis-
tent that are also considered consistent to another consistency
relation in the transitive closure of the consistency relation
set. Thus, all models that are considered consistent to the
transitive closure of CR \ {CR} are also consistent to CR
and thus to all relations in CR:

m consistent to (CR\{CR})+⇒m consistent toCR

According to Lemma 3, each set of models that is consistent
to a consistency relation set is also consistent to its transitive
closure an vice versa. In consequence, the previous implica-
tion is also true for CR\{CR} rather than (CR\{CR})+.
Summarizing, CR and CR\{CR} are equivalent. ut

In general, to consider a consistency relation redundant
in CR, it has to define equal or weaker requirements for
consistency than one of the other relations inCR. Informally
speaking, such weaker requirements mean that the redundant
relation must have weaker conditions, i.e., it must require
consistency for less objects and consider the same or more
objects consistent to each of the left condition elements.

Example 6 Such weaker consistency requirements are exem-
plified in Figure 8, which shows a consistency relation CR1
that is redundant in {CR1,CR2}. A redundant consistency
relation, such as CR1, must have weaker requirements in the
left condition, such that it requires consistent elements to
exist in less cases. This means that it may have a larger set of
classes that are matched and that there may be less condition
elements for which consistency is required. In case of CR1,
the left condition contains both a resident and a location,
whereas the left condition of CR2 only contains residents.
Thus CR1 requires consistent elements, i.e., employees, only
if a resident and a location exists, whereas CR2 requires that
already for an existing resident. Furthermore, the residents
for which CR1 defines any consistency requirements are a
subset of those for which CR2 defines consistency require-
ments, as CR1 does not make any statements about residents
having an empty name. Thus, the left condition elements of
CR1 are a subset of those of CR2. In consequence, if CR1

A Formal Approach to Prove Compatibility in Transformation Networks 17

Employee
name

Person
name

Resident
name

e CR1 p

l

e CR2 p p

CR3

r

CR1 = {〈(e,r), p〉 | e.name = r.name.toU pper∧ e.name = p.name}

CR2 = {〈e, p〉 | e.name = p.name}
CR3 = {〈p,r〉 | r.name = p.name.toLower}

Fig. 9: A consistency relation CR1 being redundant in
{CR1,CR2,CR3}, with {CR2,CR3} being compatible and
{CR1,CR2,CR3} being incompatible.

requires consistency for a resident and a location, CR2 re-
quires it anyway, because it already defines consistency for
the contained resident.

Additionally, a redundant consistency relation, such as
CR1, must have weaker requirements for the elements at the
right side, such that one of the consistent right condition
elements is contained anyway because another relation al-
ready required them. This means that the relation may have
a smaller set of classes, of whom instances are required to
consider the models consistent, and there may be more condi-
tion elements of the right side that are considered consistent
with condition elements of the left side to not restrict the ele-
ments considered consistent. In case of CR1, it only requires
an emploee to exist for a resident compared to CR2, which
also requires a non-empty address to exist. Additionally, CR1
does not restrict the employees that are considered consistent
to employees compared to CR2, as it also considers employ-
ees with the same name as consistent, but additionally those
having the name of the resident in lowercase.

Our goal is to have a compatibility-preserving notion of
redundancy, i.e., adding a redundant relation to a compatible
relation set should preserve compatibility. Unfortunately, our
intuitive redundancy definition is not compatibility-preserving.

Proposition 1 LetCR be a compatible set of consistency re-
lations and let CR be a consistency relation that is redundant
in CR∪{CR}. Then CR is not necessarily compatibility-
preserving, i.e., CR∪{CR} is not necessarily compatible.

Proof We prove the proposition by providing a counterexam-
ple. Consider the example in Figure 9. CR2 relates each em-
ployee to a person with the same name and CR3 relates each
person to a resident with the same name in lowercase. The
consistency relation set {CR2,CR3} is obviously compatible,
because for each employee and each person, which constitute
the left condition elements of the consistency relations, a con-
sistent model set containing the person respectively employee

can be created by adding the appropriate person or employee
with the same name and a resident with the name in low-
ercase. Furthermore, CR1 is redundant in {CR1,CR2,CR3}
according to Definition 12, because if a model is consistent
to CR2 it is also consistent to CR1, since CR1 also requires
persons with the same name as an employee to be contained
in a model set but in less cases, precisely only those in which
the model also contains a resident such that the employee
name is the one of the resident in uppercase.

However, {CR1,CR2,CR3} is not compatible. Intuitively,
this is due to the fact that CR1 and CR3 define an incompatible
mapping between the names of residents and persons. This
is also reflected by Definition 7 for compatibility. Take a
model with an employee and a resident named A. This is a
condition element in cl,CR1 . Consequentially, CR1 requires
a person A to exist. Furthermore CR3 requires a resident
with name a to exist. In consequence, there are two tuples
of employees and residents, both with employee A and one
with resident A respectively resident a each, for which a
consistent person with name A is required by CR1. However,
CR1 actually forbids to have two residents, one having the
lowercase name of the other, because both are condition
elements in CR1 requiring an appropriate person to occur in
a consistent model, but there is only one person that to which
both can be mapped, namely the one with the uppercase name,
so there is no witness structure with a unique mapping as
required by Definition 3 for consistency. This example shows
that adding a redundant consistency relation to a compatible
set of consistency relations does not lead to a compatible
consistency relation set. ut

In consequence of Proposition 1, we need a stronger
definition of redundancy that is compatibility-preserving. In
the example in Figure 9 showing Proposition 1, we have
seen that it is problematic if a redundant consistency relation
considers more classes in its left condition than the relation
it is redundant to. Therefore, we restrict the left class tuple.

Definition 13 (Left-equal Redundant Consistency Rela-
tion) Let CR be a set of consistency relations for a meta-
model setM. For a consistency relation CR ∈CR, we say:

CR left-equal redundant inCR :⇔
∃CR′ ∈ (CR\{CR})+ : ∀m ∈ IM :

m consistent to CR′⇒m consistent to CR

∧Cl,CR = Cl,CR′

The definition of left-equal redundancy is similar to the
redundancy definition but restricts the notion of redundancy
to cases in which the left condition of the redundant consis-
tency relation CR considers the same classes than the other
relation in the set of consistency relations that induces consis-
tency of a model set to CR. As discussed before, redundancy
in general allows that the left condition of a redundant con-
sistency relation can consider a superset of those classes.

18 H. Klare, A. Pepin, E. Burger, R. Reussner

Lemma 7 Let CR be a consistency relation that is left-equal
redundant in a set of consistency relations CR. Then CR is
redundant in CR.

Proof Since the definition of left-equal redundancy is equal
to the one for redundancy, apart from the additional restric-
tion for the class tuples, redundancy of a left-equal redundant
relation is a direct implication of the definition. ut

Before showing that left-equal redundancy is compatibility-
preserving, we introduce an auxiliary lemma that shows that
if a model set contains any left condition element of a left-
equal redundant relation, i.e., if that redundant relation re-
quires the model set to contain corresponding elements for
that object tuple to be consistent, there is also another relation
that requires corresponding elements for that object tuple.

Lemma 8 Let CR be a consistency relation that is left-equal
redundant in a set of consistency relations CR for a set of
metamodelsM. Then it holds that:

∃CR′ ∈ (CR\{CR})+ : ∀cl ∈ cl,CR : ∃c′l ∈ cl,CR′ :

∀m ∈ IM :m contains c′l ⇒m contains cl

Proof Due to left-equal redundancy of CR in CR, we know
per definition that:

∃CR′ ∈ (CR\{CR})+ : ∀m ∈ IM :

m consistent to CR′⇒m consistent to CR

∧Cl,CR = Cl,CR′

This implies that:

∃CR′ ∈ (CR\{CR})+ : ∀cl ∈ cl,CR : cl ∈ cl,CR′

Because if there was a cl ∈ cl,CR so that cl 6∈ cl,CR′ , then
the model set m only consisting of cl would be consistent
to CR′, because it does not require any other elements to
exist for considering the model set consistent, whereas there
is at least one 〈cl ,cr〉 ∈ CR, so that m needs to contain cr
for considering m consistent to CR, which is not given by
construction. This shows that cl,CR′ contains all elements in
cl,CR , so there is always at least one element from cl,CR′ that
a model setm contains if it contains an element from cl,CR ,
which proves the statement in the lemma. ut

Theorem 3 Let CR be a compatible set of consistency rela-
tions for a set of metamodelsM and let CR be a consistency
relation that is left-equal redundant in CR∪{CR}. Then
CR∪{CR} is compatible.

Proof Due to left-equal redundancy of CR in CR∪{CR},
which also implies general redundancy according to Defini-
tion 12, CR and CR∪{CR} are equivalent, according to
Lemma 6. Due to that equivalence, we know that for any
model setm ∈ IM:

m consistent toCR⇔m consistent toCR∪{CR} (1)

It follows from Definition 7 for compatibility and Equation 1:

∀CR′ ∈CR : ∀cl ∈ cl,CR′ : ∃m ∈ IM :

m contains cl ∧m containsCR∪{CR} (2)

This already shows that forCR the compatibility definition is
fulfilled, so we need to prove that the compatibility definition
is fulfilled for CR as well. Due to compatibility of CR and
Lemma 4 showing equality of compatibility for a consistency
relation set and its transitive closure, we know that:

∀CR′ ∈CR+ : ∀cl ∈ cl,CR′ : ∃m ∈ IM :

m contains cl ∧m consistent toCR+ (3)

Due to left-equal redundancy of CR inCR∪{CR}, we have
shown in Lemma 8 that the following is true:

∃CR′ ∈CR+ : ∀cl ∈ cl,CR : ∃c′l ∈ cl,CR′ : ∀m ∈ IM :

m contains c′l ⇒m contains cl (4)

The combination of Equation 3 and Equation 4 gives:

∃CR′ ∈CR+ : ∀cl ∈ cl,CR : ∃c′l ∈ cl,CR′ :

(∀m ∈ IM :m contains c′l ⇒m contains cl)

∧ (∃m ∈ IM :m contains c′l ∧m consistent toCR+)

A simplification by combining the two last lines of that state-
ment leads to:

∀cl ∈ cl,CR : ∃m ∈ IM :

m contains cl ∧m consistent toCR+

Due to Equation 1 and Lemma 3, which shows equality of
consistency for a consistency relation set and its transitive
closure, this is equivalent to:

∀cl ∈ cl,CR : ∃m ∈ IM :

m contains cl ∧m consistent toCR∪{CR} (5)

The combination of Equation 2 and Equation 5 shows that
CR∪{CR} fulfills Definition 7 for compatibility. ut

Corollary 1 Let CR be a compatible set of consistency re-
lations and let CR1, . . . ,CRk be consistency relations with:

∀ i ∈ {1, . . . ,k} :

CRi left-equal redundant inCR∪{CR1, . . . ,CRi}

Then CR∪{CR1, . . . ,CRk} is compatible.

Proof This is an inductive implication of Theorem 3, be-
cause CR is compatible and sequentially adding CRi to
CR∪{CR1, . . . ,CRi−1} ensures that CR∪{CR1, . . . ,CRi}
is compatible, because CR∪{CR1, . . . ,CRi−1} was compat-
ible as well. ut

With Corollary 1, we have shown that if we have a set
of consistency relations CR and are able to find a sequence
of redundant consistency relations CR1, . . .CRk according to
Corollary 1 such that we know that CR\{CR1, . . .CRk} is
compatible, then it is proven that CR is compatible.

A Formal Approach to Prove Compatibility in Transformation Networks 19

4.3 Summary

In the previous sections, we have proven the following three
central insights:

1. Compatibility is composable: If independent sets of con-
sistency relations are compatible, then their union is com-
patible as well (Theorem 1).

2. Consistency relation trees are compatible: If there are no
two concatenations of consistency relations in a consis-
tency relation set that relate the same classes, then that
set is compatible (Theorem 2).

3. Left-equal redundancy is compatibility-preserving: Adding
a left-equal redundant consistency relation to a compati-
ble set of consistency relations, that set unified with the
redundant relation is still compatible (Corollary 1).

These insights enable us to define a formal approach
for proving compatibility of a set of consistency relations.
Given a set of relations for which compatibility shall be
proven, we search for consistency relations in that set that
are left-equal redundant to it. If iteratively removing such
redundant relations—virtually—from the set leads to a set of
independent consistency relation trees, it is proven that the
initial set of consistency relations is compatible.

Such an approach to prove compatibility of consistency
relations is conservative. If the approach finds redundant re-
lations, such that a consistency relation set can be reduced
to a set of independent consistency relations trees, the set
is proven compatible, as we have shown by proof. If the
approach is not able to find such relations, the set may still
be compatible, but the approach is not able to prove that.
Conceptually, this can be due to the fact that there may be
compatibility-preserving relations that do not fulfill the defi-
nition of left-equal redundancy. Furthermore, an actual tech-
nique to identify left-equal redundant relations may not be
able to find all of them automatically, as we will see later.

In the following, we discuss how such an approach can
be operationalized. First, we discuss how actual transfor-
mations, at the example of QVT-R, can be represented in a
graph-based structure, such that it conforms to our formal
notion and allows to check whether the structure is an inde-
pendent set of consistency relation trees. Second, we present
an approach for finding consistency relations that are left-
equal redundant, by the means of an SMT solver applied to
the constraints defined in QVT-R relations.

5 Decomposing Transformations

The formal approach adopted in this article demonstrates that
deriving a consistency relation tree from a set of consistency
relations CR is an effective way to prove compatibility. It is
especially a consequence of Theorem 2. Given that proving
compatibility amounts to the construction of a consistency

relation tree, this result lends itself well to an operational-
ization. To this end, we propose an algorithm that turns the
proof of compatibility into an operational procedure. This
constitutes our contribution C3. For the most part, this algo-
rithm is based on results previously developed and described
in detail in a master’s thesis [51].

Constructing a consistency relation tree can be achieved
by finding and virtually removing every redundant consis-
tency relation in CR. Such a result facilitates the develop-
ment of software systems. First, developers build transforma-
tions independently, resulting in a transformation network.
Then, they regularly run a procedure that assesses the compat-
ibility of consistency relations specified in transformations
by checking the existence of a consistency relation tree.

Removing redundant relations in a consistency relation
set to generate a tree is called decomposition. Designing a
decomposition procedure requires to represent consistency
relations in actual model transformation languages and to
provide a way to test the redundancy of a consistency relation.
We first highlight a mapping between the consistency frame-
work developed in this article and the QVT-R transformation
language through the use of predicates. As a consequence,
results achieved with consistency relations become also ap-
plicable with QVT-R. Then, we design a fully automated
decomposition procedure that takes a consistency specifica-
tion, i.e., a set of QVT-R transformations, as an input and
virtually removes as many redundant consistency relations as
possible. In the decomposition procedure, each consistency
relation removal is a two-step process. First, a potentially
redundant relation and an alternative concatenation of con-
sistency relations are identified. Then, a redundancy test is
performed: it answers whether it is possible or not to remove
the candidate relation using the alternative concatenation. Un-
coupling the search for candidates from the decision-making
makes it possible to plug in different strategies to test re-
dundancy. This section focuses on the first step, i.e., setting
up a structure suited to the detection of possibly redundant
relations and finding candidates for the redundancy test.

