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Abstract 
 

High rates of sediment fluxes and its estimations in fluvial river basins require the selection of 

efficient quantification approaches with better understanding of dominated factors controlling the 

erosion process on temporal and spatial scale. The prior assessment of influencing factors such as 

amount of river discharges, climate, landscape and flow process is helpful to develop the suitable 

modeling approach for quantification of sediment yields. One of the weakest aspects of the 

quantification of sediment load is the use of traditional sediment rating curves, which cannot account 

the hydrometeorological variation and flow generation processes such as snow cover, snow melts, 

ice melts etc. In such cases the use of empirical sediment rating curve gives un reasonable estimation 

of sediment loads, which represents to the poor generality.  

Nowadays the data-based models using artificial intelligence can make it possible to precisely 

estimate the sediment loads. The data-based models learn from datasets presented to them by 

establishing the suitable functional relationship between the output and its inputs variables in the 

cases of complex phenomena like the sediment transport. In this context the data-based modelling 

algorithms in present research work were developed at the Chair of Water and River Basin 

Management, Karlsruhe Institute of Technology of Karlsruhe, which was used for prediction of 

sediments in upper lower catchments of Upper Indus Basin (UIB) of Pakistan.  

The framework of the methodology is divided into four objectives: (1) Comparative Assessment of 

Spatial Variability and Trends of Flows and Sediments Under the Impact of Climate Change in The 

Upper Indus Basin (2) Application of soft computing models with input vectors of snow cover area 

in addition to hydro-climatic data to predict the sediment loads (3) Prediction of sediment yields by 

using the hydroclimate and normalized difference vegetation index (NDVI) datasets with soft 

computing models (4) Climate signaling in suspended sediment exports from Glacier and Snow 

Melts Sub-basins in the Upper Indus Basin (UIB).  

This analysis carried out on UIB has enabled to understand the better assessment of climate and 

dominated parameters such snow cover and hydrological process useful for sediment predictions. 

The analysis of assessment of climate change on flows and sediments in snow and glacier dominated 

UIB of 13 gauging stations reveals that the annual flows and suspended sediments are in the balanced 

state on main Indus River at Besham Qila upstream of Tarbela reservoir. However, the annual 

suspended sediment concentrations (SSC) were reduced significantly ranging from 18.56%–28.20% 

per decade in Gilgit at Alam Bridge (Snow & glacier dominated basin), Indus at Kachura and Brandu 

at Daggar (lower rainfall dominated basin). During summer period the SSC were significantly 

reduced ranging from 18.63%–27.79% per decade along with flows in the Hindukush and Western–

Karakorum regions due to climate change anomaly, and in rainfed lower sub-basin due to the rainfall 

reductions. However, the SSC during winter season were significantly increased ranging from 

20.08%–40.72% per decade due to significant warming of averaged air temperature. 

Within this research data-based modelling in snow and glacier melts Gilgit sub-basin of UIB was 

carried using artificial neural network (ANN), adaptive neuro fuzzy logic inference system with grid 

partition (ANFIS-GP), adaptive neuro fuzzy logic inference system with subtractive clustering 

(ANFIS-SC), adaptive neuro fuzzy logic inference system with fuzzy c-means clustering, multiple 

adaptive regression splines (MARS) and sediment rating curves (SRC). 

The results of machine learning algorithms shown that the input combination consisting of daily 

discharges (Qt), snow cover area (SCAt), temperature (Tt-1) and evapotranspiration (Evapt-1) improved 

the performance of the sediment prediction models. From the comparison of overall performance of 
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the models the ANN model performed better than remaining models. During peak time prediction 

of sediment loads the prediction of ANN, ANIS-FCM and MARS models were closer to the measured 

sediment loads. The ANIS-FCM model with a relative accuracy of 81.31% performed better during 

the estimation of peak sediments compared to the ANN and MARS with 80.17% and 80.16% of 

relative accuracy respectively. 

The data-based modelling of sediment yield in the rainfall dominated Brandu sub-basin of lower UIB 

was carried out using hydroclimate and biophysical inputs datasets, consisting of flows, rainfall, 

mean air temperature and Normalized Difference Vegetation Index (NDVI). The results of four 

Artificial Neural Networks (ANNs) and three Adaptive Neuro-Fuzzy Logic Inference System 

(ANFIS) algorithms for the Brandu River basin has revealed that the remotely sensed NDVI as 

biophysical parameters in addition to hydroclimate parameters does not improved the performance 

of the models. The ANFIS-GP performed better in testing phase than other models with input 

combination of flows and rainfall. However, ANN imbedded with Levenberg-Marquardt (ANN-LM) 

for the period 1981-2010 performed best with input combinations of flows, rainfall and mean air 

temperatures. The results accuracy of R2 using ANN-LM algorithm improved up to 28% compared 

to sediment rating curve (SRC). Its demonstrated that for the lower part of UIB flows, rainfall and 

mean air temperature are more dominated factors than biophysical parameters of NDVI for 

prediction of sediment yields. 

The modelling for assessing the changes in flow process to export the SSC in snow and glacier fed 

Gilgit and Astore sub-basins of UIB was carried out using Temp-Index degree day model. The results 

of Mann-Kendall Trend test in both Gilgit and Astore Rivers revealed that during winter season the 

increase of SSC is due to warming of mean air temperature, increase in winter precipitations and 

increase of winter snow melts. During spring season, the precipitation and snow cover fractions has 

increased in Gilgit sub-basin contrary to its reduction in the Astore sub-basin. In Gilgit sub-basin 

during summers the SSC were significantly reduced due to combined effect of Karakorum climate 

anomaly and increased snow cover area. Reduction of summer SSC in Gilgit River is due to the 

cooling of summer temperature and covering of the exposed proglacial landscape due to increased 

snows, reduced debris flows and reduced snow melts from debris glaciers.  

Contrary to the Gilgit River the SSC in Astore River are increased during summer. The increase of 

SSC in Astore sub-basin is due to reduction of spring rainfall and snow cover, warming of summer 

mean air temperature and increased of effective rainfall. The results further reveal a shift in 

domination of glacier melts to snow melts in Gilgit sub-basin, and snow to the rainfall in Astore sub-

basin in transports of the fine sediments in UIB. 

The present research methodology for assessment of changes in SSC due to climate and its prediction 

in both upper as well as lower sub-basins will be useful for better understanding of sediment exports 

process, management of sediment and design of future planned water infrastructures in the UIB. 
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Zusammenfassung  
 

 

Hohe Raten von Sedimentflüssen und ihre Schätzungen in Flusseinzugsgebieten erfordern die 

Auswahl effizienter Quantifizierungsansätze mit einem besseren Verständnis der dominierten 

Faktoren, die den Erosionsprozess auf zeitlicher und räumlicher Ebene steuern. Die vorherige 

Bewertung von Einflussfaktoren wie Abflussvariation, Klima, Landschaft und Fließprozess ist 

hilfreich, um den geeigneten Modellierungsansatz zur Quantifizierung der Sedimenterträge zu 

entwickeln. Einer der schwächsten Aspekte bei der Quantifizierung der Sedimentfracht ist die 

Verwendung traditioneller Beziehung zwischen Strömungsgeschwindigkeit und Bodensatzlöschung 

(SRC), bei denen die hydrometeorologischen Schwankungen, Abflusserzeugungsprozesse wie 

Schneedecke, Schneeschmelzen, Eisschmelzen usw. nicht berücksichtigt werden können. In vielen 

Fällen führt die empirische Q-SSC   Beziehung daher zu ungenauen Prognosen 

Heute können datenbasierte Modelle mit künstlicher Intelligenz die Sedimentfracht präziser 

abschätzen. Die datenbasierten Modelle lernen aus den eingespeisten Datensätzen, indem sie bei 

komplexen Phänomenen wie dem Sedimenttransport die geeignete funktionale Beziehung zwischen 

dem Output und seinen Input-Variablen herstellen. In diesem Zusammenhang wurden die 

datenbasierten Modellierungsalgorithmen in der vorliegenden Forschungsarbeit am Lehrstuhl für 

Wasser- und Flussgebietsmanagement des Karlsruher Instituts für Technologie in Karlsruhe 

entwickelt, die zur Vorhersage von Sedimenten in oberen unteren Einzugsgebieten des oberen 

Indusbeckens von Pakistan (UIB) verwendet wurden. 

Die dieser Arbeit zugrunde liegende Methodik gliedert sich in vier Bearbeitungsschritte: (1) 

Vergleichende Bewertung der räumlichen Variabilität und der Trends von Abflüssen und 

Sedimentfrachten unter dem Einfluss des Klimawandels im oberen Indus-Becken (2) Anwendung 

von Soft-Computing-Modellen mit Eingabevektoren der schneedeckten Fläche zusätzlich zu hydro-

klimatischen Daten zur Vorhersage der Sedimentfracht (3) Vorhersage der Sedimentfracht unter 

Verwendung der NDVI-Datensätze (Hydroclimate and Normalized Difference Vegetation Index) mit 

Soft-Computing-Modellen (4) Klimasignalisierung bei suspendierten Sedimentausträge aus 

Gletscher und Schnee dominierten Teileinzugsgebeiten im oberen Indus-Becken (UIB).  

Diese im UIB durchgeführte Analyse hat es ermöglicht, die dominiertenden Parameter wie 

Schneedecke und hydrologischen Prozesses besser zu und in eine verbesserte Prognose der 

Sedimentfrachten einfließen zu lassen.  

Die Analyse der Bewertung des Klimawandels von Flüssen und Sedimenten in schnee- und 

gletscherdominierten UIB von 13 Messstationen zeigt, dass sich die jährlichen Flüsse und 

suspendierten Sedimente am Hauptindus in Besham Qila stromaufwärts des Tarbela-Reservoirs im 

ausgeglichenen Zustand befinden. Jedoch, die jährlichen Konzentrationen suspendierter Sedimente 

(SSC) wurden signifikant gesenkt und lagen zwischen 18,56% und 28,20% pro Jahrzehnt in Gilgit an 

der Alam Bridge (von Schnee und Gletschern dominiertes Becken), Indus in Kachura und Brandu in 

Daggar (von weniger Niederschlag dominiertes Becken). Während der Sommerperiode war der SSC 

signifikant reduziert und lag zwischen 18,63% und 27,79% pro Jahrzehnt, zusammen mit den Flüssen 

in den Regionen Hindukush und West-Karakorum aufgrund von Anomalien des Klimawandels und 

im unteren Unterbecken mit Regen aufgrund der Niederschlagsreduzierung. Die SSC während der 

Wintersaison waren jedoch aufgrund der signifikanten Erwärmung der durchschnittlichen 

Lufttemperatur signifikant erhöht und lagen zwischen 20,08% und 40,72% pro Jahrzehnt. 

Die datenbasierte Modellierung im schnee und gletscherdominierten  Gilgit Teilbecken   unter 

Verwendung eines künstlichen neuronalen Netzwerks (ANN), eines adaptiven Neuro-Fuzzy-Logik-

Inferenzsystems mit Gitterpartition (ANFIS-GP) und eines adaptiven Neuro-Fuzzy-Logik-

Inferenzsystems mit subtraktivem Clustering (ANFIS) -SC), ein adaptives Neuro-Fuzzy-Logik-
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Inferenzsystem mit Fuzzy-C-Mittel-Clustering, multiplen adaptiven Regressionssplines (MARS) und 

Sedimentbewertungskurven (SRC) durchgeführt. 

Die Ergebnisse von Algorithmen für maschinelles Lernen zeigen, dass die Eingabekombination aus 

täglichen Abflüssen (Qt), Schneedeckenfläche (SCAt), Temperatur (Tt-1) und Evapotranspiration 

(Evapt-1) die Leistung der Sedimentvorhersagemodelle verbesserne. Nach dem Vergleich der 

Gesamtleistung der Modelle schnitt das ANN-Modell besser ab als die übrigen Modelle. Bei der 

Vorhersage der Sedimentfrachten in Spitzenzeiten lag die Vorhersage der ANN-, ANIS-FCM- und 

MARS-Modelle näher an den gemessenen Sedimentbelastungen. Das ANIS-FCM-Modell mit einem 

absoluten Gesamtfehler von 81,31% schnitt bei der Vorhersage der Spitzensedimente besser ab als 

ANN und MARS mit einem absoluten Gesamtfehler von 80,17% bzw. 80,16%. 

Die datenbasierte Modellierung der Sedimentfrachten im von Regen dominierten Brandu-Teilbecken 

wurde unter Verwendung von Datensätzen für Hydroklima und biophysikalische Eingaben 

durchgeführt, die aus Strömungen, Niederschlag, mittlerer Lufttemperatur und normalisiertem 

Differenzvegetationsindex (NDVI) bestehen. Die Ergebnisse von vier ANNs (Artificial Neural 

Networks) und drei ANFIS-Algorithmen (Adaptive Neuro-Fuzzy Logic Inference System) für das 

Brandu Teilnbecken haben gezeigt, dass der mittels Fernerkundung bestimmte NDVI als 

biophysikalische Parameter zusätzlich zu den Hydroklima-Parametern die Leistung das Modell nicht 

verbessert. Der ANFIS-GP schnitt in der Testphase besser ab als andere Modelle mit einer 

Eingangskombination aus Durchfluss und Niederschlag. ANN, eingebettet in Levenberg-Marquardt 

(ANN-LM) für den Zeitraum 1981-2010, schnitt jedoch am besten mit Eingabekombinationen aus 

Strömungen, Niederschlag und mittleren Lufttemperaturen ab. Die Ergebnisgenauigkeit R2 unter 

Verwendung des ANN-LM-Algorithmus verbesserte sich im Vergleich zur 

Sedimentbewertungskurve (SRC) um bis zu 28%. Es wurde gezeigt, dass für den unteren Teil der 

UIB-Flüsse Niederschlag und mittlere Lufttemperatur dominierende Faktoren für die Vorhersage 

von Sedimenterträgen sind und biophysikalische Parameter (NDVI) eine untergeordnete Rolle 

spielen. 

Die Modellierung zur Bewertung der Änderungen des SSC in schnee- und gletschergespeiste Gilgit- 

und Astore-Teilbecken wurde unter Verwendung des Temp-Index degree day modell durchgeführt. 

Die Ergebnisse des Mann-Kendall-Trendtests in den Flüssen Gilgit und Astore zeigten, dass der 

Anstieg des SSC während der Wintersaison auf die Erwärmung der mittleren Lufttemperatur, die 

Zunahme der Winterniederschläge und die Zunahme der Schneeschmelzen im Winter 

zurückzuführen ist. Während der Frühjahrssaison haben die Niederschlags- und 

Schneedeckenanteile im Gilgit-Unterbecken zugenommen, im Gegensatz zu seiner Verringerung im 

Astore-Unterbecken. Im Gilgit-Unterbecken war der SSC im Sommer aufgrund des kombinierten 

Effekts der Karakorum-Klimaanomalie und der vergrößerten Schneedecke signifikant reduziert. Die 

Reduzierung des Sommer-SSC im Gilgit Fluss ist auf die Abkühlung der Sommertemperatur und die 

Bedeckung der exponierten proglazialen Landschaft zurückzuführen, die auf erhöhten Schnee, 

verringerte Trümmerflüsse Trümmerflüsse und verringerte Schneeschmelzen von 

Trümmergletschern  zurückzuführen sind.  

Im Gegensatz zum Gilgit River sind die SSC im Astore River im Sommer erhöht. Der Anstieg des 

SSC im Astore-Unterbecken ist auf die Verringerung des Frühlingsniederschlags und der 

Schneedecke, die Erwärmung der mittleren Sommerlufttemperatur und den Anstieg des effektiven 

Niederschlags zurückzuführen. Die Ergebnisse zeigen ferner eine Verschiebung der Dominanz von 

Gletscherschmelzen zu Schneeschmelzen im Gilgit-Unterbecken und von Schnee zu Niederschlägen 

im Astore-Unterbecken bei Sedimenteden Sedimentfrachten in UIB. 

Die vorliegende Forschungsarbeit zur Bewertung der klimabedingten Veränderungen des SSC und 

seiner Vorhersage sowohl in den oberen als auch in den unteren Teilbecken des UIB wird nützlich 

sein, um den Sedimenttransportprozess besser zu verstehen und aufbauen auf dem verbesserten 
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Prozessverständnis ein angepasstes Sedimentmanagement und angepasste Planungen der 

zukünftigen Wasserinfrastrukturen im UIB ableiten zu können.   
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Chapter 1- Introduction 

1.1 Research background  

High rates of erosion from the younger mountains of Himalayas in Indus River are due to high rates 

of denudation up to 6 mm/year like the Ganges-Brahmaputra River system [1]. Higher erosions rate 

due to complex phenomena of sediment generations in these River systems always present challenges 

to the assessment of changes in sediment yields, management of annual sediment loads, 

estimation/predictions of sediments, sustain able development of water structures and design & its 

operation in future. There are number of factors affecting the erosion rates which results in rapid 

depletion of reservoirs such as climate changes, land use changes, rapidly activation and deactivation 

of sediment sources, landslides, frequency of flash floods and hydrodynamic changes of river water 

regime etc. Assessment of climate changes with trends of sediment loads, accurate estimate of 

sediments and understanding of relevancy of flow generation process such as snow and glaciers 

melting have a significant importance due to following reasons in water resource engineering. 

1.1.1 Assessment of sediment loads trends under climate changes 

The assessment of spatial and temporal variability of flows and sediment due to climate changes is 

not only important for watershed management activities, tectonics/earthquakes activities, landslides, 

reservoir sediment management as well as for management of River eco-system. Although there are 

many research reports [1,2,3,4] have been reported from literature review regarding the assessment 

of climate changes on discharges in various sub-basins of Upper Indus basin (UIB) during past 

decades. However, the scientific contribution on spatio-temporal trend of suspended sediment 

concentrations (SSC) is scarce. Ali and De Boer [5] investigated the spatial patterns of sediment yields 

by dividing the UIB into three zones: upper snow- and glacial melts-dominated zone, middle snow-

/glacial melts-, and rainfall-dominated mixed zone, and lower rainfall-dominated zone. Ali and De 

Boer [5] analyzed the spatial distribution of sediment in the UIB by dividing the region into three 

zones: upper snow- and glacial melt-dominated zone, middle snow-/glacial melt-, and rainfall-

dominated mixed zone, and lower rainfall-dominated zone. Ateeq-Ur-Rehman et al. and Tarar et al. 

[6,7] explained the trends of SSC of Upper Indus at Besham Qila, Upper Indus at Bunji/Partab Bridge, 

Hunza basin at Danyor, and Shyok basin at Yogu, gauging stations of the UIB. The results of their 

research concluded the balanced state of annual SSC at Besham Qila the intake of Tarbela reservoir 

with significant inter-annual shift of sediment yields.  

The investigations of recent researchers [6,7] used daily outputs of sediment computed from 

sediment rating curves (SRC) and artificial neural networks (ANN) to drive the conclusions of 

sediment trends on monthly, seasonal and annual basis in UIB. The sediments outputs derived from 

data-based models are most of the times are less reliable compared to the measured sediments. 

Therefore, this research investigated the trends of flows and sediments with measured SSC. This 

research work is also one of the pioneer researches in analyzing the trends of corrected estimates of 

rainfall and temperature for the assessment climate changes, flows and SSC in the UIB [8,9]. A 
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comprehensive assessment of spatio-temporal variation of SSC and flows in relation to relevant 

hydrometeorological parameters for all the 13 sub-basins of the entire UIB has not yet been made.  

The process of sediment transport is highly non-linear and data of measured sediment loads are not 

normally distributed due to non-linearity nature of sediment erosion. In order to assess the dynamics 

of sediments and flows variation due to climate changes on spatial and temporal scale, the use of 

non-parametric tests is assumed to be the most suitable and robust approach. The results of numerous 

non-parametric trend tests may be distinct in quantifying the changes of SSC and flows. In the past 

the researchers [10,11,12] have widely used the non-parametric Mann-Kendall Trend test for 

detection of trends of flows, climate and SSC.  

In the current research Mann-Kendall Trend test together with serial correlation [13] and Sen’s slope 

estimator [14] is used to analyze how the changes in patterns of SSC and flows were affected due to 

changes in climate and transport capacity of River at 13 gauged sub-basins in UIB since 1981-2010. 

The comparative assessment of spatial variability and trends of flows and SSC due to climate changes 

in UIB includes;  (1) the detection and assessment of on monthly to seasonal and annual basis for 

flows and SSC of the 13 hydrological stations in the UIB since 1980–2010; (2) development of seasonal 

and annual trend maps for representing the spatial changes in % for flows and SSC per decade in the 

UIB; (3) extracting the missing year’s climatic information for sparsely gauged climatic stations using 

the linear scaling bias correction method along with the station-recorded data and satellite grid point 

data; (4) assessment of the impact of changes in the trends of mean monthly rainfalls of the basins 

and average monthly temperatures, adjusted for lapse rate per elevation zone, on the monthly flows 

and SSC of the UIB; (5) assessing the significant changes in monthly, seasonal, and annual flows and 

SSC, which are partly due to climate change, in past 30 years for selected catchments with major SSC 

contributions. 

1.1.2 Prediction/Estimation of sediment loads 

Estimation of suspended sediment loads (SSL) is a challenge particular in the catchments like UIB, 

where the role of hydrometeorological process like snow and ice melting, effective rainfall, snows 

accumulated in the form of snow cover and vegetations play a significant role in transport the 

suspended and bed loads. The bed loads are transported in coarse form due to its continuous in 

contact with the surface of river bed. The erodibility of soil, effective discharges, intensive rainfall 

and flows process are governing factors in sediment transports. The soil particles are detached from 

soil surface in the catchment due to intensive rainfall events, and are then transported in the river as 

long as shear stress of discharge is greater than its critical limit to transport the sediment.  The 

suspended sediments in the form of fine particles are transported in suspension state with flows. 

Discharges of the rivers result in the transport of these fine sediment particulars due to sheet/gully 

erosion of catchment, river banks and bed erosion etc. The process of erosion from sub-basins 

somewhere deposits the sediments due to river morphology, slopes of streams in catchment and 

fluvial hydraulics and somewhere erode it. The variations of runoff in upper region of UIB due to 

rising precipitations, Karakorum Climate Anomaly [1,2,15], glacier ablation and snow melting due 

to depletion of catchment snow cover increase/decreases the amounts of SSL. Similarly, in lower 

region of UIB the increase of anthropogenic activities such as increase of population, rapid 

urbanization, deforestation, over grazing of animals, irrigation practices and rapidly increase in 
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human activities can affect the land cover. The changes in land cover affect the soil erodibility, land 

surface frictions/roughness, gradient of catchment surface which also affect the sediment generation 

phenomena [16]. All these factors pose the challenge for accurate estimations of SSL in UIB.  

To estimate the suspended sediment concentrations (SSC) the conventional sediment rating curve 

(SRC) is commonly used. The SRC approach is simple methods based on the power law relationships 

between the flows and SSC [17]. However, for the large basins like UIB where sediments transport is 

a complex phenomenon due to multiple variables which control the erosion process, the use of simple 

SRC approach results in under/over estimation of the sediment loads.  Practically the estimates of 

SSC based on SRC results in consequences of early depletion of water reservoir rapidly such as early 

siltation of Tarbela, Mangla and Warsak and Chashma reservoirs [18,19,20,21] in Pakistan. In addition 

to SRC approach the empirical derived universal soil loss equation (USLE) and modified universal 

soil loss equation (MUSLE) used for estimation of SSC is also not considered an applicable approach 

to provide spatial distributed output [22,23,24]. Moreover, the use of physical based models to 

estimate sediments also have not shown any significant outcome [25] beside its model complexity, 

data extensive and time-consuming simulations. To overcome these challenges during past few 

decades soft computing data-based models like artificial intelligence (AIs) have been widely used to 

capture the complex nature of sediment non-linear process with less data requirements and accurate 

predictions/estimates of SSC. 

Many researchers have used the artificial neural networks (ANN), artificial neuro fuzzy logic 

inference system (ANFIS), support vector machine (SVM) and multiple adaptive regression splines 

(MARS) [26,27,28,29,30] etc. to predict the suspended sediment concentrations. Most often more than 

two data-based algorithms were used with input combinations of flows, rainfall and sediments to 

compare their results and check the applicability of suitable model for estimation of SSC. In this 

research the applicability of artificial neural networks (ANN), hybrid ANFIS embedded grid partition 

(GP), hybrid ANFIS embedded subtractive clustering (SC), hybrid ANFIS embedded FCM clustering 

(FCM) and MARS models is checked with inputs combinations of grid climatic data, snow cover 

fraction, flows and normalized difference vegetation index (NDVI) as biophysical factor of the land 

cover to predict the sediment yields. To the best of authors knowledge from literature review this is 

the first research which used the combination of spatial averaged grid effective rainfall, mean basin 

averaged temperature, averaged basin snow cover fractions and NDVI in combination with flows to 

predict the sediment yields. 

Three sub-basins Gilgit (snow-glacier dominated), Astore (snow-rainfall dominated) and Brandu 

(rainfall and agriculture dominated) of UIB were selected to predict the SSC for the period 1981-2010.  

1.1.3 Modelling of snow and glacier melts in contrast to sediment exports 

Generation of sediment yields in the basins are controlled by four important factors as: (i) geology 

(ii) relief (iii) climate and (iv) land use [31]. The knowledge of geological forcing, glacier inheritance 

and crustal thickness of cluster facilitates in a way to easily understand the orogenic erosions due to 

landscape erosion process [32]. The relief of the basin and its catchment discharges are also important 

factors in generation of sediments [33,34,35]. The pattern of climate changes, earth evaluation process 

on its surface and land use changes are also helpful in assessment of the denudation rates of drainage 

basins [36,37,38]. Ul Hussan et al. concluded that the Karakorum Climate Anomaly in UIB is reducing 
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the sediment loads during summer season in glacier and snow dominated basin, whereas SSSC are 

increased during winters [15]. As result of the Karakorum Climate Anomaly [1,2] glaciers are 

retrieving the in UIB which are probably reducing the summer flows. Ateeq-Ur-Rehman et al. and 

Tarar et al. [6,7] also noticed the decrease of sediment concentration during summer period at 

downstream region of UIB at Partab Bridge with reduced trends of flows. Khawja F.A et al. [39] in 

his research analysis reported that percentage of snow cover/ice cover (LCs) solely can explain 73.4% 

of the variance in sediment yields in UIB. He further elaborated that percentage of snow cover/ice 

cover (LCs), climatic variables and relief can explain up to 98.5% variance of sediment yields in UIB. 

The glaciers lying in Himalayas mountains are covered with thick layer of debris materials. These 

glaciers evacuate from subglacial traction zone and are primary sources of sediment generation in 

Indus River [40,41]. 

The erosion of sediments depends upon the transport capacity of the river, supply of sediments and 

its sources. The transport capacity of the channel depends upon the discharges originating upstream 

of catchment.  The supply of sediment is dependent upon spatial location of sediment sources from 

the main river and flow process such as snow melts, rainfall, glacier melts and snow cover variations 

involved in sediment transport. The alteration of discharges, rates of snow and glacier melts, snow 

cover variations and effective rainfalls alters the sediment concentrations measured at the outlet of 

the basin. The premise of present research work is to explain the climate changes in context of changes 

in flows, ice melt, glacier melts, snow cover and SSC of selected basins in UIB. To accomplish this 

study two sub-basins Gilgit (Glacier-snow melt dominated) and Astore (rainfall-snow melt 

dominated) in alpine environment of UIB were selected to explain the relevancy of climate and flow 

process in partially controlling the sediment yields.   

The relative contribution of snow melts, ice melts, effective rainfall and fractions of snow-covered 

area triggers the sediment sources in the form of glacial erosion, hillslope/sheet erosion, river bank 

and bed erosion, and landslides/mass wasting due to rock falls and debris flows. The snow cover area 

also increases or decrease the ice melting rates from the debris covered proglacial area in the 

catchment.  