5.1 Consistency Relations in Transformation Languages

According to Definition 2, consistency relations are built by
enumerating valid co-occurring condition elements. How-
ever, developers do not enumerate valid models when writing
transformations. They rather describe patterns for models
to be considered consistent and sometimes how consistency
is restored after a model was modified. In relational trans-
formation languages, developers define consistency as a set
of criteria that models must fulfill. Criteria are expressed
using metamodel elements (i.e., class properties), as objects
are only distinguished by their contents. For example, an
Employee object and a Person object are considered con-
sistent if their name attributes are equal.

20 H. Klare, A. Pepin, E. Burger, R. Reussner

Criteria are equivalent to predicates, i.e., Boolean-valued
filter functions: consistency relations are then defined as
sets of pairs of condition elements for which the predicate
evaluates to TRUE. Therefore, we move from an extensional
to an intensional, programming-like definition of consistency
relations, making it easier to link consistency relations with
QVT-R transformations.

5.1.1 Properties, Property Values and Predicates

We first define concepts that allow the intensional construc-
tion of consistency relations. The main idea is to select some
properties in each metamodel and to define a predicate that
filters values of these properties.

Definition 14 (Property Set) A property set for a class C
is a subset PC of properties of C, i.e., PC = {PC,1, . . . ,PC,n}
such that PC,i ∈C.

A property set models a choice of properties that play a
role in the definition of a predicate in order to distinguish
consistent and non-consistent condition elements. Not all
properties have to be used to describe consistency, particu-
larly in incremental model transformations.

Definition 15 (Tuple of Property Sets) For a class tuple C,
it is possible to build a tuple of property sets by defining
a property set for every class, i.e., PC = 〈PC1 , . . . ,PCn〉 =
〈{PC1,1, . . . ,PC1,m}, . . . ,{PCn,1, . . . ,PCn,k}〉.

Tuples generalize the use of property sets to class tuples,
because conditions themselves are made up of class tuples.

Definition 16 (Property Value Set) A property value set
pC for a property set PC is a set in which each property in
PC is instantiated, i.e., pC = {pC,1, . . . , pC,n}with pC,i ∈ IPC,i .
Similarly, a tuple of property value sets can be built from a
tuple of property sets by instantiating each property set in it.

Just as a property set is a subset of properties of a class C,
a property value set is a subset of property values of an object
o that instantiates C. The property value set is a fragment of
o that provides enough information to evaluate consistency.

Definition 17 (Predicate) A predicate for two class tuples
Cl and Cl is a triple π = (PCl ,PCr , fπ) where PCl (resp.
PCr) is a tuple of property sets of Cl (resp. Cr) and fπ is a
Boolean-valued function that takes instances of PCl and PCr

as an input, i.e., fπ : IPCl
× IPCr

→{TRUE, FALSE}.

For readability purposes, it is sometimes useful to group
all the properties used by a predicate within the same set.
As a consequence, the property collection Pπ of a predicate
π = (PCl ,PCr , fπ) is defined as:

Pπ = (
⋃

j

PCl , j) ∪ (
⋃
k

PCr ,k)

The definition of a predicate involves the choice of some
properties for each class that occurs in one of the two class
tuples of a consistency relation CR. It also involves the def-
inition of an appropriate function fπ that answers whether
instances of these properties, i.e., property values, evaluate to
TRUE or FALSE. In the former case, objects containing these
property values match the predicate: the associated consis-
tency relation pair is in CR. In the latter case, objects do not
match the predicate and are not considered consistent, i.e.,
do not occur in CR. The expression of fπ is the choice of the
developer who defines it according to consistency criteria.

Predicates model the way consistency relations are de-
fined in model transformation languages. Objects can only be
distinguished by their property values. Thus, the distinction
between consistent and non-consistent pairs of condition ele-
ments is always based on some attribute or reference values.

5.1.2 Predicate-Based Consistency Relations

Definition 18 (Property Matching) A property value set
pC = {pC,1, . . . , pC,n} matches an object o if and only if

o ∈ IC ∧∀ pC,i : pC,i ∈ o

Similarly, a tuple of property value sets pC = 〈pC1 , . . . ,pCn〉
matches a tuple of objects o = 〈o1, . . . ,ok〉 if and only if
|pC |= |o| and ∀ i : pCi matches oi.

Definition 19 (Predicate-Based Consistency Relation) Let
cl and cr be two conditions for two class tuples Ccl and Ccr .
Let Π be a set of predicates for Ccl and Ccr . A Π -based
consistency relation CRΠ is a subset of pairs of condition
elements such that:

CRΠ = {(cl ,cr) | ∀(PCcl
,PCcr

, fπ) ∈Π :

∃pCcl
∈PCcl

,pCcr
∈PCcr

:

pCcl
matches cl

∧pCcr
matches cr

∧ fπ(pCcl
, pCcr

) = TRUE}

The construction of a predicate-based consistency rela-
tion is of importance for the practicality of model transfor-
mation languages. The developer can produce a consistency
specification by retaining some object properties and impos-
ing conditions on values of these properties via a predicate
function. Then, the construction of the consistency relation
fully amounts to the evaluation of the predicate function.

Example 7 The following example demonstrates how to build
a consistency relation CRPR based on predicates between
Person and Resident metamodels, according to the exam-
ple in Figure 1. CRPR ensures that the name of a Resident
object is the concatenation of the first name and the last name
of a Person object. It also ensures that both objects have

A Formal Approach to Prove Compatibility in Transformation Networks 21

import M1 : ’path_m1.ecore’;
import M2 : ’path_m2.ecore’;

transformation T(M1, M2) {
[top] relation R1 {

[variable declarations]
domain M a : A { πM }
domain N b : B { πN }
[when { PRECOND }] [where { INVARIANT }]

}

[top] relation R2 { ... }
}

Listing 1: Simplified structure of a QVT-R transformation

the same address. First, CRPR involves one class in each me-
tamodel, resulting in two class tuples: CP = 〈Person〉 and
CR = 〈Resident〉. There are two conditions to achieve consis-
tency, which are equal names and equal addresses, so CRPR
will be made up of two predicates. The first predicate needs
the firstname and lastname attributes in Person and
the name in Resident, so PCP,1 = 〈{ f irstname, lastname}〉
and PCR,1 = 〈{name}〉. Similarly, PCP,2 = 〈{address}〉 and
PCR,2 = 〈{address}〉. The functions of the predicate, shortly
denoting name as n, firstname as f n, lastname as ln, as
well as address of Person as aP and of Resident as aR,
look as follows:

fπ,1(〈{n}〉,〈{ f n, ln}〉) =

{
TRUE if n = f n+ ‘ ‘+ ln

FALSE otherwise

fπ,2(〈{aP}〉,〈{aR}〉) =

{
TRUE if aP = aR

FALSE otherwise

CRPR is a Π -based consistency relation where Π is the
set of predicates {(PCP,1,PCR,1, fπ,1),(PCP,2,PCR,2, fπ,2)}.

5.1.3 Consistency Relations in QVT-R Transformations

There is a variety of model transformation languages [13].
Like programming languages, transformation languages can
be divided into two main paradigms: declarative languages
that focus on what transformations should perform and im-
perative languages that describe how transformations should
be performed. The QVT standard [45] provides three trans-
formation languages: Operational, Core and Relations.

The most relevant language for consistency specification
is QVT Relations (QVT-R). It is a declarative and relational
language that shares many concepts with the consistency
framework developed in this article. It lends itself well to
mathematical formalization [63]. As with consistency rela-
tions, QVT-R supports bidirectionality. Transformations writ-
ten in QVT-R can be used with two execution modes. First,
a checkonly mode to check that models fulfill consistency
relations. Second, an enforce mode to repair consistency in a

fstn: String; lstn: String;
inc: Integer;

domain pers p:Person {
firstname=fstn, lastname=lstn,
income=inc

};

domain emp e:Employee {
name=fstn + ’␣’ + lstn,
salary=inc

};

Listing 2: Two domains, each with one domain pattern

given direction if not all relations are fulfilled. The simplified
structure of a QVT-R transformation is as follows and also
depicted in Listing 1.

A QVT-R transformation can check or repair con-
sistency of models it receives as parameters. Models are
typed models, i.e., their structure conforms to a type defined
by the metamodel. Each transformation is composed of
relations, which define the rules for objects of both mod-
els to be consistent. Relations are only invoked if they are
prefixed by the top keyword, if they belong to the precon-
dition (when) of a relation to be invoked, or if they belong
to the invariant (where) of a relation already invoked. The
QVT-R mechanism for checking consistency is based on
pattern matching. Shared information between objects of dif-
ferent models is represented by variables assigned to class
properties. These variables contain values that must remain
consistent from one object to another. Therefore, there must
exist some assignment that matches all patterns at the same
time for classes in a relation to be consistent.

More precisely, each QVT-R relation contains two
domains that contain themselves domain patterns. In QVT
terminology, a domain pattern is a variable instantiating a
class. Values that this variable can take are constrained by
conditions on its properties. These conditions, known as prop-
erty template items (PTIs), are OCL constraints [47]. OCL
operations provide the ability to describe more complex con-
straints than equalities between property values and variables.
In Listing 2, each domain has one pattern. These patterns
filter Person objects (with three PTIs) and Employee ob-
jects (with two PTIs), respectively. For two objects to be
consistent, there must exist values of fstn, lstn and inc
that match property values of these objects, thus ensuring the
fact that the name of the employee equals the concatenation
of the first name and the last name of the person and the fact
that both instances have the same income. If objects are in-
consistent, e.g., if the person and the employee have different
incomes, then there is no such variable assignment.

QVT-R relations are defined intensionally. In checkonly
mode, a relation does not check that metamodel instances

22 H. Klare, A. Pepin, E. Burger, R. Reussner

are consistent by looking for them in an existing set of pairs
of consistent models. It rather evaluates the existence of a
value that fulfills all property template items in domain pat-
terns. These patterns can be regarded as predicates. Thus, it
is relevant to correlate QVT-R relations and predicate-based
consistency relations. One relation in QVT-R can be trans-
lated into one or more predicates. The main idea is to extract
properties that are bound to the same QVT-R variables: hav-
ing QVT-R variables in common means that values of these
properties are interrelated. Properties are separated to build
two tuples of property sets, one for each metamodel. Then,
a predicate function is generated by extracting OCL con-
straints. The triplet that groups these objects together is a
predicate. A formal construction of predicates from QVT-R
will be presented in the subsequent section.

As a result, QVT-R is a language suitable for writing
consistency relations according to our formalism. The de-
composition procedure presented in this section treats a set of
(binary) QVT-R transformations as a consistency relation
set and checks its compatibility. The QVT-R transformations
for the example in Figure 1 are depicted in Figure 10.

5.2 Decomposition Procedure

In this section, we introduce a fully automated procedure to
achieve the decomposition of transformation networks. The
procedures takes a consistency relation set as an input and
virtually deletes as many redundant consistency relations as
possible. The result is a simplified, possibly tree-like trans-
formation network, which is equivalent to the input network.
The topology of the resulting network gives information
about compatibility of its relations. If the resulting network
is a consistency relation tree, compatibility is inherent. Other-
wise, developers can focus on consistency relations in remain-
ing cycles to detect possible incompatibilities. The procedure
considers transformations written in QVT-R, whose mapping
to consistency relations was exposed above.

The decomposition procedure relies on an algorithmic
way to detect redundant consistency relations. Redundancy
occurs in two ways. First, it requires the existence of (se-
quences of) relations that relate the same metamodels. Sec-
ond, it indicates that definitions of these consistency relations
overlap in some way. In fact, this captures both aspects of con-
sistency specifications. First, transformation networks give an
insight into the specification structure, i.e. which metamodels
are related with each other. This global point of view helps to
check compatibility: a cycle in the network may indicate con-
tradictory transformations, whereas compatibility is inherent
in a tree topology. However, identifying redundant transfor-
mations requires to know exactly how metamodels are related
to each other. It is necessary to see how consistency is defined
with class properties at the metamodel element level to find
out if some transformation definitions are contradictory. In

predicate-based consistency relations, these definitions are
made explicit through the use of predicates. This is a local
point of view: given a set of transformations forming a cycle
in a transformation network, each transformation definition
is retrieved and compared to others so as to assess compati-
bility. Such a comparison is called a redundancy test. As a
result, transformations are both edges of a graph and sets of
consistency relations with exact definitions. Although both
aspects are essential for decomposing transformations, the
graph can be generated from consistency relation definitions.
That is, vertices of the graph are metamodels and whenever
a consistency relation definition relates two elements from
two different metamodels, there is an edge between these
metamodels. To take advantage of both aspects, we propose
to perform redundancy tests on a single structure: a graph
of class properties labeled by predicates that define consis-
tency relations. The procedure operates in two phases. First,
the decomposition procedure creates this structure out of
QVT-R transformations. Then, it refers to consistency rela-
tion definitions inside it to detect redundant relations and
check compatibility of the consistency specification.

5.2.1 From Consistency Specification to Property Graph

The decomposition procedure uses an intermediate represen-
tation of transformation networks, i.e., a single data structure
that combines both aspects of transformations. This data
structure, called a property graph, brings the graph charac-
terization of transformations at the level of class properties
and predicates. Such a structure can be represented as a hy-
pergraph with a labeling.

Definition 20 (Property Graph) Let CR= {CRi}n
i=1 be a

set of consistency relations where each consistency relation
CRi is based on a set of predicates Πi. A property graph is
a couple M = (H, l), such that H = (VH,EH) is a hyper-

graph and l : EH→{TRUE, FALSE}
IPCl

×IPCr is a hyperedge
labeling:

– VH is the set of vertices, i.e., the set of all properties used
in all predicates:

VH =
n⋃

i=1

⋃
π ∈ Πi

Pπ

– EH is the set of hyperedges, i.e., EH ⊆P(VH)\{∅}. For
a property graph, hyperedges are made up of properties
that occur in the same predicate:

EH =
n⋃

i=1

⋃
π ∈ Πi

{Pπ}

– l is a function that labels each hyperedge with its corre-
sponding predicate function:

∀ i ∈ {1, . . . ,n},∀π = (PCl , PCr , fπ) ∈ Πi :

l(Pπ) = fπ

A Formal Approach to Prove Compatibility in Transformation Networks 23

import personMM : ’personmm.ecore’;
import employeeMM : ’employeemm.ecore’;

transformation PersonEmployee(
person: personMM,
employee: employeeMM) {

top relation PE {
fstn: String;
lstn: String;
inc: Integer;

domain person p:Person {
firstname=fstn,
lastname=lstn,
income=inc};

domain employee e:Employee {
name=fstn + ’␣’ + lstn,
salary=inc};

}
}

import personMM : ’personmm.ecore’;
import residentMM : ’residentmm.ecore’;

transformation PersonResident(
person: personMM,
resident: residentMM) {

top relation PR {
fstn: String;
lstn: String;
addr: String;

domain person p:Person {
firstname=fstn,
lastname=lstn,
address=addr};

domain resident r:Resident {
name=fstn + ’␣’ + lstn,
address=addr};

}
}

import employeeMM : ’employeemm.ecore’;
import residentMM : ’residentmm.ecore’;

transformation EmployeeResident(
employee: employeeMM,
resident: residentMM) {

top relation ER {
n: String;
ssn: Integer;

domain employee e:Employee {
name=n,
socsecnumber=ssn};

domain resident r:Resident {
name=n,
socsecnumber=ssn};

}
}

Fig. 10: Three binary QVT-R transformations forming a consistency specification, based on the relations in Figure 1

The idea behind the property graph is to group properties
that participate in the definition of the same predicate. When
the consistency relation set is not a tree, some properties may
be used in the definition of multiple consistency relations.
For example, an employee’s name must be consistent with
a resident’s name and a person’s first and last name. When
properties are vertices, such groups form hyperedges. For
a consistency relation to be redundant, there must be other
relations that share properties with it. As a consequence, the
property graph is useful to detect independent sets of con-
sistency relations as well as cycles of hyperedges (which
form alternative concatenations for redundant relations). Hy-
peredges only address the structural aspect of consistency
relation definitions. For this reason, each hyperedge is labeled
with its corresponding predicate function.

The need for hypergraphs arises from the fact that pred-
icates can relate more than two properties: the predicate in
the relation CRPE , which ensures equality of an employee’s
name and the concatenation of first and last name of a person,
contains three properties. The first phase of the procedure is
to set up such a structure using QVT-R transformations.

Input and Transformation Parsing The procedure takes a set
of well-formed QVT-R files as inputs. Each file contains one
or more transformations. Transformations and metamodels
are then parsed to provide a logical view of the consistency
specification. Decomposition is intended to help the devel-
oper by either proving compatibility or highlighting possible
causes of incompatibility. It does, however, not update the
specification, thus access to the specification is read-only.

Traversal Order Among Transformations In order to build
the property graph, each transformation must be processed to
retrieve relations it contains. The decomposition procedure

Resident::name

Employee::name

Person::firstname

Person::lastname

Person::address

Person::income

Employee::socsecnumber

Employee::salary

Resident::address

Resident::socsecnumber

1

2

3

4

5

6

Person::firstname=fstn
Person::lastname=lstn
Resident::name=fstn + ’␣’+ lstn

Person::firstname=fstn
Person::lastname=lstn
Employee::name=fstn + ’␣’+ lstn

{
Resident::name=n
Employee::name=n

{
Resident::address=addr
Employee::address=addr

{
Person::income=inc
Employee::salary=inc

{
Person::socsecnumber=ssn
Employee::socsecnumber=ssn

1

2

3

4

5

6

Fig. 11: Property graph for the QVT-R example in Figure 10
based on the relations in Figure 1

processes one transformation at a time. For compatibility
checking purposes, transformations are independent of each
other. They can be processed separately and in any order. The
reason behind this is that QVT-R relations are not executed
on models but only read. Therefore, they are side-effect free.

24 H. Klare, A. Pepin, E. Burger, R. Reussner

relation R {
[variable declarations]

domain MM1 a : A {PA,1=eA,1, PA,2=eA,2}
domain MM2 b : B {PB,1=eB,1}
[when { PRE }] [where { INV }]

}

Listing 3: Structure of a QVT-R relation with property tem-
plate items

Traversal Order Inside Transformations A transformation
is a set of QVT-R relations. In general, each relationship
deals with the consistency of only a small part of each me-
tamodel, for example the consistency between two classes.
Unlike QVT-R transformations, QVT-R relations cannot be
processed in any order. There are two types of relations: top-
level relations and non-top-level relations. Top-level relations
are always invoked, whereas non-top-level relations are only
invoked in where or when clauses of other relations through
a mechanism similar to a function call. Only relations that
would be invoked during the execution of transformations
have to be processed for the decomposition, as non-invoked
relations cannot cause incompatibilities. To determine a rele-
vant processing order and retain only QVT-R relations that
can be invoked, one solution is to create the call graph of
the transformation. We impose a restriction on the specifica-
tion to make this representation easier: relations may only be
invoked in where clauses. Starting from top-level relations,
relations are visited using a depth-first traversal. A relation
R2 can be visited from a relation R1 if R1’s when clause in-
vokes R2. As a result, a relation is only visited if it is top-level
or if a relation invoking it was itself visited before.

From QVT-R Relation to Hyperedge At the beginning, the
property graph is an empty object. Each time a QVT-R rela-
tion is processed, the property graph may get new vertices
and a new hyperedge. In accordance with Definition 20, hy-
peredges can be generated from predicates. Therefore, it is
relevant to translate each QVT-R relation into a set of pred-
icates. Listing 3 depicts the structure of an abstract QVT-R
relation between two metamodels MM1 and MM2. Defining
a predicate from a QVT-R relation amounts to find important
properties for each metamodel and definitions that bind them.
Class tuples are composed of classes that occur in each do-
main, i.e., CMM1 = 〈A〉 and CMM2 = 〈B〉. Each class in each
class tuple is associated with a set of property template items.
Important properties for the consistency specification are in
the left-hand side of each property template item. For exam-
ple, the property template item PA,1 = eA,1 indicates that the
property PA,1 must match the OCL expression eA,1 in which
there are QVT-R variables. Not all properties are related to
each other within the same QVT-R relation. For example,

Algorithm 1 Merge algorithm
1 procedure MERGE-CONSISTENCY-VARIABLES({(p,V{p})})
2 stopMerge← TRUE
3 entries← 〈({p},V{p})〉
4
5 do
6 stopMerge← TRUE
7 results← 〈〉
8
9 while entries 6= 〈〉 do

10 ref = (Pref,Vpref)← entries[0]
11 others← entries[1:]
12 entries← 〈〉
13
14 for (P,VP) ∈ others do
15 if VP∩VPref =∅ then
16 entries← entries ∪ {(P,VP)}
17 else
18 stopMerge← FALSE
19 ref← (P∪Pref,VP∪VPref)

20 results← results ∪ {ref}
21 entries← results
22 while not stopMerge
23
24 return set(entries)

constraints on Employee.salary and Employee.name are
independent, because consistency of one does not depend on
consistency of the other. There is a simple criterion in QVT-R
to identify interrelated properties. Pattern matching indicates
which properties have to be grouped together to build a pred-
icate. If two properties depend on the same QVT-R variable,
they are interrelated, because a value assignment must satisfy
both property template items. Predicates can then be gener-
ated from sets of interrelated properties. OCL expressions
can also occur in when and where clauses. As with relation
invocations, we focus on invariants (where), which we limit
to the manipulation of QVT-R variables, given that properties
can be limited to domain patterns without loss of generality.
The processing of an invariant is similar to that of property
template items: properties that depend on QVT-R variables
occurring in the same invariant have to be grouped together.

Algorithm 1 formalizes the way properties are grouped
to form predicates. At the beginning of the algorithm, each
property is associated with QVT-R variables that occur in
the corresponding property template item. This association,
called an entry, is a couple ({p},V{p}) where {p} is a sin-
gleton containing the property p and V{p} a set of QVT-R
variables. The entry of an invariant is composed of vari-
ables in it and all properties associated with these variables
through property template items. At each iteration, the algo-
rithm chooses a reference entry and merges all other entries
with it if the intersection of their sets of QVT-R variables
is nonempty. The algorithm stops when all sets of QVT-R
variables are pairwise disjoint.

A Formal Approach to Prove Compatibility in Transformation Networks 25

Example 8 There are five properties in the relation PE of
the QVT-R transformation PersonEmployee in Figure 10,
which can be described with the following entries:

({firstname},{ f stn}),({lastname},{lstn}),
({income},{inc}),({name},{ f stn, lstn}),
({salary},{inc})

After the execution of the algorithm, properties are merged
as follows:

({firstname,lastname,name},{ f stn, lstn}),
({income,salary},{inc})

This results in two sets of properties.

At the end of the algorithm, each entry can be trans-
formed into a hyperedge. To do so, properties of the entry
are assigned to the classes out of which they originate to
form property sets. These property sets are grouped into two
tuples. The predicate function is the conjunction of all OCL
expressions associated with properties of the entry. When all
transformations and all QVT-R relations have been processed,
the property graph is correctly initialized. It is now invariable,
in the sense that the procedure cannot add new vertices or
hyperedges to the graph. Only hyperedges identified as re-
dundant can then be removed. Moreover, all the information
needed to assess compatibility in the consistency specifica-
tion is translated into the property graph. There is no need to
query metamodels or QVT-R transformations anymore.

5.2.2 From Property Graph to Decomposition

Given a property graph M = (H, l), decomposition is ac-
complished by removing redundant consistency relations
(hyperedges ofH) until all relations have been tested once or
until the property graph is only composed of trees. The hyper-
graph H provides valuable information about the nature of
the consistency specification. First, a necessary condition for
a consistency relation between two metamodels M1 and M2
to be redundant according to Definition 12 is the existence
of an alternative concatenation of relations that links M1 and
M2 too. In terms of graph, there must exist a path between
M1 and M2. Second, consistency relation definitions can be
independent from each other, in the sense that they share no
properties. Following Theorem 1, the union of two indepen-
dent and compatible consistency relations is also compatible.
Independence in the hypergraph is given by connected com-
ponents. An important aspect of the decomposition procedure
is to find consistency relation definitions that can be tested for
redundancy. Taking advantage of the structure of the graph is
useful for listing these relations.

Person::firs
tname, Person::last

name

Re
si
de
nt
::
na
meEmployee::name

1

2

3

4

5

6

Person::firstname=fstn
Person::lastname=lstn
Resident::name=fstn + ’␣’+ lstn

Person::firstname=fstn
Person::lastname=lstn
Employee::name=fstn + ’␣’+ lstn

{
Resident::name=n
Employee::name=n

{
Resident::address=addr
Employee::address=addr

{
Person::income=inc
Employee::salary=inc

{
Person::socsecnumber=ssn
Employee::socsecnumber=ssn

1

2

3

4

5

6

Fig. 12: Dual of the property graph for the QVT-R example
in Figure 10 based on the relations in Figure 1

Consistency Relation Preprocessing As a special kind of
hypergraph, a property graph has the advantage of being
expressive when it comes to model consistency relation defi-
nitions involving multiple properties. The downside is that
common graph algorithms (such as graph traversal) become
harder to define and to apply. The choice between graphs
and hypergraphs is a balance between abstraction and usabil-
ity. For purposes of implementation, the property graph is
replaced by its dual, i.e., a simple graph that is equivalent to
it. The dual of the property graph is the graph whose vertices
are hyperedges of the property graph. If hyperedges of the
property graph share at least one property, their correspond-
ing vertices in the dual are linked. An example for the dual
of a property graph is given in Figure 12.

Definition 21 (Dual of a Property Graph) LetM= (H, l)
be a property graph. The dual of the property graph M,
denotedM∗ is a tuple (G,v, l) with a simple graph G and two
functions v and l such that:

– VG = EH
– EG = {{E1,E2} | ∀(E1,E2) ∈ E2

H : E1∩E2 6=∅}
– ∀(E1,E2) ∈ EG : v({E1,E2}) = E1∩E2

Each edge {E1,E2} in the dual is labelled with the set of
properties that occur both in E1 and E2. The dual contains all
the information necessary to build the property graph again.
Given a dualM∗ = (G,v, l), the property graphM= (H, l)
can be built by defining VH =

⋃
V∈VG V and EH =VG .

26 H. Klare, A. Pepin, E. Burger, R. Reussner

Independent Subsets of Consistency Relations In a consis-
tency specification, consistency relations can form indepen-
dent sets, in the sense that the consistency of one set can
be checked and repaired independently without affecting the
consistency of the other set. This occurs at two levels. First, at
the metamodel level, when there exist two sets of metamodels
such that no metamodel of one set is bound to a metamodel
of the other set through a consistency relation. Second, at the
metamodel element level, when two consistency relation sets
of the same metamodel relate objects that are independent
of each other. In terms of consistency relations and predi-
cates, such sets are made up of relations that do not share
any property. Independence is characterized in the same way
for both levels in the property graph. This results in two
subhypergraphs1 such that there is no path (i.e., sequence
of incident hyperedges) from one to the other. In the dual
of the property graph, this results in two subgraphs that are
not connected to each other as well. Otherwise, there would
exist two consistency relations (one from each subgraph) that
share at least one property, thus contradicting the hypothesis
of independence. Independent subsets of hyperedges in the
property graph can be processed independently, since one’s
compatibility has no influence on compatibility of the others.

Once the property graph is converted to its dual, the
decomposition procedure computes independent subsets of
relations. This can be achieved by computing connected com-
ponents in the dual. Connected components are maximal
subgraphs such that there exists a path between any two ver-
tices in it. We use Tarjan’s algorithm to compute them in
linear time [66]. Incompatibilities can then only occur within
a connected component. Therefore, we prove that a consis-
tency relation set is compatible by proving compatibility of
every connected component of the dual of the property graph.

Generation of Candidate Relations For a connected compo-
nent to be compatible, there must be no redundant predicate
in it. Like consistency relations at the metamodel level, predi-
cates at the metamodel element level are said to be redundant
if consistency specifications with and without it are equiv-
alent. In the property graph, this requires the existence of
an alternative sequence of hyperedges that relate the same
properties as the possibly redundant hyperedge. Note that
the existence of an alternative path is a necessary but not a
sufficient condition. For instance, a predicate ensuring that
two String attributes are equal could not be replaced by a
sequence of predicates only ensuring that these strings have
the same length. That is why the possibly redundant pred-
icate and the alternative path of predicates are subject to a
redundancy test (see Section 6).

Given that connected components are independent, a
predicate can only be replaced by other predicates in the

1A subhypergraph of a hypergraph H = (VH,EH) is a hypergraph
S = (VS ,ES) such that ES ⊆ EH and VS =

⋃
E∈ES E

same component. Moreover, Theorem 2 also applies to the
dual of the property graph: once the component is a tree, it is
inherently compatible. As a result, the dual proves compati-
bility of the consistency specification if it is only composed
of independent trees. Such a graph is called a forest.

In the property graph, an alternative path for a hyperedge
E (i.e., a predicate) is a sequence of pairwise incident hy-
peredges such that the first and the last are also incident to
E. Hyperedges of the property graph become vertices in the
dual. Therefore, an alternative path for a predicate E in the
dual is characterized by a cycle that contains E. If the vertex
sequence of such a cycle is 〈E,E1, . . . ,En,E〉, the alternative
path is 〈E1, . . . ,En〉. Ultimately, the generation of candidate
relations for a redundancy test amounts to the enumeration
of pairs (E,〈Ei〉), where E is a possibly redundant predicate
(i.e., a hyperedge in the property graph and a vertex in its
dual) and 〈Ei〉 is an alternative sequence of predicates that
may replace E. There may be multiple alternative paths for a
given predicate in the dual of the property graph, hence the
need to find multiple cycles. The problem of finding all sim-
ple cycles in an undirected graph is called cycle enumeration.