In the Gilgit and Astore sub-basins to infer the changes of climate on dynamics of fine sediments the 

hydroclimatic forgings are conceptualized on spatial scale to activate/deactivate the spatially 

distributed sediments sources.  For investigation of daily snow melt rates, glacial melts, snow cover 

depletion and effective rainfall the spatially distributed Temperature Index degree day model [42,43] 

is used for Gilgit and Astore Rivers. For trend analysis of flows, SSC, snow melts, ice melts, effective 

rainfall and snow cover fractions the Mann Kendall Trend [10,11] test along with serial correlation 

[13] and Sen’s slope estimator [14] was used to explain the relevancy of changes in flows process due 

to climate changes in exports of sediments yields on monthly, seasonal and annual basis in Gilgit and 

Astore Rivers. 

 

 

1.1.4 Need of research 

Erosion of sediments and its transport is mainly influenced by hydrological and hydraulic 

parameters. The climate forces largely drive and alter the role of hydrological and hydraulic factors 
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in sediment generation phenomena. The Indus River on an average produce the sediment loads of 

250 million tons per year by three mountain ranges Hindukush, Karakorum and Himalayas [44]. The 

knowledge about magnitude variation of sediment yields and distribution of hydrological 

characteristics of the catchment is crucial to verify the conclusion of impact of climate changes in 

Indus River. It is also important to understand the impact of climate variations on sediment 

generations and flows of UIB to formulate effective sediment management strategies, watershed 

management and sustainability of existing storages like Tarbela dam. Over the past few decades since 

1974 Tarbela dam in UIB has lost 35% of its storage due to sedimentations in its reservoir storages 

[45]. Pakistan is in the list of top 10 countries of the world facing the challenges of water shortage, 

climate vulnerability, increasing water demands and depletion of its water storages [46,47]. As per 

review of the literature, in contrast to assessment of impact of climate changes on trends of the SSC 

much extensive research work is available on investigating the trends of flows due to climate change 

by many researchers [1,2,48,49]. Ateeq-Ur-Rehman et al. and Tarar et al. [6,7] analyzed the trends of 

SSC mainly on main Indus River by using the data of two and four gauging stations of the UIB, 

respectively. However, a comprehensive assessment of trends on SSC and flows due to 

hydrometeorological changes at 13 gauged sub-basins in UIB with correct information of rainfall and 

mean air temperature has not yet been studied.  

For the correct budgeting/prediction of suspended sediment loads (SSL) the sufficient knowledge 

and understanding is required about the process of sediment erosion, depositions and its transports 

on spatial and temporal scale [50]. Water resource engineers, hydrologists and researchers uses the 

sediment rating curves and databased models to estimate the SSL using the inputs combinations of 

flows sediment concentrations and rainfall [26,27,28,29,30]. However, the input combination of 

spatial averaged grid means of basin air temperature, snow cover fractions, normalized difference 

vegetative index and effective rainfall in addition to the discharges have not been tested to check the 

applicability of data-based artificial intelligence algorithms.    

Another aspect of the need of present research was to explore the contribution and patterns of the 

flows process such as snow melts, ice melts, rainfall and snow cover depletions in exports of 

sediments yields in glacier and snow dominated sub-basins of UIB. This can help to better understand 

the sediments trends and its generation during the period 1981-2010 partially due to climate changes.  

1.2 Study area 

The Indus River is the longest is river of the south Asia, with its length of 2880 km and drainage basin 

are of 912,200 km2 lying in Pakistan, China, India and Afghanistan [51,52]. The Indus is an oldest 

river in Himalayan mountain region which has not changed its course like the Ganges-Brahmaputra 

River basins in the region [53]. The Indus River consist of world’s largest irrigation networks with 

total length of its total length of main canal of 58,500 km. Its irrigation system feeds an agriculture 

area of 181,000 km2 [54,55]. The Indus River is also as source of an inexpensive energy. Presently, its 

hydropower potential has a share of 29% in total national energy generation capacity of Pakistan [55]. 

Indus River basin comprises of five main rivers as main Indus River, Jhelum River, Chenab River, 

Ravi River and Sutlej river as shown in Figure 1.1. Three main storages in Pakistan namely; Mangla 

dam on Jehlum River, Tarbela dam and Chashma reservoirs on main Indus River. 
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The Upper Indus Basin (UIB) lies upstream of Tarbela reservoir in north region of the Pakistan. The 

UIB comprises total catchment area of 172,000 km2 and total river length of 1125 km [56,57]. The 

watershed elevation upstream of Tarbela dam in UIB ranges from 360 to 8572 m above mean sea level 

of [57]. The catchment area of the UIB upstream of the Tarbela dam is situated at 31°–37° E and 72°–

82° N. The Tarbela Dam is among world’s largest earth fill-rock fill multipurpose dams lying UIB.  

The UIB starts from frozen place of Tibetan Plateau at an elevation of 5486 m on Mount Kailash in 

China [58]. Then it drains from south eastern direction parallel to the geological strike through a well-

defined valley. Throughout of its river length it flows in a defined valley parallel to the fault zone 

and then it ends at Arabian sea. Most of its flows comes from three mountain ranges Hindukush, 

Karakorum and Himalayas. The major tributaries of UIB are Gilgit, Hunza, Shyok and Shigar i.e. 

upper region of glacier and snow dominated UIB; Kharmong and Astore i.e middle snow and rainfall 

dominated UIB; and lower Brandu and Gorband rainfall dominated UIB. During mid Eocene period 

has shaped the UIB in a complex geologic structure with its high relief due to tectonic activities and 

culminating of Himalayan orogenic process [59,60]. The young rugged and high elevated mountains 

were rapidly degraded due to combination of various process [61,62]. The UIB is also high source of 

sediment yields due its tectonic instability, rapidly weathering with severe climatic conditions, mass 

movements spread over the wide basin area, heavy snowfalls and its melting during spring season, 

dominancy of glacial melts, landslides and mass wasting, glacial dammed lakes, glacial lakes 

outburst, moraines and catastrophic flood events [63,64,65,66]. The lower region of UIB is dominated 

with heavy rainfall events during spring and summer seasons and generation of sediments results 

due to flash floods and extensive rainfall intensity.  

 

 

 

 
 

 

 

 

 

 

 



Chapter 1- Introduction 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1 The map of the study area of Upper Indus River basin. 
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1.3  Research objectives 

 

The main objective of this study was to assess the impact of climate changes on sediments yields 

and develop a framework for prediction of suspended sediments in data-sparse and data scarce 

Upper Indus River basin. The upper Indus basin consist of famous mountains of world like K2 peak 

due to its unique topography and existence of its three young mountain ranges Hindukush, 

Karakorum and Himalayas in the basin. with sparsely distributed large river networks. It still exists 

in its natural condition due to less anthropogenic activities in the basin. In view of water scarcity 

and economical energy demands of Pakistan where 30,000 MW of hydropower projects and water 

reservoirs are planned, a better understanding about sediment yields generation process and its 

accurate estimation seems timely and desirable. In order to address the need of research in 

estimations of sediment yields of UIB raised in section 1.1.4. these were the objectives of this study. 

 

• To assess the spatial variability and trends of flows and sediments in the Upper Indus 

River basin due to climate changes. 

• Estimation of accurate suspended sediment concentrations (SSC) in the upper Indus basin 

using the conceptualized artificial intelligence approach. 

• Assessment of signaling of climate changes in exports of SSC from glacierized and snow 

melt dominated sub-basins of UIB.  

 

1.5 Structure of Thesis 

Chapter 1 is the introduction covers the literature review relevant to the research, need of research, 

study area and objectives of research. The literature review overviews the pervious studies related to 

assessment of climate changes on SSC of UIB, estimations/predictions of SSC and signaling of climate 

changes on exports of sediments. The need of research discusses the usefulness of research, inclusion 

of remote sensing land cover i.e. snow cover and NDVI in addition to hydroclimatic information as 

inputs of soft computing models to improve the predictions of sediments. It offers a feasible robust 

approach to accurately estimate the suspended sediments. It also discusses the importance of erosion 

and flows process for exports of SSC in snow and glacier dominated sub-basins of UIB.  

Chapter 2 discusses the first objective of research with detailed methodology focusing on 

investigation of trends on SSC and flows using Mann-Kendall trend test. It further addressed the 

comparative assessment of trends of SSC and flows due to climate changes in sparsely distributed 

UIB. In this chapter corrected grid basin rainfall and corrected mean air temperature on different 

altitudes were used to assess the trends of SSC and flows. Per decade changes of seasonal/annual SSC 

and flows for each gauging station were calculated and spatial maps of their trends on seasonal and 

annual basis were plotted to assess the changes on spatial scale. Moreover, it has also analyzed the 

Pearson’s correlation among flows, SSC, mean air temperature and rainfall. It discusses the role of 

changes in seasonal basin precipitations and mean air temperature at different altitudes in UIB, which 

were partially responsible for the trends of SSC and flows during period 1981-2010.  

Chapter 3 focuses on the second objective of the study to check the applicability of conceptualized 

data-driven models with their detailed methodology to predict the SSC in glacier and snow 

dominated Gilgit sub-basin of UIB. It explained the methodology related to neural network (ANN), 

adaptive neuro fuzzy logic inference system with grid partition (ANFIS-GP), adaptive neuro fuzzy 
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logic inference system with subtractive clustering (ANFIS-SC), adaptive neuro fuzzy logic inference 

system with fuzzy c-means clustering, multiple adaptive regression splines (MARS) and sediment 

rating curves (SRC) models used during this research objective. It integrated the concept of simulated 

snow cover fractions estimated from Temperature index snow model as the input vector of data-

based models in addition to the discharges, effective rainfalls, evapotranspiration and mean air 

temperature to predict the SSL. It discussed the results of best performing input combinations with 

best performing data-based models for prediction of daily SSC during regular period as well against 

the peak events of SSC. In this chapter the total absolute accuracies from the comparison between the 

estimated data-based peak sediment values and measured peak sediments were calculated. 

Moreover, an ensembled averaged equation from the outputs of all the models against the measured 

sediments was also developed and tested in this section. 

Chapter 4 describes the detailed methodology and results of second objective in rainfall dominated 

Brandu River in Lower UIB for estimation of SSC. It described the methodology related to four neural 

network (ANN), adaptive neuro fuzzy logic inference system with grid partition (ANFIS-GP), 

adaptive neuro fuzzy logic inference system with subtractive clustering (ANFIS-SC), adaptive neuro 

fuzzy logic inference system with fuzzy c-means clustering and sediment rating curves (SRC) models 

used to predict the SSC. This section describes the relationships between SSC, flows, rainfall and 

normalized vegetative index (NDVI) parameters of the Brandu River basin. It also introduced the 

remotely sensed bio physical parameters of NDVI as land cover factor with hydroclimatic input 

vectors during prediction of SSC using data-base algorithms. In the results using the data-based 

modelling approach the comparison between the input combinations consisting of hydroclimatic 

datasets with and without NDVI was also discussed. The accuracy of best performing data-based 

model was also calculated with the objective that the conclusion can help in the projects of the 

watershed managements, sediment management, design and operation of existing/future planned 

hydropower’s and water reservoirs in the study area.   

Chapter 5 analyzed the different flow process such as snow melts, ice melts, effective rainfall and 

snow cover depletions in contrast to climate changes for exports of sediment yields in Gilgit (glacier-

snow dominated) and Astore (snow-rainfall dominated) sub-basins of UIB. It also describes the 

detailed methodology of Temperature index snow and ice models to estimate the flow processes. 

Mann-Kendall trend test and Sen ‘s slope estimator discussed in chapter 2 was used to detect the 

trends of flows process, discharges and SSC. Here, the cumulative frequency analysis of flow process 

responsible for transport of SSC in the basins during intermittent samplings days and regular days 

was also carried out in order to check whether or not the intermittent sampling significantly 

influenced the results of monthly/seasonal trends. 

Chapter 6, Summarized the results and made the conclusion from the results of each objective with 

limitation of the current research outcome, discussed the significant of the results of current research 

and future recommendations to improve the modelling approach for future researchers.  
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Chapter 2- Comparative Assessment of Spatial Variability and Trends 

of Flows and Sediments Under the Impact of Climate Change in The 

Upper Indus Basin 

This Chapter is published as: 

 

Ul-Hussan, W.; Shahzad M.K.; Seidel F.; Costa A.; Nestmann F.; Comparative Assessment of Spatial 

Variability and Trends of Flows and Sediments under the Impact of Climate Change in the Upper 

Indus Basin. Water (MDPI) Switzerland, 2020, doi.org/10.3390/w12030730  

 

2.1 Abstract  

Extensive research of the variability of flows under the impact of climate change has been conducted 

for the Upper Indus Basin (UIB). However, limited literature is available on the spatial distribution 

and trends of suspended sediment concentrations (SSC) in the sub-basins of UIB. This study covers 

the comparative assessment of flows and SSC trends measured at 13 stations in the UIB along with 

the variability of precipitation and temperatures possibly due to climate change for the past three 

decades. In the course of this period, the country’s largest reservoir, Tarbela, on the Indus River was 

depleted rapidly due to heavy sediment influx from the UIB. Sediment management of existing 

storage and future planned hydraulic structures (to tap 30,000 MW in the region) depends on the 

correct assessment of SSC, their variation patterns, and trends. In this study, the SSC trends are 

determined along with trends of discharges, precipitation, and temperatures using the non-

parametric Mann–Kendall test and Sen’s slope estimator. The results reveal that the annual flows and 

SSC are in a balanced state for the Indus River at Besham Qila, whereas the SSC are significantly 

reduced ranging from 18.56%–28.20% per decade in the rivers of Gilgit at Alam Bridge, Indus at 

Kachura, and Brandu at Daggar. The SSC significantly increase ranging from 20.08%–40.72% per 

decade in the winter together with a significant increase of average air temperature. During summers, 

the SSC are decreased significantly ranging from 18.63%–27.79% per decade along with flows in the 

Hindukush and Western–Karakorum regions, which is partly due to the Karakorum climate 

anomaly, and in rainfall-dominated basins due to rainfall reduction. In Himalayan regions, the SSC 

are generally increased slightly during summers. These findings will be helpful for understanding 

the sediment trends associated with flow, precipitation, and temperature variations, and may be used 

for the operational management of current reservoirs and the design of several hydroelectric power 

plants that are planned for construction in the UIB. 

Keywords: suspended sediment concentrations; Upper Indus Basin; Mann–Kendall trend test; 

Sen’s slope estimator; Gilgit basin; Karakorum climate anomaly; Karakorum-Hindukush-Himalaya 
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2.2 Introduction 

Erosion from the relatively younger mountain ranges of the Hindukush, Karakorum, and Himalaya 

yield a huge amount of sediment that enters the Upper Indus Basin (UIB) and its storage reservoirs, 

such as the Tarbela reservoir. Average sediment loads of 250 million tons per year are produced in 

the Indus River by these three mountain ranges, making it one of the world’s largest sediment-laden 

rivers [1]. Sediment erosion is a rather complex phenomenon that primarily requires determination 

of parameters contained in universal soil loss equation. Recent research has covered the impacts of 

temperature-driven snow melt processes and patterns and climate change scenarios on the erosion 

rate in various catchments [2,3]. Erosion and sediment transport largely depend on hydrological and 

hydraulic parameters that are largely driven and/or altered by climate forces. Knowledge about the 

distribution of hydro-meteorological parameters and sediment yields and their magnitude variations 

over time is crucial to the partial validation of the impacts of climate change. The assessment and 

quantification of variations of fluvial sediment fluxes and their spatiotemporal patterns are important 

for a better understanding of river geomorphology as well as the planning, design, and operation of 

hydraulic structures on the river. The variation of sediment fluxes affects the depletion of reservoirs, 

channel erosion and deposition, abrasion of hydropower turbines, pollution of river ecosystems, and 

the operation and management of hydropower as well as storage reservoirs. Assessment of spatio-

temporal variation of suspended sediment concentrations (SSC) or yields due to precipitation, 

temperature, and flow process variations are vital to adapt watershed management practices and to 

better understand the landslide activities in the basin. 

Pakistan’s economy is based on agriculture. Agricultural production contributes 18.9% of the gross 

domestic product (GDP) in Pakistan and makes up the major part of the country’s annual exports. 

Pakistan is among the top ten world water stressed countries due to the vulnerability of climate 

changes, reduction of storages, increase of its population, and increase of water demands [4,5]. The 

Tarbela reservoir, which lies in the UIB, has lost 35% of its capacity since 1974 due to reservoir 

sedimentations [6]. This rapid depletion of storage reservoirs due to siltation not only affects the 

country’s economy, but also endangers food security and leads to cross-border water conflicts. Post 

construction measures against siltation in reservoirs are indispensable, but sometimes neither 

technically nor financially feasible. Sedimentation also adversely affects the ecosystems of both rivers 

and reservoirs. To enhance the sustainability and environmental compatibility of existing reservoirs 

and hydropower projects planned in the UIB, the impact of climate change on both flows and 

suspended sediments concentrations (SSC) has to be assessed. This assessment may improve the 

understanding of the effects of the Karakorum climate anomaly [7,8] on the seasonal and annual 

trends of flows and sediment yields in the UIB. This could also be beneficial for the management of 

sediments. This study will also help to understand the effect of different hydrological processes, such 

as snow cover, snow melt, ice melt, and rainfall, on erosion and sediment yield in sub-basins of the 

UIB dominated by snow and ice melting. 

Many techniques, statistical methods, and approaches have been used by a lot of researchers for 

assessing changes in climate, flows, and SSC. The moving t-test, Yamonato method, Carner method, 

order clustering approach, and filter test method were used in the past [9,10]. The parametric 

regression approach was applied to determine the discharge–total suspended solids relationships 

(Q–TSS)/SSC vs. time–discharge (T–Q) for the trend analysis of sediments [11]. In 1945, Mann and 

Kendall suggested the nonparametric test method for time series analysis [12]. Gerstengarbe and 

Werner developed the Mann–Kendall test to analyze and detect trends [13]. Furthermore, the rank 

sum test [14], two-sample t-test [15], and Pettit test [16] were used for trend analysis in many studies. 

In a recent study for the Loess Plateau [17], trend analysis was carried out as well, because the plateau 

contributes 80% of the sediment belonging to the Yellow River. For large basins like the Indus basin, 
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the analysis and budgeting of sediments and their patterns require huge resources and a large data 

collection expenditure. A few years ago, sediment studies were carried out [18–20] on the UIB. These 

studies covered the sediment patterns, sediment distribution, and sediment budgeting on the basin 

scale. Sediment transport is a highly nonlinear and complex phenomenon due to multiple factors 

controlling and affecting the erosion process, such as channel erosion, gully erosion, snow and glacier 

melts erosion etc. To characterize the highly nonlinear processes of sediment erosion, flow, and 

climate change, most researchers have used the non-parametric test. It is the most powerful tool to 

assess the temporal and spatial dynamics of sediment fluxes, hydrological variables, and climate. For 

the trends of nonlinear processes, such as flows, climate, and sediment yields, the Mann–Kendall 

trend test is used for this study. It is a robust method and has the capacity to detect the trends of time 

series without considering the normal distribution of the input datasets. In a regional study [21], the 

non-parametric Mann–Kendall test was used to detect the trends of flows and sediment discharges 

in the Yellow River. Similarly, the non-parametric Mann–Kendall test was applied for the trend 

analysis of sediment yields based on data from a few stations in the UIB in two recent studies [22,23].  

According to the experience gained by many researchers, however, the Mann–Kendall test alone, and 

without considering the serial/auto correlations, is insufficient to detect trends. Therefore, the trend-

free pre-whitening (TFPW) approach, along with the Mann–Kendall trend test, is used here to detect 

the trends of flows, SSC, and climatic parameters. To further quantify the magnitudes of the trends 

of hydro-climatic time series, Sen’s slope estimator is used after the trend-free pre-whitening (TFPW) 

and Mann–Kendall trend analysis. Several hydropower stations and storage reservoirs are planned 

to be constructed in the UIB according to the 2025–2030 vision of the Water and Power Development 

Authority (WAPDA). The comprehensive assessment of the trends of flows and suspended sediment 

concentrations (SSC) under the impact of climate change for all 13 gauging stations in the Hindukush, 

Karakorum, and Himalaya mountain ranges presented in this study will be particularly helpful for 

policymakers, hydraulic engineers, and water resources managers. Therefore, the objectives of this 

study are: (1) the detection and assessment of trends in different temporal intervals ranging from 

monthly to seasonal and annual basis for flows and SSC of the 13 hydrological stations in the UIB 

since 1980–2010; (2) development of seasonal and annual trend maps for representing the spatial 

changes in % for flows and SSC per decade in the UIB; (3) extracting the missing year’s climatic 

information for sparsely gauged climatic stations using the linear scaling bias correction method 

along with the station-recorded data and satellite grid point data; (4) assessment of the impact of 

changes in the trends of mean monthly rainfalls of the basins and average monthly temperatures, 

adjusted for lapse rate per elevation zone, on the monthly flows and SSC of the UIB; (5) assessing the 

significant changes in monthly, seasonal, and annual flows and SSC, which are partly due to climate 

change, in past 30 years for selected catchments with major SSC contributions. 

2.3 Materials 

2.3.1 Study Area 

The Indus River is among the largest rivers in South Asia with its total length of 2880 km [24,25]. It 

has a total catchment area of 970,468 km2 with about 56% (529,134 km2) of its area lying within the 

territory of Pakistan. The remaining catchment area is distributed between China, India, and 

Afghanistan. It also has the world’s largest irrigation networks covering an irrigated agricultural area 

of 181,000 km2 [26,27]. Moreover, the Indus basin is an economic source of energy. Hydropower 

produced here has a share of 29% in the total national power generation capacity of Pakistan [27]. 

This study focuses on the Upper Indus Basin (UIB) upstream of the Tarbela dam with a total 

catchment area of 172,000 km2 and a length of 1125 km [18,28]. The watershed area of the UIB 

upstream of the Tarbela reservoir is situated at 31°–37° E and 72°–82° N. The watershed elevation of 

the UIB above the Tarbela dam ranges from 360 to 8572 m above mean sea level [28]. The detailed 

characteristics of the gauging stations measuring flows and SSC at 13 locations in the UIB are given 
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in the Table 2.1. Four gauging stations are located on the main arm of the Upper Indus, eight on the 

tributaries, and one station, Alam Bridge, at the confluence of two tributaries. 

Figure 2.1 shows the details of the catchment area, the sub-basins, and the tributaries of the UIB. It 

starts from the frozen planes of the Tibetan Plateau in China. Then, it enters from the south eastern 

direction in a well-defined valley and flows parallel to the geological fault line. After crossing the 

fluvial plains 45 km upstream of Skardu town at an altitude of 2469 m, it joins Shyok River with 30% 

of glacier drainage area. Here, the valley widens and mostly consists of sediments in the form of 

glacial deposits down to Skardu town. Upstream of Skardu in the Deosai plains, the Kharmong River 

from the central Himalayas lying in Pakistan joins the main (Indus) River with a total glacier-covered 

area of 4%. Kharmong River is dominated by a snow and rainfall flow regime. 
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Figure 2. 1 The map of the study area shows the locations of stream gauges, climatic stations, and sub-basins contributing to the Upper Indus Basin 

(UIB). 
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Near the town of Skardu, the Shigar River with 39% of glacier-covered area from the Himalayas 

drains into the main (Indus) River at an altitude of 2438 m. Downstream of Skardu town, the main 

River flows towards the Northwest up to Kachura Lake along the steep and narrow valley of the 

main River. The Hunza River runs from North to South and Gilgit River runs from the Northwest to 

Southeast before confluence at Alam Bridge just downstream of Gilgit town. Hunza Basin borders 

with Shigar Basin on the right side in the direction of flow. Hunza and Gilgit Rivers are snow- and 

glacier-dominated basins lying in the Western Karakorum and Hindukush mountain ranges with 

39% and 10% of glacier-covered area, respectively. Astore River also joins the main River. It comes 

from the western Himalayas with 8% of glacier-covered area north of the Nanga Parbat massif. 

Downstream of Alam Bridge, the confluence of Gilgit and Hunza Rivers join the main Indus River at 

Bunji/Partab Bridge in Jaglot town. Jaglot is a monumental place, where all three great mountain 

ranges, the Himalayas, Karakorum, and Hindukush, meet. The lower part of the UIB starts at Bunji 

and extends up to Tarbela dam. The main river widens between Alam Bridge and Chillas and 

contains sediments in the form of glacier deposits. The Indus River continues its journey towards 

Shatial Bridge. From Shatial Bridge, the main river flows further towards the South in a steep and 

narrow cross section and joins Besham Qila, approx. 45 km upstream of the Tarbela reservoir. Near 

Besham Qila, some small and large rivers also join the Indus from both the left and the right side. The 

right tributaries joining the main Indus River near Besham Qila are Brandu, Gorband, Khan Khawar, 

Duber Khwar, Keyal Khwar, Kandia, and Tangir. The left tributaries joining the main Indus River 

near Besham Qila are Siran, Chor Nullah, Spat Gah, Allai Khwar, Gunar Gah, Thor Gah, and Butto 

Gah. 

The climate of the UIB comprises two climatic fronts. One is the monsoon pattern of rainfall that 

originates from the Bay of Bengal and Arabian Sea. The second is the westerlies climatic front 

originating from the Caspian Sea and Mediterranean region during winters and springs. Most of the 

annual precipitation in the UIB falls in the form of snow during the winter and spring season due to 

westerlies [29,30]. Mean annual precipitation in Gilgit ranges from 150 mm at lower elevations to 

1800 mm in the snow accumulation zone in Bagrot valley [31]. In the Western Karakorum over the 

Batura glaciers, annual precipitation accounts for more than 1000 mm [32]. In the Central Karakorum, 

annual precipitation ranges from 1000 mm to more than 2000 mm over the Hispar and Biafo glaciers 

[33]. In the Central Karakorum, 67% of annual precipitation fall during winter is due to the westerly 

front, with the remaining 33% of annual rainfall during the summer season [7,34,35]. In the lower 

UIB, annual rainfall ranges from 1000 mm to 1500 mm between Dasu and Besham Qila [23]. In the 

UIB, the maximum mean basin rainfall occurs during the spring season, with April being the month 

of highest rainfall [36]. 

In the UIB the upper glaciered has very low population density (<50 people km2) in comparison to 

the lower monsoon dominated region. The upper region of UIB has an estimated population of 1.5 

Million. The lower region of UIB is vice versa. The upper region of UIB also has high percent of 

snow/ice cover, at up to 40% in Hunza, Gilgit, Shigar, and Shyok river basins. This snow/ice cover 

emerges as a single dominated land cover factor which explains 73.4% of the variance in sediment 

yields for whole UIB [37]. 
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Table 2. 1 Geographical characteristics of the stream gauging sites measuring flows and suspended sediment concentrations (SSC) in the Upper 

Indus Basin (UIB). 