The cycle enumeration algorithm used in the decomposi-
tion procedure relies on a cycle basis. In an undirected graph,
a cycle basis is a set of simple cycles that can be combined to
generate all other simple cycles of the graph. The cycle basis
is first computed using Paton’s algorithm [50]. For a given
predicate, the enumeration starts from the cycle basis and
merges two or more cycles in each iteration. In the context of
the decomposition procedure, a cycle must also go through
the predicate to analyze. Algorithm 2 is a slightly modified
version of Gibb’s algorithm to enumerate simple cycles in an
undirected graph using a cycle basis [21]. In this algorithm,
every cycle is represented as a set of edges. We denote the

Algorithm 2 Enumeration of alternative paths
1: procedure ENUMERATE-CYCLES(Dual M∗,V ∈VM∗)
2: {B1, . . . ,Bn} ← PATON-ALGORITHM(M∗)
3: Q← {B1}, R← ∅, R∗ ← ∅
4:
5: for B ∈ {B2, . . . ,Bn} do
6: for T ∈ Q do
7: if T ∩B 6=∅ then
8: R← R∪{T ⊕B}
9: else

10: R∗← R∗∪{T ⊕B}
// Remove non-simple cycles from R

11: for U,V ∈ R do
12: if U ⊂V then
13: R← R\{V}, R∗← R∗∪{V}

// New valid cycles are in R∪{B}
14: for C ∈ R∪{B} do
15: if v ∈C and REPLACE-HYPEREDGE(v,C) then
16: remove v and its incident edges from M∗

17: break
18: Q← Q∪R∪R∗∪{B}
19: R←∅, R∗←∅

A Formal Approach to Prove Compatibility in Transformation Networks 27

symmetric difference with the ⊕ sign, i.e., A⊕B is the set of
edges that are in A or in B but not in both. The set Q contains
all linear combinations of cycles. Merged with cycles of the
basis, these linear combinations are used to merge more than
two cycles of the basis. At each iteration of Algorithm 2, new
simple cycles are in R∪{B}. Note that redundancy tests can
be performed as new cycles are generated, as shown on line
14. By doing so, it is not necessary to store all cycles and wait
for the end of the algorithm before starting redundancy tests.
More interestingly, if the redundancy test is positive for one
alternative sequence of predicates, there is no need to test oth-
ers. The initial predicate can be removed and the algorithm
can be used with another possibly redundant predicate.

Stopping Criterion The decomposition procedure stops when
each predicate has been tested once. Note that if the con-
nected component becomes a tree after a few removals of
predicates, then the last tests of remaining predicates are triv-
ial. As there are no more cycles in the dual of the connected
component, no redundancy test is performed.

5.3 Summary

In this section, we have presented an algorithm for proving
compatibility of relations in a consistency specification writ-
ten in QVT-R. We defined property graphs and their dual
as a representation of consistency relations and explained
how they can be derived from a specification in QVT-R. We
discussed how a consistency relation tree manifests in such a
representation and how candidates for redundancies in con-
nected components of such a representation can be found by
computing cycle basis. Based on Theorem 1 and Theorem 2,
as well as Corollary 1, this algorithm is able to prove compati-
bility by removing redundant relations, such that the resulting
network is a composition of independent trees. However, we
still need to discuss how redundancy of relations, in terms of
redundant predicates in the property graph, can be identified,
which we will discuss in the subsequent section.

6 Finding Redundancies in Transformations

In the decomposition procedure, enumerating possibly redun-
dant predicates and proving that such predicates are redun-
dant are uncoupled tasks. The latter task can be regarded as a
black box embedded in the former one: only the result of the
redundancy test matters. As a consequence, the decomposi-
tion procedure allows the use of various strategies to prove
that a predicate is redundant. There is no perfect strategy due
to the limitations on the decidability of OCL expressions. In
this article, we opt for a strategy that allows the decomposi-
tion procedure to be fully automated. We first discuss how
predicates can be compared to prove redundancy. Then, an

approach that translates OCL constraints (in predicates) to
first-order logic formulae and uses an automated theorem
prover is introduced. Finally, the translation rules from OCL
to first-order logic are presented along with their limitations.

6.1 Intensional Comparison of Predicates

Whatever the strategy, the redundancy test takes a couple
(E,〈E1, . . . ,En〉) as an input and returns TRUE if the pred-
icate E was proven redundant because of the sequence of
predicates 〈E1, . . . ,En〉, FALSE otherwise. As stated in Defini-
tion 13, a consistency relation is considered left-equal redun-
dant if its removal from the set of consistency relations leads
to an equivalent set and relates the same kinds of elements at
the left side. For the relation to be redundant, there must be an
alternative sequence of relations that already fulfills the role
of the initial relation. This also applies to the property graph:
for a predicate to be removed, there must exist another se-
quence of predicates relating the same properties that is strict
enough not to weaken the consistency specification. Weak-
ening the consistency specification means allowing models
that would have been considered non-consistent before the
removal of the predicate. Since we only consider predicates
that relate the same properties the additional requirement of
left-equal redundancy in comparison to general redundancy
in Definition 12 is always fulfilled. In the following, we thus
only discuss redundancy rather then left-equal redundancy, as
it is always given by construction. As illustrated in Figure 13,
a predicate E can only be removed if all instances matching
the predicate also match predicates 〈E1, . . . ,En〉.

Therefore, a redundancy test is equivalent to the compar-
ison of two sets of instances. However, a predicate may be
fulfilled by infinitely many model elements. For example, the
predicate ensuring that the income of a person and the salary
of an employee are equal is valid for infinitely many integer
pairs. It is impossible to compare these sets element per ele-
ment (i.e., extensionally). Since consistency relations in the
decomposition procedure are defined intensionally, by means
of predicates, anyway, the redundancy test compares sets in
their intensional specification. As a result, the redundancy
test uses the description of the possibly redundant predicate
and the candidate alternative sequence of predicates to decide
whether the predicate is redundant. In QVT-R, predicates are
expressed as OCL constraints. As part of the construction of
the property graph, these constraints are already represented
as hyperedge labels. That is, comparing predicate definitions
in the decomposition procedure amounts to perform a static
analysis of these labels and QVT-R relation conditions (when
and where clauses). In order to prove redundancy, the static
analysis has to rely on a rigorous framework to reason about
OCL constraints. This is provided by various formal methods
in the field of software verification.

28 H. Klare, A. Pepin, E. Burger, R. Reussner

Models considered consistent
according to the predicate E

Models considered consistent
according to the sequence
of predicates 〈E1, . . . ,En〉

Fig. 13: The hyperedge E is redundant, because all instances
valid according to E are already valid according to the alter-
native sequence E1, . . . ,En of hyperedges.

6.2 Encoding Redundancy in First-Order Formulae

In this article, the strategy we use to prove redundancy is
based on first-order logic, a well-suited and expressive math-
ematical language for decision procedures. The idea is to set
up a first-order formula that is valid (i.e., true under every
interpretation) if and only if the redundancy test is positive.
To this end, the formula embeds OCL expressions (translated
into first-order logic as well) contained in predicates. Then, a
theorem prover evaluates the validity of the formula.

The choice of first-order logic is motivated by the nature
of OCL: there exists a general translation of OCL into first-
order logic [5]. This result was later refined in [6] in order to
show that OCL formulae are essentially full first-order formu-
lae. What this means is that OCL does not form a fragment of
first-order logic and needs all its expressiveness. First-order
logic being undecidable in general, this also implies that not
all redundant formulae can be proven valid. Therefore, the
results obtained by the decomposition procedure are highly
dependent on the performance of the theorem prover. Even
with quantifiers and variables, the gap between programming
languages and first-order sentences remains significant. OCL
is composed of arithmetic operations, strings, arrays, etc.
The meaning of language constructs must also be integrated
into formulas. To this effect, it is possible to replace binary
variables in first-order formulae with a Boolean sentence ex-
pressed in a given theory. Theories use all kinds of objects
such as strings, floats, sequences, etc. With theories, the sat-
isfiability problem equates to assign values to variables in
first-order sentences such that the evaluation of sentences
makes the whole formula TRUE. For instance, the formula
(a×b = 10)∧ (a+b > 0) is satisfiable given the assignment
{a = 2,b = 5}. This extension is known as satisfiability mod-
ulo theories (SMT). First-order formulae for the SMT prob-
lem are called SMT instances. Some theorem provers come
with built-in theories, they are thus called theory-based theo-

rem provers. In the context of the decomposition procedure,
we translate constructs in OCL constraints with correspond-
ing constraints into built-in theories of the prover. By doing
so, the mapping between OCL and first-order logic is easier
to achieve.

6.2.1 Modeling as a Horn Clause

For any two models, consistency depends on condition ele-
ments in predicate-based consistency relations, which them-
selves depend entirely on property values for which predicate
functions evaluate to TRUE. As a result, redundancy can be
tested by comparing descriptions of predicate functions. This
information is contained in the input of the redundancy test.
Let π = (PCl ,PCr , fπ) be a predicate for two class tuples
Cl and Cl . During the construction of the property graph,
a hyperedge composed of all properties in PCl and PCr is
labeled with the description of the predicate function fπ .

In terms of predicate functions, the predicate E can be
replaced by a sequence of predicates 〈E1, . . . ,En〉 under the
following condition: for any set of models, fE evaluates to
TRUE whenever fE1 ∧·· ·∧ fEn evaluates to TRUE. If this con-
dition is met, the consistency specification is neither strength-
ened nor weakened after the removal of E. The specification
is not strengthened because the removal of a predicate can
only allow more sets of models to be consistent. It is not
weakened either because all property values that match

∧
fEi

also match E. As a consequence, E is redundant. That is,
solutions of

∧
fEi form a subset of solutions of E. This is con-

sistent with Figure 13. The redundancy test can be encoded
as a formula in the following way:

(fE1 ∧·· ·∧ fEn)⇒ fE

The formula above is called a Horn clause. Horn clauses
form an important fragment of logic in the field of automated
reasoning. Terms on the left-hand side of the clause are called
facts, whereas the term on the right-hand side is called goal.
The implication represents the deduction of the goal from
the facts. The assignment of values to variables in the Horn
clause also models the instantiation of properties (i.e., the as-
signment of property values). If the Horn clause is valid, then
the alternative sequence of predicates can replace the initial
predicate whatever the instantiation of metamodel elements
(i.e., whatever the models).

One last detail is to be taken into consideration for the
translation of predicate functions. Horn clauses are usually
described without quantifiers. In a Horn clause, all variables
are implicitly universally quantified. Given that predicate
functions are made up of OCL expressions, they contain
local QVT-R variables. Consistency depends upon pattern
matching, i.e., the existence of a valid assignment of variables.
Therefore, QVT-R variables in the goal clause have to be
existentially quantified.

A Formal Approach to Prove Compatibility in Transformation Networks 29

Example 9 Figure 12 depicts the dual of the property graph
derived from the motivational example in Figure 1. The dual
contains four connected components, including three with
one predicate only. Compatibility is already proven for these
three components because they are trivial trees. The other
component is made up of three predicates and contains a
cycle ({1,2,3}). Let 3 be the possibly redundant predicate.
Then, the alternative combination of predicates is composed
of 1 and 2. This leads to the following formula in which 3 is
the goal and 1 and 2 are the facts:

[(Person::firstname= f 1)∧ (Person::lastname= l1)

∧(Resident::name= f 1+ “ ”+ l1)]

∧ [(Person::firstname= f 2)∧ (Person::lastname= l2)

∧(Employee::name= f 2+ “ ”+ l2)]

⇒(∃n : (Resident::name= n)∧ (Employee::name= n))

QVT-R variables have been renamed to avoid conflicts. This
is necessary because they are no longer isolated as they were
before in two distinct QVT-R relations. According to the
SMT solver, the formula above is valid. Therefore, predicate
3 can be removed from the property graph and its dual. There
are then only two predicates left in this component. It is in-
herently compatible. As all independent subsets of predicates
are compatible, the consistency specification is compatible.

6.2.2 Redundancy Test

Redundancy can be proven by checking that the Horn clause
derived from predicate functions is valid (i.e., true under ev-
ery interpretation). Because the whole decomposition proce-
dure is automated, the theorem prover, namely an SMT solver,
embedded in the procedure is also automated. The solver
takes an SMT instance as an input and answers whether it is
satisfiable insofar as possible. Proving that a Horn clause H
is valid is actually equivalent to proving that its negation ¬H
is unsatisfiable. Therefore, we prove that the SMT instance
fE1 ∧ ·· · ∧ fEn ∧¬ fE is unsatisfiable. The SMT solver can
provide three possible outcomes:

Satisfiable. If ¬H is satisfiable, then H is not valid. This
means that an interpretation exists (i.e., an instantiation of
properties) that fulfills the possibly redundant predicate
but not the alternative sequence of predicates. Thus, the
predicate is not redundant and cannot be removed.

Unsatisfiable. If ¬H is unsatisfiable, then H is valid. When
the alternative sequence is fulfilled, so is the predicate. It
is redundant and can be removed.

Unknown. First-order logic being undecidable, not all for-
mulae can be proven valid. When a theorem prover is
unable to evaluate the satisfiability of a formula, it re-
turns Unknown. By application of the conservativeness
principle, the redundancy test is considered negative. As
a result, the predicate is not removed.

OCL Data Type Ecore Data Type SMT Data Type

Integer EInt IntSort
Real EDouble RealSort
Boolean EBoolean BoolSort
String Estring StringSort
UnlimitedNatural EInt IntSort (without infinity)

Table 2: Mapping between primitive types representations

6.3 Translation

Translation refers to the process of mapping OCL expressions
of QVT-R relations to SMT instances. In the context of the
decomposition procedure, this is facilitated by the fact that
QVT-R uses a subset of OCL called EssentialOCL [45], a
side-effect free sublanguage that provides primitives data
types, data structures and operations to express constraints
on models. Many constructs of OCL have a direct equivalent
in theories of the theorem prover. More complex constructs
can often be mapped through the combination of primitive
constructs. Note that there also exist constructs that cannot be
translated. Language constructs of SMT solvers are described
using the SMT-LIB specification, a standard that provides
among others an input language for solvers [4]. This language
uses a syntax similar to that of Common Lisp. The translation
is recursive: each OCL expression depends on the translation
of its subexpressions. A complete reference of translated
constructs has been developed in a master’s thesis [51].

6.3.1 Primitive Data Types

OCL defines five primary data types: integers, reals, booleans,
strings and unlimited naturals. These data types are mapped
with Ecore when parsing QVT-R transformations. The map-
ping between Ecore data types and Z3 data types (called
sorts) is described in Table 2. It is straightforward, except
for UnlimitedNatural, a data type to represent multiplicities.
UnlimitedNatural and Integer are different in that the former
can take an infinite value whereas the latter cannot. IntSort
in Z3 cannot be infinite. In this case, a workaround is to rep-
resent an UnlimitedNatural as a couple (IntSort, BoolSort)
where the value equals ∞ if the Boolean is TRUE.

6.3.2 Data Structures

Primitive data structures in OCL are called collections. There
are four types of collections based on the combination of two
features, the first defining whether elements are ordered and
the second whether duplicate elements are allowed. Among
those four collection types, two are currently supported: se-
quences (ordered, duplicates allowed) and sets (non-ordered,
no duplicates). In QVT-R, collections are used either as liter-
als or as types for a special kind of properties: role names.

30 H. Klare, A. Pepin, E. Burger, R. Reussner

Person::firstname = fstn
∧ Person::lastname = lstn
∧ Employee::name=fstn + ’␣’ + lstn

Resident::name = n
∧ Employee::name = n

Person::firstname = fstn
∧ Person::lastname = lstn
∧ Resident::name=fstn + ’␣’ + lstn

Possibly
redundant predicate

Alternative sequence
of predicates

(not
(and
(= firstname fstn)
(= lastname lstn)
(= name
(str.++ fst
(str.++ ’ ’ lstn)

)
)

)
)

...

...

∧

∧

SMT
Solver

SAT. The initial
Horn clause is not
always valid so the

predicate is not entirely
redundant. No removal.

UNKNWON. By
conservative-

ness. No removal.

UNSAT. The initial
Horn clause is valid
so the predicate is

redundant. Removal.

OCL Expressions SMT Formula Redundancy Test

Fig. 14: Redundancy test, from OCL expressions to the SMT solver

Collection Literals Collection literals are OCL expressions
that represent data structures with constant and predefined
values (e.g., Sequence{1, 4, 9} or Set{2, 5}). In SMT solv-
ing, the fundamental theory to represent a collection of values
is the theory of arrays. Arrays are maps that relate a set of
indexes (domain) and a set of values (codomain). They are
immutable, purely functional data structures. Unlike OCL
data structures, there is no notion of size in arrays. To over-
come this limitation, we translate collections to algebraic data
types in the SMT input language. Data types are composed of
an array (collection values) and an integer storing the collec-
tion size. It is noteworthy that collection literals rarely occur
in consistency relations. In general, collections are groups of
objects resulting from references in metamodels.

Collections from Role Names In QVT-R property template
items, properties are either attributes (like Person::name)
or role names. A role name is an alias for objects at the end
of the reference owned by the class of the pattern. If the
upper bound of the reference multiplicity is greater than one
(e.g., 0..*), then the role name may represent a collection
of objects. The nature of the collection depends on whether
the end is ordered or unique or both. Even if the content
of the collection is unknown, it is possible to reason about
role names by means of the theory of uninterpreted func-
tions (UF). A role name r of a class c can be represented as
a function of c (e.g., r(c)). By abstracting the semantics of
functions, uninterpreted functions help to reason about model
elements without knowing all their details. For example, two
role names are equal if both belong to objects that have been
proven to be equal themselves.

6.3.3 Operations

OCL also provides many operations on primitive data types
and data structures, such as arithmetic operations or string
operations. Following the object-oriented structure of OCL,
every operation has a source and zero or more arguments.
For example, the + operation denotes an addition when the
source is an integer but a concatenation when the source
is a string. We translated operations regarding arithmetics,
booleans, conversion operators, equality operators, order re-
lations, collections and strings [51].

Some OCL operations are said to be untranslatable, be-
cause it is impossible to find a mapping between them and
features of state-of-the-art SMT solvers. As a result, there are
QVT-R relations that cannot be processed by the decompo-
sition procedure. For instance, the string operations toLower

and toUpper cannot be easily translated without numerous
user-defined axioms in current SMT solvers. Although deci-
sion procedures for such a case exist [71], they are not yet
integrated into solvers.

6.4 Summary

In this section, we have presented an approach to evaluate
redundancy of a predicate in a property graph (respectively
its dual) for the decomposition procedure, also depicted in
Figure 14. The approach translates the OCL expressions of
predicates into logic formulae and generates Horn clauses
for a potentially redundant predicate and its alternative predi-
cates. If an SMT solver proves unsatisfiability of that clause,
the checked predicate is redundant and can be removed.

A Formal Approach to Prove Compatibility in Transformation Networks 31

7 Evaluation

We have conducted a case study to evaluate correctness and
applicability of our approach. The evaluation focuses on
the appropriate operationalization of the formal approach,
which is proven correct, and its practical applicability in
terms of providing an appropriate level of conservativeness.
This defines our contribution C4.

7.1 Goals

Correctness Correctness of our approach means that it is
able to classify a given set of consistency relations as com-
patible or otherwise does not reveal a result. This especially
means that it operates conservatively. The formal approach
presented in Section 4 is proven correct by Theorem 3, Theo-
rem 2 and Corollary 1, such that we do not need to further
evaluate its correctness. For that reason, the correctness eval-
uation focuses on the operationalized approach presented
in Section 5 and Section 6. We investigate whether the op-
erationalized approach reveals expected results, indicating
that the mapping of our formalism to QVT-R is correct, and
especially that it operates conservatively.

Applicability Since the approach defines a fully automated
algorithm, which does not require further input apart from
the QVT-R relations to check, applicability may only be
restricted by inadequate outputs, which are correct but not
useful for the user. In consequence, we consider applicability
of our approach especially in terms of the practicality regard-
ing its degree of conservativeness. If the approach is not able
to identify compatibility in too many cases, in which rela-
tions are actually compatible, applicability would be limited.
For that reason, we aimed to identify in how many cases the
approach is not able to prove compatibility although compat-
ibility is given, and what the reasons for those results are. It
is of special interest whether those are conceptual issues of
the formal approach or a limitation of the operationalization
that may be fixed by other realization approaches.

7.2 Methodology

To empirically evaluate correctness and applicability of our
approach, we developed a prototypical implementation and
applied it to exemplary case studies. We give an overview
of that prototype in the subsequent subsection. Table 3 sum-
marizes the case studies to which we applied the approach.
Each of those scenarios consists of three or four metamodels
and especially comprises primitive data types and operations.
They were specifically developed to evaluate our approach
by defining as many kinds of relations that can be expressed
with QVT-R as possible, thus also reflecting edge cases.

Scenario Description Com-
patible

1 Three equal String attributes of three metamodels 3

2 Six equal String attributes of three metamodels 3

3 Concatenation of two String attributes 3

4 Double concatenation of four String attributes 3

5 Substring in a String attribute 3

6 Substring in a String attribute with precondition 3

7 Precondition with all primitive datatypes 3

8 Absolute value of Integer attribute with precondition 3

9 Transitive equality for three Integer attributes 3

10 Inequalities for three Integer attributes 3

11 Contradictory equalities for three Integer attributes 7

12 Contradictory inequalities for three Integer attributes 7

13 Constant property template items 3

14 Linear equations with three Integer attributes 3

15 Contradictory linear equations for three Int. attributes 7

16 Emptiness of various OCL sequence and set literals 7

17 Equal String attributes for four metamodels 3

18 Transitive inclusions in sequences 3

19 Comparison of role names in three metamodels 3

Table 3: Example scenarios of consistency relations and their
compatibility property, from [51]

We developed 14 compatible and four incompatible trans-
formations, according to our Definition 7 for compatibility.
Thus, we know the ground truth regarding compatibility of
transformations for each scenario by construction. Applying
our prototypical implementation to those scenarios classifies
them as compatible (positives) or makes no statement about
compatibility (negatives), i.e., they could either be compat-
ible or not. Considering which of the results are actually
correct gives us insights on correctness and applicability.

The approach is correct, which especially means that it
operates conservatively, if it does not classify any transfor-
mation networks as compatible although they are not. This
means that no false positives are allowed to occur or other-
wise the approach would, per definition, be incorrect. In other
words, the precision of the approach has to be 1:

Precision =
true positives

true positives + false positives

Applicability of the approach depends on the degree of
conservativeness, i.e., in how many cases it does not identify
a transformation network as compatible although it is. This
is reflected by the number of false negatives and, when com-
pared to the true positives known as the recall, gives insights
on the degree of conservativeness:

Recall =
true positives

true positives + false negatives

A high recall value indicates high applicability of the ap-
proach in terms of not being too conservative.

32 H. Klare, A. Pepin, E. Burger, R. Reussner

7.3 Prototypical Implementation

The decomposition procedure presented in Sections 5 and 6
resulted in the implementation of a prototype, which is avail-
able on GitHub [17]. The formal approach of this paper
addresses a common problem in the development of cyber-
physical systems: inconsistencies lead to the development of
incompatible artifacts, which in turn can lead to unexpected
behavior. Therefore, the practicality of our approach matters.
A tool for proving compatibility could be easily integrated
into the development process of a transformation network in
order to assist developers and domain experts.

7.3.1 Features

The implementation of the procedure takes a set of QVT-R
transformations as an input and outputs a list of redundant
QVT-R relations. This list must be compared to the initial
consistency specification. There are two scenarios: either the
delivered specification forms a consistency relation tree or
there are still cycles left. In the former case, compatibility
is proven. In the latter case, remaining cycles require the
developer’s attention. This may be due to incompatibility or
the inability of the procedure to prove redundancy.

In addition to the features of the procedure, the prototype
provides an input validation. There are two reasons why a
consistency specification may cause the procedure not to op-
erate correctly. First, specifications can be composed of not
well-formed transformations, i.e., QVT-R transformations
that are syntactically incorrect. In this case, the specification
is not usable and the procedure immediately exits. There is
another scenario: specifications that are well-formed but not
valid. For example, this occurs when two transformations
have the same name or when a QVT-R domain pattern uses a
nonexistent class. Although this scenario is non-blocking, i.e.,
the decomposition procedure still produces a result, the out-
put must be interpreted with caution. To assist the developer,
the procedure displays semantic errors in the specification
at the beginning of the parsing. In the end, the procedure is
intended to be non-intrusive, i.e., it is does not alter any arti-
fact and can be used at any moment during the development
process, i.e., by logging its results.

7.3.2 Implementation

Technical choices are mostly driven by the support of model-
driven engineering technologies. One important initiative
to this end is the Model Driven Architecture (MDA) [46].
The decomposition procedure makes use of many specifica-
tions recommended by the MDA, including QVT-R for the
definition of transformations, Essential MOF (EMOF) for
metamodels [48] and OCL for constraints over metamod-
els [47]. Eclipse provides an implementation of these lan-
guages within the Eclipse Modeling Framework (EMF) [61].

Classified Compatible Unclassified

Compatible 12 4

Incompatible 0 3

Table 4: Number of scenarios from Table 3 regarding actual
compatibility and their classification by our approach.

As a consequence, metamodels of the decomposition proce-
dure are implemented using Ecore, a meta-metamodel that is
compliant with EMOF. EMF supports a number of model-to-
model transformation languages through the Eclipse MMT
project. In particular, the QVT Declarative (QVTd) com-
ponent provides a parser for QVT-R transformations. As
QVT-R relies on OCL, QVTd makes use of Eclipse OCL, an
implementation of the OCL language.

Regarding the strategy for redundancy testing, the imple-
mentation of the decomposition procedure requires the use
of an SMT solver. Most SMT solvers are based on SMT-LIB,
an initiative that provides a common input/output language
for SMT instances. The prototype relies on the Z3 theorem
prover, an SMT solver with a Java binding and a large number
of theories supported [16].

7.4 Results

In the following, we present the results of our evaluation re-
garding the methodology proposed in Subsection 7.2 applied
to the prototypical implementation introduced in Subsec-
tion 7.3. The classification results are summarized in Table 4.

7.4.1 Correctness

As discussed before, the correctness of our approach in terms
of conservative behavior is proven for the formal approach by
construction. Since the operationalized approach is based on
that formalization, correctness is also given by construction
provided that the following requirements are fulfilled:

1. All relevant QVT-R relations are considered, i.e., all QVT-
R relations are represented in the property graph to be
considered as consistency relations to be checked.

2. Consistency rules in QVT-R are defined using variables,
so all constructs referring to these variable have to be
considered. This especially means that all template ex-
pressions need to be considered for the property graph
construction, namely property template items, precondi-
tions and invariants.

We ensured that all these relevant elements are considered
by construction of the approach discussed in Section 5 and
Section 6. However, the results of the case study further
validate that we did not miss any relevant parts of QVT-R

A Formal Approach to Prove Compatibility in Transformation Networks 33

relations. In fact, the results summarized in Table 4 show
that we have a precision of 1, thus having no incompatible
scenarios classified as compatible by error:

Precision =
true positives

true positives + false positives
=

12
12+0

= 1

7.4.2 Applicability

Applicability of the presented approach depends on its degree
of conservativeness. If it is not able to prove compatibility
of compatible transformation networks in too many cases,
applicability is reduced. In general, the conservative behavior
results especially from two reasons:

1. Definition 13 for left-equal redundancy, which is used to
prove compatibility of a network, may be a too strong
requirement for identifying compatibility-preserving con-
sistency relations.

2. Consistency relations as defined in Definition 2 are ex-
tensional specifications and thus usually enumerate infi-
nite sets of elements, which are impossible to compare
programmatically. For that reason, our operationalized
approach relies on intensional specifications, which de-
scribe how consistent pairs of elements can be derived.
These specifications are written in OCL. However, OCL
in general is undecidable, because it can be transformed
into first-order logic [5].

Especially formulae that contain many quantifiers are hard
to analyze. For that reason, the number of variables used in
a consistency relation is crucial, as these variables are trans-
lated to existentially quantified formulae. Although not all
available OCL constructs might be necessary to describe rel-
evant consistency relations, constructs involving operations
on sets and strings are problematic. Operation collections
are transferred to quantified formulae, which are hard to ana-
lyze. Reasoning about strings is problematic, because some
OCL operations like toUpper and toLower cannot be easily
transferred to state-of-the-art SMT solvers like Z3 and thus
cannot be considered for detecting redundancy. Furthermore,
SMT solvers use heuristics, so it not possible to formally
evaluate which kinds of relations can be analyzed.

Applying the prototypical implementation of our ap-
proach to the scenarios introduced in Subsection 7.2 led
to the result that twelve of the 15 compatible transformation
networks were correctly classified as compatible, whereas
three were not. This leads to a recall value of 80%.

Recall =
true positives

true positives + false negatives
=

12
12+3

= 0.8

The three scenarios that were not classified, although they
are actually compatible, are Scenarios 8, 18 and 19 from
Table 3. In all cases, the SMT solver returned unknown, al-
though it should have returned unsatisfiable. In consequence,

in each case an actually consistent consistency relation was
not removed, thus the set of relations was not considered
compatible although it is. More precisely, in scenario 8, a
precondition ensures that an element is included in the inter-
section of two set literals, which the solver was not able to
check properly. Scenarios 18 and 19 were problematic due to
comparable reasons. While in Scenario 18 the transitive in-
clusion of sets was defined, Scenario 19 considers role names
of classes with equivalent identifiers, which both the solver
was not able to check properly. All observed false negatives
were due to reasons of undecidability of the translation of
OCL constructs to first-order logic.

To summarize, we found that basic operations on prim-
itive data types, even with non-trivial constraints involving
integer equations and string operations, were treated cor-
rectly. More complex operations and structures requiring
many quantifiers led to unprovability by the SMT solver,
especially concerning collection operations and role names.
Thus, the approach is especially applicable for consistency
relations concerning attributes and primitive types. However,
this limitation does only concern the chosen SMT solver ap-
proach, but neither the concept of operationalization nor of
the formal framework behind it. We did especially not find
a scenario, in which our definition of left-equal redundancy
was too strict for proving compatibility.

7.5 Discussion

The presented approach aims to support developers of trans-
formation networks to independently develop individual trans-
formations, i.e., parts of the network, without aligning the
consistency relations on which the transformations are based
a priori, but allows them to check their compatibility during
or after development. For that reasons, it provides a benefit
by automating a process that currently requires manual effort
by either aligning consistency relations with each other or by
defining test cases, which are able to validate but not to ver-
ify compatibility, i.e., which cannot make any all-quantified
statements about compatibility. Even if the approach had
a high degree of conservativeness, the approach would be
beneficial for the combination of independently developed
transformation. First, there is still a chance that the approach
is able to prove compatibility for a given set of relations.
Second, if the approach is not able to prove compatibility,
it may still find some redundant relations and thus reduces
the effort for the user to investigate the remaining relations
for contradictions. It would even be possible to define an
interactive approach, combining the removal of redundant
relations by proof and by user decision, as we will propose
in Subsection 9.2. In the following, we discuss threats to the
validity of our evaluation and discuss limitations of both the
approach and our evaluation.