Ser # Discharge Gauging Stations Region 
Catchment Area 

km2 
Elevation (m) 

Elevation Range 

(m) 

% of Glacier 

Cover 

1 Hunza at Dainyor Western Karakorum 13,157 1350 1426–7860 35 

2 Gilgit at Gilgit Hindukush 12,095 1430 1454–7048 10 

3 Gilgit at Alam Bridge Hunza + Gilgit 26,159 1280 1266–7843 25 

4 Indus at Kharmong Central Himalayas 67,858 2542 2478–7036 4 

5 Shyok at Yogu Eastern Karakorum 33,670 2469 2397–7553 30 

6 Shigar at Shigar Central Karakorum 6610 2438 2191–7793 39 

7 Indus at Kachura Main River UIB 112,665 2341 2107–7801 12 

8 Astore at Doyian 
Northwestern 

Himalayas 
4040 1583 1580–8058 8 

9 Indus at Partab Bridge/Bunji Main River UIB 142,709 1228 1242–7889 11 

10 Indus at Shatial Br. Main River UIB 150,220 1040 906–8118 12 

11 Indus at Besham Qila Main River UIB 162,393 580 561–8118 13 

12 Lower UIB at Daggar Lower western UIB 598 700 685–2801 0 

13 Lower UIB at Karora Lower western UIB 635 880 893–4439 1 
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The trends induced by climate change on the discharges of various sub-catchments have been widely 

reported by many researchers [7,8,38,39], however, scientific literature on the spatio-temporal 

variation of SSC is far less extensive. Ali and De Boer [18] analyzed the spatial distribution of 

sediment in the UIB by dividing the region into three zones: upper snow- and glacial melt-dominated 

zone, middle snow-/glacial melt-, and rainfall-dominated mixed zone, and lower rainfall-dominated 

zone. Ateeq-Ur-Rehman et al. and Tarar et al. [22,23] identified the trends of SSC by using the data 

of two and four gauging stations of the UIB, respectively. Meanwhile, the former used the SSC of 

Hunza basin at Danyor, Shyok basin at Yogu, Upper Indus at Bunji/Partab Bridge, and Upper Indus 

at Besham Qila. They have used data from the gauge of Partab Bridge for the melt portion of the UIB 

and from Besham Qila to represent the load of the entire UIB. These studies found a significant inter-

annual shift of SSC with the balanced annual sediment yield. However, an assessment of the spatio-

temporal variation of SSC and discharges in relation to relevant hydrometeorological parameters and 

variables for all the sub-basins of the entire UIB has not yet been made. This study therefore covers 

the trends of spatial variability of SSC and discharges in the UIB using the data of 13 gauging stations 

located in the Karakorum, Himalayan, and Hindukush regions that represent almost the entire UIB 

with its eight sub-catchments (Table 2.1). Moreover, the previous studies used daily sediment values 

derived from discharge-sediment rating curves (SRC) and artificial neural networks (ANN) [22,23]. 

The SRC and databased models give highly overestimated and underestimated values and 

sometimes negative values, which are physically not possible. Especially, for the highly glacier and 

snow melt basins, the SRC are not reliable. In comparison to previous researches in the region that 

mainly relied on discharge-sediment rating curves (SRC) and artificial neural networks (ANN) for 

SSC, the mean of monthly sediments was taken by averaging the daily SSC gauged data. Thereby, 

SRC values were only used in those months where no information of sediment concentrations was 

available. This study is also one of the pioneer researches that used corrected estimates of rainfall and 

temperature for the assessment of comparative trends of precipitation, temperature, and SSC in the 

UIB [40,41]. 

2.3.2 Data Collection 

For the present study, the data of 13 stream gauges in the UIB for the period 1981–2010 were collected 

within the Surface Water Hydrology Project (SWHP) of the Water and Power Development Authority 

(WAPDA). These stations measure flows on a daily basis and SSC on intermittent days. A rating 

curve was used to find the missing values of SSC for monthly, seasonal, and annual trend analysis. 

The list and characteristics of these stations are given in Table 2.2. 

Hunza is second largest glacier-dominated basin of the UIB in the Western Karakorum. Here, data 

are available for the period of 1981–2010. The Hunza River generates 12% and 12.5% of the Besham 

Qila flows and suspended sediment loads (SSL), respectively. The Gilgit station at Gilgit lies in the 

Hindukush mountain range draining the Gilgit river basin. Here, data are available for 1981–2010. Its 

flows and SSL are 12% and 3.9% of the Besham Qila flows and SSL, respectively. Gilgit station is 

important due to the contribution of snow melt, ice melt, and rainfall to flows and SSL. The Alam 

Bridge station is located at the confluence of Gilgit River and Hunza River, generating 26% and 18.2% 

of Besham Qila flows and SSL, respectively. The major influx of sediment from the Hunza River raises 

the SSL in the combined flow of Gilgit and Hunza at Alam Bridge. 

The gauge at Kharmong in the Central Himalayas was installed in 1982. For this reason, data of flows 

and SSC are available for the period 1983–2010. The main River comes from the Deosai plain and is 

dominated by snow melt and rainfall. Its flows and SSL are 18% and 7% of the Besham Qila flows 

and SSL, respectively. The Yogo station on Shyok River lies in the eastern Karakorum. Shyok River 

originates from the Tibetan Plateau in China and has the third largest glacier dominance in the UIB. 

Data are available for the period 1981–2010. The station measures 16% and 20.6% of flows and SSL, 

respectively, of Besham Qila. The Shigar station in the Central Karakorum generates most of the flows 

and SSL due to largest glacier dominance in the UIB. The station was installed in 1982, but data are 
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available from 1985–1998 only. After 1998, Shigar station was not in operation. Its flows and SSL are 

9% and 15.4% of the Besham Qila flows and SSL, respectively. 

The Indus at Kachura contributes 48% and 52.1% to the Besham Qila flows and SSL, respectively. 

Data are available for the long term from 1981–2010. The Bunji/Partab Bridge station on the main 

River has data from 1981 to June 2010. Due to the 2010 flood, the gauging site was destroyed, and the 

data of the remaining six months of 2010 are lacking. The Bunji station generates 71% and 97.6% of 

the flows and SSL, respectively, of Besham Qila. The river here contains the water and sediments 

from glacier- and snow-dominated upstream basins, i.e., Hunza and Gilgit on upper Northeastern 

side and from the parallel basins of Shigar, Shyok, and Kharmong on the lower Northeastern end. 

The Doyian station on Astore River also is located in a snow melt- and rainfall-dominated basin in 

the Western Himalayas. It generates 6% and 1.2% of the flows and SSL, respectively, of Besham Qila. 

Again, data are available for the entire period of 1981–2010. 

The station Shatial Bridge was installed in 1983 and measures 87% of flows and surprisingly 70.0% 

of SSL of Besham Qila despite its location downstream of the Bunji station. Hydrological data of 

Shatial are available from 1983–2010. The Daggar station on Brandu River is the right tributary of the 

Lower UIB near Besham Qila. It is a rainfall-dominated basin contributing 0.4% and 0.4% of 

discharges and SSL, respectively, of Besham Qila. The Karora station of the Gorband basin is also is 

located on a right tributary near Besham Qila and contributes 0.7% and 0.2% of flows and SSC, 

respectively, of Besham Qila. Both Daggar and Karora measured data in the period from 1981–2010. 

The SSC data given in % of Besham Qila benchmarks do not only reflect the availability of suspended 

sediment, but also indicate the transport capacity. For example, Shigar at Shigar, Shyok at Yogu, and 

Hunza at Dainyor report 2.75, 1.50, and 1.25 times the suspended sediment concentration of Besham 

Qila, respectively. Similarly, the Indus at Kachura (134%), Partab Bridge (117%), and Shatial Bridge 

(106%) is found to contain more suspended sediment than recorded at Besham Qila, which indicates 

that with the increasing flows from Kachura to Besham Qila, the suspended sediment does not match 

with the increasing rate of discharges. However, the SSL data reveal that from Kachura to Bunji, the 

sediment increases from 137 to 257 million tons, but decreases to 185 million tons at Shatial, and again 

rises to 263 Million tons at Besham Qila. Provided that the data are correct, the decrease of sediment 

load from Bunji to Shatial despite the increasing discharges means that sediment is being deposited 

between Bunji and Shatial and there may be either channel bed erosion or an addition of suspended 

sediments from the lateral tributaries between Shatial and Besham Qila, which makes the SSL more 

than double at the tail end. 

The daily climatic data of rainfall and temperatures from 18 meteorological stations in the UIB were 

also collected in this study. The meteorological stations of Skardu, Gilgit, Gupis, Astore, Bunji, and 

Chillas are operated by the Pakistan Meteorological Department (PMD). 

The remaining climatic stations under the supervision of the Water and Power Development 

Authority (WAPDA) have been recording data since 1995. Table 2.3 presents the details of these 

climatic stations. In addition, the grid data of precipitation and temperature of 5 × 5 km resolution 

determined in the HI-AWARE project for the Indus, Ganges, and Brahmaputra river basins were 

collected [40,41]. The Shuttle Radar Topography Mission’s (SRTM) digital elevation model (DEM) 

data of 30-m resolution were applied as well. The mean basin precipitation data were extracted from 

the corrected rainfall data of the HI-AWARE project using DEM. The temperature data of higher 

elevated gauges for the missing period from 1981–1994 were extracted from grid data and corrected 

with station observations by using the linear biased scaling method. Estimation of glacier areas was 

based on the glacier polygons of the Global Land Ice Measurement (GLIMS) database. In this study, 

DEM is used to estimate the glacier area for each sub-basin from downloaded GLIMS polygons [42]. 
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Table 2. 2 Hydrological characteristics of discharge gauging stations in the Upper Indus Basin (UIB). 

Ser 

# 

Discharge Gauging 

Stations 
Region 

Lat. 

(°) 

Long. 

(°) 
Period 

Flows 

(m3/sec) 

SSC 

(mg/L) 

% of 

UIB 

Flows 

% 

of 

UIB 

SSC 

SSL 

(Million 

Tons/Year) 

% of 

UIB 

SSL 

1 Hunza at Dainyor Western Karakorum 35.92 74.37 1981–2010 297 1091 12 125 33 12.5 

2 Gilgit at Gilgit Hindukush 35.92 74.3 1981–2010 293 442 12 51 10 3.9 

3 Gilgit at Alam Bridge Hunza + Gilgit 35.76 74.59 1981–2010 632 795 26 91 48 18.2 

4 Indus at Kharmong Central Himalayas 34.93 76.21 1983–2010 453 669 18 76 19 7.0 

5 Shyok at Yogu Eastern Karakorum 35.18 76.1 1981–2010 390 1305 16 150 54 20.6 

6 Shigar at Shigar Central Karakorum 35.33 75.75 1985–1998 223 2395 9 275 40 15.4 

7 Indus at Kachura Main River UIB 35.45 75.41 1981–2010 1192 1171 48 134 137 52.1 

8 Astore at Doyian North Western Himalayas 35.54 74.7 1981–2010 140 295 6 34 3 1.2 

9 Indus at Partab Bridge/Bunji Main River UIB 35.73 74.62 1981–2010 1757 1019 71 117 257 97.6 

10 Indus at Shatial Br. Main River UIB 35.53 73.56 1983–2010 2167 919 87 106 185 0.70 

11 Indus at Besham Qila Main River UIB 34.92 72.88 1981–2010 2479 870 100 100 263 100.0 

12 Lower UIB at Daggar Lower western UIB 34.49 75.46 1981–2010 9.9 547 0.4 63 1 0.4 

13 Lower UIB at Karora Lower western UIB 34.89 72.76 1981–2010 18 355 0.7 41 0.4 0.2 

Note: The flows and SSC are instantaneous values for the time the water samples are taken by sediment sampler
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Table 2. 3 Characteristics of climatic gauging stations in the Upper Indus Basin (UIB). 

Discharge 

Outlet 
Region 

Climatic 

Stations 
Lat. (°) 

Long. 

(°) 

Average 

Altitude 

(m) 

Period 

Hunza at 

Dainyor 

Western 

Karakorum 

(WK) 

Naltar 36.29 74.12 2898 1995–2010 

Ziarat 36.47 74.62 3020 1995–2010 

Khunjrab 36.83 75.4 4440 1995–2010 

Gilgit at 

Gilgit 

Hindukush 

(HK) 

Gilgit 34.92 73.34 1460 1981–2010 

Gupis 36.17 73.4 2156 1981–2010 

Ushkore 35.99 73.25 3051 1995–2010 

Yasin  36.43 73.27 3280 1995–2010 

Shendure 36.09 72.54 3712 1995–2010 

Gilgit at 

Alam 

Bridge 

Hunza + Gilgit HK + WK - - - 1981–2010 

Indus at 

Kharmong 

Central 

Himalayas (CH) 
Desosai 35.09 75.54 4149 1995–2010 

Shyok at 

Yogu 

Eastern 

Karakorum (EK) 
Hushey 35.42 76.37 3075 1995–2010 

Shigar at 

Shigar 

Central 

Karakorum 

(CK) 

Shigar 35.63 75.53 2325 1995–2010 

Skardu 35.3 75.68 2210 1981–2010 

Indus at 

Kachura 
Main River UIB EK + CH - - - 1981–2010 

Indus at 

Partab 

Bridge/Bunj

i 

Main River UIB 

(HK + WK + CK 

+ EK + CH) 

Bunji 35.67 74.64 1372 1981–2010 

Astore at 

Doyian 

North Western 

Himalayas 

(NWH) 

Astore 35.34 74.9 2168 1981–2010 

Raitu 35.14 74.73 2718 1995–2010 

Rama 35.43 74.79 3179 1995–2010 

Indus at 

Shatial Br. 

Main River UIB 

(HK + WK + CK 

+ EK + CH) 

Chillas 35.42 74.1 1250 1981–2010 

Indus at 

Besham 

Qila  

Main River UIB 

(HK + WK + CK 

+ EK + CH) 

Chillas 35.67 74.64 1250 1981–2010 

Lower UIB 

at Daggar 

Lower western 

UIB 
Shangla 34.87 72.6 1960 1995–2010 

Lower UIB 

at Karora 

Lower western 

UIB 
Shangla 34.87 72.6 1960 1995–2010 
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2.4 Methods 

The data outliers in this study do not affect the analysis, as the Mann–Kendall test used for trend 

analysis is non-parametric. The homogeneity of the mean annual flows and SSC was checked using 

the standard normal homogeneity test (SNHT) and Buishand’s range (BR) test at 5% significance level 

for each station. The flows and suspended sediments are considered homogeneous when the critical 

values of SNHT and BR are T0 < 9.17, Q⁄√n < 1.27, and R⁄√n < 1.55. T0 is SNHT test statistics. Similarly, 

Q⁄√n and R⁄√n are BR test statistics. Table 2.4 shows the results of the SNHT and BR tests. 

2.4.1 Statistical Methods 

The Mann–Kendall trend test is applied to detect the trends for mean values of flow, SSC, 

precipitation, and average temperatures on a monthly, seasonal, and annual basis. Before applying 

the Mann–Kendall test, the time series data were analyzed to check serial correlation. The serial 

correlations were eliminated from the series using the trend-free pre-whitening (TFPW) approach. 

Table 2. 4 Characteristics of climatic gauging stations in the Upper Indus Basin (UIB). 

Sr 

# 
Station 

Stream Flows 

(m3/sec) 
Suspended Sediments (mg/L) 

SNH

T 

Buishand’s 

Range (BR) 

Test 

SNHT 
Buishand’s Range (BR) 

Test 

𝐓𝟎 
𝐐
√𝐧
⁄  𝐑

√𝐧
⁄  𝐓𝟎 

𝐐
√𝐧
⁄  𝐑

√𝐧
⁄  

1 Hunza at Dainyor 4.37 0.1 1.33 4.98 0.09 1.04 

2 Gilgit at Gilgit 4.32 0.08 0.85 2.19 0.05 1.13 

3 Gilgit at Alam Bridge 3.29 0.06 0.98 4.36 0.08 0.98 

4 Indus at Kharmong 3.55 0.10 1.5 3.51 0.10 1.42 

5 Shyok at Yogu 2.42 0.06 0.97 5.68 0.10 1.91 

6 Shigar at Shigar 4.50 0.13 0.99 3.00 0.12 1.18 

7 Indus at Kachura 1.97 0.06 1.16 7.09 0.11 1.25 

8 
Indus at Partab 

Bridge/Bunji 
4.37 0.07 0.85 3.07 0.06 1.05 

9 Astore at Doyian 5.92 0.07 0.85 3.83 0.08 1.08 

10 Indus at Shatial Br. 1.33 0.05 0.74 5.01 0.11 1.34 

11 Indus at Besham Qila 1.23 0.05 0.83 3.31 0.06 1.14 

12 Lower UIB at Daggar 1.58 0.06 0.96 5.98 0.11 1.28 

13 Lower UIB at Karora 12.59 0.17 1.8 11.39 0.05 0.97 

Note: For homogeneous data series T0 < 9.17, Q
√n
⁄  < 1.27, and R

√n
⁄  < 1.55. 

2.4.2 Serial Correlation and Trend-Free Pre-Whitening (TFPW) 
Serial correlation in time series is defined as correlation of a variable with itself over successive time 

intervals. This correlation must be removed before trend analysis [43]. Removal of this correlation is 

important, because it significantly affects the results of the non-parametric test during trend analysis. 

Using the two-tailed test of autocorrelation coefficient (r1) at a 5% significance level, the time series 

of flows, SSC, rainfall, and temperatures were checked for serial correlation as: 

r1  =  
∑ (Xi − X

−)n−1 
i=1 (Xj+1 − X

−)

 ∑ (Xi − X
−)n

i=1
2
 

 (1) 
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where Xi is the value of suspended sediments at ith time interval and X− is the mean value of 

sediments. n is the number of years. 

The value of the autocorrelation coefficient r1 at 95% of confidence interval in the two-tailed test is 

given as: 

r1 Suspended Sediments (95%)  =
−1 ± 1.96 √(n − 2)

n − 1
 (2) 

The trend-free pre-whitening (TFPW) approach is proposed when the r1 value of the time series lies 

between the upper and lower limits of the confidence interval [44]. 

2.4.3 Mann–Kendall Test 

The Mann–Kendall test is most widely used for the trend analysis of hydro-climatic data in various 

studies [12,45–47]. To detect the statistically significant trends in the time series, the Mann–Kendall 

test uses two hypotheses. The null hypothesis (H0) is that there is no trend overtime in flows and 

suspended sediment data. The (H1) hypothesis is that the trend in the time series is increasing or 

decreasing. 

For the Mann–Kendall test [12,45,47], S has been computed as given below: 

S =  ∑ ∑ sig (Xj − Xi)
n
j=i+1

n−1
i=1  (3) 

As Xi and Xj are the data values at times i and j, while n is the length of the dataset. 

Sgn (Xj − Xi) = {

+1 if (Xj − Xi)  > 0 

0 if (Xj − Xi) = 0 

−1 if (Xj − Xi) < 0 ,

 (4) 

The positive values of the calculated S indicate the positive trend and vice versa. 

The variance S of data series is computed by the equation given below: 

Var (S) = 
1

18
[n (n − 1)(2n + 5) − ∑ tp (tp − 1)(2tp + 5)

q
p=1 ] (5) 

where tp is the number of ties for pth values with q being the number of tied values. After calculating 

the variance Var (S) of data time series, the standard Z value is calculated as 

Z = 

{
 

 
s−1

√Var (S)
 if S > 0 

0 if S = 0 
s+1

√Var (S)
 if S < 0 

 (6) 

The calculated positive value of Z indicates an increasing trend, while a negative value of Z reflects 

a decreasing trend. 

The Z value is compared at a significant level of α = 1%, 5%, and 10% with the normal distribution 

table value. The null hypothesis (H0) is rejected, if the Z value is greater than |Z1−α 2⁄
|, |z| > |Z1−α 2⁄

|, 

where |Z1−α 2⁄
| was obtained from the standard normal distribution table. The other hypothesis H1 is 

accepted. 
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2.4.4 Sen’s Slope Estimator 

To quantify the magnitude of change of the trend in time series data, the Sen’s slope estimation 

method [48] was used. 

Qi = 
Xj−Xk

j−k
         (7) 

where Qi is the slope of the ith paired of data, for i = 1, …, N 

Xj and Xk are the data values at the time of j and k [j > k], respectively. The median of N values of Q i 

values is the Sen’s slope estimator given as 

Qi = {

T(N+1)
2⁄  
 N is odd

1

2
(TN

2 ⁄ + T(N+1) 
2 ⁄
)  N is even

 (8) 

2.5 Results 

2.5.1 Preliminary Analysis 

The preliminary descriptive statistics for discharge and SSC are given in Table 2.5. Besham Qila 

station that represents the snow- and ice melt-dominated and partly rainfall-dependent basins shows 

the highest values of mean (Mean), minimum (Min), and maximum (Max) flows due to the fact it is 

the last gauging station of the UIB that is located just upstream of the Tarbela reservoir. Shatial Bridge 

just upstream of Besham Qila shows the highest standard deviation (Std.) of discharges, which means 

that the flow pattern is more erratic than at both neighboring upstream and downstream stations. 

Daggar, the basin dominated by high-intensity rainfall in spring and summer, is comparatively small 

and reports the highest values for the coefficient of variations (Cv (%)), coefficient of skewness (Cs), 

and coefficient of kurtosis (Ck) for discharges partly because of the low mean magnitude and high 

discharge variations because of rainfall storms. Daggar basin also shows the lowest minimum and 

maximum flows due to rainfall contribution only and the small catchment area. Gorband at Karora 

shows the lowest standard deviation. Besham Qila, Partab Bridge, and Kachura on the main Indus 

River are found to have the lowest coefficient of variations, coefficient of skewness, and coefficient of 

skewness, respectively. This is due to the fact that they represent very large catchments (Table 2.1). 

Shigar, the glacier-dominated basin, shows the highest values of mean, maximum, and standard 

deviation of SSC, followed by Shyok, Kachura, and Hunza. The Indus at Shatial Bridge reaches the 

highest values of minimum of SSC, which may possibly be due to heterogeneous spells of channel 

erosion of glacier deposits. During low flow season these glacier deposits might be transported by 

increase of winter discharges in channel. The Gorband at Karora is found to have the highest 

coefficient of variations, which could be probably due to the operation of a lot of upstream micro 

hydropower stations installed by the community. Gilgit, the snow melt-, ice melt-, and rainfall-

dominated basin, reaches the highest coefficient of skewness and coefficient of kurtosis of SSC, which 

may probably be due to dominant snow melts in the basin and increased sediment transport from 

the upstream catchment. Astore at Doyian, a snowfall-dominated basin, is found to have the lowest 

SSC in terms of mean, maximum, and standard deviation. Besham Qila shows the lowest coefficient 

of variations, which is attributed to the fact that it is last downstream station of the UIB, where river 

hydraulics is the predominant factor rather than upstream catchment erosions. Moreover, the 

representation of a larger catchment is less prone to variations by short-term local forcings. Hunza at 

Dainyor shows the lowest value of coefficient of skewness. Probably, more sediments are deposited 

in the upstream valley and hydraulics of the river with effective discharges from the glacier melts is 

more dominant, which ensures steady sediment transport. The Indus at Kachura shows the lowest 
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coefficient of skewness, probably due to high flows and steady SSC contribution along narrow river 

valleys with less glacier deposits in the channel. It must be noted that flow doubles and SSC is 

reduced by almost a quarter from Kachura to Besham Qila along the main arm of the Indus River, 

which means that either the lateral sub-basin downstream of Kachura yields less suspended sediment 

in comparison to discharges or there is an issue of sediment transport capacity in a reach between 

these stations. 

Table 2. 5 Summary of descriptive statistics of the selected discharge and sediment 

gauging stations. 

Sr 

# 
Gauging Stations Mean Min Max Std. 

Cv 

(%) 
Cs Ck 

Discharge m3/sec 

1 Hunza at Dainyor 296.75 50.73 508.21 96.59 32.55 −0.37 1.58 

2 Gilgit at Gilgit 293.21 83.14 867.86 122.76 41.87 3.42 16.67 

3 Gilgit at Alam Bridge 632.39 217.61 1215.64 185.44 29.32 0.58 3.12 

4 Indus at Kharmong 452.78 118.94 782.45 140.29 30.98 0.17 1.09 

5 Shyok at Yogu 390.07 180.28 545.96 89.29 22.89 −0.15 −0.36 

6 Shigar at Shigar 223.25 142.06 330.64 57.44 25.73 0.29 −0.65 

7 Indus at Kachura 1192.19 860.16 1547.26 197.44 16.56 0.09 −0.77 

8 
Indus at Partab 

Bridge/Bunji 
1756.94 865.51 2256.72 369.38 21.02 −0.81 0.3 

9 Astore at Doyian 139.9 37.52 232.24 38.58 27.58 −0.22 0.94 

10 Indus at Shatial 2167.32 915.99 2981.57 499.73 23.06 −0.58 0.28 

11 Indus Besham Qila 2479.37 1858.22 3304.93 378.85 15.28 0.37 −0.55 

12 Lower UIB at Daggar 13.84 3.81 129.3 21.85 157.9 5.23 28.41 

13 Lower UIB at Karora 18.1 5.89 37.36 7.24 40 0.97 1.26 

Suspended Sediments mg/l 

1 Hunza at Dainyor 1091.44 53.75 2244.65 568.27 52.07 0.03 −0.04 

2 Gilgit at Gilgit 441.98 76.82 2169.5 410.59 92.9 2.78 9.94 

3 Gilgit at Alam Bridge 795.32 114.47 1971.58 439.5 55.26 0.86 0.53 

4 Indus at Kharmong 668.9 138.28 2150.42 537.79 80.4 1.37 1.21 

5 Shyok at Yogu 1305.08 128.78 5219.85 1208.13 92.57 1.79 2.96 

6 Shigar at Shigar 2395.08 257.48 7571.67 1883.03 78.62 1.6 3.64 

7 Indus at Kachura 1171.27 131.29 2390.97 554.23 47.32 0.36 −0.16 

8 
Indus at Partab 

Bridge/Bunji 
1019.35 306.92 3294.93 658.31 64.58 1.79 4.21 

9 Astore at Doyian 295.27 96.8 675.68 164.53 55.72 0.94 0.04 

10 Indus at Shatial 919 352.8 1993.22 355.1 38.64 1.32 2.34 

11 Indus at Besham Qila 870.71 322.08 1584.57 286.96 32.97 0.43 0.63 

12 Lower UIB at Daggar 546.85 76.8 1649.01 401.73 73.46 1.43 1.85 

13 Lower UIB at Karora 355.03 48 1739.6 417.81 117.68 2.17 4.54 

Note: Red color shows highest values and blue color indicates the lowest values for both flows and 

SSC. 

2.5.2 Monthly, Seasonal, and Annual Trends of Discharges 

Using longer time steps, such as decadal accumulative discharges, means to avoid inter-annual 

fluctuations when determining long-term trends for the Indus basin [22,49]. In this study, monthly 

trends of discharges (m3/sec) with 90% confidence interval are determined per decade by using the 

Sens’s slope estimator after the Mann–Kendall trend test, as shown in Table 2.6. For the flows, most 
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of the stations show increasing trends of discharges in snow- and glacier-dominated basins in the 

months of from December to June but decreasing discharges in July-August on higher altitudes like 

Hunza and Kharmong. The Indus at Besham Qila (main UIB), Shatial Bridge (main UIB), Partab 

Bridge (main UIB), and Kachura (main UIB) and the Astore at Doyian (Western Himalayas) reveal 

increasing trends of flows per decade in most of the months between November and April. Most of 

the remaining glacier- and snow-dominated basins, such as Gilgit (Hindukush), Hunza (Western 

Karakorum), Shigar (Central Karakorum), and Shyok (Western Karakorum), show a significant 

increase of flows between October and March. However, the Kharmong (Central Himalayas) exhibits 

a mixed trend in these months. 

The Kharmong (Central Himalayas) station shows a significant decrease of flows during the months 

of December, January, May, and June. In the Lower UIB, the rainfall-dominated Brandu basin at 

Daggar and Gorband basin at Karora (both in the Lower UIB in the West) mostly show significantly 

decreasing trends of discharges in the months between December and June. During the months of 

July, August, and September, an insignificant weak increase or decrease in flows is observed in most 

of the snow- and glacier-dominated basin. The Hunza at Dainyor (Western Karakorum) and Indus at 

Kachura (main UIB), however, show significantly decreasing trends of flows in the months of August 

and September. The lower UIB basins exhibit decreasing trends of flow during the months from July 

to September. The Gorband basin at Karora (Lower UIB in the West) shows a significant decrease of 

flows in the months from July to September. In the months of October and November, flows are 

generally increasing in all the basins except for the Shigar basin. 