34 H. Klare, A. Pepin, E. Burger, R. Reussner

7.5.1 Threats to Validity

Although we designed our evaluation in a way such that it
gives us appropriate insights on correctness and applicabil-
ity of the approach, there may be limitations regarding its
internal and external validity.

Scenario Selection We developed the scenarios specifically
for the evaluation of our approach. Due to that reason, they
may not be sufficiently representative for actual transfor-
mation networks. However, the scenarios were specifically
designed to test different aspects of the approach. They repre-
sent an extensive set of consistency relations and especially
different types of relations, also considering edge cases that
may be rare in practical scenarios. That even provides a ben-
efit regarding practical consistency relation specifications.

Scenario Complexity The scenarios only comprise OCL con-
structs that are currently supported by our approach. This
may be a bias, because unsupported constructs are not cov-
ered by the evaluation. However, the algorithm would not
deliver any results in such scenarios anyway, thus applying
it to them would not give further insights. Additionally, the
unsupported constructs are only a limitation of the current im-
plementation and not a conceptual limitation of the approach.
Finally, the limitation in complexity of the relations may also
lead to the fact that we do not cover cases that actually occur
in practice but for which our definition for redundancy is too
strong to prove compatibility. This is an actual limitation that
has to be considered in further evaluations.

Scenario Size The considered scenarios are rather small, as
they only consider up to four metamodels and only few con-
sistency relations. Actual consistency relations will involve
larger metamodels and consistency relations. However, the in-
ductive characteristics of our approach makes it independent
from the number of metamodels and relations to consider.
One property affected by the scenario size is the performance
of the approach, which we discuss in Subsection 7.5.2.

Conclusion In consequence, our evaluation only gives an ini-
tial indicator for the applicability of our approach due to the
limited set and complexity of scenarios. To improve evidence
in external validity, applying the approach to further, more
practical transformation networks would be beneficial. How-
ever, acquiring such a networks is difficult. At least existing
networks contain transformations that are aligned with each
other and thus do not allow to validate cases in which consis-
tency relations are actually incompatible. It may be possible
to reduce that problem by taking existing sets of consistency
relations and manually extending them with either redundant
or incompatible consistency relations, checking whether the
approach is able to correctly remove the added redundant
relations or detect incompatibility.

7.5.2 Limitations

Current limitations of our approach especially arise from
its operationalization and the limitations of SMT solvers.
Additionally, we are currently only able to argue for the ben-
efits and performance of our approach, but further evaluation
would be necessary to validate these arguments.

Operationalized Approach The operationalized approach
has both fundamental and technical limitations. First, SMT
solvers are limited in a way that they are not able to analyze
all types of expressions regarding satisfiability. In conse-
quence, even if all kinds of QVT-R respectively OCL con-
structs can be transformed into appropriate logic formulae, it
may not be able to check them for satisfiability, as we have
seen in the applicability evaluation. Second, we do not yet
provide a translation for all kinds of OCL constructs to logic
formulae, such that not all QVT-R relations are supported.
However, this is a technical limitations that can be solved by
implementing these translations.

Benefits Evaluation We did not provide an evaluation for the
claimed benefits of our approach. This is due to two reasons.
First, we already argued why the approach provides a benefit
anyway due to being fully automated and not requiring fur-
ther input. Second, to the best of our knowledge, there are
no competitive approaches to compare our approach with. In
consequence, only an empirical study in which the approach
is practically applied would give further insights to its bene-
fits for a user, apart from the obvious benefits given by the
automation of a currently manual process.

Performance Evaluation We did neither formally evaluate
nor measure performance of our approach. If the approach
required to much time to be executed on a set of transforma-
tions, its applicability would be reduced. SMT solvers, such
as the used Z3 solver, depend on heuristics, which makes
their performance unpredictable. Thus, it would be important
to evaluate performance of the approach in a case study. In
our case study, we did observe any time-consuming scenar-
ios. However, transformation networks with more and larger
transformations and especially many cycles need to be inves-
tigated to make generalizable statements on the performance.

8 Related Work

In this article, we have presented an approach for proving
compatibility of transformation network. Thus, our work
contributes to the goal of achieving consistency respectively
consistency preservation between multiple models and is re-
lated to other approaches with that goal. It is highly related
to the area of transformation networks and multi-directional
transformations, especially to validation techniques for them.

A Formal Approach to Prove Compatibility in Transformation Networks 35

Combining transformations to a network is also related to
transformation composition and transformation chain con-
struction, as it is a more general case of these specific prob-
lems. Finally, we used formal techniques including a theorem
prover to make statements about OCL expressions in QVT-R
relations, which is why other comparable formal techniques
are related to our work. We discuss the relation of our work
to work in these areas in the following.

8.1 Consistency Preservation of Multiple Models

Preserving consistency of software artifacts (i.e., models) has
been long researched. Starting with approaches for specific
modeling languages, such as the UML [15], the relevance of
model-driven engineering, accompanied by OMG’s Model
Driven Architecture [46] process specification, rose. Several
approaches provide domain-specific solutions for consistency
problems, such as for consistency between SysML [49] and
AUTOSAR [59] in the automotive domain [22]. Modeling
frameworks, such as EMF [61], enabled the definition of
tools that are independent from concrete models, such as
transformation languages, model merging tools and so on.

Based on such modeling framework, different approaches
considering model consistency have been developed. They
can be distinguished into approaches that are only able to
check consistency of models [53, 29] and those that are
able to also enforce consistency. Consistency-enforcing ap-
proaches are sometimes also referred to as model repair ap-
proaches, which were surveyed by Macedo et al. [40]. They
also considered whether the approaches are able to handle
multiple models or only pairs, but found that only one of
the considered approaches handles that case by considering
the pairwise relations between models. Consistency preser-
vation approaches are based on heterogeneous ideas, ranging
from model merging [41, 54], macro- and megamodeling [56,
55], model finding and constraint solving [36, 39] and model
transformations [14, 33, 57, 40]. Most of these approaches,
if supporting the case of multiple models at all, assume that
there is a common knowledge about how all involved mod-
els shall be related. With modular knowledge, like assumed
when creating transformation networks, incompatibilities in
the way consistency is considered always lead to problems,
regardless of the approach chosen, so the finding of our work
is relevant for all these approaches.

8.2 Multi-directional Transformations

Of the previously presented approaches for consistency preser-
vation, model transformations is the approach that provides
the highest degree of freedom to influence the way in which
consistency is restored. The area of incremental, bidirectional
transformations is most relevant for consistency preservation

purposes. The concept of bidirectional transformation can
be generalized to multi-directional transformations [62, 11],
i.e., specification with relations as well as consistency repair
routines between multiple models. So consistency preser-
vation between multiple models can be achieved with two
transformation approaches, first with multi-directional trans-
formations, and second by combining bidirectional transfor-
mations to networks. However, those topics have only been
considered in research since recently [11].

Only few approaches presented in the recent years ex-
plicitly consider the case where multiple models shall be
kept consistent. Several transformation languages have been
proposed in the recent years, surveyed by Kusel et al. [33].
Among popular languages such as QVT [45], Atlas Trans-
formation Language (ATL) [25, 76], VIATRA [7] and Triple
Graph Grammars (TGGs) [2, 1], originally developed by
Schürr [60], only the QVT-R standard explicitly considers
the case in which more than two models shall be transformed
into each other by allowing the definition of multi-directional
transformations. However, Macedo et al. [38] revealed sev-
eral limitations of its applicability. Extensions of TGGs to
multiple models called Multi Graph Grammars (MGGs) [30]
and Graph Diagram Grammars [68, 67] consider the spec-
ification of multi-directional rules, but focus on the speci-
fication concept and do not yet consider what happens if
several such rules are conflicting. Although multi-directional
transformation approaches are inherently less prone to com-
patibility problems, we already discussed drawbacks of the
necessity to have no modular specification of consistency.

The case that transformations are combined to networks
is not considered by any existing transformation language.
Most of the existing considerations for such networks are
rather theoretical. For a single bidirectional transformation,
several relevant properties, such as correctness, hippocrat-
icness or undoability have been found and researched [63].
In our work, in contrast, we are interested in further prop-
erties that are relevant when combining transformations to
networks. Stevens [62] started to discuss problems that arise
from the combination of several transformations, such as
potential non-termination or the problem of not finding a
consistent solution. She defined in which situations it is not
possible to express a multiary relation by means of binary
relations at all. She also discussed orchestration problems
for the execution order of transformations [64]. However,
compatibility of relations have not been considered yet.

An approach to emulate multi-directional transforma-
tions in terms of bidirectional transformation networks are
commonalities models. They introduce further models that
contain the information that is shared between models and
thus has to be kept consistent. They serve as a hub with bidi-
rectional transformations to the actual models, acting like
a multi-directional transformations. This concept has been
considered on a rather theoretical basis [65, 18], discussing

36 H. Klare, A. Pepin, E. Burger, R. Reussner

which kinds of relations can be expressed with such an ap-
proach, and from an engineering perspective [27], discussing
the modular specification and composition of commonalities.
However, all these approaches do not allow a combination
of independently developed consistency specifications for
subsets of the models, which is the goal of our work.

8.3 Transformation (De-)Composition

Our approach can be seen as a technique to decompose trans-
formations into sets of transformations that are either essen-
tial or redundant. Transformation composition has especially
been researched in terms of creating chains of transforma-
tions, composing larger transformations from smaller ones
and finding and extracting common parts in different trans-
formations, known as factorization.

A transformation chain defines a sequence of transfor-
mations, which transforms one abstract, high-level model
into one low-level model across one or more others of dif-
ferent abstraction levels. Languages like FTG+PM [35] and
UniTI [70] allow to specify the combination of transforma-
tions to chains. However, tools like UniTI derive compatibil-
ity from additional, external specifications of the transforma-
tions, for which conformance to the actual transformation is
not guaranteed. Additionally, transformation chains are only
a special case of transformation networks, as each transfor-
mation network is also aware of the individual transformation
chains between all pairs of models. They are, by construc-
tion, not that prone to compatibility problems, because there
cannot be any cycles in the transformations.

Transformation composition techniques can be seen as a
means to build transformation networks. Internal composi-
tion techniques can be separated into white-box approaches,
which are integrated into languages [72, 74, 73], e.g., inheri-
tance or superimposition techniques, and external techniques,
which consider the transformations as black boxes. For such
transformation compositions, Lano et al. [34] present a cata-
log of patterns that foster correct composition. Our approach
considers the transformations as white boxes, or at least re-
quires knowledge about the defined consistency relations,
but is, in contrast to existing work, not integrated into a
transformation language. Additionally, existing approaches
have the goal of enhancing composition of transformations
between the same metamodels, thus providing benefits like
improved reusability, whereas we combine transformations
between different metamodels. However, our findings on
compatibility can also be applied to composition of transfor-
mations between the same metamodels. Finally, factorization
approaches identify common parts of transformations and
extract them into a base transformation from which the in-
dividual parts are extended [58]. Such approaches use intru-
sive operators that adapt the transformations for composition,
whereas we only non-intrusively analyze the transformations.

8.4 Formal Methods in Consistency Preservation

Some approaches consider consistency preservation as a con-
straint solving problem rather than a transformation problem.
They use constraints to represent consistency relations, like
we do for the relations of transformations, and then try to
find valid solutions after an inconsistency-introducing mod-
ification was made by model finding. For example, some
approaches use Answer Set Programming (ASP) to preserve
consistency of models [10, 19]. For QVT-R and Echo, imple-
mentations with Alloy were proposed to resolve inconsisten-
cies [36, 37], which were also implemented in the transfor-
mation tool Echo. However, these approaches find consistent
models based on the defined constraints rather than checking
whether those constraints can be fulfilled under specific con-
ditions, like our definition of compatibility specifies and our
presented approach is able to prove.

Finally, there are several approaches for the validation of
OCL constraints used to define conditions on valid models or
to define model transformations. To validate the existence of
models that fulfill certain OCL constraints, Kuhlmann et al.
[32] and González et al. [23] propose an approach using SAT
solvers. For the validation of model transformations, different
approaches have been proposed. Cabot et al. [9] derive in-
variants from transformations, which they use for verification
purposes, such as to find whether a model exists that can ful-
fill a transformation rule. Comparably, Cuadrado et al. [12]
analyze ATL transformations to find errors in transformations
and to find out whether a source model exists that may trigger
a transformation. Rather than using constraint logic for veri-
fying a transformation, Azizi et al. [3] verify correctness of
an ETL transformation using the symbolic execution of the
transformation. Instead of checking a transformation on its
own, Vallecillo et al. [69] propose to define a formal specifica-
tion of transformations, against which they can be validated.
Finally, Büttner et al. [8] propose an approach for proving
correctness of ATL transformations against pre- and post-
conditions using SMT solvers. Most approaches use some
kind of constraint logic or theorem proving for validating
correctness of transformations, which is comparable to our
approach. Our defined notion of compatibility is comparable
to correctness notions in the approaches of Cuadrado et al.
[12] and Cabot et al. [9], as they try to figure out if a rule can
be triggered by any model. However, all these approaches
consider correctness of a single transformation. In contrast,
we consider correctness of a transformation network.

9 Future Work

Based on the presented work, there are plenty of possibilities
and necessities for follow-up research. In the following, we
present an overview of the topics that are most relevant to
be considered next from our point of view. We first discuss

A Formal Approach to Prove Compatibility in Transformation Networks 37

conceptual extensions by considering weaker redundancy
notions and processes to use the approach in, as well as its
impact on other correctness requirements in terms of consis-
tency repair. Afterwards, we shortly discuss the possibility
to evaluate alternatives for the realization of our formal ap-
proach, as well as ideas for completing our realization.

9.1 Relaxation of Redundancy Notion

In Subsection 4.2, we have introduced the notion of left-equal
redundancy, since an intuitive notion of redundancy is not
strong enough to be compatibility-preserving. We based the
decision for that stronger definition on insights from a coun-
terexample for redundancy being compatibility-preserving.
However, there might be a weaker notion than left-equal
redundancy that is still strong enough to be compatibility-
preserving. In that case, it would be interesting to investigate
application scenarios in which compatibility-preserving rela-
tions that are not left-equal redundant occur and how the def-
inition can be appropriately relaxed, such that our approach
supports that notion as well.

9.2 Interactive Process

Our approach enables a user to check a network of con-
sistency relations regarding compatibility. If the approach
identifies a given network as compatible, it is actually com-
patible as the algorithm operates conservatively. However,
the approach is not able to prove incompatibility. If the ap-
proach does not identify a network as compatible, it may
be incompatible or not. For that reason, we should define a
holistic process for the usage of the approach, which inte-
grates further information given by the user into the process
of proving compatibility. If the algorithm is not able to prove
compatibility, it can present the network, in which it removed
some redundant relations, to the user. The user could then be
asked to declare a cycle of relations as compatible, for which
the algorithm is not able to prove it, or which are actually not
compatible, but whose restriction of relations regarding con-
sistency according to other relations is intended. Afterwards,
the algorithm could proceed with finding further redundant
relations to prove compatibility, based on the decision of the
user. As a result, the approach would be applicable to more
cases in which compatibility is intentionally not given or in
which the algorithm on its own is not able to prove it.