Table 2.7, Figure 2.2, and Figure 2.4a show the percentage of seasonal and annual changes in mean 

values of flows on a temporal and spatial basis in the UIB. The winter discharges of the Indus River 

at Besham Qila (main UIB), Shatial Bridge (main UIB), Partab Bridge (main UIB), and Kachura (main 

UIB) and of the Astore River at Doyian (Western Himalayas) increase significantly by 3.3–8.5% per 

decade. The spring discharges of the main (Indus) River at Shatial Bridge (main UIB) and Partab 

Bridge (main UIB) and of Astore River at Doyian (Western Himalayas) are also significantly increased 

by 3.3–8.5% per decade. In the Lower UIB, however, the spring discharges of Gorband at Karora 

(Lower UIB in the West) are reduced significantly by up to 20% of the mean values contrary to the 

basins containing water from glacier and snow melting. During the summers, there are no significant 

changes in flows of snow- and glacier-dominated basins except for the Shigar basin. In the Brandu at 

Daggar and Gorband at Karora (both Lower UIB in the West) the summer flows decrease significantly 

by up to 23% per decade in both basins. During the autumns, the flows at Besham Qila (main UIB) 

increase significantly by up to 7.27% per decade, whereas the autumn discharges are reduced 

significantly in Brandu River at Daggar. 

On an annual basis, flows of glacier- and snow-dominated basins do not change significantly, except 

for the Shigar basin. However, the annual discharges of the rainfall-dominated Brandu at Daggar and 

Gorband at Karora are reduced significantly by up to 20% per decade. 

2.5.3 Monthly, Seasonal, and Annual Trends of Suspended Sediment 

Concentrations (SSC) 

Table 2.6 shows the monthly trends of suspended sediment concentrations (SSC) (mg/L) with 90% 

significance level, which have been obtained by using the Sens’s slope estimation method. In the 

months from December to May the trends of SSC are mixed in upper sub-basins of the UIB. However, 

most of the stations located on snow- and glacier-dominated basins show an increase of the SSC from 

December to May along with, though disproportionate, positive discharge trends. The Indus at 

Partab Bridge (main UIB) and Shatial Bridge (main UIB), Astore River at Doyian (Western 

Himalayas), and Gilgit at Alam Bridge (Gilgit + Hunza) show significantly increasing trends of SSC 

(mg/L) and discharges per decade in the months between December and June. Similarly, Gilgit River 

at Gilgit (Hindukush) exhibits a major increase of SSC in the months of December, February, and 



Chapter 2- Comparative Assessment of Spatial Variability and Trends of Flows and Sediments Under 

the Impact of Climate Change in The Upper Indus Basin 

30 
 

March. The Indus at Besham Qila shows a significant increase of SSC per decade in the months of 

December and May. In contrast to this, the Indus at Kharmong (Central Karakorum) and Kachura 

(main UIB) shows an insignificant reduction of SSC in the months of December, January, and 

February. Contrary to the upper sub-basins of the UIB, where the SSC is increased in the months from 

December to May, the Lower UIB exhibits decreased SSC and discharges in the same period. The 

Lower UIB at Daggar and Karora is found to have a significantly reduced SSC in the months between 

March and May. During the months from June to October and especially from July to September, 

most of the glacier- and snow-fed basins show a decrease in SSC. The Gilgit at Gilgit (Hindukush) 

and Alam Bridge (Gilgit + Hunza), Shoyk River at Yogo (Western Karakorum), and the Indus at 

Shatial Bridge (main UIB), Kachura (main UIB), and Kharmong (Central Karakorum) show a 

significant reduction of SSC in the months between June and September with no significant trend in 

discharges in the same period. In the month of November, the upper glacier- and snow melt-

dominated basins of Gilgit at Gilgit (Hindukush), Gilgit at Alam Bridge (Gilgit + Hunza), and Astore 

at Doyian (Western Himalayas) show a significant increase of SSC. The SSC in the Lower UIB, i.e., in 

Brandu River at Daggar (Lower UIB in the West) is found to be reduced significantly per decade with 

an insignificant reduction of discharges during the months of July and August. 

The seasonal and annual percentage changes per decade in mean values of SSC on a temporal and 

spatial basis in the UIB are presented in Table 2.7, Figure 2.3, and Figure 2.4b. Table 2.7 and Figure 

2.3 show that during the winter season, SSC values increase significantly by 20%–40% for the basins 

of Gilgit at Gilgit (Hindukush), Hunza at Dainyor (Western Karakorum), Gilgit at Alam Bridge 

(Gilgit+Hunza), Astore at Doyian (Western Himalayas), and the Indus at Shatial Bridge (main UIB) 

and Partab Bridge (main UIB) in the UIB. During the spring season, the basins of Astore at Doyian 

(Western Himalayas) and Indus at Shatial Bridge (main UIB) and Partab Bridge (main UIB) also show 

a significant increase in SSC in the range of 14%–33% per decade in mean values. In the rainfall-

dominated lower basin of Brandu at Daggar (Lower UIB in the West), however, the SSC decreases by 

up to 16.8% of its mean value per decade. During the summer season, the SSC levels in the UIB 

decrease significantly at most of the stations, such as Gilgit at Gilgit, Hunza at Dainyor, Gilgit at Alam 

Bridge, Shigar at Shigar, Shyok at Yogo, Indus at Kachura, and Brandu at Daggar. In this period, the 

SSC values of Gilgit at Gilgit (Hindukush), Gilgit at Alam Bridge (Gilgit + Hunza), Kachura (main 

UIB), and Brandu at Daggar are reduced by 18 to 28% of their mean values per decade. In the 

autumns, the SSC trends for Gilgit at Alam Bridge (Gilgit + Hunza), Kachura (main UIB), and Brandu 

at Daggar are also significantly reduced by 15%–28%. As obvious from Figure 2.4b, the annual SSC 

trends at most of the stations in the UIB decrease except for Astore at Doyian (Western Himalayas), 

Kharmong (Central Himalayas), and Indus at Shatial Bridge (main UIB). Figure 2.4b and Table 2.7 

show that the annual SSC trends of Gilgit at Alam Bridge (Gilgit + Hunza), Indus at Kachura, and 

Brandu at Daggar) decrease significantly by 18%–28% per decade with no significant reduction of 

discharges except for Brandu at Daggar. 
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Table 2. 6 Mann–Kendall trends for monthly time series data and Sen’s slope estimates. 

Discharge Gauging 

Stations 

Januar

y 

Februar

y 
March April May June July August 

Septembe

r 

Octobe

r 

Novembe

r 

Decembe

r 

Change in Discharge m3/sec per Decade 

Hunza at Dainyor 0.87 0.89 0.66 6.35 −2.27 12.13 −28.64 
−174.58 

* 
5.17 1.71 5.11* −1.68 

Gilgit at Gilgit 0.29 0.09 0.9 5.36 55.82* 33.09 53.44 2.22 13.32 19.44 * 5.6 7.39 * 

Gilgit at Alam Bridge 1.1 1.3 2.74 19.82 * 19.47 109.07* 21.57 9.62 71.52 31.03 * 18.9 * 12.44 

Indus at Kharmong −1.44 0.34 4.88 5.49 −20.82 −3.24 −167.82 −7.03 −41.29 16.33 7.74 −1.58 

Shyok at Yogu 2.13 * 2.25 * 0.09 −1.59 6.41 58.34 78.54 88.74 12.55 31.21 * 10.3 * 2.01 

Shigar at Shigar 1.76 2.98 8.74* 9.58 −13.7 176.1 432.67 376.17 * 33.78 −2.54 −1.43 −1.24 

Indus at Kachura 4.9 10.55 * 10.42 * 2.74 43.95 78.62 279.97 78.77 −175.18 * 11.71 4.69 7.43 

Indus at Partab Bridge/Bunji 13.8 20.27 * 24.19 * 46.93 * 149.07* 323.34 425.22 135.27 27.06 7.72 27.44 * 14.59 

Astore at Doyian 2.62 * 2.76 * 3.93 * 13.86 * 39.44 * 22.06 −6.72 7.77 2.01 2.66 3.57 3.57 * 

Indus at Shatial Br. 44.17 * 35.96 * 36.19 * 88.64 * 239.08 174.8 173.35 234 71.2 63.88 37.11 * 43.67 * 

Indus at Besham Qila 36.31 * 41.08 * 30.48 * 6.96 170.34 16.31 214.18 125 163.75 95.17 * 57.61 * 35.84 * 

Lower UIB at Daggar 0.33 0.55 * −4.31 * −0.2 0.1 0.4 * −1.45 −3.25 0.01 0.15 0.07 0.2 

Lower UIB at Karora −0.04 1.51 −2.81 −7.01 * −7.88 * −3.77 * −5.73 * −4.88 * −2.77* −0.78 −0.52 −1.44 

Change in Suspended Sediments mg/l per Decade 

Hunza at Dainyor 24.03 8.34 42.5 −91.58 3.67 738.07 −765 −1181.35 −12.73 −35.72 15 8.67 * 

Gilgit at Gilgit 15 15.89 * 17.5 * 18.86 45.53 −68.77 −245.43 
−472.47 

* 
−24.57 −0.21 15.38 * 17.82 * 

Gilgit at Alam Bridge 25 * 16.65 * 32.81 −9.45 −31.76 68.82 
−591.67 

* 

−858.57 

* 
−115 * −9.05 46.82 * 36.75 * 

Indus at Kharmong −56.95 −22.21 23.93 86.05* 62.67 376.84 −110.4 * −15.11 −167.62 −14.53 2.09 −5.62 

Shyok at Yogu 8.49 −16.34 33.98 108.57 * 43.86 
−458.54 

* 
−34.56 −385.34 −63.93 5.21 13.84 32.15 

Shigar at Shigar 34.3 74.56 13.89 96.5 201.25 1104.17 −2175.64 58.3 712.78 198.34 625.42 87.68 

Indus at Kachura −42.86 −52.18 71.56 
−156.76 

* 
−179.95 39.87 

−699.07 

* 
−667.87 −462.05 −103.08 −103.85 −75.11 

Indus at Partab Bridge/Bunji 25.61 * 42.75 * 28.52 * 37.15 * −108.62 154.05 137.87 −201.63 −230.23 14.17 2.55 20.53* 

Astore at Doyian 21.09 * 32.34 * 8.69 45.49 * 60.98 * 13.55 −41.11 −13.91 54.9 * 19.53 22.15 * 17.5 

Indus at Shatial Br. 50 * 38.61 * 95 * 146.1 * 
117.97 

* 
−141.98 174.12 411.86 −11.62 * −0.96 23.22 24.88 
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Indus at Besham Qila 9.01 * 4.56 6.07 13.04 
182.16 

* 
142.51 −34.44 −222.47 26.9 −18.22 0.32 1.28 

Lower UIB at Daggar 3.58 −8.16 
−64.75 

* 
−54.38 * 

−16.14 

* 
−21.98 

−544.84 

* 

−219.64 

* 
−67.85 0.87 1 12.6 

Lower UIB at Karora 5.79 7.54 
−34.13 

* 
−31.57 −5.66 2.25 −57.05 11.96 6.71 −4.07 3.45 16.6 

Note: * significant level 90%, negative values are in bold. 
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Figure 2. 2 Seasonal flow trends spatially distributed over the basin with % of changes per decade in % of mean values for the whole period. (a) DJF 

(winter), (b) MAM (spring), (c) JJA (summer), (d) SON (autumn) seasons. 
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Figure 2. 3 Seasonal suspended sediment concentration (SSC) trends spatially distributed over the basin with % of changes per decade in % of mean 

values for the whole period. (a) DJF (winter), (b) MAM (spring), (c) JJA (summer), (d) SON (autumn) seasons. 
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Figure 2. 4 Annual flow and suspended sediment concentration (SSC) trends spatially distributed over the basin with % of changes per decade in % of 

mean values for the whole period. (a) Annual flows, (b) annual SSC.  
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Table 2. 7 Annual and seasonal percentage changes per decade for mean of data periods. 

Sr # Discharge Gauging Stations DJF (%) MAM (%) JJA (%) SON (%) Annual (%) 

Per Decade % of Change in Discharge for Average Data Periods 

1 Hunza at Dainyor 0.41 −2.74 −4.25 −1.26 −7.64 

2 Gilgit at Gilgit 3.27 14.16 4.18 5.66 5.85 

3 Gilgit at Alam Bridge −0.46 3.33* 4.13 7.93 4.29 

4 Indus at Kharmong −1.95 2.41 −4.42 −1.55 −5.37 

5 Shyok at Yogu 4.36 −1.88 9.1 8.67 3.35 

6 Shigar at Shigar 8.74 25.52 47.88 * 16.11 35.38 * 

7 Indus at Kachura 3.32* 4.3 5.28 −10.37 * 0.6 

8 Indus at Partab Bridge/Bunji 3.51* 9.6 * 3.18 0.44 1.14 

9 Astore at Doyian 8.22 * 18.59 * 0.96 2.1 8.84 

10 Indus at Shatial Br. 8.49 * 13.58 * 3.96 −0.42 −1.49 

11 Indus at Besham Qila 6.95 * 5.82 0.42 7.27 * −0.71 

12 Lower UIB at Daggar 6.62 −19.8 −23.61 * −0.65 −18.30 * 

13 Lower UIB at Karora −4.84 −19.82 * −22.92 * −17.89 * −20.34 * 

Per Decade % of Change in Suspended Sediments for Average Data Periods 

1 Hunza at Dainyor 20.08 * −0.84 −18.53 −7.6 −17.66 

2 Gilgit at Gilgit 20.27 * 3.98 −27.79 * −2.52 −10.28 

3 Gilgit at Alam Bridge 29.03 * 2.57 −18.63 * −21.37 * −18.56 * 

4 Indus at Kharmong 3.39 16.49 10.91 −11.73 2.46 

5 Shyok at Yogu 2.52 8.85 −6.59 −3.68 −14.29 

6 Shigar at Shigar 1.89 6.55 −17.3 42.87 −2.2 

7 Indus at Kachura −12.77 −5.96 −23.84 * −27.87 * −24.06 * 

8 Indus at Partab Bridge/Bunji 28.76 * −2.01 −3.97 −6.57 −9.43 

9 Astore at Doyian 31.86 * 14.6 * 4.93 18.19 11.87 

10 Indus at Shatial Br. 40.72 * 33.11 * 7.68 −2.84 5.75 

11 Indus at Besham Qila 2.68 19.9 * −5.75 1.8 −4.51 

12 Lower UIB at Daggar 0.84 −16.88 * −24.85 * −15.56 * −28.2 * 

13 Lower UIB at Karora 5.05 −5.73 −1.38 −2.44 −0.74 

Note: * significant level 90%, negative values are in bold. 

2.5.4 Mean Basin Precipitation Trends 

Total changes in the basin’s monthly precipitation (mm) for three decades (1981–2010) are shown in 

Table 2.8. In the winter months from December to January, there is an increase of precipitation in 

most of the basins probably due to increase of westerlies rainfall. In the month of February, Gilgit at 

Alam Bridge (Gilgit + Hunza) shows a significant increase in the basin-averaged precipitation, which 

is probably due to the effect of the Western front of the Hindukush during winters. During the spring 

months of March and April, precipitation is lowest, except in the Gilgit (Hindukush) basin. The 

month of March is the driest period in all basins. 

In the springs, the basins of Gilgit at Gilgit (Hindukush) and Gilgit at Alam Bridge (Gilgit + Hunza) 

show a very wet period in the month of April. However, the Shyok at Yogo (Easter Karakorum), 

Astore at Doyian (Northwestern Himalayas), Brandu at Daggar (Lower UIB in the West), and 

Gorband at Karora (Lower UIB in the West) exhibit the driest trends in March. Drying in March can 

be found at almost all stations, except for Shigar. During the summer seasons, most of the stations 

show an increase in rainfall. The stations of Gilgit at Gilgit (Hindukush) and Gilgit at Alam Bridge 

(Gilgit + Hunza) record a significant increase in rainfall in the months of June and July. During the 

summer months, however, the rainfall-dominated basins of Brandu at Daggar (Lower UIB in the 
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West) and Gorband at Karora (Lower UIB in the West) show reduced rainfall, except for the month 

of June. In the autumns, from September to November, there is an increase of precipitation in the 

UIB. In the month of October, however, precipitation generally is reduced in the UIB. 

2.5.5 Mean Monthly Average Temperature Trends 

Table 2.9 shows the change in mean monthly average temperature (°C) between 1981 and 2010. The 

temperature trends of 18 meteorological stations located at different altitudes in UIB are shown with 

ascending altitude. Generally, most of the stations at higher and lower altitudes of the UIB show 

warming trends during the months of February and March. The Gilgit station at 1460 m altitude 

shows a significant increase in average temperature in the range of 1.23–3.02 °C during the months 

of January, February, and March. During the months of February, March, and April, the average 

temperature increases by 0.58–4 °C at altitudes from 1250 m to 4440 m. In the late springs and early 

summers, i.e., in the months of May and June, there is an insignificant increase of average 

temperature at most of the higher and lower altitudes of the UIB. During summers and early 

autumns, i.e., in the months of July, August, and September, however, there is generally a cooling 

trend ranging from 0.03–1.87 °C. The stations of Gilgit in Giglit (Hindukush), Gupis in Gilgit 

(Hindukush), Chillas (Main UIB), and Skradu (Main UIB) show a significant decrease of average 

temperature by 1.34–1.87 °C during summers and early autumns. In the late autumns, average 

temperature increases again. In the months of October and November, temperatures at higher 

altitudes increase at higher rates (0.97–2.38 °C) than valley stations (Table 2.9). 
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Table 2. 8 Total changes in monthly precipitation (mm) extracted from the grid data for the Upper Indus Basin (UIB) from 1981 to 2010. 

Ser 

# 
Basin  Region 

Elevation 

(m) 
January February March April May June July August September October November December 

1 Hunza 
Western 

Karakorum 
3996 0.0 0.0 0.0 0.3 0.0 0.9 −0.1 0.5 0.2 0.0 0.0 0.0 

2 Gilgit   Hindukush 4053 27.6 38.8 −5.4 122.6 12.1 44.6 29.2 17.2 11.9 −0.8 11.8 −4.4 

3 Alam Br. Hunza + Gilgit 4550 39.4 49.5 −21.4 96.7 6.3 41.4 17.8 14.0 8.0 −3.0 6.9 −5.5 

4 Kharmong 
Central 

Himalayas  
4798 8.7 −28.8 −95.4 −23.1 0.1 14.3 

−21.

4 
5.9 3.9 −0.8 6.8 −1.1 

5 Shyok 
Eastern 

Karakorum 
5094 4.7 −16.3 −103.0 5.6 −3.4 1.0 

−20.

8 
17.6 13.3 −2.3 2.3 −11.6 

6 Shigar 
Central 

Karakorum 
4497 241.3 256.7 104.5 88.3 84.4 44.1 41.0 −26.5 49.2 −13.1 −1.3 −38.9 

7 Kachura Main River UIB 4922 27.8 47.8 −86.2 32.0 −1.9 9.9 −1.6 16.8 9.3 −2.0 5.0 −1.8 

8 Bunji Main River UIB 4541 24.7 61.0 −81.2 50.2 −2.1 9.4 1.8 14.6 8.1 −1.0 4.9 0.3 

9 Astore 
North Western 

Himalayas 
3996 48.9 57.1 −174.3 45.6 −10.7 11.5 1.2 −10.3 −1.7 −13.8 0.2 −11.9 

10 Shatial Main River UIB 4488 26.3 56.0 −83.1 46.8 −2.7 8.7 0.9 15.2 8.5 −1.7 5.1 −0.9 

11 
Besham 

Qila 
Main River UIB 4312 26.2 56.3 −83.1 47.0 −2.8 8.8 0.9 14.9 8.5 −1.7 5.1 −0.5 

12 Daggar 
Lower Western 

UIB 
1111 5.9 25.2 −178.1 −48.6 −19.5 35.4 −7.1 −50.5 12.1 −23.4 8.5 −19.6 

13 Gorband 
Lower Western 

UIB 
2257 21.9 6.9 −217.1 −45.1 −22.4 43.9 

−20.

1 
−42.3 11.5 −25.3 12.8 −25.1 

14 Tarbela  UIB 4421 25.7 29.7 −107.9 27.2 −19.7 14.8 −8.5 2.2 2.2 −6.1 2.7 −9.2 

Note: Values in a box and written in bold represent the highest values of rainfall in mm with 90% significant level. Red color reflects the months of reduced 

precipitation (driest), blue color indicates the months with highest increased of precipitations (wettest).  
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Table 2. 9 Changes in mean monthly averaged temperatures (°C) from 1981 to 2010 for stations located at different altitudes in the Upper Indus Basin 

(UIB). 

Ser # Station Sub-Basin Elevation (m) January February March April May June July August September October November December 

1 Chilas Besham Qila 1250 0.54 0.72 2.35 −0.13 0.24 −28 −1.12 −1.68 −1.16 0.77 0.24 −0.06 

2 Bunji Partab Br. 1372 1.08 1.46 3.23 0.52 0.98 0.31 −1.05 −1.21 −0.13 0.99 1.12 0.58 

3 Gilgit Gilgit 1460 1.23 1.89 3.02 0.23 0.92 0.64 −1.11 −1.34 −0.50 0.61 0.97 0.76 

4 Shangla Gorband 1960 0.99 1.52 3.24 1.63 1.51 0.21 0.31 0.18 −0.08 1.08 0.82 0.68 

5 Gupis Gilgit 2156 −0.26 −0.14 1.79 −0.35 −0.28 −0.01 −1.87 −1.29 −0.53 2.44 0.98 −0.47 

6 Astore Astore 2168 0.98 2.43 3.13 1.30 0.94 1.48 0.00 −0.51 0.27 1.01 1.67 0.61 

7 Skardu Shigar 2210 −0.69 −1.03 −0.26 0.36 0.83 0.92 0.08 −0.68 −0.43 0.69 0.58 −0.05 

8 Skardu Main Kachura 2210 1.11 1.63 1.87 0.29 −0.21 −0.01 −0.80 −0.92 −1.60 −0.35 0.83 −0.23 

9 Raitu Astore 2718 1.17 2.61 3.19 2.07 1.37 0.91 0.55 0.23 −0.07 1.94 1.03 0.23 

10 Naltar Hunza 2898 1.16 1.74 2.86 1.29 0.66 1.26 0.16 0.32 0.36 1.86 1.63 0.60 

11 Ziarat Hunza 3020 1.18 1.99 3.05 1.46 0.69 1.21 0.37 0.46 0.49 1.85 2.16 1.25 

12 Ushkore Gilgit 3051 1.07 2.20 2.68 1.43 0.66 0.95 −0.27 −0.06 −0.16 1.95 1.19 0.34 

13 Hushey Shyok 3075 0.81 1.77 3.54 1.47 1.12 0.82 0.70 0.56 0.74 1.67 1.80 1.27 

14 Rama Astore 3179 1.02 1.88 3.17 1.58 0.93 0.60 0.46 0.30 0.18 1.60 0.99 0.50 

15 Yasin  Gilgit 3280 1.13 1.56 2.81 1.20 0.69 1.47 −0.23 0.04 −0.20 1.47 −0.02 −1.44 

16 Shendure Gilgit 3712 1.20 1.98 2.17 1.23 0.80 0.95 −0.03 0.03 −0.21 2.07 0.59 0.20 

17 Desosai Kharmong 4149 1.00 1.53 3.15 1.56 1.23 1.35 1.06 0.24 0.44 1.86 1.20 0.71 

18 Khunjrab Hunza 4440 1.38 1.87 4.00 1.79 1.56 1.37 0.22 0.44 0.66 2.01 2.38 1.01 

 

Note: Values in a box and written in bold represent the highest values of average temperature (°C) at station altitudes with 90% significant level. Red color 

reflects an increase in monthly temperature (warming), blue color indicates decrease in monthly temperature (cooling). 
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2.5.6 Pearson’s Correlations between Flows, SSC and Gridded Climatic Variables 

To evaluate the dominancy of different hydro-climatic variable in flows and sediment generation process 

the correlation between these variables was find out. The Table 2.10 shows the results of Pearson’s 

correlations coefficients between the daily flows, SSC and gridded basin averaged rainfall and basin 

averaged mean air temperature. The Table 2.10 describes that correlation coefficient between flows and 

SSC is more significant on main Indus River for example; Indus at Shatial Bridge and Indus at Besham Qila. 

However, in the glacier and snow dominated basins, the correlation between flows and SSC is less 

significant in most of the sub basins compared to the main Indus River. Similarly, in lower UIB sub basins, 

the correlation between flows and SSC is least significant. 

The correlation coefficient between flows/SSC and gridded basin averaged rainfall is non-significant on 

main Indus River as well as at glacierized snow and ice melted dominated sub basins. However, in lower 

UIB at Daggar the gridded basin averaged rainfall is better correlated than temperature. The gauging 

stations lying on the main Indus River as well in snow and ice melted sub basins showed significant 

correlations between flows/SSC and gridded basin averaged mean air temperature. Ali K.F et al. [37] found 

that the percent of snow/ice cover (LCs) is major land cover controlling parameter along with temperature 

and seasonal rainfall. Ali K.F et al. [37] also found that the combination of snow/ice cover (LCs) and climatic 

variables explain 98.5% of variance in sediment yield in UIB. Similarly, for the lower monsoon dominated 

UIB, the mean annual rainfall explains the 99.4% of variance in sediment yields. 

Table 2. 10 Pearson’s correlations between daily flows, SSC and gridded climatic datasets since 

1981–2010 in the Upper Indus Basin (UIB). 

Ser # 
Discharge Gauging 

Stations 
Region 

Pearson Correlations 

Q vs. SSC Q vs. R Q vs. Tavg 

1 Hunza at Dainyor Western Karakorum 0.51 −0.01 0.77 

2 Gilgit at Gilgit Hindukush 0.73 0.04 0.82 

3 Gilgit at Alam Bridge Hunza + Gilgit 0.64 −0.06 0.80 

4 Indus at Kharmong Central Himalayas 0.23 0.14 0.79 

5 Shyok at Yogu Eastern Karakorum 0.46 0.06 0.74 

6 Shigar at Shigar Central Karakorum 0.49 −0.02 0.72 

7 Indus at Kachura Main River UIB 0.68 −0.14 0.79 

8 Astore at Doyian North Western Himalayas 0.27 0.04 0.71 

9 
Indus at Partab 

Bridge/Bunji 
Main River UIB 0.62 0.03 0.77 

10 Indus at Shatial Br. Main River UIB 0.75 0.03 0.80 

11 Indus at Besham Qila Main River UIB 0.73 0.01 0.80 

12 Lower UIB at Daggar Lower western UIB 0.47 0.37 0.05 

13 Lower UIB at Karora Lower western UIB 0.11 0.13 0.11 

2.6 Discussion 

Except for Kharmong and Astore, the annual trends of the SSC in the glacier- and snow-dominated basins 

of the UIB decrease in the months of July, August, and September, which is due to less snow/glacial melt 

in the cooler summer, as was reported by researchers [7,8,38,39]. In contrast to the SSC trend, an 

insignificant increase or no change in annual flows is detected, as is shown in Tables 2.6 and 2.7. Despite 

the cooler summer that leads to fewer discharges in glacierized upper basins like Hunza, Kharmong, and 
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Astore, the absence of a significantly negative trend at Besham Qila indicates that this decrease is 

compensated by increased discharges from other sub-basins of the UIB. 

During the winter season, Gilgit (Hindukush) and Hunza (Western Karakorum) show a significant increase 

of SSC along with discharges. This might be associated partly with a significant increase in the average 

winter temperature and an insignificant increase of precipitation due to westerlies in winter. Increasing 

temperature increases the snow melting rates and reduces seasonal precipitation in the form of snow 

during winters, which may lead to increased erosions in the catchment. A similar trend of an increase in 

SSC during the winter is observed for the basins of Astore (Northwestern Himalayas), Gilgit at Alam Bridge 

(Hunza + Gilgit), Indus at Partab Bridge (Main UIB), and Indus at Shatial Bridge (Main UIB), along with a 

significant increase of average temperature in the UIB. 

During the spring season, the Astore at Doyian (Northwestern Himalayas), Indus at Shatial Bridge (Main 

UIB), Indus at Besham Qila (UIB), as well as Gilgit at Alam Bridge show a significant increase of SSC with 

a major increase in flows. The Indus at Kharmong and Shigar at Yogo show an insignificant increase of SSC 

and discharges. The increased flows in the river might result in an increase in effective discharges and 

erosion of the deposited sediments. Moreover, the sources of sediments in the glacial and snow melt-

dominated catchments might be activated by rapid melting of snow accumulated in winter because of 

increasing temperatures in February and March. In the lower rainfall-dominated Daggar basin (Lower 

UIB), however, the SSC in springs decreases significantly with decreasing flows, which could probably be 

due to a reduction of spring rainfall. Table 2.8 shows that the rainfall at Daggar, Gorband, and Besham Qila 

in the Lower UIB decreases significantly in March, April, and May. 

During the summer season, the SSC decreases in glacier-dominated basins, such as Gilgit (Hindukush), 

Hunza (Western Karakorum), Shigar (Central Karakorum), and Shyok at Yogo. This reduction of SSC in 

the summer at Gilgit (Hindukush) could be due to significant cooling of the summer temperature (Indus 

climate anomaly). Cooling of the summer temperature can be observed up to 3000 m altitude in the Gilgit 

basin. As in the UIB, many glaciers are located at elevations from 2500 to 7000 m. Seasonal snow 

accumulates in the elevation zone from 3000 m to 7000 m. Furguson [50] describes that in UIB the mass 

movement, supraglacial and sub glacial sediments transport supply large amount sediments in valley. 

These sediments are stored in alluvial fans, outwash trains and moraines. The sediment is mainly 

transported by snow and ice melt process. Collins [51] estimated that for Hunza basin and Indus at Bashem 

Qila drives 60% and 40% of sediment loads annually from glacier melting. Own et al. [52] concluded that 

debris transport is an important contributor in glacierized regions of the UIB. Glacier debris transport 

yields a large amount of coarse rock debris and sediments from the basal traction zone. The debris-covered 

glacier in the UIB lies below 3000 m [36,40]. This debris cover accelerates/deaccelerates melting [53,54]. This 

significant cooling of summer temperature up to 3000 m altitude probably reduces the supply of snow 

water from debris-covered glaciers and may increase the snow cover at lower and middle altitudes. This 

might result in a reduced SSC at the outlet. The Indus at Kachura also shows a decreasing trend of SSC 

over the entire year with a significant reduction in summers and autumns, which is probably also due to 

reduced temperatures and, hence, smaller snow water discharge rates in these months. In the Daggar 

(Lower UIB) basin, the SSC and flows are reduced significantly during summer, which is probably caused 

by a smaller rainfall intensity leading to smaller flows, sediment yields, and catchment erosion in the 

months of July and August. 

In the autumn season, mixed trends of SSC are observed. Table 2.8 shows no significate change in 

precipitation during autumns. During the month of October, however, precipitation amounts generally are 

reduced in comparison to the precipitations of September and November. Moreover, as shown in Table 2.9, 

the month of September shows a lower average temperature at lower altitudes. So, the reduction of summer 
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SSC from the UIB could probably be due to an increase in precipitation in the form of snow and a decrease 

of rainfall amount. 

2.7 Conclusions 

It may be concluded that the annual flows and SSC in the upper Indus Basin at Besham Qila are in a 

balanced state with a small reduction during the analysis period of three decades. However, the annual 

SSC values in the upper snow- and glacier-dominated Hindukush and Karakorum basins decrease, 

whereas the values of the mixed snow melt- and rainfall-dominated Western and Central Himalayan basins 

increase. The significant SSC reduction in the Hindukush and Western Karakorum basins during summers 

could be attributed to the Karakorum climate anomaly [7,8]. During winters, SSC values increase along 

with flows due to increasing temperatures in the glacier- and snow-dominated basins. In the lower basins 

of Daggar and Gorband near Besham Qila, the SSC and flows decrease significantly during the spring, 

autumn, and summer seasons when rainfalls decrease. Contrary to the summer’s SSC pattern, the reduced 

SSC at Kachura, coupled with increasing trends of SSC at Partab Bridge and Shatial Bridge on the main 

River during winter and spring, confirming the findings of [55] that sediments are deposited in the summer 

and erosion takes place in winter and spring between Kachura and Besham Qila. Moreover, winter erosion 

might cause increasing trends of discharges in this area, which may enhance the capacity of the river to 

erode and transport the suspended sediment. Summer sediment deposition in this area in the absence of 

any significant discharge trends might be due to natural morpho-dynamic processes to compensate winter 

erosion and maintain the balanced flow regime. These findings improve understanding of the erosion 

process in different sub-basins of the UIB and, sediment erosion/deposition and transport in the Indus 

River. Now, sediment budgets can be determined in the light of climate change. Moreover, the analysis of 

altering patterns of precipitation, temperature, and flow and their impacts on the SSC values of different 

sub-basins of the UIB will be important for the management of existing (by developing appropriate 

reservoir operation scenarios), and the design of future hydraulic structures on the Indus and its tributaries 

in the UIB. This study will also help investigate the changing patterns of water quality, ecosystems, and 

geomorphology of the rivers of the UIB. 
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3.1 Abstract 

The accurate estimate of sediment load is important for management of the river ecosystem, designing of 

water infrastructures and planning of reservoir operations. The direct measurement of sediment is the 

most credible method to estimate the sediments. However, this requires a lot of time and resources. Due 

to these two constraints, most often, it is not possible to continuously measure the daily sediments for 

most of the gauging sites. Nowadays, data-based sediment prediction models are famous for bridging the 

data gaps in the estimation of sediment loads. In data-driven sediment predictions models, the selection 

of input vectors is critical in determining the best structure of models for the accurate estimation of 

sediment yields. In this study, time series inputs of snow cover area, basin effective rainfall, mean basin 

average temperature, and mean basin evapotranspiration in addition to the flows were assessed for the 

prediction of sediment loads. The input vectors were assessed with artificial neural network (ANN), 

adaptive neuro-fuzzy logic inference system with grid partition (ANFIS-GP), adaptive neuro-fuzzy logic 

inference system with subtractive clustering (ANFIS-SC), adaptive neuro-fuzzy logic inference system 

with fuzzy c-means clustering (ANFIS-FCM), multiple adaptive regression splines (MARS), and sediment 

rating curve (SRC) models for the Gilgit River, the tributary of the Indus River in Pakistan. The 

comparison of different input vectors showed improvements in the prediction of sediments by using the 

snow cover area in addition to flows, effective rainfall, temperature, and evapotranspiration. Overall, the 

ANN model performed better than all other models. However, as regards sediment load peak time series, 

the sediment loads predicted using the ANN, ANFIS-FCM, and MARS models were found to be closer to 

the measured sediment loads. The ANFIS-FCM performed better in the estimation of peak sediment 

yields with a relative accuracy of 81.31% in comparison to the ANN and MARS models with 80.17% and 

80.16% of relative accuracies, respectively. The developed multiple linear regression equation of all 

models show an R2 value of 0.85 and 0.74 during the training and testing period, respectively. 

Keywords: suspended sediment concentrations; Gilgit Basin; snow cover fraction; artificial neural 

network; MARS model; Hindukush 
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3.2 Introduction 

Eroded sediment originating from drainage basins due to hydrometeorological processes like rainfall, 

snow melt, and ice melting, etc. is transported in the form of suspended loads and bed loads [1,2,3]. The 

bed loads are transported in the form of coarse particles with of different shapes and sizes continuously in 

contact with the river bed [4]. The suspended load, transports in suspension state formed due to the erosion 

of fine particles from the sheet and gully, runoff in the catchment, river banks, and channel beds [5]. The 

increased runoff due to rising rainfall, snow cover depletion, or glacier ablation, etc. often leads to an 

increase in flood events, increase in suspended sediments, channel bed erosion, pollutants in river 

ecosystem, and depletion of water storages, and damages or affects hydropower operations [6].  

Sediment deposition in rivers and reservoirs is a very serious challenge worldwide. It leads to rapid 

depletion of water storage capacities which ultimately affects the supply of irrigation as well as power 

generation. It also affects the operation of water reservoirs to mitigate floods, polluting river ecosystem and 

recreational sites [7,8]. In Asia, during the period 1990-2010 the net reservoir storages has been lost by 6.5% 

which is due to higher rate of sedimentations in the world [9]. In Pakistan, a number of water storages, for 

example the Tarbela, Mangla, Warsak, and Chashma storages, have lost considerable storage volumes 

earlier than expected [10,11,12,13] during the past three decades. The cause of this earlier-than-expected 

depletion of storages might be the high variance and incorrect estimation of sediment yields.  

The Indus River in Pakistan with its total length of 2880 km supports the major storages and hydropower 

generations [14,15]. It is an economical source of hydropower generation having a 29% share in the 

country’s total national power generation capacity [16]. The Indus river has the world’s largest irrigation 

network, having an irrigated agricultural area of 181,000 km2 [16,17]. Hydropower projects generating 

more than 30,000 MW are planned on the Indus River for the future. Therefore, estimation of sediment 

yields for reaches in the Upper Indus Basin (UIB) is important for the design and operation of existing and 

new water infrastructures.  

The erosion and transport of sediments are the outcome of complex physical processes. Their estimation is 

a difficult challenge due to the non-linearity of multiple factors controlling the sediment yield. Many factors 

including, among others, the amount of flows, sediment supplies, sources of sediments, catchment gully 

and channel erosion, river bed configuration, bed form resistance and slope, forces and moments 

controlling the incipient motion, and types and properties of sediment particles, control the amounts of 

sediments in rivers [18,19]. To overcome the challenges of sediment yield estimations, soft computing 

artificial intelligence methods have been developed over the past few decades. These soft computing 

machine learning techniques have replaced the traditional sediment rating curve (SRC), and multiple and 

auto-regressive models for estimation of sediment yields. The soft computing algorithms have proven a 

powerful tool for estimation of sediment yield from highly nonlinear processes of erosion and sediment 

transport. 

3.1.1. Background 

In the recent few decades, many researchers have used several black-box models for the prediction of 

sediment yield. The most widely used models among these black-box models include artificial neural 

networks (ANN), support vector machines (SVM), artificial neuro-fuzzy logic inference systems (ANFIS), 

and genetic programming (GP). Mostly, more than two models were used to compare the results for finding 

the best model for the prediction of sediment yields along with the rating curve (RC) model. For example, 

in some studies [20,21,22], ANN was found to be better for the prediction of sediment yields than the 

sediment rating curve (SRC) model. Similarly, ANN and multiple linear regression (MLR) models were 

used in some studies [23,24] for estimation of sediment yields. In these studies, the sediment prediction 
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results of ANN were found to be better than the sediment prediction results obtained by MLR. In yet 

another study [25], the grid rainfall and measured flows are used to predict sediment yields with ANNs by 

Levenberg-Marquardt (LM), scaled conjugated gradient (SCG), and Bayesian regulation (BR) algorithms. 

It was concluded that ANN with Levenberg-Marquardt algorithm performed fairly better than the other 

two ANN algorithms for sparsely distributed catchments with limited climatic recorded data. The results 

of ANN and ANFIS were compared by [26,27] for the prediction of sediment yield. In these studies, 

researchers found that ANFIS models show a higher accuracy than the ANN and SRC models. It was found 

in studies by [28,29] that gene expression algorithms are better than ANN and ANFIS models for 

predictions of sediment loads.  

The studies [30,31] used the SVM along with ANFIS and ANN algorithms. The results obtained by SVM 

showed less erroring in comparison to those of the ANFIS and ANN models. The researchers referred to in 

[32] employed the ANN and SVM models using discharge and rainfall as input data to predict the sediment 

yields. They found that ANN is better than SVM for the prediction of sediments. The studies [33,34] used 

the wavelet artificial neural network (WANN) to compare their results with SRC, MLR, and ANN. They 

found that the WANN model is better than all other models used in the study. The study [35] used wavelet-

based least-squares support vector machines (WLSSVM) along with WANN to compare the results for 

finding the better model for sediment predictions. The study revealed that WLSVM is more robust and 

better than WANN for estimation of sediment yields. 

Heuristic regression models such as multiple adaptive regression splines (MARS), M5 decision tree 

regression learner, and support vector regression (SVR) have also been used in the recent decade for 

nonlinear modeling in water resources. In linear modeling, to capture the nonlinear behavior of the process 

involved in engineering specifically for flows and sediments, some improvements had been made by 

introducing methods like polynomial regression. In this regard, the multivariate regression spline (MARS) 

has been developed to detect the nonlinear relationship of inputs and outputs like discharge sediment 

yields [36, 37]. MARS is a nonparametric regression model that identifies the desired pattern between 

inputs and desired output in the form of piecewise cubical or linear splines.  

MARS, M5 model tree, and SVR are models for the prediction of flows and sediment yields in water 

resources [38,39,40]. However, the use of MARS is comparatively rare for sediment yield predictions. The 

researchers referred to in [41,42] found that the performance of MARS is poor in comparison to that of 

dynamic evolving neural-fuzzy inference system (DENFIS) and ANN models. The study [43] compared 

the results of hybrid MARS fuzzy regression (HMARS-FR), fuzzy least squares regression (FLSR), and 

fuzzy least absolute regression (FLAR) for estimation of sediment yields. The hybrid MARS fuzzy 

regression was found to be better than the other two models for predictions of sediment loads. In another 

study [44] performed to predict sediment yields, the M5 model tree, SRC, GEP, and MLR models were 

used. The M5 model tree performed better than the SRC, GEP, and MLR models in this study. In yet another 

study [45] ANN, wavelet regression (WR), and M5 tree models were used for modeling the sediment yield 

using the inputs of flows and rainfall. In this study, the M5 model tree performed better than the ANN and 

wavelet regression models. Similarly, it was found in a study [46] carried out to predict sediments that the 

M5 tree model is better than ANN and fuzzy logic models. The study used hydro-climatic data for 

predictions of sediments using five different algorithms namely, ANN Levenberg-Marquardt, ANN scaled 

conjugate gradient, SVR, M5 model tree, and REPTree model. In this study, the researchers found that 

ANN using the Levenberg-Marquardt algorithm performed better than other models. Table A1 in section 

of supplementary materials presents the summary of the literature discussed above. 

The study presented in this paper checks the applicability of ANN Levenberg-Marquardt, hybrid ANFIS 

embedded grid partition (GP), hybrid ANFIS embedded subtractive clustering (SC), hybrid ANFIS 

embedded FCM clustering (FCM), and MARS models with inputs of grid climatic data, snow cover 
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fraction, and flows to predict the sediment yields for sparsely distributed basins. These models were 

selected because, during the past three decades, the ANN and ANFIS data-driven models have been 

identified as being robust, powerful tools with a great ability of solving the complex nonlinear process-like 

prediction of sediment yields. As a result of the above discussions and scrutiny of literature review, and to 

the best knowledge of the authors, no study in artificial intelligence (AI) has used the combination of 

spatially averaged grid effective rainfall, mean basin-averaged temperature, and averaged basin snow 

cover fractions in combination with flows to predict the sediment yields. 

3.2 Data Collection and Methodology 

3.2.1 Study area  

The present study was carried out in the Gilgit River basin situated in the Hindukush Mountains of the 

Upper Indus Basin (UIB). The Gilgit River originates from Shandoor Lake north of the Gilgit-Baltistan 

region in Pakistan. The Baha Lake is the right tributary of the Gilgit River with small tributaries being e.g., 

Yasin, Ishkoman, and Phandar. The Phandar Lake is located in Ghizer. The Yasin tributary joins the main 

Giglit River near Gupis. Figures 3.1 & 3.2 show the hydrological characteristics of the Gilgit basin that has 

a drainage area of 12095 km2. The geographical location of the Gilgit basin is between latitude 35°55´35 N 

and 36°52´20´´N and longitude 72°26´04´´E and 74°18´25 E. The elevation of catchment ranges from 1454-

7048 m a.s.l. Table A2 in supplementary materials shows the key features of the Gilgit basin. About 10% of 

the total catchment area is covered with glaciers and lies above an elevation of 5000 m. During the winter 

season, approximately 87% of the catchment area is covered with snow cover which reduces to 11% during 

the ablation period in summer. The mean annual discharge and suspended sediment concentrations (SSC) 

of the Gilgit basin are 291 m3/sec and 448 mg/l, respectively. The ablation period starts in July after seasonal 

snow melts. The melting of the glacier is slow and continues until the month of October. Then, the 

accumulation period of snow starts at the end of October. The Gilgit basin receives 75% of its rainfall 

starting from the mid of spring (April) to the end of summer (October). The mean annual basin rainfall 

from grid data in the Gilgit basin is approximately 670 mm. The mean monthly basin average temperature 

for the Gilgit basin ranges from -19.8 to 7.20 ºC.  

The Water and Development Authority (WAPDA) of Pakistan had also installed stream gauging stations 

at an altitude of 1430 m a.m. sea level for measuring flows and suspended sediment concentrations (SSC). 

The climatic stations installed in the Gilgit basin are sparsely distributed in the catchment. The climatic 

stations installed in the valley by the Pakistan Meteorological Department (PMD) at Gilgit and Gupis have 

at their disposal long-term daily climatic data collected from 1981-2010. However, the climatic stations of 

Uskhkore, Yasin, and Shendure located on higher altitudes are sparsely distributed and have short-term 

recorded data accumulated from 1996-2010 which are available from WAPDA. However, the suspended 

sediment concentrations (SSC) are recorded on intermittent days per week. Table 3.1 shows detailed 

information on the data used in this study. The flows, temperature, and rainfall are recorded on a daily 

basis. Due to scarcity of climatic information and the sparse distribution of climatic stations in the Gilgit 

catchment (see Figures 3.1 & 3.2), the information of grid climatic, snow cover fractions and grid 

evapotranspiration datasets of Table 3.1 were used for the period 1981-2010 during analysis of this research 

work. These grid datasets were extracted using the Shuttle Radar Topography Mission’s (SRTM) Digital 

elevation model (DEM) of 30 m for Gilgit catchment. 
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Figure 3. 1 The location map of Gilgit River in the Upper Indus Basin (UIB) of Pakistan. 
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Figure 3. 2 Graphical presentations of (a) mean basin temperature (T), discharges at Gilgit gauge (Q), 

and suspended sediment concentrations (SSC) at Gilgit gauge, (b) mean basin snow covered area (SCA), 

mean basin rainfall (R), and mean basin evapotranspiration (Evap) for the Gilgit basin during period 1981-

2010. 

Table 3. 1 Data collected for prediction of suspended sediment yields for the Gilgit River basin. 

Variable Data Source Period Source 

Q* 
Daily mean discharge 

[m3/sec] 
Daily, 1981–2010 

Water and Power Development 

Authority (WAPDA), Pakistan 

SSC* 
Suspended sediment 

concentration [mg/l] 

Intermittent days 

per week 

1981–2010 

Water and Power Development 

Authority (WAPDA), Pakistan 

SCF 

Snow cover fractions 

ranging [0–1] extracted 

from MODIS satellite 

data 

Weekly, basin avg. 

2000–2010 
https://nsidc.org/data/MOD10A2 

T 

Daily mean, maximum 

& minimum air 

temperature [° C] on a 

5x5 km grid 

Daily, basin avg. 

1981–2010 
HI-AWARE project [47, 48] 

P 

Daily mean rainfall 

[mm day–1] on a 5x5 

km grid 

Daily, basin avg. 

1981–2010 
HI-AWARE project [47, 48] 

Evap 

Daily mean 

Evapotranspiration 

[mm day–1] on a 5x5 

km grid 

Daily, basin avg. 

1981–2010 
HI-AWARE project [47, 48] 

https://nsidc.org/data/MOD10A2
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Note * The variable of discharge (Q) and suspended sediment concentrations (SSC) are measured at Gilgit 

gauging station and variables of SCF, T, P and Evap are basin averages grid datasets. 

The Moderate Resolution Imaging Spectroradiometer (MODIS) MOD10A2 product was downloaded on a 

weekly basis for the period of 2000-2010 from the National Snow and Ice Data Center (NSIDC) online 

server. The MODIS data with 500 m resolution was used for estimating the snow cover area and snow melt 

runoff [49,50]. The same procedure was adopted in other studies to estimate and linearly interpolate the 

snow cover fractions for daily snow cover fractions of the Gilgit basin for the period of 2000-2010 [49,50]. 

The temperature-index snow model was further used to estimate the snow cover fraction for the period of 

1981-2010 after calibration and validation of the snow model with MODIS snow cover. 

Table 3.2 shows the Pearson’s correlations of input variables used in this study. Generally, correlation 

analysis such as cross correlation, auto-correlation, and partial auto-correlation are also used to determine 

the input combinations of various variables with lag times. However, the main deficiency of these methods 

is the inability to cover the nonlinear relationship between the input and output variables like discharge 

sediment, etc. For this reason, in the current study, the various input combinations were identified by 

examining the test accuracy of the model output. 

In general, the discharges trigger the channel erosion. However, in addition to discharges, the temperature 

and snow cover area of the snow- and ice-dominated basin also triggers hillslope erosion, snow melt 

erosion and glacier melt erosion. The evapotranspiration also has an indirect relationship with erosion 

processes in the form of the vegetative cover of the plants and forests. Keeping in view the importance of 

direct and indirect factors controlling the erosion of catchments, different variables other than discharges 

such as snow cover area, effective rainfall, and evapotranspiration were also chosen in this study for the 

prediction of sediment yields. Prior to the analysis for prediction of sediment yields, the flows and 

suspended sediment load (SSL) were transferred into a log transformation form to compensate the biases 

and very high values in datasets. The datasets were divided into 70% and 30% for training and testing of 

the model, respectively. Shahin et al. [51] suggested that for optimum performance of soft computing 

methods datasets should be divided into training (i.e. 70%) and testing (i.e. 30%) phases. The daily datasets 

of measured SSC were not available for continuous days. The measured SSC values were available for total 

767 days during the period 1981-2010. For the sediment rating curve (SRC) the flows and SSC values for 

the period 1981-2003 (i.e. 1-537 days) and 2003-2010 (i.e. 538-6767 days) were used for training and testing 

respectively. However, the random sampling [52] of whole datasets for training (70%) and remainder 

datasets as testing (30%) was conducted in MATLAB to reduce over and under fitting of network. Then 

ANN, ANFIS and MARS models were trained and tested in MATLAB with various input combinations. 

Table 3. 2 Relationship of Gilgit basin input variables determined by using Pearson correlation coefficient. Log 

Q:  logarithm of water discharges; Log SSY: logarithm of sediment yields; SCA: snow covers area: Tavg: mean 

temperature; P: basin averaged effective rainfall; Evap:  evapotranspiration. 

 
log Q  

[m3/day] 

log SSY  

[tons/day] 

SCA 

[fractions] 

Tavg 

 [° C] 

P 

 [mm] 

Evap 

[mm/day] 

log Q [m3/day] 
1      

log SSY [tons/day] 
0.87 1     
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3.2.2 Application of Temperature index-snow model for snow cover estimates 

The climatic stations in the Gilgit basin have less availability of long-term climatic records for the 

catchment. Previous studies [53,54,55] reported that the rainfall on higher elevations starting above 5000 m 

in the Upper Indus Basin (UIB) is 5-10 times higher than the rainfall recorded in the valley. For this reason, 

the grid data for rainfall and temperature from the HI-AWARE project [47,48] was used in this study. 

Keeping in view the above-mentioned constraints, the temperature-index snow model is used in this study. 

The temperature-index snow model is a simple and spatially distributed model which, in addition, has less 

data requirements. In this study, this method is used to simulate the long-term snow melts and snow cover 

fractions after calibration and validation of the simulated snow cover fraction with the MODIS snow cover 

fractions for the period of 2000-2010. 

In the temp-index snow melt model [56,57], precipitation P is first separated into snow and liquid rain on 

a daily time scale. The threshold temperature TRS [°C], daily maximum temperature [°C], and daily 

minimum temperature [°C] separate the snow and liquid rainfall as: 

 

{
𝑅𝑎𝑖𝑛 = 𝑅 = 𝐶𝑝𝑃             

𝑆𝑛𝑜𝑤 = 𝑆 =  (1 − 𝐶𝑝)𝑃
                                                                                             (1) 

 

Where, 

Precipitation factor Cp proportionate to temperature difference is calculated as: 

 

{
 
 

 
 𝐶𝑝 = 1 𝑖𝑓 𝑇𝑚𝑖𝑛 > 𝑇𝑅𝑆                                      

𝐶𝑝 = 0 𝑖𝑓 𝑇𝑚𝑎𝑥 ≤ 𝑇𝑅𝑆                                      

𝐶𝑝 =
𝑇𝑚𝑎𝑥 − 𝑇𝑅𝑆
𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛

 𝑖𝑓 𝑇𝑚𝑖𝑛 ≤ 𝑇𝑅𝑆 < 𝑇𝑚𝑎𝑥

                                                                       (2) 

 

The threshold temperature TRS is used to define the type of precipitation into rain/snow and the threshold 

temperature TSM for the snow melt process which depends on numerous factors like the boundary layer 

condition of atmosphere, temperature, and air humidity, etc. 

Then, daily rates of snow melt, i.e. Msnow [mm/day] are estimated as: 

 

{
𝑀𝑠𝑛𝑜𝑤 = 𝐾𝑠𝑛𝑜𝑤(𝑇𝑚𝑒𝑎𝑛 − 𝑇𝑆𝑀)   𝑖𝑓 𝑇𝑚𝑒𝑎𝑛 > 𝑇𝑆𝑀            
𝑀𝑠𝑛𝑜𝑤 = 0   𝑖𝑓 𝑇𝑚𝑒𝑎𝑛 > 𝑇𝑆𝑀                                                

                                                  (3)                                                                                              

Here, the Ksnow [mm/day °C] is the degree day factor for snow melts, 𝑇mean [°C] is the mean daily air 

temperature, and 𝑇SM [°C] is the threshold temperature. 

SCA [fractions] 
-0.85 -0.74 1    

Tavg.  [° C] 
0.87 0.79 -0.88 1   

P [mm] 
0.16 0.15 0.09 0.10 1  

Evap. [mm/day] 
0.86 0.81 -0.82 0.93 0.06 1 
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After this, the snow model simulates the snow water equivalent or snow depth SD [mm] for each grid 

number of i as: 

 
𝑆𝐷𝑖(𝑡) =     𝑆𝐷𝑖(𝑡 − 1) + 𝑆𝑖(𝑡) −  𝑀𝑠𝑛𝑜𝑤𝑖

(𝑡)                                                                    (4)                                                    

 

Finally the snow cover fraction SCF for i = 1, 2, 3, 4,…., N number of grids for the whole basin is estimated 

for calibration and validation with the MODIS snow cover fraction as: 

 

𝑆𝐶𝐹 (𝑡) =  
1

𝑁
∑𝐻 [𝑆𝐷𝑖(𝑡)]                                                                                                    (5) 

𝑁

𝑖=1

 

Here, H = unit step function; when H = 0, SD = 0 and H = 1 then SD > 0. The area of integration N is the 

entire basin, sub-basins and elevation bands etc. 

3.2.3 Artificial neural networks (ANN) 

Artificial neural networks (ANNs) are data-based black box models primarily inspired by the concept of 

functioning of the biological nervous system. ANNs consist of a set of processing elements referred to as 

neurons. These neurons work in the parallel systems for acquiring the information and storing the 

knowledge for computational use. ANNs consist of three layers as their basic structure. These layers are 

the input layer, the hidden layer (processed layer), and the output layer. Each layer is connected by 

networks of neurons with preceding layers. This system of networks connected with neurons is called 

Multilayer Perceptron (MLP). There are various types of ANNs that perform various assignments in science 

and engineering. Among these ANNs of MLP, feed-forward back propagation FFBP-ANN is most popular. 