9.3 Impact on Consistency Repair

In Subsection 3.1, we introduced different levels at which
a transformation network can be incorrect [28]. While the
approach in this paper is concerned with the correctness of

consistency relations, correctness can also be considered at
the level of consistency repair routines that ensure consis-
tency according to the relations. Correctness of consistency
relations is a necessary requirement for consistency repair
routines to work properly, as otherwise, for example, non-
terminating loops that try to fulfill consistency relations that
can never be fulfilled may occur. Based on the formal notion
of compatibility presented in this article, we will evaluate in
future work how compatibility affects correctness of consis-
tency repair routines, and whether all remaining correctness
issues can be avoided by construction, as proposed in [28].
This would result in a holistic approach based on construc-
tion guidelines and our technique to prove compatibility that
enables developers to build correct transformation networks.

9.4 Validation of Operationalization Alternatives

We have chosen to translate OCL expressions in QVT-R rela-
tions into first-order logic formulae and to use an SMT solver,
namely Z3, to evaluate Horn clauses of those expressions
that represent the potential redundancy in cycles of consis-
tency relations. However, such a theorem prover is not able
to evaluate satisfiability of clauses in all cases, as we already
discussed in Subsection 7.5.2. It is possible to implement
the approach in Section 5 by means of other formal meth-
ods. For example, interactive theorem provers may be able
to prove redundancy of consistency relations in more cases.
This hypothesis can be evaluated in future work. Another
possibility is the use of multiple formal methods in the de-
composition procedure. Although this requires translating
OCL expressions into multiple languages, some formal meth-
ods can sometimes provide proofs where others cannot. Thus,
the simultaneous use of different symbolic computation tools
can increase the chances of finding redundancy proofs.

9.5 Completion of Operationalized Approach

The operationalization of our approach presented in Section 5
and Section 6 is currently limited to the parts of QVT-R rela-
tions and OCL operations that we presented in those sections.
In future work, we will extend the set of supported OCL oper-
ations, which the approach is able to translate into first-order
logic formulae. This will allow us to apply the approach to
more sophisticated case studies and provide further evalua-
tion to indicate general applicability of the approach. More-
over, SMT solvers come with heuristics (sometimes called
strategies) to fine-tune their performances. Strategies should
be chosen according to the nature of tested SMT instances,
i.e.. consistency specifications. Thus, a better integration of
the SMT solver can improve the realization of the current ap-
proach for proving compatibility in transformation networks.

38 H. Klare, A. Pepin, E. Burger, R. Reussner

10 Conclusion

In this article, we presented an approach to prove compati-
bility of consistency relations in transformation network. We
introduced a formal notion of compatibility, describing when
consistency relations are considered contradictory, and we
proved correctness of a formal approach that checks whether
a transformation network is compatible. We defined an oper-
ationalization of that approach for QVT-R and OCL, which
uses the translation of OCL to first-order logic formulae and
an SMT solver to prove compatibility.

Applying the approach to different scenarios in an evalu-
ation, we found that the approach operates correctly in the
sense that it produces conservative results. Further, we found
that conservativeness is rather low, i.e., only few actually
compatible transformation networks were not identified as
such. More precisely, only 20% of the compatible transforma-
tions were not identified as such, which indicates the practical
applicability of the approach. The current limitations of the
approach and the degree of conservativeness especially arise
from limitations due to undecidability of OCL and missing
translations of OCL constructs to first-order logic formulae.
We did not identify conceptual issues that limit the expres-
siveness or applicability of our approach.

The presented approach enables developers of transfor-
mations to independently define their transformations and
combine them afterwards, without the necessity to align the
underlying consistency relations a priori or to check their
compatibility manually when combining them. This is an
important contribution to the overall goal of being able to
build properly working networks of independently developed
transformations to foster the development of large software
and cyber-physical systems that involve several models and
views to describe that system under construction.

Verfiability

The prototypical implementation of our approach, as well
as the metamodels and transformations of the case studies,
which we used for the evaluation presented in Section 7, can
be found on GitHub [17].

References

[1] A. Anjorin. Synchronization of Models on Different Abstraction
Levels using Triple Graph Grammars. PhD thesis, Technische
Universität Darmstadt, 2014.

[2] A. Anjorin, S. Rose, F. Deckwerth, and A. Schürr. “Efficient
model synchronization with view triple graph grammars”. In
Modelling Foundations and Applications. Volume 8569, LNCS,
pages 1–17. Springer International Publishing, 2014.

[3] B. Azizi, B. Zamani, and S. Kolahdouz-Rahimi. Contract verifi-
cation of ETL transformations. In 2017 7th International Con-
ference on Computer and Knowledge Engineering (ICCKE),
pages 154–160, 2017.

[4] C. Barrett, P. Fontaine, and C. Tinelli. The SMT-LIB Standard:
Version 2.6. Technical report, Department of Computer Science,
The University of Iowa, 2017. Available at www.SMT-LIB.org.

[5] B. Beckert, U. Keller, and P. H. Schmitt. Translating the Object
Constraint Language into first-order predicate logic. In VER-
IFY Workshop (VERIFY 2002) at FLoC 2002: Federated Logic
Conferences, pages 113–123, 2002.

[6] D. Berardi, D. Calvanese, and G. D. Giacomo. “Reasoning
on uml class diagrams”. Artificial Intelligence, 168(1):70–118,
2005.

[7] G. Bergmann, I. Dávid, Á. Hegedüs, Á. Horváth, I. Ráth, Z.
Ujhelyi, and D. Varró. “Viatra 3: a reactive model transforma-
tion platform”. In Theory and Practice of Model Transforma-
tions, pages 101–110. Springer, 2015.

[8] F. Büttner, M. Egea, and J. Cabot. On Verifying ATL Transfor-
mations Using ‘off-the-shelf’ SMT Solvers. In Model Driven
Engineering Languages and Systems, pages 432–448. Springer
Berlin Heidelberg, 2012.

[9] J. Cabot, R. Clarisó, E. Guerra, and J. de Lara. “Verification
and Validation of Declarative Model-to-Model Transforma-
tions through Invariants”. Journal of Systems and Software,
83(2):283–302, 2010.

[10] A. Cicchetti, D. Di Ruscio, and R. Eramo. Towards Propagation
of Changes by Model Approximations. In 2006 10th IEEE Inter-
national Enterprise Distributed Object Computing Conference
Workshops (EDOCW’06), page 24. IEEE Computer Society,
2006.

[11] A. Cleve, E. Kindler, P. Stevens, and V. Zaytsev. “Multidirec-
tional Transformations and Synchronisations (Dagstuhl Seminar
18491)”. Dagstuhl Reports, 8(12):1–48, 2019.

[12] J. S. Cuadrado, S. Guerra, and J. de Lara. “Static Analysis
of Model Transformations”. IEEE Transactions on Software
Engineering, 43(9):868–897, 2017.

[13] K. Czarnecki and S. Helsen. Classification of Model Transfor-
mation Approaches. In OOPSLA 2003 Workshop on Generative
Techniques in the context of Model Driven Architecture, 2003.

[14] K. Czarnecki and S. Helsen. “Feature-based Survey of Model
Transformation Approaches”. IBM Systems Journal, 45(3):621–
645, 2006.

[15] C. R. Dantas, L. G. P. Murta, and C. M. L. Werner. Consistent
evolution of UML models by automatic detection of change
traces. In Eighth International Workshop on Principles of Soft-
ware Evolution (IWPSE’05), pages 144–147, 2005.

[16] L. de Moura and N. Bjørner. Z3: an efficient smt solver. In Tools
and Algorithms for the Construction and Analysis of Systems,
pages 337–340. Springer Berlin Heidelberg, 2008.

[17] Decomposition GitHub Repository. URL: https://github.
com / aurelienpepin / KIT _ ConsistencyPreservation _
Decomposition (visited on 02/28/2020).

[18] Z. Diskin, H. König, and M. Lawford. Multiple Model Syn-
chronization with Multiary Delta Lenses. In Fundamental Ap-
proaches to Software Engineering, pages 21–37. Springer Inter-
national Publishing, 2018.

[19] R. Eramo, A. Pierantonio, J. R. Romero, and A. Vallecillo.
Change Management in Multi-Viewpoint System Using ASP.
In Enterprise Distributed Object Computing Conference Work-
shops, 2008 12th, pages 433–440, 2008.

[20] ETAS Group. ASCET-DEVELOPER. URL: https://www.etas.
com/ascet (visited on 02/12/2020).

[21] N. E. Gibbs. “A cycle generation algorithm for finite undirected
linear graphs”. Journal of the ACM (JACM), 16(4):564–568,
1969.

[22] H. Giese, S. Hildebrandt, and S. Neumann. “Model synchro-
nization at work: keeping sysml and autosar models consistent”.
In Graph Transformations and Model-Driven Engineering. Vol-

http://dx.doi.org/10.1007/978-3-319-09195-2_1
http://dx.doi.org/10.1007/978-3-319-09195-2_1
http://dx.doi.org/10.1109/ICCKE.2017.8167945
http://dx.doi.org/10.1109/ICCKE.2017.8167945
http://dx.doi.org/https://doi.org/10.1016/j.artint.2005.05.003
http://dx.doi.org/https://doi.org/10.1016/j.artint.2005.05.003
http://dx.doi.org/10.1007/978-3-642-33666-9_28
http://dx.doi.org/10.1007/978-3-642-33666-9_28
http://dx.doi.org/10.1016/j.jss.2009.08.012
http://dx.doi.org/10.1016/j.jss.2009.08.012
http://dx.doi.org/10.1016/j.jss.2009.08.012
http://dx.doi.org/10.1109/EDOCW.2006.68
http://dx.doi.org/10.1109/EDOCW.2006.68
http://dx.doi.org/10.4230/DagRep.8.12.1
http://dx.doi.org/10.4230/DagRep.8.12.1
http://dx.doi.org/10.4230/DagRep.8.12.1
http://dx.doi.org/10.1109/TSE.2016.2635137
http://dx.doi.org/10.1109/TSE.2016.2635137
http://www.softmetaware.com/oopsla2003/czarnecki.pdf
http://www.softmetaware.com/oopsla2003/czarnecki.pdf
http://dx.doi.org/10.1147/sj.453.0621
http://dx.doi.org/10.1147/sj.453.0621
http://dx.doi.org/10.1109/IWPSE.2005.10
http://dx.doi.org/10.1109/IWPSE.2005.10
http://dx.doi.org/10.1109/IWPSE.2005.10
http://books.google.com/books?vid=ISBN978-3-540-78800-3
https://github.com/aurelienpepin/KIT_ConsistencyPreservation_Decomposition
https://github.com/aurelienpepin/KIT_ConsistencyPreservation_Decomposition
https://github.com/aurelienpepin/KIT_ConsistencyPreservation_Decomposition
https://github.com/aurelienpepin/KIT_ConsistencyPreservation_Decomposition
http://dx.doi.org/10.1007/978-3-319-89363-1_2
http://dx.doi.org/10.1007/978-3-319-89363-1_2
http://dx.doi.org/10.1109/EDOCW.2008.22
https://www.etas.com/ascet
https://www.etas.com/ascet
https://www.etas.com/ascet
http://dx.doi.org/10.1007/978-3-642-17322-6_24
http://dx.doi.org/10.1007/978-3-642-17322-6_24

A Formal Approach to Prove Compatibility in Transformation Networks 39

ume 5765, LNCS, pages 555–579. Springer Berlin / Heidelberg,
2010.

[23] C. A. González, F. Büttner, R. Clarisó, and J. Cabot. EMFtoCSP:
A tool for the lightweight verification of EMF models. In 2012
First International Workshop on Formal Methods in Software
Engineering: Rigorous and Agile Approaches (FormSERA),
pages 44–50, 2012.

[24] ITEA. AMALTHEA4public – An Open Platform Project for
Embedded Multicore Systems. URL: http://www.amalthea-
project.org/. Accessed 2020-02-12.

[25] F. Jouault, F. Allilaire, J. Bézivin, I. Kurtev, and P. Valduriez.
ATL: A QVT-like Transformation Language. In Companion to
the 21st ACM SIGPLAN Symposium on Object-oriented Pro-
gramming Systems, Languages, and Applications, OOPSLA
’06, pages 719–720. ACM, 2006.

[26] H. Klare. Multi-model Consistency Preservation. In Proceed-
ings of the 21st ACM/IEEE International Conference on Model
Driven Engineering Languages and Systems: Companion Pro-
ceedings, MODELS 2018, pages 156–161, 2018.

[27] H. Klare and J. Gleitze. Commonalities for Preserving Consis-
tency of Multiple Models. In 2019 ACM/IEEE 22nd Interna-
tional Conference on Model Driven Engineering Languages
and Systems Companion (MODELS-C), pages 371–378, 2019.

[28] H. Klare, T. Syma, E. Burger, and R. Reussner. “A Categoriza-
tion of Interoperability Issues in Networks of Transformations”.
Journal of Object Technology, 18(3):4:1–20, 2019.

[29] H. König and Z. Diskin. Efficient Consistency Checking of In-
terrelated Models. In Modelling Foundations and Applications,
pages 161–178. Springer International Publishing, 2017.

[30] A. Königs and A. Schürr. “MDI: A Rule-based Multi-document
and Tool Integration Approach”. Software and Systems Model-
ing (SoSyM), 5(4):349–368, 2006.

[31] M. E. Kramer. Specification Languages for Preserving Con-
sistency between Models of Different Languages. PhD thesis,
Karlsruhe Institute of Technology (KIT), 2017. 278 pages.

[32] M. Kuhlmann, L. Hamann, and M. Gogolla. Extensive Valida-
tion of OCL Models by Integrating SAT Solving into USE. In Ob-
jects, Models, Components, Patterns, pages 290–306. Springer
Berlin Heidelberg, 2011.

[33] A. Kusel, J. Etzlstorfer, E. Kapsammer, P. Langer, W. Rets-
chitzegger, J. Schoenboeck, W. Schwinger, and M. Wimmer.
A Survey on Incremental Model Transformation Approaches.
In ME 2013 – Models and Evolution Workshop Proceedings,
pages 4–13, 2013.

[34] K. Lano, S. Kolahdouz-Rahimi, I. Poernomo, J. Terrell, and
S. Zschaler. “Correct-by-construction synthesis of model trans-
formations using transformation patterns”. Software & Systems
Modeling, 13(2):873–907, 2014.

[35] L. Lúcio, S. Mustafiz, J. Denil, H. Vangheluwe, and M. Jukss.
FTG+PM: An Integrated Framework for Investigating Model
Transformation Chains. In SDL 2013: Model-Driven Depend-
ability Engineering, pages 182–202. Springer Berlin Heidelberg,
2013.

[36] N. Macedo and A. Cunha. “Implementing QVT-R Bidirec-
tional Model Transformations Using Alloy”. In Fundamental
Approaches to Software Engineering. Volume 7793, LNCS,
pages 297–311. Springer Berlin Heidelberg, 2013.

[37] N. Macedo and A. Cunha. “Least-change bidirectional model
transformation with QVT-R and ATL”. Software & Systems
Modeling, 15(3):783–810, 2016.

[38] N. Macedo, A. Cunha, and H. Pacheco. Towards a framework
for multi-directional model transformations. In 3rd Interna-
tional Workshop on Bidirectional Transformations - BX, vol-
ume 1133. CEUR-WS.org, 2014.

[39] N. Macedo, T. Guimarães, and A. Cunha. Model Repair
and Transformation with Echo. In Proceedings of the 28th

IEEE/ACM International Conference on Automated Software
Engineering (ASE 2013), pages 694–697. IEEE Computer Soci-
ety, 2013.

[40] N. Macedo, T. Jorge, and A. Cunha. “A Feature-based Classi-
fication of Model Repair Approaches”. IEEE Transactions on
Software Engineering, 43(7):615–640, 2017.

[41] U. Mansoor, M. Kessentini, P. Langer, M. Wimmer, S. Bechikh,
and K. Deb. MOMM: Multi-objective model merging. In Journal
of Systems and Software, volume 103, 2015.

[42] MathWorks. Simulink – Simulation and Model-Based Design
– MATLAB & Simulink. URL: https://www.mathworks.com/
products/simulink.html (visited on 02/12/2020).

[43] M. Mazkatli. Consistency Preservation in the Development Pro-
cess of Automotive Software. Master’s thesis, Karlsruhe Institute
of Technology (KIT), 2016.

[44] M. Mazkatli, E. Burger, A. Koziolek, and R. H. Reussner. Au-
tomotive systems modelling with vitruvius. In 15. Workshop
Automotive Software Engineering (Chemnitz), volume P-275
of Lecture Notes in Informatics (LNI), pages 1487–1498. GI,
Bonn, 2017.

[45] Object Management Group (OMG). Meta Object Facil-
ity (MOF) 2.0 – Query/View/Transformation Specification.
https://www.omg.org/spec/QVT/1.3/PDF, 2016.

[46] Object Management Group (OMG). Model Driven Architec-
ture (MDA) – MDA Guide rev. 2.0. https://www.omg.org/cgi-
bin/doc?ormsc/14-06-01.pdf, 2014.

[47] Object Management Group (OMG). Object Constraint Lan-
guage – Version 2.4. http://www.omg.org/spec/OCL/2.4/PDF,
2014.

[48] Object Management Group (OMG). OMG Meta
Object Facility (OMG MOFTM) – Version 2.5.1.
https://www.omg.org/spec/MOF/2.5.1/PDF, 2016.

[49] Object Management Group (OMG). OMG System
Modeling Language (OMG SysMLTM) – Version 1.6.
https://www.omg.org/spec/SysML/1.6/PDF, 2019.

[50] K. Paton. “An algorithm for finding a fundamental set of cycles
of a graph”. Communications of the ACM, 12(9):514–518, 1969.

[51] A. Pepin. Decomposition of Relations for Multi-model Con-
sistency Preservation. Master’s Thesis, Karlsruhe Institute of
Technology (KIT), 2019.

[52] M. Petrenko, V. Rajlich, and R. Vanciu. Partial Domain Compre-
hension in Software Evolution and Maintenance. In 2008 16th
IEEE International Conference on Program Comprehension,
pages 13–22, 2008.

[53] A. Reder and A. Egyed. Incremental Consistency Checking for
Complex Design Rules and Larger Model Changes. In Proceed-
ings of the 15th International Conference on Model Driven
Engineering Languages and Systems (MODELS 2012), vol-
ume 7590 of LNCS, pages 202–218. Springer-Verlag, 2012.

[54] J. Rubin and M. Chechik. N-way model merging. In Proceed-
ings of the 2013 9th Joint Meeting on Foundations of Software
Engineering - ESEC/FSE 2013, 2013.

[55] R. Salay, S. Kokaly, A. Di Sandro, and M. Chechik. En-
riching megamodel management with collection-based oper-
ators. In 2015 ACM/IEEE 18th International Conference on
Model Driven Engineering Languages and Systems (MODELS),
pages 236–245, 2015.

[56] R. Salay, J. Mylopoulos, and S. Easterbrook. Managing Models
through Macromodeling. In 2008 23rd IEEE/ACM International
Conference on Automated Software Engineering, pages 447–
450, 2008.

[57] L. Samimi-Dehkordi, B. Zamani, and S. Kolahdouz-Rahimi.
Bidirectional Model Transformation Approaches – A Compara-
tive Study. In 2016 6th International Conference on Computer
and Knowledge Engineering (ICCKE), pages 314–320, 2016.

http://dx.doi.org/10.1109/FormSERA.2012.6229788
http://dx.doi.org/10.1109/FormSERA.2012.6229788
http://www.amalthea-project.org/
http://www.amalthea-project.org/
http://www.amalthea-project.org/
http://www.amalthea-project.org/
http://dx.doi.org/10.1145/1176617.1176691
http://dx.doi.org/10.1145/3270112.3275335
http://dx.doi.org/10.1109/MODELS-C.2019.00058
http://dx.doi.org/10.1109/MODELS-C.2019.00058
http://dx.doi.org/10.5381/jot.2019.18.3.a4
http://dx.doi.org/10.5381/jot.2019.18.3.a4
http://books.google.com/books?vid=ISBN978-3-319-61482-3
http://books.google.com/books?vid=ISBN978-3-319-61482-3
http://dx.doi.org/10.1007/s10270-006-0016-x
http://dx.doi.org/10.1007/s10270-006-0016-x
http://dx.doi.org/10.1007/978-3-642-21952-8_21
http://dx.doi.org/10.1007/978-3-642-21952-8_21
http://dx.doi.org/10.1007/s10270-012-0291-7
http://dx.doi.org/10.1007/s10270-012-0291-7
http://dx.doi.org/10.1007/978-3-642-38911-5_11
http://dx.doi.org/10.1007/978-3-642-38911-5_11
http://dx.doi.org/10.1007/978-3-642-37057-1_22
http://dx.doi.org/10.1007/978-3-642-37057-1_22
http://dx.doi.org/10.1007/s10270-014-0437-x
http://dx.doi.org/10.1007/s10270-014-0437-x
http://haslab.uminho.pt/sites/default/files/nmacedo/files/bx14mx.pdf
http://haslab.uminho.pt/sites/default/files/nmacedo/files/bx14mx.pdf
http://dx.doi.org/10.1109/ASE.2013.6693135
http://dx.doi.org/10.1109/ASE.2013.6693135
http://dx.doi.org/10.1109/TSE.2016.2620145
http://dx.doi.org/10.1109/TSE.2016.2620145
http://dx.doi.org/10.1016/j.jss.2014.11.043
https://www.mathworks.com/products/simulink.html
https://www.mathworks.com/products/simulink.html
https://www.mathworks.com/products/simulink.html
https://www.mathworks.com/products/simulink.html
http://dx.doi.org/10.18420/in2017_148
http://dx.doi.org/10.18420/in2017_148
http://dx.doi.org/10.1109/ICPC.2008.14
http://dx.doi.org/10.1109/ICPC.2008.14
http://dx.doi.org/10.1007/978-3-642-33666-9{\textunderscore }14
http://dx.doi.org/10.1007/978-3-642-33666-9{\textunderscore }14
http://dx.doi.org/10.1145/2491411.2491446
http://dx.doi.org/10.1109/MODELS.2015.7338254
http://dx.doi.org/10.1109/MODELS.2015.7338254
http://dx.doi.org/10.1109/MODELS.2015.7338254
http://dx.doi.org/10.1109/ASE.2008.70
http://dx.doi.org/10.1109/ASE.2008.70
http://dx.doi.org/10.1109/ICCKE.2016.7802159
http://dx.doi.org/10.1109/ICCKE.2016.7802159

40 H. Klare, A. Pepin, E. Burger, R. Reussner

[58] J. Sánchez Cuadrado and J. García Molina. Approaches for
Model Transformation Reuse: Factorization and Composition.
In Theory and Practice of Model Transformations, pages 168–
182. Springer Berlin Heidelberg, 2008.

[59] O. Scheid. AUTOSAR Compendium - Part 1: Application and
RTE. AUTOSAR - Compendium Series. CreateSpace Indepen-
dent Publishing Platform, 2015.

[60] A. Schürr. “Specification of graph translators with triple graph
grammars”. In Graph-Theoretic Concepts in Computer Science.
Volume 903, LNCS, pages 151–163. Springer Berlin Heidel-
berg, 1995.

[61] D. Steinberg, F. Budinsky, M. Paternostro, and E. Merks. EMF
- Eclipse Modeling Framework. Addison-Wesley Professional,
2nd edition, 2009.

[62] P. Stevens. Bidirectional transformations in the large. In 2017
ACM/IEEE 20th International Conference on Model Driven
Engineering Languages and Systems (MODELS), pages 1–11,
2017.

[63] P. Stevens. “Bidirectional model transformations in QVT: se-
mantic issues and open questions”. Software & Systems Model-
ing, 9(1):7–20, 2010.

[64] P. Stevens. Towards sound, optimal, and flexible building from
megamodels. In Proceedings of the 21th ACM/IEEE Interna-
tional Conference on Model Driven Engineering Languages
and Systems, pages 301–311. ACM, 2018.

[65] P. Stünkel, H. König, Y. Lamo, and A. Rutle. Multimodel Cor-
respondence Through Inter-model Constraints. In Conference
Companion of the 2Nd International Conference on Art, Science,
and Engineering of Programming, Programming’18 Compan-
ion, pages 9–17. ACM, 2018.

[66] R. Tarjan. “Depth-first search and linear graph algorithms”.
SIAM journal on computing, 1(2):146–160, 1972.

[67] F. Trollmann and S. Albayrak. Extending Model Synchroniza-
tion Results from Triple Graph Grammars to Multiple Models.
In Proceedings of the 9th International Conference on Theory
and Practice of Model Transformations, pages 91–106. Springer
International Publishing, 2016.

[68] F. Trollmann and S. Albayrak. Extending Model to Model Trans-
formation Results from Triple Graph Grammars to Multiple
Models. In Proceedings of the 8th International Conference on
Theory and Practice of Model Transformations, pages 214–229.
Springer International Publishing, 2015.

[69] A. Vallecillo, M. Gogolla, L. Burgueño, M. Wimmer, and L.
Hamann. “Formal Specification and Testing of Model Trans-
formations”. In Formal Methods for Model-Driven Engineer-
ing: 12th International School on Formal Methods for the De-
sign of Computer, Communication, and Software Systems, SFM
2012, Bertinoro, Italy, June 18-23, 2012. Advanced Lectures,
pages 399–437. Springer Berlin Heidelberg, 2012.

[70] B. Vanhooff, D. Ayed, S. Van Baelen, W. Joosen, and Y.
Berbers. UniTI: A Unified Transformation Infrastructure. In
Model Driven Engineering Languages and Systems, pages 31–
45. Springer Berlin Heidelberg, 2007.

[71] M. Veanes, P. Hooimeijer, B. Livshits, D. Molnar, and N.
Bjorner. “Symbolic finite state transducers: algorithms and ap-
plications”. SIGPLAN Not., 47(1):137–150, 2012.

[72] D. Wagelaar. Composition Techniques for Rule-Based Model
Transformation Languages. In Theory and Practice of Model
Transformations, pages 152–167. Springer Berlin Heidelberg,
2008.

[73] D. Wagelaar, M. Tisi, J. Cabot, and F. Jouault. Towards a Gen-
eral Composition Semantics for Rule-Based Model Transfor-
mation. In Model Driven Engineering Languages and Systems,
pages 623–637. Springer Berlin Heidelberg, 2011.

[74] D. Wagelaar, R. Van Der Straeten, and D. Deridder. “Mod-
ule superimposition: a composition technique for rule-based

model transformation languages”. Software & Systems Model-
ing, 9(3):285–309, 2010.

[75] C. Wolff, L. Krawczyk, R. Höttger, C. Brink, U. Lauschner,
D. Fruhner, E. Kamsties, and B. Igel. AMALTHEA – Tailor-
ing tools to projects in automotive software development. In
2015 IEEE 8th International Conference on Intelligent Data
Acquisition and Advanced Computing Systems: Technology and
Applications (IDAACS), volume 2, pages 515–520, 2015.

[76] Y. Xiong, D. Liu, Z. Hu, H. Zhao, M. Takeichi, and H. Mei.
Towards Automatic Model Synchronization from Model Trans-
formations. In Proceedings of the twenty-second IEEE/ACM
international conference on Automated software engineering,
ASE ’07, pages 164–173. ACM, 2007.

http://dx.doi.org/10.1007/978-3-540-69927-9_12
http://dx.doi.org/10.1007/978-3-540-69927-9_12
http://dx.doi.org/10.1007/3-540-59071-4_45
http://dx.doi.org/10.1007/3-540-59071-4_45
http://dx.doi.org/10.1109/MODELS.2017.8
http://dx.doi.org/10.1007/s10270-008-0109-9
http://dx.doi.org/10.1007/s10270-008-0109-9
http://dx.doi.org/10.1145/3239372.3239378
http://dx.doi.org/10.1145/3239372.3239378
http://dx.doi.org/10.1145/3191697.3191715
http://dx.doi.org/10.1145/3191697.3191715
http://dx.doi.org/10.1007/978-3-319-42064-6_7
http://dx.doi.org/10.1007/978-3-319-42064-6_7
http://dx.doi.org/10.1007/978-3-319-21155-8_16
http://dx.doi.org/10.1007/978-3-319-21155-8_16
http://dx.doi.org/10.1007/978-3-319-21155-8_16
http://dx.doi.org/10.1007/978-3-642-30982-3_11
http://dx.doi.org/10.1007/978-3-642-30982-3_11
http://dx.doi.org/10.1007/978-3-540-75209-7_3
http://dx.doi.org/10.1145/2103621.2103674
http://dx.doi.org/10.1145/2103621.2103674
http://dx.doi.org/10.1007/978-3-540-69927-9_11
http://dx.doi.org/10.1007/978-3-540-69927-9_11
http://dx.doi.org/10.1007/978-3-642-24485-8_46
http://dx.doi.org/10.1007/978-3-642-24485-8_46
http://dx.doi.org/10.1007/978-3-642-24485-8_46
http://dx.doi.org/10.1007/s10270-009-0134-3
http://dx.doi.org/10.1007/s10270-009-0134-3
http://dx.doi.org/10.1007/s10270-009-0134-3
http://dx.doi.org/10.1109/IDAACS.2015.7341359
http://dx.doi.org/10.1109/IDAACS.2015.7341359
http://books.google.com/books?vid=ISBN978-1-59593-882-4
http://books.google.com/books?vid=ISBN978-1-59593-882-4

	2020,3_Titelbl.pdf
	Klare_Compatibility_TechReport.pdf
	Introduction
	Notation and Assumptions
	Compatibility in Transformation Networks
	A Formal Approach to Prove Compatibility
	Decomposing Transformations
	Finding Redundancies in Transformations
	Evaluation
	Related Work
	Future Work
	Conclusion