The literature [58,59,60,61,62,63,64] explains the details of the ANN model and its application to water 

resources with FFBP-MLP algorithm. In FFBP-MLP, the input data is learned in forward direction of 

network from input nodes to the hidden nodes with some transfer functions in the hidden layer. Then, the 

information is forwarded from the hidden layer to the output nodes. Figure A1 in supplementary materials 

explains the architectures of the FFBP ANN. In the output layer, an output is generated by the network, 

and the error between predicted and model output is computed. This output error of the network is back-

propagated through the network to correct the connection weights of neurons in the hidden layer. This 

learning process of the network is performed until the minimum error is optimized to avoid overfitting as 

well underfitting of the network.  

A neural network is described with 1) architectures of layers connected with networks of neurons, 2) 

transfer functions, and 3) training methods for estimation of weights in nodes. In general, the performance 

of ANN depends on its model network, learning complexity, and problem complexity. The performance 

of ANN depends on the number of neurons in hidden layers and the number of hidden layers to avoid the 

over- and underfittings of the network. The literature suggests the optimum neurons to be in the range of 

2√𝑁1 + 𝑁0, where N1 and N0 are the number of input and output neurons, respectively. 

For this study, ANN with FFNN-MLP with Levenberg-Marquardt has been used with one hidden layer as 

more than one hidden layer increases the complexity of the network and does not improve the results, 

either. The FFNN-MLP with Levenberg-Marquardt is a robust and powerful tool. It has a high and fast 

ability of data convergence, and produces more accurate results than other ANN algorithms.  
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3.2.4 Adaptive neuro-fuzzy logic inference system (ANFIS) 

The adaptive neuro-fuzzy logic inference system (ANFIS) is a novel architecture with combinations of 

neural networks and fuzzy inference systems (FIS). A basic ANFIS [65] structure is shown in Figure A2 in 

section of supplementary materials. The ANFIS works by tuning the parameters of FIS applying the neural 

network learning method. The ANFIS builds a network structure connected with a number of nodes. These 

nodes are characterized by fixed or adjustable parameters. The ANFIS uses neural networks with fuzzy 

logic if-then rules with appropriate membership functions to translate the input parameters into output 

values. Three inference systems are classified as Tsukamoto’s, Mamdani’s, and Sugenos’s systems. The 

Mamdani’s system [66] was mostly used in the past. The Sugeno’s system [67] is more efficient than other 

systems. In this study, Sugeno’s fuzzy logic structures were used.  

As an example, it is assumed that a FIS has two inputs x1 and x2 with target values of z. Here, input of 

discharge and snow cover can be supposed as x1 and x2 with output z as sediment yield for a particular 

time t. Then, in Sugeno’s fuzzy logic structures, typical rule sets with two IF/THEN rules are expressed as: 

 

Rule 1: IF x1 is A1 and x2 is B1, THEN    𝑧1 = 𝑓1 = 𝑝1 𝑥1 + 𝑞1 𝑥2+𝑟1     (6) 

 

Rule2: IF x1 is A2 and x2 is B2, THEN     𝑧2 = 𝑓2 = 𝑝2 𝑥1 + 𝑞2 𝑥2+𝑟2    (7) 

 

Where pi, qi and ri are parameters corresponding to Rule 1, Rule 2… Rule n.  

 

The ANFIS consist of five layers. 

 

Layer 1 In first layer each node generates a membership grade for each input’s variable. The output of ith 

node with generalized bell membership function in first layer is expressed as:  

 

𝑂𝑖1 = 𝜇 𝐴𝑖(𝑥1) =  
1

1+((𝑥1−𝑐𝑖))⁄𝑎𝑖)
2𝑁𝑖                         (8) 

 

Where, {ai, ci, Ni} are the parameter sets for x1 input in ith node. These parameters change the shape of bell 

function in the range of 0-1. 

 

Layer 2 The layer 2 is labeled with II in each node. In this layer every node multiplies the incoming signals 

coming from layer 1 as: 

𝑂𝑖2 =  𝑤𝑖 =  𝜇 𝐴𝑖(𝑥1)  ×𝜇 𝐵𝑖(𝑥2)  ,  i = 1, 2                (9) 

 

Layer 3 In layer 3 every node calculates the normalized firing strength as its relationship between firing 

strength of ith rule to the sum of all rules: 

 

𝑂𝑖3 = 𝑤̅ =
𝑤

𝑤1+𝑤2
     i = 1, 2       (10) 

 

Layer 4 In layer 4 the sum of signals from second- and third-layers networks are calculated for each ith 

node towards the model output as: 
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𝑂𝑖4 = 𝑤̅𝑖𝑓𝑖 = 𝑤̅𝑖(𝑝𝑖  𝑥1 + 𝑞𝑖  𝑥2+𝑟𝑖)                          i = 1, 2    (11) 

 

Here, 𝑤̅ is the output from layer 3 in this equation. 

 

Layer 5 Layer 5 calculates the overall output in the form of single node as the ANIFS model output against 

each target value as:  

 

 𝑂𝑖5 =  𝛴𝑤̅𝑖𝑓𝑖 =
𝛴𝑤̅𝑖𝑓𝑖

𝛴𝑤̅𝑖
     i = 1, 2    (12) 

 

In the ANFIS model, to obtain the model parameters, a hybrid learning method is used for this study. 

Further details about the ANFIS model are found in [68].  

In this study, three strategies are used to produce the initial fuzzy inference system for the ANFIS model. 

These strategies are grid partition (ANFIS-GP), subtractive clustering (ANFIS-SC), and fuzzy c-means 

clustering (ANFIS-FCM). The ANFIS-GP is a combination of ANFIS and grid partition. In grid partition, 

the input linguistic variables are partitioned by fuzzy numbers and their membership functions (MFs). The 

grid partition uses predefined numbers of MFs to optimize the MFs according to input-output datasets. 

The quantitative characteristics of datasets are separated into n partitions (n = 2, 3, 4…). In this study, eight 

MFs were used such as gaussmf, gauss2mf, trimf, trapmf, gbellmf, pimf, dsig,mf, and psigmf. In the AFNIS-

GP model, the number of rules increases exponentially with the increase in the number of input variables. 

For details about the ANFIS-GP, see [65].  

The ANFIS-SC model is the extended model derived from the mountain clustering model [69] with 

combination of the ANFIS model by using the subtractive clustering strategy. This model was modified by 

Chiu [70]. This method has an advantage over the mountain clustering method. It eliminates the grid 

resolution to reduce the complex computations in the mountain clustering method. In the ANFIS-SC 

model, each dataset is considered as potential cluster. Then, the potential of each data point of a given 

dataset is calculated by its distance from all other data points. These data points having many neighboring 

data points show a high potential value. The influential radius decides the number of clusters in the ANFIS-

SC model. The small value of influential radius has many numbers of clusters with more rules in 

comparison to its large value [71]. Using a hit-and-trial procedure, the suitable critical value of influential 

radius is sorted out during the data space clustering procedure. [72,70] further explain the detailed 

procedure of the ANFIS-SC model. 

The ANFIS-FCM model was proposed in the literature [73,74,75,76,77] and enhanced by Zhang and Chen 

[78]. The ANFIS-FCM minimizes the errors by partitioning the X datasets into C clusters. This method 

reduces the errors regarding the weighted distance of each data point xi towards all centroids of the C 

clusters. After this, the ANFIS-FCM model minimizes the objective function as: 

 

𝑀𝑖𝑛 𝐽𝐹𝐶𝑀 = ∑∑𝑤𝑝
𝑖𝑐‖𝑥𝑖− 𝑣𝑐‖

2
𝑁

𝑖=1

𝐶

𝑐=1

   𝑠. 𝑡.∑  

𝐶

𝑐=1

𝑤𝑖𝑐 = 1, 𝑖 = 1, 2, … , 𝑁                                   (13) 

 

Where C, N, wic, v and x are number of clusters, number of data points, degree belongs to ith data point 

of Cith clusters data points and inputs data sets. The p (p > 1) entitles to the fuzzifier exponent. In ANFIS-

FCM wic is calculated as: 
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𝑤𝑖𝑐  = 
1

∑ (
𝑑𝑖𝑐

2

𝑑𝑖𝑗
2⁄ )
1
(𝑝−1)⁄𝑐

𝑖=1

     𝑓𝑜𝑟 𝑖 = 1, 2, …𝑁 𝑎𝑛𝑑 𝑐 = 1,2, … 𝐶                                 (14)   

In FCM model after initialization of center vectors, centers are recomputed as: 

𝑣𝑐  = 
∑ 𝑤𝑝

𝐽𝑐 𝑥𝑗
𝑁
𝑗=1

∑ 𝑤𝑝
𝐽𝑐

𝑁
𝑗=1

     𝑓𝑜𝑟 𝑐 = 1, 2, …𝑁 𝑎𝑛𝑑 1 < 𝑝 > 𝑁                                                          (15)                 

The algorithm is run until convergence condition is completed.  

3.2.5 Multivariate adaptive regression splines (MARS) 

MARS is a non-parametric technique for the prediction of nonlinear processes developed in 1991 by 

Friedman [79]. The MARS model is a flexible and precise prediction model. It has been successfully applied 

in different studies [80,81,82] for prediction and forecasting purposes. In the MARS Model, the MARS 

function develops a series of linear segments having different slopes from the input-output relationships 

of given datasets. Each linear segment of MARS is then fitted with a linear basis function. For this study, 

the datasets were separated into break values between different regions or segments referred to as knots. 

Each region has its own regressions line. The shape of a piecewise linear basis function is expressed as: 

 

[max (0, 𝑥 − 𝑘)]  𝑂𝑅 [max (0, 𝑘 − 𝑥)]                                                                                 (16)                                                                                                  

Here x represents the predictor variable and k explains about the threshold value of knots. In general MARS 

consists of combinations of basis-functions (BFs) given as: 

 

𝑦 = 𝑓(𝑥) + 𝜀                                                                                                           (17)               

 

𝑓(𝑥) = 𝛽𝑜 + 𝛽𝑚𝐵𝐹𝑚(𝑥)                                                                                          (18)                

 

In the above Equation 12, the variable y is dependent on estimated values of function f(x) with the error ε. 

In Equation 13, β_o is a constant value, BF_m is the basis function, and β_m represents the coefficient for 

the maximum number of basis functions (BFs) depending on the input’s datasets.  

In the MARS model with polynomial knots, there exist two phases called forward step phase and backward 

step phase. The forward step phase generates all possible BFs. And after generation of the BFs, the 

generalized cross validation criterion (GCV) is used for determining the BFs and appropriate nodes. After 

this forward step phase, the backward step phase of the MARS model works to reduce the number of BFs 

for improving the predictions and avoiding overfitting of the model. [79] gives detailed information about 

the MARS model. 

3.2.6 Sediment rating curve (SRC) 

The sediment rating curve is an empirical relationship of flows and sediment load or concentrations 

described as: 

 

𝑆𝑆𝐿(𝑡) = 𝑎 × 𝑄
𝑏
(𝑡)
                                                                                                                      (19)                 
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Where Q [m3/day] is discharge, SSL [tons/day] both in log transformation form and a & b are the constants 

depends upon the characteristics of river and its catchments.  

3.2.7 Performance measurement metrics for model evaluation  

The performance of models was measured and assed using following statistics: 

 

 Root mean square error (RMSE) 

 

𝑅𝑀𝑆𝐸 = √
1

𝑁
 ∑ ((𝑆𝑖𝑜) − (𝑆𝑖𝑠)) 

2𝑁
𝑖=1                                                                                       (20)                                                 

 

Nash-Sutcliffe efficiency (NSE) 

 

𝑁𝑆𝐸 = 1 − 
∑ (𝑆𝑖𝑜 − 𝑆𝑖𝑠)

2𝑁
𝑡=1  

∑ (𝑆𝑖𝑠 − 𝑆𝑖𝑠̅̅̅̅ )
2𝑁

𝑡=1  
   − ∞  ≤ 𝑁𝑆𝐸 ≤ 1                                                        (21)                           

 

Pearson’s correlation coefficient (R2) 

𝑅2     =

(

 
∑ (𝑆𝑖0 − 𝑆𝑖𝑜̅̅ ̅̅ )(𝑆𝑖𝑠 − 𝑆𝑖𝑠̅̅̅̅ )
𝑁
𝑖=1

√∑ (𝑆𝑖0 − 𝑆𝑖𝑜̅̅ ̅̅ )
2𝑁

𝑖=1 ∑ (𝑆𝑖𝑠 − 𝑆𝑖𝑠̅̅̅̅ )
2𝑁

𝑖=1 )

 

2

                                                                         (22)   

Where N refers the data quantity, Sio is observed sediment and Sis is the simulated sediments and 𝑆𝑖𝑠̅̅̅̅  

is mean of simulated sediments.  

Relative Accuracy 

 

The relative accuracy is the % of accuracy expressed as: 

               Relative Accuracy (%)  =   (1 − |
𝑆𝑝𝑜−𝑆𝑝𝑠

𝑆𝑝𝑜
|) × 100                                           (23) 

where Spo is the observed peak value of SSY, Sps is the simulated peak value of SSY. 

3.2.8 Application of ANN, ANFIS-GP, ANFIS-SC, ANFIS-FCM and MARS models 

For the application of ANN, ANFIS-GP, ANFIS-SC, ANFIS-FCM and MARS model various input 

combinations with daily lag time were examined with scenarios starting from S1-S15 by testing the accuracy 

of the network using minimum RMSE and maximum value of R2 and NSE as performance criteria. The 

inputs scenarios developed in this study for predictions of sediment yield are mentioned here: 

a) Flows 

S1 = SSCt = f (Qt, β1) + ei 

S2 = SSCt = f (Qt, Qt-1, β1, β2) + ei 

S3 = SSCt = f (Qt, Qt-1, Qt-2, β1, β2, β3) + ei 

S4 = SSCt = f (Qt, Qt-1, Qt-2, Qt-3, β1, β2, β3, β4) + ei 

S5 = SSCt = f (Qt, Qt-1, Qt-2, Qt-3, Qt-4, β1, β2, β3, β4, β5) + ei 

b) Flows and snow cover area 

S6 = SSCt = f (Qt, SCAt, β1, β6) + ei 

S7 = SSCt = f (Qt, SCAt, SCAt-1, β1, β6, β7) + ei 

S8 = SSCt = f (Qt, SCAt, SCAt-1, SCAt-2, β1, β6, β7, β8) + ei 

c) Flow, snow cover area and effective rainfall  
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S9 = SSCt = f (Qt, Rt-1, SCAt, SCAt-4, β1, β9, β6, β10) + ei 

a. Flow, snow cover area, temperature and evapotranspiration 

S10 = SSCt = f (Qt, Tt-1, Evapt-1, SCAt, SCAt-4, β1, β11, β12, β6, β10) + ei 

e) Average mean basin air temperature 

S11 = SSCt = f (Tt, β13) + ei 

S12 = SSCt = f (Tt, Tt-1, β13, β11) + ei 

S13 = SSCt = f (Tt, Tt-1, Tt-2, β13, β11, β14) + ei 

S14 = SSCt = f (Tt, Tt-1, Tt-2, Tt-3, β13, β11, β14, β15) + ei 

S15 = SSCt = f (Tt, Tt-1, Tt-2, Tt-3, Tt-4, β13, β11, β14, β15, β16) + ei  

In the combinations above β1- β16 represents the membership functions of layers in ANN, ANIFS and 

MARS models.  

3.3 Results and Discussion 

3.3.1 Simulation of snow melts and snow cover area 

The results of the calibrated temperature-index snow melt model are shown in Table 3.3. The model 

was calibrated and validated to simulate the snow cover by using the degree day factor for the snow 

model. Table 3 shows the value of the degree day factor ksnow = 4.2 [mm day–1 °C–1] for the Gilgit 

basin. The literature review [83,84,85,86,87,50] for the regional case studies shows that the value of 

Ksnow ranges from 3-7 [mm/day/°C] in the Upper Indus Basin (UIB). Thus, during calibration and 

validation of the temperature-index snow model for this study, the value of ksnow = 4.2 [mm/day/°C] 

lies within the range of the values of previous studies carried out for snow melt runoff modeling in 

the UIB. The difference between the Ksnow value in the current study and that of previous studies is 

probably due to the use of different resolutions of input datasets, lengths of calibration datasets, 

threshold temperatures for separating rainfall and snow, threshold temperatures for snow melts, and 

characteristics of the catchment.  

Table 3. 3 Results of performance measurement statistics during calibration (2000-2007) and validation (2008-

2010) periods of the temperature-index snow model for simulations of snow melt and snow cover fractions. 

ksnow = 4.2 [mm/day/°C] 

 Calibration Period (2000-2007) Validation Period (2008-2010) 

R2 0.90 0.90 

NSE 0.72 0.70 

RMSE 0.15 0.15 
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Figure 3. 3 Time series plots between the MODIS-observed snow cover fractions and temp-index snow model- 

simulated snow cover fractions during calibration (2000-2007) and validation periods (2008-2010). 

 

Table 3.3, also shows the performance measurement statistics for the snow model during the calibration 

and validation periods. The value of R2 is found at 0.90 between the MODIS-observed snow-covered area 

and model simulated snow cover area both during the calibration and validation periods. The performance 

evaluation criteria using the three criteria of R2, NSE, and RMSE show that goodness of fit between the 

model and observed MODIS snow cover maps is more than 70% which is satisfactory in estimation of both 

the snow melts and snow cover area. Figure 3.3 also shows the time series plot between model snow cover 

area and MODIS-observed snow cover area during the calibration (2000-2007) and validation (2008-2010) 

period, respectively. 
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Table 3. 4 Training and testing statistics of ANN model by using Levenberg-Marquardt algorithm using different input combinations for Gilgit basin. 

Scenarios Model inputs Neurons 
Transfer function R2 RMSE NSE 

Input Output Training Testing Training Testing Training testing 

S1 Qt 3 logsig purelin 0.76 0.81 0.48 0.42 0.76 0.8 

S2 Qt, Qt-1 3 logsig purelin 0.77 0.79 0.48 0.44 0.77 0.79 

S3 Qt, Qt-1, Qt-2 5 radbas purlin 0.78 0.79 0.46 0.45 0.78 0.79 

S4 Qt, Qt-1, Qt-2, Qt-3 5 tansig purelin 0.80 0.80 0.44 0.47 0.80 0.79 

S5 Qt, Qt-1, Qt-2, Qt-3, Qt-4 7 logsig purelin 0.81 0.80 0.43 0.44 0.81 0.80 

S6 Qt, SCAt 5 tansig purelin 0.79 0.82 0.45 0.44 0.79 0.81 

S7 Qt, SCAt, SCAt-1 7 tansig tansig 0.80 0.80 0.44 0.43 0.80 0.8 

S8 Qt, SCAt, SCAt-1, SCAt-2 8 tansig tansig 0.80 0.81 0.44 0.43 0.80 0.81 

S9 Qt, Rt-1, SCAt, SCAt-4 7 logsig purelin 0.80 0.82 0.44 0.42 0.80 0.82 

S10 Qt, Tt-1, Evapt-1, SCAt, SCAt-4 5 radbas tansig 0.81 0.82 0.42 0.43 0.81 0.81 

S11 Tt 3 logsig purelin 0.69 0.73 0.55 0.50 0.69 0.73 

S12 Tt, Tt-1 3 logsig tansig 0.69 0.74 0.54 0.51 0.69 0.73 

S13 Tt, Tt-1, Tt-2 6 tansig tansig 0.74 0.73 0.51 0.51 0.74 0.72 

S14 Tt, Tt-1, Tt-2, Tt-3 8 tansig tansig 0.75 0.74 0.49 0.51 0.75 0.74 

S15 Tt, Tt-1, Tt-2, Tt-3, Tt-4 7 radbas tansig 0.74 0.76 0.49 0.51 0.74 0.76 
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Table 3. 5 Training and testing statistics of AFIS1 grid partition (GP) model by using different input combinations for Gilgit basin. 

Scenarios Model inputs 
Membership 

functions 

No of 

Function 

R2 RMSE NSE 

Training Testing Training  Testing Training testing 

S1 Qt pimf 4 0.77 0.78 0.46 0.47 0.77 0.78 

S2 Qt, Qt-1 pimf 2 0.78 0.78 0.46 0.47 0.78 0.78 

S3 Qt, Qt-1, Qt-2 gauss2mf 2 0.79 0.77 0.45 0.49 0.79 0.77 

S4 Qt, Qt-1, Qt-2, Qt-3 gbellmf 2 0.81 0.75 0.43 0.50 0.81 0.75 

S5 Qt, Qt-1, Qt-2, Qt-3, Qt-4 trimf 2 0.81 0.71 0.43 0.53 0.81 0.69 

S6 Qt, SCAt trimf 2 0.79 0.77 0.45 0.45 0.79 0.77 

S7 Qt, SCAt, SCAt-1 trimf 2 0.79 0.78 0.44 0.47 0.79 0.78 

S8 Qt, SCAt, SCAt-1, SCAt-2 trimf 2 0.82 0.76 0.42 0.47 0.82 0.75 

S9 Qt, Rt-1, SCAt, SCAt-4 trimf 2 0.82 0.76 0.41 0.49 0.82 0.76 

S10 
Qt, Tt-1, Evapt-1, SCAt, SCAt-

4 
trimf 2 0.85 0.72 0.38 0.52 0.85 0.72 

S11 Tt psigmf 2 0.70 0.70 0.55 0.52 0.70 0.70 

S12 Tt, Tt-1 pimf 2 0.71 0.71 0.54 0.51 0.71 0.71 

S13 Tt, Tt-1, Tt-2 trimf 2 0.71 0.73 0.52 0.52 0.71 0.73 

S14 Tt, Tt-1, Tt-2, Tt-3 trapmf 2 0.72 0.72 0.51 0.53 0.72 0.72 

S15 Tt, Tt-1, Tt-2, Tt-3, Tt-4 trimf 2 0.77 0.60 0.46 0.65 0.77 0.59 
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Table 3. 6 Training and testing statistics of AFIS2 subtractive clustering (SC) model by using different input combinations for Gilgit basin. 

Scenarios Model inputs Radii 
R2 RMSE NSE 

Training Testing Training  Testing Training testing 

S1 Qt 0.50 0.77 0.78 0.46 0.47 0.77 0.78 

S2 Qt, Qt-1 0.70 0.77 0.78 0.46 0.47 0.77 0.78 

S3 Qt, Qt-1, Qt-2 0.70 0.77 0.78 0.46 0.47 0.77 0.78 

S4 Qt, Qt-1, Qt-2, Qt-3 0.70 0.78 0.78 0.45 0.47 0.78 0.78 

S5 Qt, Qt-1, Qt-2, Qt-3, Qt-4 0.80 0.78 0.78 0.45 0.47 0.78 0.78 

S6 Qt, SCAt 0.60 0.78 0.78 0.45 0.47 0.78 0.78 

S7 Qt, SCAt, SCAt-1 0.80 0.78 0.78 0.45 0.47 0.78 0.78 

S8 Qt, SCAt, SCAt-1, SCAt-2 0.70 0.79 0.77 0.44 0.48 0.79 0.77 

S9 Qt, Rt-1, SCAt, SCAt-4 0.60 0.79 0.78 0.45 0.47 0.79 0.78 

S10 Qt, Tt-1, Evapt-1, SCAt, SCAt-4 0.90 0.80 0.79 0.43 0.46 0.80 0.79 

S11 Tt 0.50 0.70 0.70 0.53 0.55 0.70 0.70 

S12 Tt, Tt-1 0.60 0.71 0.70 0.52 0.55 0.71 0.70 

S13 Tt, Tt-1, Tt-2 0.80 0.72 0.72 0.51 0.53 0.72 0.72 

S14 Tt, Tt-1, Tt-2, Tt-3 0.80 0.72 0.71 0.51 0.54 0.72 0.71 

S15 Tt, Tt-1, Tt-2, Tt-3, Tt-4 0.70 0.72 0.73 0.51 0.52 0.72 0.73 
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Table 3. 7 Training and testing statistics of AFIS3 FCM clustering model by using different input combinations for the Gilgit basin. 

Scenarios Model inputs 
No of 

Clusters 

R2 RMSE NSE 

Training Testing Training  Testing Training testing 

S1 Qt 2 0.77 0.78 0.46 0.47 0.77 0.78 

S2 Qt, Qt-1 4 0.77 0.78 0.46 0.47 0.77 0.78 

S3 Qt, Qt-1, Qt-2 2 0.77 0.78 0.46 0.47 0.78 0.78 

S4 Qt, Qt-1, Qt-2, Qt-3 2 0.77 0.78 0.46 0.48 0.77 0.78 

S5 Qt, Qt-1, Qt-2, Qt-3, Qt-4 2 0.77 0.78 0.46 0.48 0.77 0.77 

S6 Qt, SCAt 2 0.78 0.78 0.45 0.47 0.78 0.78 

S7 Qt, SCAt, SCAt-1 2 0.78 0.78 0.45 0.47 0.78 0.78 

S8 Qt, SCAt, SCAt-1, SCAt-2 2 0.78 0.77 0.45 0.48 0.80 0.78 

S9 Qt, Rt-1, SCAt, SCAt-4 2 0.79 0.78 0.44 0.47 0.79 0.78 

S10 Qt, Tt-1, Evapt-1, SCAt, SCAt-4 2 0.80 0.78 0.43 0.47 0.80 0.78 

S11 Tt 3 0.70 0.70 0.53 0.55 0.70 0.70 

S12 Tt, Tt-1 2 0.71 0.70 0.53 0.55 0.71 0.70 

S13 Tt, Tt-1, Tt-2 4 0.72 0.71 0.51 0.54 0.72 0.71 

S14 Tt, Tt-1, Tt-2, Tt-3 6 0.76 0.72 0.48 0.53 0.76 0.72 

S15 Tt, Tt-1, Tt-2, Tt-3, Tt-4 2 0.72 0.70 0.51 0.55 0.72 0.70 
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Table 3. 8 Training and testing statistics of MARS model by using different input combinations for the Gilgit basin. 

Scenarios Model inputs 
Basis  

Function 

R2 RMSE NSE 

Training Testing Training  Testing Training testing 

S1 Qt 5 0.77 0.78 0.47 0.47 0.77 0.78 

S2 Qt, Qt-1 15 0.77 0.78 0.47 0.47 0.77 0.78 

S3 Qt, Qt-1, Qt-2 15 0.77 0.78 0.47 0.47 0.77 0.78 

S4 Qt, Qt-1, Qt-2, Qt-3 15 0.77 0.78 0.47 0.47 0.77 0.78 

S5 Qt, Qt-1, Qt-2, Qt-3, Qt-4 15 0.78 0.78 0.47 0.47 0.77 0.78 

S6 Qt, SCAt 15 0.77 0.78 0.46 0.48 0.78 0.77 

S7 Qt, SCAt, SCAt-1 20 0.77 0.77 0.46 0.48 0.77 0.77 

S8 Qt, SCAt, SCAt-1, SCAt-2 15 0.77 0.77 0.46 0.48 0.77 0.77 

S9 Qt, Rt-1, SCAt, SCAt-4 25 0.78 0.77 0.45 0.48 0.78 0.77 

S10 Qt, Tt-1, Evapt-1, SCAt, SCAt-4 10 0.79 0.79 0.45 0.46 0.79 0.79 

S11 Tt 20 0.69 0.70 0.54 0.55 0.69 0.70 

S12 Tt, Tt-1 15 0.70 0.70 0.53 0.55 0.70 0.70 

S13 Tt, Tt-1, Tt-2 10 0.71 0.71 0.52 0.55 0.71 0.70 

S14 Tt, Tt-1, Tt-2, Tt-3 10 0.72 0.71 0.52 0.54 0.72 0.71 

S15 Tt, Tt-1, Tt-2, Tt-3, Tt-4 20 0.72 0.71 0.51 0.54 0.72 0.71 
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For application of the ANN model, the transfer functions logsig, purelin, tansig, and radbas were used in 

the hidden layers. The network was trained by using 16 combinations of four transfer functions for input 

and output layers. The optimum number of neurons was determined ranging from 3-8 in single hidden 

layers for overall input scenarios giving best results at the end. Table 3.4 shows the results of various input 

combinations using ANN model. For the ANFIS-GP, ANFIS-SC, and ANFIS-FCM models, the hybrid 

algorithm was used in this study. 

For the ANFIS-GP model application, the gaussmf, gauss2mf, trimf, trapmf, gbellmf, pimf, dsigmf, and 

psigmf membership functions were used. In ANFIS-GP, the type of membership functions and number of 

member functions are important for training the network. Table 3.5 shows the results of all scenarios using 

the ANFIS-GP model with optimal number and type of membership functions. The optimal number of 

functions ranges between 2 to 4 for all scenarios. 

For application of the ANFIS-SC model, the network is trained with an optimal range of the radius of 

clusters which give a minimum value of RMSE and highest values of R2 and NSE. The optimal value of the 

cluster radius represents the influence of the cluster radius on the dataset clusters. If the cluster radius is 

small, then there are numerous small cluster datasets. 

On the other hand, a large value of the cluster radius means that there are few large cluster datasets for 

training the network. During training of the network, the hit-and-trial method was used to find out the 

optimum value of the cluster radius with the smallest value of RMSE for all scenarios during the testing 

period. Table 3.6 shows the results of the ANFIS-SC model for all scenarios. It was found that the optimal 

range of the cluster radius is from 0.5-0.9 for all scenarios.  

For application of the ANFIS-FCM model, the various numbers of clusters were used to train and test the 

network for all scenarios. Table 3.7 shows the results of the ANFIS-FCM model for all input combinations. 

The optimal number of clusters ranges between 2 to 6 for this study with the lowest value of RMSE and 

highest value of R2 during testing of the network for all input combinations.  

For application of the MARS model, the controlling parameters generally include the maximum basis 

functions, maximum interaction, speed factor, minimum number of observations between knots, penalty 

of variable, and degree of freedom. However, for this study, the hit-and-trial method was used to train the 

model with an optimal number of maximum basis functions ranging from 5 to 25 for all input scenarios 

with the remaining parameters being default values in the model. Table 3.8 shows the results of the MARS 

model for various input scenarios used in this study.  

For application of the sediment rating curve (SRC) model, the power law function was used to train the 

model with 70% of the datasets after transformation of flows and sediment yields into logarithm form. 

 

 

 

 

 

Figure 3. 4 Plot of the sediment rating curve (SRC) for the Gilgit basin. 
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After training of SRC with 70% of data sets the model was tested with 30% of the remaining data. The 

Figure 3.4 shows the plot of the sediment rating curve by using the power law functions. The Table 3.9 also 

shows the results of training and testing of sediment rating curve (SRC) model and compares its model 

performance statistics with other model used for predictions of sediment yields used in this study. 

Table 3. 9 Comparison of the performance measurements by using the SRC, ANFIS-GP, ANFIS-SC, ANFIS-SC, 

ANFIS-FCM and MARS models in predictions of sediment yields. 

Models Training period  Testing period 

R2 RMSE NSE  R2 RMSE NSE 

SRC 0.81 0.49 0.75  0.71 0.60 0.66 

ANN 0.81 0.42 0.81  0.82 0.43 0.81 

ANFIS-GP 0.79 0.44 0.79  0.78 0.47 0.78 

ANFIS-SC 0.80 0.43 0.80  0.79 0.46 0.79 

ANFIS-FCM 0.80 0.43 0.80  0.78 0.47 0.78 

MARS 0.79 0.45 0.79  0.79 0.46 0.79 

 

3.3.2 Comparison of the ANN, ANFIS-GP, ANFIS-SC, ANFIS-FCM, MARS and 

SRC models 

The results of the training and validation of the various scenarios are shown in Tables 3.4-3.9 for the ANN, 

ANFIS-GP, ANFIS-SC, ANFIS-FCM, MARS, and SRC models for predictions of the sediment yields for the 

Gilgit basin. In Table 3.4, the ANN shows the best performance of S10 scenarios with model inputs of Qt, 

Tt-1, Evapt-1, SCAt, and SCAt-4. In the ANN, the model parameters having radbas and tansig as input and 

output transfer functions along with five numbers of neurons performed best with S10 input scenarios 

during the training and validation phases. Table 3.5 shows the results of the ANFIS-GP for all input 

scenarios. Here, the ANFIS-GP shows the best performance of the model with S7 scenarios consisting of 

inputs of Qt, SCAt, and SCAt-1. The ANFIS-GP model performs best with model parameters consisting of 

triangular (trimf) membership functions along with two numbers of membership functions (MFs). The 

results of the ANFIS-SC model are shown in Table 3.6.  

From Table 3.6, the input scenario S10 involving the inputs of Qt, Tt-1, Evapt-1, SCAt, and SCAt-4 gives 

the best performance of the ANFIS-SC model. The ANFIS-SC uses the model parameters having the value 

of a cluster radius of 0.90 to perform best with S10 input combinations. Table 3.7 shows the results of input 

scenarios by using the ANFIS-FCM model. It is evident that the best performance of the ANFIS-FCM 

model, too, was obtained with S10 scenarios having inputs of Qt, Tt-1, Evapt-1, SCAt, and SCAt-4. In the 

ANFIS-FCM model, the best network was developed by using the model parameter having two numbers 

of clusters with S10 input scenario. 

Table 3.8 represents the results of the MARS model used in this study for prediction of the sediment yield 

of the Gilgit River basin. As shown in Table 3.8, again the input scenario S10 involving the inputs of Qt, Tt-

1, Evapt-1, SCAt, and SCAt-4 developed the best-performing network in the MARS model. The MARS 

model performed best with its basis function (BF) parameter having the value of 10 with the S10 scenario.  

Table 3.9 shows the overall results of the best networks of the ANN, ANFIS-GP, ANFIS-SC, ANFIS-FCM, 

and MARS models compared with the sediment rating curve performance for the Gilgit basin. Table 3.8 
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shows that the ANN model performs better than all other models with the least values of the RMSE errors 

of 0.42 and 0.43 during the training and testing phase. 

Similarly, Figure 3.5 shows the scatter plot between the observed and predicted SSY by using ANN, ANFIS-

GP, ANFIS-SC, ANFIS-FCM, MARS, and SRC during the testing phase for overall best input scenarios. 

From the scatter plot graphs, it can be observed that the ANN-based model has the least scatters with the 

highest value of R2 during the testing phase. The ANN has improved the results of the scatter plot of the 

R2 value to up to 0.82 in comparison to the rating curve R2 value of 0.71 during the testing period. 

Figure 3.6 shows the annual time series variation graphs of the observed and estimated SSY by using the 

ANN, ANFIS-GP, ANFIS-SC, ANFIS-FCM, MARS, and SRC models with best- performed input 

combinations. This Figure also includes the one detailed graph derived from the main time series plot to 

compare all model performances during the peak annual suspended sediment yields (SSY) period of the 

year 2005.  

It is illustrated in Figure 3.6 that during the peak SSY period of the year 2005, the estimated SSY of the 

models ANN, MARS, and ANFIS-FCM are relatively closer to the observed SSY than those of the other 

models. However, the models ANFIS-GP and ANFIS-SC significantly underestimated the SSY during this 

peak year period of 2005. Similarly, the SRC model significantly overestimated the SSY during that period. 

Figure 3.7 shows an overall comparison of different input variable scenarios developed from flows Q 

[m3/day], snow cover area SCA [fractions], effective mean basin rainfall R [mm/day], mean basin average 

temperatures T [ºC/day], and mean basin evapotranspiration Evap [mm/day] for predictions of SSY during 

the testing period in the Gilgit basin. The model performance of R2 was improved up to the value of 0.82 

by introducing the combinations of the snow cover area along with flows, effective rainfall, temperatures, 

and evapotranspiration. The input combinations consisting of only the mean basin average temperature T 

perform less than other combinations consisting of flows, snow covers, effective rainfall etc. However, the 

mean basin average temperature T variable scenarios’ performance with an R2 value of 0.76 is better than 

the rating curve with an R2 value of 0.71. 

Rajaee et al. [22] applied artificial neural networks (ANNs), neuro-fuzzy (NF), multiple linear regression 

(MLR) and sediment rating curve (SRC) for prediction of suspended sediment concentrations (SSC) for 

Little Black River and Salt River in United states of America (USA). For example, in Little Black River 

gauging station, the value of R2 was 0.69 for NF model, while it was 0.45, 0.25 and 0.23 for ANN, MLR and 

SRC models respectively. In the present study, the value of R2 ranges from 0.78-0.82 using ANN and ANFIS 

models. It suggests that the soft computing models could be successfully applied for daily prediction 

sediment yields. 
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Figure 3. 5 Plot of the best performance measures for predictions of SSY by using the ANN, ANFIS-

GP, ANFIS-SC, ANFIS-FCM, MARS and SRC model during testing phase for Gilgit basin. 
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Figure 3. 6 Plot of the best performance measures for predictions of SSY by using the ANN, ANFIS-

GP, ANFIS-SC, ANFIS-FCM, MARS and SRC model during testing phase for Gilgit basin. 

 

Figure 3. 7 Overall Comparison of performance measures of coefficient of determination (R2), Nash–

Sutcliffe efficiency model performance coefficient (NSE) and root mean squared error (RMSE) with 

different input variable scenarios during testing phase from all the models. 
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Table 3. 10 Comparison of the ANFIS-GP, ANFIS-SC, ANFIS-SC, ANFIS-FCM, MARS and SRC models’ 

absolute sediment fluxes (%) for peak estimations of SSY for Gilgit basin. 

 

Year 

Peaks> 

3200 

[tons/day] 

ANN 

[tons/day] 

ANFIS-GP 

[tons/day] 

ANFIS-SC 

[tons/day] 

ANFIS-

FCM 

[tons/day] 

MARS 

[tons/day] 

SRC 

[tons/day] 

1983 3901  
3934  

(99.15) 

3884 

(99.56) 

3886 

(99.62) 

3613 

(92.62) 

3826 

(98.07) 

4654 

(80.69) 

1984 4955  
3542 

(71.48) 

4543 

(91.68) 

3033 

(61.21) 

3789 

(76.46) 

3385 

(68.31) 

4375 

(88.29) 

1991 
3256 

 

3088 

(94.84) 

2804 

(86.11) 

3128 

(96.06) 

3093 

(94.99) 

3105 

(95.36) 

4468 

(62.77) 

2003 4057  
2372 

(58.46) 

2514 

(61.96) 

2616 

(64.48) 

2790 

(68.77) 

2674 

(65.91) 

4400 

(91.54) 

2005 16898  
12993 

(76.89) 

8949 

(52.95) 

9480 

(56.10) 

12458 

(73.72) 

12365 

(73.17) 

32385 

(8.35) 

Mean  

(Relative 

Accuracy 

%)  

 

6613 

 

5186 

(80.17) 

4539 

(78.45) 

4429 

(75.49) 

5149 

(81.31) 

5071 

(80.16) 

10056 

(66.33) 

 

The mean values and absolute accuracy of predictions of SSY by using the ANFIS-GP, ANFIS-SC, ANFIS-

SC, ANFIS-FCM, MARS and SRC models for Gilgit basin are shown in the Table 3.10. From Table 3.10 the 

ANN model predicted the mean of sediment peaks, 6613 [tons/day] as 5186 [tons/day] while the ANFIS-

GP, ANFIS-SC, ANFIS-FCM, MARS and SRC resulted in less accurate outcomes than ANN model. 

However, Table 3.10 shows also that the model ANFIS-FCM with a relative accuracy of 81.31 % has superior 

accuracy in predicting the peak values of sediment yields compared to the ANN (80.17 %), ANFIS-GP 

(78.45 %), ANFIS-SC (75.49 %), MARS (80.16%) and SRC (66.33%) models respectively. 

3.3.3 Deveoplement of Multiple Linear Regression Equation 

The relationships between the measured sediment yields and the best-performing scenarios of the ANN, 

ANFIS-GP, ANFIS-SC, ANFIS-FCM, and MARS models have been developed using 70% of the data. The 

remaining 30% of the data was used to test the equation of multiple linear regression developed between 

the measured sediments and data-based model outputs. Equation 23 represents the relation between log-

transferred measured sediments loads and data-based log-transferred modeled sediment loads as: 

 

y     =  0.60x1 + 0.45x2 + 0.11x3  + 0.20x4 − 0.05x5  − 0.19x6 − 0.39          (23)   
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where y = observed/measured sediment load in log form (tons/day), x1 = ANN model outputs of sediment 

load in log form (tons/day), x2 = ANFIS-GP model outputs of sediment load in log form (tons/day), x3 = 

ANFIS-SC model outputs of sediment load in log form (tons/day), x4 = ANFIS-FCM model outputs of 

sediment load in log form (tons/day), x5 = MARS model outputs of sediment load in log form (tons/day), 

and x6 = SRC model outputs of sediment load in log form (tons/day). Figure 3.8 shows the results of the 

multiple linear regression Equation 23 during the training and testing periods. 

 

 

 

 

Figure 3. 8 Plot of the SSY by using ensembled average equation during training and testing phase for 

Gilgit basin. 

3.4 Conclusions 

This study was designed to improve the predictions of sediment yields by using different input variables 

applying the ANN, ANFIS-GP, ANFIS-SC, ANFIS-FCM, and MARS models in addition to the SRC model 

to the snow- and ice melt-dominated Gilgit basin. The objective of the study was to compare and examine 

the appropriate input variables based on the knowledge of hydrological process- and snow- and ice melt-

dominated factors controlling erosion and sediment transport for predictions of sediment yields. To 

accomplish this objective, we investigated the input such as flows affecting channel erosion; temperature 

and snow cover area as snow melt erosion, glacier melt erosion and hillslope erosions; effective rainfall as 

mass wasting erosion, hillslope erosions and channel erosion; and evapotranspiration as effect of 

vegetation cover controlling catchment erosion for the prediction of sediment yields. It was concluded that 

for the prediction of sediment yields, the inputs of snow cover area, effective rainfall, and 

evapotranspiration significantly improve the accuracy of the ANN model when used in addition to flows 

and temperature as inputs. Combining the snow cover maps, effective rainfall, temperature, and 

evapotranspiration as inputs slightly increased the model performance (0.80 and 0.82) of R2 when using the 

ANN model during the testing phase for the Gilgit River basin. It was concluded that the estimated snow 

cover area on land use maps and spatially distributed climatic information can improve the prediction of 

sediment yields when using data-based models.  

It was also concluded that predictions of the peak values of sediment yields by means of the ANN, ANFIS-

FCM, and MARS models are relatively closer to the values of the observed sediments than when using the 

SRC, ANFIS-GP, and ANFIS-SC models. The ANFIS-FCM, ANN, and MARS models predicted the 

sediment with relative accuracies of 81.31%, 80.17%, and 80.16%, respectively, against the peak values of 
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the observed time series. Overall, the ANFIS-FCM model was found to be more successful than the other 

models for predicting the peak values of sediments in the Gilgit basin. 
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3.6 Supplementary Materials 

 
Supplementary Figures: 

 

Figure A 1. Schematic diagram of the ANN model for prediction of sediment yields with one hidden 

layer. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A 2. Schematic diagram of the ANFIS model for prediction of sediment yields with two inputs. 
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Supplementary Tables: 

 

Table A 1 Summary of the reviewed publications of data-based models sorted by year and input variables. 

Serial 

# 

Year Authors Input variables Soft computing models 

1 2001 Jain S.K [23] Stage, Flows, Sediment SRC, ANN 

2 2006 Kerem et al. [24] Flows, Sediment SRC, ANN 

3 2008 Cimen M. [33] Flows, Sediment ANN, SVM 

4 2009 Rajaee et al. [25] Flows, Sediment SRC, ANN, ANFIS, MLR 

5 2009 Cobaner et al. [29] Flows, Sediment, Rainfall SRC, ANN, ANFIS 

6 2009 Kisi et al. [30] Flows, Sediment SRC, ANN, ANFIS 

7 2010 Vali et al. [45] Flows, Sediment SRC, ANN, MARS 

8 2011 Melesse et al. [26] Flows, Sediment, Rainfall ANN, MLR 

9 2011 Rajaee T. [36] Flows, Sediment SRC, ANN, WANN 

10 2012 Kisi et al. [31] Flows, Sediment, Rainfall ANN, ANFIS, GEP 

11 2012 Senthil Kumar et al. [49] Flows, Sediment, Rainfall ANN, ANFIS, M5 tree 

12 2013 Kakaei Lafdani et al. [35] Flows, Sediment, Rainfall ANN, SVM 

13 2014 Goyal M.K [48] Flows, Sediment, Rainfall ANN, M5 tree, WR 

14 2015 Kumar et al. [28] Flows, Sediment, Rainfall ANNs (LM, SCG, BR) 

15 2015 Olyaie et al. [37] Flows, Sediment SRC, ANN, ANFIS, 

WANN 

16 2015 Nourani et al. [38] Flows, Sediment ANN, WLSSVM, WANN 

17 2016 Chachi et al. [46] Flows HMARS-FR, FLSR, FLAR 

18 2017 Tsar et al. [27] Flows, Sediment, Water 

Temperature 

SRC, ANN, M5 tree, MLR 

19 2017 Buyukyildiz et al. [34] Flows, Sediment ANN, SVM, ANFIS 

20 2018 Emamgholizadeh et al. 

[32] 

Flows, Sediment ANN, ANFIS, GEP 

21 2019 Adnan et al. [44] Flows, Sediment ANFIS-FCM, DENFIS, 

MARS 

 

Table A 2 Characteristics of the Gilgit River basin in the Upper Indus River. 

River flow gauging station Gilgit at Gilgit 

Longitude 74° 18’ 25’’ 

Latitude 35° 55’ 35’’ 

Altitude of stream gauging station 1454 m a.s.l 

Catchment drainage area 12095 km2 

Glacier-covered area 1326.7891 km2 (source GLIMS) 
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Glacier cover percentage 10.01 % 

Mean elevation 3997 m a.s.l 

Area above 5000 m 10.1 % 

No. of meteorological stations having 

data for period 1981-2010 

Observations monitored by Pakistan Meteorological 

Department (PMD) 

Gilgit 

1460 m a.s.l 

Gupis 

2156 m a.s.l 

No. of meteorological stations having 

data for period 1996-2010 

Observations monitored by Water and Power Development 

Authority of Pakistan (WAPDA) 

Ushkore 

3051 m a.s.l 

Yasin 

3280 m a.s.l 

Shendure 

3712 m a.s.l 
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Chapter 4- Prediction of sediment yields by using the hydroclimate and 

normalized difference vegetation index (NDVI) datasets with soft 

computing models 
 

 

 

 

4.1 Abstract 

The reliable predictions of sediment yield in data-based modelling depend upon the selection of suitable 

input combinations. These input combinations are critical to build the structures of the models, which 

influence the performance and results of the data-based models. Here, hydroclimate and biophysical inputs 

datasets, consisting of flows, rainfall, mean air temperature and Normalized Difference Vegetation Index 

(NDVI) were assessed. The best performing input combinations were assessed by using the four Artificial 

Neural Networks (ANNs) and three Adaptive Neuro-Fuzzy Logic Inference System (ANFIS) algorithms 

for the Brandu River basin, the sub basin of Upper Indus Basin (UIB), Pakistan. The results of best 

performing input networks of ANN and ANFIS were also compared with outputs of Sediment Rating 

Curves (SRC). The results reveal that by introducing the remotely sensed NDVI as biophysical parameters, 

in addition to hydroclimate parameters, cannot improve its model performance. The ANFIS with grid 

partitioning (GP) performed better only in testing phase with inputs networks of flows and rainfall. 

However, in overall comparison the ANN with Levenberg-Marquardt (LM) performed best with inputs of 

flows, rainfall and mean air temperatures for the period 1981-2010. The ANN-LM algorithm improved the 

accuracy of R2 up to 28% compared to SRC. Here, we demonstrate that the effects of flows, rainfall and 

mean air temperature are more dominated factors than biophysical parameters of NDVI in sediment 

transports of Brandu River. These finding will be valuable for management of sediments and designing of 

future planned water infrastructures in Brandu River basin.   

 

Keywords: Sediment yields; Input combinations; Normalized Difference Vegetation Index (NDVI); Daggar 

basin; Data based models 

4.2 Introduction 

The prediction of sediment yield is useful for planning and management of water resources, river 

ecosystems, operation and management of water reservoirs, design of useful life of water infrastructures 

and management of hydropower projects. The process of soil erosion and generation of sediment loads is 

a famous hot spot having global attention worldwide to manage the water resources and restore the natural 

river environment for its ecology. The sediment load generated due to soil erosion and flows process is 

changing due to changes in climate and land use pattern in catchments. The increase of population, rapid 

urbanization, deforestation, over grazing of animals and rapidly increase in human activities has affected 

the land cover. The changes in land use affect the soil erodibility, land surface frictions/roughness, gradient 

of catchment surface [1]. This changes in the vegetation and land cover ultimately affects the sediment 

yields. Similarly, the changes in climate also affects the sediment generation of the catchment. In the light 
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of land cover and climate changes it has become important to predict the sediment loads due to complex 

erosion process of sediment yields.       

Over the past few decades, water resource engineers, hydrologist and sediment management experts have 

used the hydrological and databased models by using the inputs of flows and climatic data for predictions 

of sediment yields [2]. For prediction of sediment yields to estimate the sediments the methods range from 

databased models to the lumped or conceptual models and physical based models. Generally, the two 

categories of methods had been used i) conceptual/semi-distributed models ii) data-based models [3,4,5]. 

In semi-distributed conceptual models, the large amount of input datasets and numerous model 

parameters are required during calibrations to predict the sediment yields. However, the data-based black 

box models require the fewer amounts of input variables and model parameters to predict the amount of 

sediment yields. For this reason, the black-box models are more popular in simulation of sediment yields 

in comparison to the conceptual semi-distributed models [6]. In databased black-box models’ artificial 

neural networks (ANNs) are famous due to its flexibility in building the mathematical structures between 

inputs and outputs parameters both for linear and non-linear process like sediment transports to predict 

the sediment loads [7].  

In the previous years, the numerous applications of artificial intelligence (AI) models were carried out to 

compare their results with other methods for simulation of sediment yields. In these studies [2,8,9,10,11,12] 

the artificial neural networks results were compared with the other models, including tradition sediment 

rating curves (SRC), autoregressive integrated moving average (ARIMA), multiple linear regressions 

(MLR), semi distributed soil and water assessment (SWAT) models etc. Singh et al. [2] compared the results 

of semi distributed SWAT and ANN model to predict the sediment yields in Nagwa agriculture watershed. 

From their research the ANN model simulated the sediment yields with better results compared to the 

SWAT model. Pektas et al. [8] compared the results of ANN with MLR and ARIMA model for prediction 

of sediment yield. From this study ANN has shown better results than ARIMA and MLR models. 

In addition to above discussed models the comparison of ANN with the other models such as adaptive 

neuro fuzzy logic inference system (ANFIS), support vector machine (SVM), genetic-algorithm based 

artificial intelligence (GA-AI) and other AI models were also carried out by the researchers in various 

studies to predict the sediment yields. The comparison of ANN model with ANFIS models in the study 

[12] shown that ANN is superior to the ANFIS for predicting the semimonthly sediment loads for Gedizer 

River in Turkey. Kaveh et al. [13] compared the results of ANFIS models by using the Levenberg-

Marqaurdt, Hybrid and Back-Propagation learning algorithms to predict the sediment yields. Kaveh et al. 

[13] found that the ANFIS by using the Levenberg-Marqaurdt perform better than the Hybrid and Back-

Propagation algorithm. Cobaner et al. [14] also compared the results ANN with ANFIS and SRC model 

and found that ANFIS is better in prediction of sediment yields than other models. The comparison of 

ANN, ANFIS and Gene Expression Programming (GEP) by Kisi et al. [15] also found that the GEP performs 

better than the ANN and ANFIS model for estimation of sediment loads. Yadac et al. [16] in the regional 

research compared the results of ANN with, SRC, GA-AI and SVM models for the Mahanadi River, India. 

This research showed that GA-AI is better than ANN, ANFIS and SRC models in prediction of sediment 

yields.  

The major difference in the performance of these models which were used for sediment predictions in 

literature is due to the combination of differences in the model parameters as well their input variables. 

The studies [8,13] used the discharges and sediment loads as input variables recorded at gauging station 

with ANN, MLR, ARIMA and ANFIS models. Similarly, Kumar et al. [9] developed the input vectors 

consisting of the satellite rainfall datasets in addition to the flows and sediment load by using the ANN 

model for predicting the suspended sediments. The researchers [2,10,12,14,15] made the input networks 

with combination of the flows, sediment loads and rainfall datasets by using the ANN, ANFIS and GEP 



Chapter 4-Prediction of sediment yields by using the hydroclimate and normalized difference vegetation 

index (NDVI) datasets with soft computing models 

83 

 

algorithms to predict the sediments yields. Similarly, in few researchers [11,16] the input combinations of 

flows, sediment loads and climatic (rainfall and temperature) variables were used for simulation of 

sediment yields in the ANN, ANFIS and SVM models.  

In the recent decade the physical characteristics of the catchment representing the of vegetation cover 

estimated from Normalized Difference Vegetation Index (NDVI) in addition to the discharges was used for 

Asian basins to improve the prediction of SRC model [17]. Similarly, Asadi et al. [18] used the NDVI as an 

input variable in addition to the hydro-climatic datasets with the ANN model to predict the discharges in 

rainfall-runoff modelling for two basins in Queensland, Australia. From the security of the literature and 

to best of author knowledge previously no study has been carried out to use the NDVI as input variable in 

addition to discharges and climatic datasets for prediction of sediment yields using AI models. In this study 

with the application of ANN model results were compared with the SRC, MLR, ANFIS embedded with 

grid partition ANFIS-GP, ANFIS embedded with subtractive clustering ANFIS-SC and ANFIS embedded 

with C-Means ANFIS-FCM by using the hydro-climatic and NDVI as input variable for Daggar the Sub-

basin of Upper Indus River in Pakistan.  

4.3 Material and Methodology 

4.3.1 Data collection and study area 

The present study is carried out of Brandu River basin situated in lower part of Upper Indus Basin (UIB). 

The Brandu River is the right tributary of Upper Indus River which joins the Indus River downstream of 

the Besham Qila i.e. the intake stream gauging station of Tarbela reservoir. The Figure 4.1 & Table 4.1 shows 

the location and characteristics of the Brandu River basin. The catchment area of Brandu River lies with 

latitudes ranging from 34° 25’ 00’’ to 34° 43’ 00’’ and longitudes 72° 12’ 00’’ to 72° 30’ 00’’ having its drainage 

area of 598 km2. The elevation of the catchment ranges from 685-2801 m a.m. sea level. The mean basin 

elevation of the catchment is 1112 m. The Figure 4.2 shows the land use map of the Brandu basin. The 

agriculture, dense forests and sparse forests covers the 42%, 12% and 16% of the total catchment area 

respectively.  Similarly, grass lands and bare soil/others cover the 28% and 2% of the total catchment area 

respectively. The Water and Development Authority (WAPDA) of Pakistan installed the gauging station 

in year 1969 to measure the discharges and suspended sediment concentrations (SSC) at an altitude of 700 

m a.m. sea level of Brandu River near Daggar. Currently, there is no climatic station installed inside of the 

catchment. The Table 4.2 also shows the detailed information of the data collected during this study for the 

period 1981-2010. 
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Figure 4. 1 Location of the Brandu River basin at the Daggar stream gauging station in the Upper Indus Basin (UIB) of Pakistan.



Chapter 4-Prediction of sediment yields by using the hydroclimate and normalized difference 

vegetation index (NDVI) datasets with soft computing models 

85 

 

 

 

 

 

 

 

Figure 4. 2 Classification of the Landuse map of the Brandu River Basin for year 2010. 
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Table 4. 1 Characteristics of the Daggar River sub-basin of the Upper Indus River.  

River flow gauging station Brandu at Daggar 

Longitude 72° 27’ 43’’ 

Latitude 34° 29’ 45’’ 

Altitude of stream gauging station 700 m 

Catchment drainage area 598 km2 

Mean elevation 1112 m 

The Figure 4.1 shows the hydrological characteristics of the catchment. The Brandu River basin is 

mainly the rainfall dominated basin of UIB. The mean monthly flows and SSC varies from 4.6-20.6 

m3/sec and 95-1726 mg/l respectively for the period 1981-2010. The mean annual flows and suspended 

sediment concentration (SSC) of Brandu River are 9.6 m3/sec and 542 mg/l respectively during the 

period 1981-2010. Similarly, the mean basin total monthly rainfall and average temperature estimated 

from grid satellite data varies from 30-160 mm and 0.9-20.2 ºC respectively during the period 1981-

2010. The mean basin total annual rainfall is approximately 1060 mm during the period 1981-2010. 

From the Figure 4.3, which shows that the basin flows and sediment yields of the basin mainly 

depends upon the seasonal spring and summer rainfall of the basin. The basin receives 74% of its 

annual rainfall starting from the springs (March) to the end of summer (October) season. This rainfall 

generates 92% and 87% contribution of annual flows and SSC during these two seasonal periods 

respectively. The Figure 4.3 also shows the monthly variation of normalized difference vegetation 

index (NDVI) with flows, SSC and rainfall. The value of mean monthly basin vegetation index also 

varies from 36% to 55% during the period 1981-2010.  There are two peaks of the NDVI shown with 

the value of 47% and 55% during the months of April and August respectively due to higher monthly 

patterns of rainfall within the basin. The total 70% of the catchment area consists of agriculture and 

grass land majorly dependent upon the amounts of annual rainfall shows its importance in 

generation process of the amount of sediment yields and flows.   

In this study in addition to the flows and SSC shown in the Table 4.2, the spatially distributed rainfall, 

mean temperature and normalized difference vegetation index (NDVI) datasets were used to predict 

the sediment yields of the basin. The grid climatic and NDVI datasets were extracted by using the 

SRTM 30 m DEM provided by (http://srtm.csi.cgiar.org/). The land use map of year 2010 of the Indus 

River is provided by The International Centre for Mountain Development (ICIMOD) 

(http://rds.icimod.org/Home/DataDetail?metadataId=28630). The DEM was used to extract the land 

use map for the study basin.  

The Table 4.3 shows the Pearson correlation of the input and output variables used for this study. 

The cross correlation and partial auto correlation are generally used for lag times input combinations. 

However, these analyses cannot cover the non-linear relationship of input-output variables like 

sediment yields. Due to this reason various input combinations were scrutinized by examining the 

http://srtm.csi.cgiar.org/
http://rds.icimod.org/Home/DataDetail?metadataId=28630
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test accuracy of the model outputs. The five better input combinations were used during this study 

for detailed model development as;   

a. Q    b. Q, T 

c. Q, P    d. Q, P, T 

e. Q, P, T, NDVI 

Where, Q = discharge [m3/day], T = mean temperature [Cº], P = Rainfall [mm/day] and NDVI = 

Normalized difference vegetation index [fractions]. 

Table 4. 2 Collection of data used for prediction of suspended sediment yields of the 

Brandu River the Sub-basin of Upper Indus River. 

Variable Data Source Period Source 

Q 

Daily mean 

discharge  

[m3 s–1] 

Daily, 1981–

2010 

Water and Power Development Authority (WAPDA), 

Pakistan 

SSC 

Suspended 

sediment 

concentration 

[mg l–1] 

Intermittent 

days per 

week 

1981–2010 

Water and Power Development Authority (WAPDA), 

Pakistan 

NDVI 

Normalized 

difference 

vegetation index 

in fractions 

ranging [0–1]  

Weekly/bi 

monthly, 

basin avg. 

1981–2010 

https://ecocast.arc.nasa.gov/data/pub/gimms/3g.v0/ 

 

T 

Daily mean, 

maximum & 

minimum air 

temperature  

[° C] on a 5x5 km 

grid 

Daily, basin 

avg. 

1981–2010 

HI-AWARE project [43, 44] 

P 

Daily mean 

rainfall  

[mm day–1] on a 

5x5 km grid 

Daily, basin 

avg. 

1981–2010 

HI-AWARE project [43, 44] 

 

 

 

 

 

 

https://ecocast.arc.nasa.gov/data/pub/gimms/3g.v0/
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0190224#pone.0190224.ref045
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0190224#pone.0190224.ref045
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Figure 4. 3 Graphical presentations of (a) Discharges (Q), mean basin normalized difference 

vegetation index (NDVI) and suspended sediment concentrations (SSC) (b) mean basin rainfall (R) 

and mean basin average temperature (T) for Brand River basin 

Table 4. 3 Relationship by using Pearson correlation coefficient for input variables of 

Gilgit Basin.  Log Q:  logarithm of water discharges; Log SSY: logarithm of sediment yields; 

SCA: snow covers area: Tavg: mean temperature; P: basin averaged effective rainfall; Evap:  

evapotranspiration. 

Generally, the discharges are important to trigger the amount of sediments by channel erosion 

process. However, in addition to flows the rainfall, temperature and NDVI were also used with their 

different combinations. The rainfall triggers the hillslope erosion, gully erosions and mass wasting 

erosion. The temperature also controls the erosion process by indirect way in terms of leap area index 

etc. Similarly, as the basin is rain fed with most of its area covering the agriculture and grass land 

which could be represented by the NDVI values. The different values of NDVI affect the soil erosion 

process and transport capacity of flows with different friction losses over the periods. The dataset 

was divided into 83% and 17% for training and validation of the model respectively. 

 
Q  

[m3 day–1] 

Log SSY  

[tons day–1] 

NDVI 

[fractions] 

Tavg 

 [° C] 

P 

 [mm] 

Q [m3 day–1] 1     

Log SSY [tons day–1] 0.77 1    

NDVI [fractions] 0.43 0.38 1   

Tavg  [° C] 0.12 0.31 0.45 1  

P [mm] 0.42 0.37 0.14 -0.08 1 
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4.3.2 Artificial neural networks (ANN) 

Artificial neural networks (ANNs) are soft computational models inspired from functions of brain 

nervous system. The development of ANN was originated with understanding of brain working to 

perform the tasks. From 1943-1949 McCulloch et al. and Hebb [19,20] started initially to design the 

neural model with ANN architectures called as ‘’postulate of learning’’ for biological focused 

research purposes. The design of ANN during that was pure for biological research purposes rather 

than its focus with any computational ability. However, Rosenblatt et al. [21] expanded the work on 

neural model with introduction of perceptron learning theorem known as single layer feed forward 

neural network. Later on, Minsky at al. [22] explained the limitations of perceptron learning theorem 

with emphasizing on need of the extra computational layer in the model. In 1974 the backpropagation 

algorithm was developed during the Ph. D thesis by Werbos [23]. The significant development was 

made after 1980 by adding one more layer to single layer perceptron. This was known as multilayer 

perceptron learning algorithm.  This multilayer perceptron learning algorithm gained the popularity 

by the research of Rumelhart et al. [24] in 1986.  

Generally, ANN consists of three layers in a parallel system connected with the set of processing 

elements called as neurons functioning with the concept of brain nervous system of human body. 

These neurons or processing elements store the information and knowledge for computational 

purposes. The first layer of ANN is called input layer, second known as hidden (processing) layer 

and third layer is known as output layer. This system of parallel layers connected with number of 

neurons in each layer is known as Multilayer Perceptron (MLP). The Figure 4.4 further explains the 

basic architectures of the MLP ANN consisting of three layers. The literature [25, 26, 27, 28, 29, 30] 

further gives the explanation about the details of ANN model and its application in water sciences. 

The output layer generates the output for each network and then error between observed and 

network output is estimated. This output error is back-propagated for correction of weights in 

processing or hidden layer until the minimum errors between observed output and model output is 

optimized.  

The performance of ANN model is dependent upon the number of neurons in hidden layer. The 

section of the number of neurons is important to avoid the over and under fittings of network. The 

optimum neurons should be in the range of  2√N1 + N0  where N1 and N0 are the number of input 

and output neurons respectively. 
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Figure 4. 4 Schematic diagram of ANN Model for prediction of sediment yields with one hidden 

layer. 

In the present study ANN with (a) Levenberg-Marquardt (LM) (b) Bayesian Regularization (BR) (c) 

Gradient Descent (GD) (d) Scaled Conjugate Gradient (SGD) algorithms has been used to predict the 

sediment yields. The detailed information about the ANN could be found from the literature [31].  

4.3.3 Adaptive neuro-fuzzy logic inference system (ANFIS) 

The Adaptive neuro fuzzy logic inference system (ANFIS) is a novel architecture. It is the 

combinations of neural networks and fuzzy inference systems (FIS). The Figure 4.5 shows the basic 

[32] structure of ANFIS model. In ANFIS databased modelling the parameters of FIS are tuned up by 

using the neural network learning method. The ANFIS consist of a network structure which is 

connected with number of neurons. These neurons are characterized with fixed or adjustable 

parameters. The ANFIS translate the inputs parameters to the output values by fuzzy logic if-then 

rules with appropriate membership functions in ANN method. Three inference systems are classified 

as Tsukamoto’s, Mamdani’s and Sugeno’s systems. The Mamdani’s system [33] is mostly used in 

past. However, the Sugeno’s system [34] is more efficient than other systems. In this study Sugeno’s 

fuzzy logic structures has been used. 

As an example, it’s assumed that a FIS have two inputs x1 and x2 with target values of z. Here, inputs 

of discharge and NDVI can be supposed as x1 and x2 with output z as sediment yield for a particular 

time t. Then in Sugeno’s fuzzy logic structures typical rule set with two IF/THEN rules are expressed 

as: 

Rule 1: IF x1 is A1 and x2 is B1, THEN    𝑧1 = 𝑓1 = 𝑝1 𝑥1 + 𝑞1 𝑥2+𝑟1    (1) 

 

Rule2: IF x1 is A2 and x2 is B2, THEN     𝑧2 = 𝑓2 = 𝑝2 𝑥1 + 𝑞2 𝑥2+𝑟2   (2) 

Where pi, qi and ri are parameters corresponding to rule 1, Rule 2… Rule n.  

The ANFIS model consists of five layers. 
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Layer 1 

In first layer each node generates a membership grade for each input’s variable. The output of ith node 

with generalized bell membership function in first layer is expressed as: 

  

𝑂𝑖1 = 𝜇 𝐴𝑖(𝑥1) =  
1

1+((𝑥1−𝑐𝑖))⁄𝑎𝑖)
2𝑁𝑖       (3) 

Where, {ai, ci, Ni} are the parameter sets for x1 input in ith node. These parameters change the shape of 

bell function in the range of 0-1. 

Layer 2  

The layer 2 is labeled with II in each node. In this layer every node multiplies the incoming signals 

coming from layer 1 as: 

𝑂𝑖2 =  𝑤𝑖 =  𝜇 𝐴𝑖(𝑥1)  ×𝜇 𝐵𝑖(𝑥2)  ,  i = 1, 2     (4) 

Layer 3 

In layer 3 every node calculates the normalized firing strength as its relationship between firing 

strength of ith rule to the sum of all rules: 

𝑂𝑖3 = 𝑤̅ =
𝑤

𝑤1+𝑤2
     i = 1, 2   (5) 

Layer 4 

In layer 4 the sum of signals from second- and third-layers networks are calculated for each ith node 

towards the model output as: 

𝑂𝑖4 = 𝑤̅𝑖𝑓𝑖 = 𝑤̅𝑖(𝑝𝑖  𝑥1 + 𝑞𝑖  𝑥2+𝑟𝑖)                          i = 1, 2    (6) 

Here, 𝑤̅ is the output from layer 3 in this equation. 

Layer 5  

Layer 5 calculates the overall output in the form of single node as the ANIFS model output against 

each target value as:  

 𝑂𝑖5 =  𝛴𝑤̅𝑖𝑓𝑖 =
𝛴𝑤̅𝑖𝑓𝑖

𝛴𝑤̅𝑖
     i = 1, 2    (7) 
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Figure 4. 5 Schematic diagram of ANFIS Model for prediction of sediment yields with two 

inputs. 

This study used the hybrid learning method for determining model parameters of ANFIS. From the 

literature [35] the detail procedure and further information about ANFIS model can be found. For the 

current study three hybrid strategies of ANFIS model were used to produce the FIS. These strategies 

are named as grid partition (ANFIS-GP), subtractive clustering (ANFIS-SC) and fuzzy c-means 

clustering (ANFIS-FCM).  

The ANFIS-GP is the combination of ANFIS and grid partition. The grid partition does the partition 

of the input linguistic variables by selecting appropriate combination of fuzzy numbers with its 

membership functions (MFs). In grid partition MFs are optimized according to input-output datasets 

starting from predefined number of MFs.  The quantitative characteristics of datasets are divided into 

n partitions (n = 2, 3, 4…). In the current study eight MFs were used such as gaussmf, gauss2mf, trimf, 

trapmf, gbellmf, pimf, dsig, mf and psigmf. In AFNIS-GP model the number of rules has an 

exponential relationship with the number of input variables. The details about the ANFIS-GP can be 

found from the literature [32].    

The ANFIS-SC model is the extended model derived from mountain clustering model [36]. It is 

combination of ANFIS model with subtractive clustering strategy. This model was later modified by 

Chiu [37].  The ANFIS-SC model has an advantage over mountain clustering method with the 

reduction of complex computations of mountain clustering.  In ANFIS-SC model every data input 

combination is considered as potential cluster. The potential of each datasets is calculated by its 

distance from other data points in datasets. The value of influential radius is important to decide the 

number of clusters in the ANFIS-SC model. The smaller value of influential radius describes a greater 

number of clusters with more rules in comparison to its large value [38]. The critical value of 

influential radius during data space clustering procedure is determined by hit and trial methods. The 

detailed information and procedure of ANFIS-SC model can be found in the literature [39,40].  

The ANFIS-FCM model was proposed [41, 42, 43, 44, 45] in the literature and enhanced by Zhang 

and Chen [46]. The ANFIS-FCM minimizes the errors by partitioning the X datasets into C clusters. 

This method reduced the errors regarding weighted distance of each data point xi towards all the 

centroids of the C clusters. After this the ANFIS-FCM model minimizes the objective function as: 
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𝑀𝑖𝑛 𝐽𝐹𝐶𝑀 = ∑∑𝑤𝑝
𝑖𝑐‖𝑥𝑖− 𝑣𝑐‖

2
𝑁

𝑖=1

𝐶

𝑐=1

   𝑠. 𝑡.∑  

𝐶

𝑐=1

𝑤𝑖𝑐 = 1, 𝑖 = 1, 2, … , 𝑁                                     (8) 

Where C, N, wic, v and x are number of clusters, number of data points, degree belongs to i th data 

point of Cith clusters data points and inputs data sets. The p (p > 1) entitles to the fuzzifier exponent. 

In ANFIS-FCM wic is calculated as: 

𝑤𝑖𝑐  = 
1

∑ (
𝑑𝑖𝑐

2

𝑑𝑖𝑗
2⁄ )
1
(𝑝−1)⁄𝑐

𝑖=1

     𝑓𝑜𝑟 𝑖 = 1, 2, …𝑁 𝑎𝑛𝑑 𝑐 = 1,2, …𝐶                                          (9)   

In FCM model after initialization of centre vectors, centres are recomputed as: 

𝑣𝑐  = 
∑ 𝑤𝑝

𝐽𝑐 𝑥𝑗
𝑁
𝑗=1

∑ 𝑤𝑝
𝐽𝑐

𝑁
𝑗=1

     𝑓𝑜𝑟 𝑐 = 1, 2, …𝑁 𝑎𝑛𝑑 1 < 𝑝 > 𝑁                                                         (10)                 

The algorithm is run until convergence condition is completed.  

4.3.4 Sediment rating curve (SRC) 

The sediment rating curve is an empirical relationship of flows and sediment load or concentrations 

described as: 

𝑆𝑆𝐿(𝑡) = 𝑎 × 𝑄
𝑏
(𝑡)                                                                                                                                (11)                 

Where Q [m3/day] is discharge, SSL [tons/day] both in log transformation form and a & b are the 

constants depends upon the characteristics of river and its catchments.  

4.3.5 Performance measurement metrics for model evaluation  

The performance of models was measured and assed using following statistics: 

a. Pearson’s correlation coefficient (R2) 

𝑅2     =

(

 
∑ (𝑆𝑖0 − 𝑆𝑖𝑜̅̅ ̅̅ )(𝑆𝑖𝑠 − 𝑆𝑖𝑠̅̅̅̅ )
𝑁
𝑖=1

√∑ (𝑆𝑖0 − 𝑆𝑖𝑜̅̅ ̅̅ )
2𝑁

𝑖=1 ∑ (𝑆𝑖𝑠 − 𝑆𝑖𝑠̅̅̅̅ )
2𝑁

𝑖=1 )

 

2

                                                                         (12)   

Where N refers the data quantity, Sio is observed sediment and Sis is the simulated sediments and 𝑆𝑖𝑠̅̅̅̅  

is mean of simulated sediments.  

b. Root mean square error (RMSE) 

 

𝑅𝑀𝑆𝐸 = √
1

𝑁
 ∑ ((𝑆𝑖𝑜) − (𝑆𝑖𝑠)) 

2𝑁
𝑖=1                                                                                                (13)                                                 

 

c. Nash-Sutcliffe efficiency (NSE) 
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𝑁𝑆𝐸 = 1 − 
∑ (𝑆𝑖𝑜 − 𝑆𝑖𝑠)

2𝑁
𝑡=1  

∑ (𝑆𝑖𝑠 − 𝑆𝑖𝑠̅̅̅̅ )
2𝑁

𝑡=1  
   − ∞  ≤ 𝑁𝑆𝐸 ≤ 1                                                                    (14) 

4.4 Results and Discussions 

4.4.1 Relationships of NDVI between SSY, runoff and rainfall 

The different distribution of land cover in the catchment has different size of impact on soil erosion 

process due to its variation of vegetative friction controlling the flows and eroding the sol in 

catchment. The Figure 4.6 shows the annual time series of flows, suspended sediment yields, 

normalized difference vegetation Index (NDVI) and rainfall since 1981-2010 in the Brandu River 

basin. The Figure 4.6 shows that the SSY is producing the similar pattern of trend as the flows, rainfall 

and partially NDVI both during wet and dry year period. However, normalized difference vegetation 

index (NDVI) is increasing after year 2000 opposite to the SSY, flows and rainfall trend. This increase 

in vegetation index is probably due to increase in the furrow agriculture area. The SSY is probably 

majorly controlled by the annual rainfall, flows generation and partially the land utilization for 

agriculture or vegetation in the catchment.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. 6 Comparison among the annual flows (Q), suspended sediment yields (SSY), 

normalized difference vegetation Index (NDVI) and rainfall (mm) in the Brandu River basin.  

4.4.2 ANN and ANFIS model results 

In this study several input combinations were used to predict the sediment yields for Brandu River 

basin. The selection of input variable was decided with the best training and testing results of ANN 

and ANFIS networks. The Table 4.4 shows the results of the ANN models using four different feed 

forward back propogation alogithim for five bestl input combinations. The ANN model shows the 

better accuracies with input combinations of flows (Q), precipitation (P) and temperature (T) by using 

the Leveneberg-Marquardt (LM). 

Similarly, Table 4.5 shows the training and test results of three ANFIS models embeded with grid 

partition (ANFIS-GP), subtractive clustering (ANFIS-SC) and fuzzy c-means clustering (ANFIS-FCM) 
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with five input combinations. The ANFIS model embeded with grid partition (ANFIS-GP) gives 

better results with input combinations of flows (Q) and precipitation (P).  

Table 4. 4 Training and testing statistics of ANN model embedded with Levenberg-

Marquardt (LM), Bayesian Regularization (BR), Gradient Descent (GD) and Scaled 

Conjugate Gradient (SCG) algorithms for Brandu River. 

Table 4.4 shows that ANN-LM algorithm with the input combination of flows, precipitation and 

mean air temperature given minimum value of RMSE as 6,472 tons/day and 5,573 tons/day during 

training and testing period respectively. The optimum numbers of neurons were 13 with radbas and 

tansig as input and output transfer functions during this network respectively. Similarly, ANN-BR 

algorithmic also performed better with the input combination of flows, precipitation and mean air 

temperature. The minimum value of RMSE was 6,829 tons/day and 5,773 tons/day respectively 

during training and testing of the network. The optimum numbers of neurons were 5 having logsig 

and purelin as input and output transfer functions during this network. The ANN-GD performed 

better with input combination of flows and precipitation having RMSE of 14,032 tons/day and 8,438 

tons/day during training and testing phase respectively. This network performed better at 13 

optimum numbers of neurons with purelin and tansig as its input and output transfer functions. The 

ANN-SCG model performed better with input combinations of flows and mean air temperature 

showing the value of RMSE as 7,082 tons/day and 5,606 tons/day during training and testing of the 

Learning 

method 

Model 

inputs 
Neurons 

Transfer 

function 
R2 

RMSE 

(tons/day) 
NSE 

Input Output Train Test Train Test Train test 

LM 

Q 3 radbas purelin 0.74 0.75 10,476 5,600 0.74 0.75 

Q, T 4 radbas purelin 0.70 0.73 11,234 5,850 0.70 0.72 

Q, P 9 radbas purelin 0.81 0.74 9,004 5,678 0.81 0.74 

Q, P, T 13 radbas tansig 0.90 0.77 6,472 5,573 0.90 0.75 

Q, P, T, 

NDVI 
5 logsig purelin 0.88 0.73 6892 6564 0.88 0.65 

BR 

Q 8 radbas purelin 0.82 0.69 8,638 8,364 0.82 0.67 

Q, T 4 logsig tansig 0.89 0.70 6,716 6,131 0.89 0.7 

Q, P 4 radbas purelin 0.84 0.69 8,166 6,219 0.84 0.69 

Q, P, T 5 logsig purelin 0.89 0.74 6,829 5,773 0.89 0.73 

Q, P, T, 

NDVI 
3 radbas tansig 0.80 0.72 8963 6138 0.80 0.7 

GD 

Q 1 purelin tansig 0.60 0.55 14,844 9,001 0.47 0.35 

Q, T 4 purelin tansig 0.63 0.56 18,449 10,134 0.18 0.17 

Q, P 13 purelin tansig 0.56 0.55 14,032 8,438 0.53 0.43 

Q, P, T 15 purelin tansig 0.56 0.57 15,856 8,864 0.40 0.37 

Q, P, T, 

NDVI 
20 purelin tansig 0.54 0.54 14,162 7,797 0.52 0.51 

SCG 

Q 8 radbas tansig 0.82 0.71 8,620 6,139 0.82 0.7 

Q, T 5 tansig tansig 0.88 0.77 7,082 5,606 0.88 0.75 

Q, P 4 tansig tansig 0.83 0.70 8,364 6,259 0.83 0.68 

Q, P, T 4 tansig tansig 0.88 0.70 7,001 6,118 0.88 0.7 

Q, P, T, 

NDVI 
4 tansig tansig 0.88 0.63 6855 6,929 0.88 0.61 
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model respectively. This network selected 5 optimum numbers of neurons with tansig as its transfer 

functions both in input and output layers.  

Table 4. 5 Training and testing statistics of AFIS model embedded with grid partition 

(GP), subtractive clustering (SC), fuzzy c-means (FCM) clustering algorithms and SRC 

model for Brandu River. 

Learning 

method 

Model 

inputs 

Member  

Function 

Transfer 

function 
R2 

RMSE 

(tons/day) 
NSE 

 Train Test Train Test Train test 

GP Q 5 gaussmf 0.74 0.85 9,867 7,170 0.74 0.85 
 Q, T 3 gaussmf 0.75 0.84 10,139 6,158 0.75 0.72 
 Q, P 2 gbellmf 0.71 0.85 10,865 4,603 0.71 0.84 
 Q, P, T 2 gaussmf 0.70 0.79 12,937 7,244 0.60 0.63 

 Q, P, T, 

NDVI 

2 
dsigmf 0.70 0.86 12717 6533 0.60 0.80 

SC Q 0.14 radii 0.66 0.50 12,220 9,842 0.63 0.48 
 Q, T 0.25 radii 0.64 0.69 12,120 6,437 0.64 0.67 
 Q, P 0.11 radii 0.62 0.72 14,720 9,915 0.43 0.68 
 Q, P, T 0.25 radii 0.62 0.76 13,571 8,623 0.52 0.76 

 Q, P, T, 

NDVI 

0.6 
radii 0.56 0.58 13541 7748 0.56 0.6 

FCM Q 3 No.Clust. 0.77 0.71 12,918 6,800 0.77 0.71 
 Q, T 5 No.Clust. 0.63 0.67 8,994 10,696 0.63 0.67 
 Q, P 3 No.Clust. 0.63 0.67 12,330 6,803 0.63 0.67 
 Q, P, T 7 No.Clust. 0.51 0.71 14,439 5,379 0.63 0.72 

 Q, P, T, 

NDVI 

9 
No.Clust. 0.63 0.65 12,346 6,599 0.72 0.76 

SRC Q - - 0.61 0.55 12,934 7,512 0.60 0.55 

Table 4.5 shows the results that the ANFIS-GP hybrid model performed better with input network of 

flows and precipitation having the RMSE of 10,865 tons/day and 4,603 tons/day during training and 

testing of network.  This network was trained with 2 numbers of membership functions and gbellmf 

as its transfer function. The ANFIS-SC model shows the better results having flows and means air 

temperature as its model inputs. This model network shows the value of RMSE as 12,120 tons/day 

and 6,437 tons/day during the training and testing phase. This network performed better with 

influence radius of 0.25 as model parameter. Similarly, the ANN-FCM model performs better with 

only flow as input combination having RMSE of 12,918 tons/day and 6,800 tons/day during training 

and testing period. The model selected 3 optimum numbers of clusters during its best performance.  

The Figure 4.7 also shows the RMSE statistics of ANN-LM, ANN- BR, ANN-GDS, ANN-SCG, ANFIS-

GP, ANFIS-SC and ANFIS-FCM models for comparing the results with five input combinations 

during testing phase. The Figure 4.7 illustrates that the ANFIS-SC model performed better than other 

models during testing period. The ANFIS-SC model has shown the minimum value of RMSE with 

flows and precipitation as its input combination.  
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Figure 4. 7 Comparison of ANN-LM, ANN- BR, ANN-GDS, ANN-SCG, ANFIS-GP, ANFIS-SC 

and ANFIS-FCM models by RMSE statistics during testing period in the Brandu River basin.  

4.4.3 SRC model results 

The SRC equation obtained from 83% of datasets after optimization of over and under fitting of the 

model for training and testing of model is given as: 

SSY = 3E-10 × Q^2.0129       (15) 

Where SSY = tons/day and Q = m3/day 

From Table 4.5 the SRC shows the value of RMSE as 12,934 tons/day and 7,512 tons/day during 

training and testing phase respectively.  

4.4.4 Discussion 

The Figure 4.8 shows the monthly time series plot during testing period to compare the performance 

of best networks by using ANN, ANFIS and SRC modelling approaches. During the testing phase 

the ANFIS model embedded with grid partition (GP) performance better than all other models during 

the peak values of SSY. The ANFIS-GP simulates the SSY in very close pattern to the measured 

sediment loads at peak seasonal period starting from the month of June and ending in September. 

However, the ANFIS-GP overestimates the SSY during the spring months March-May. Similarly, the 

ANN-LM algorithm also simulated the SSY close to measured SSY during the months of June and 

July.  During late winters in the months of Jan-Feb the ANFIS –GP and SRC model performs better 
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than ANN-LM algorithm. Generally, SRC underestimated the SSY during high peak months of 

sediment load generation period.  

 

 

 

 

Figure 4. 8 Comparison of best performance of networks developed from the ANN, ANFIS and 

SRC models during testing period in the Brandu River basin.  
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Figure 4. 9 Overall Comparison of the monthly measured SSY with the best outputs of SRC, 

ANN and ANFIS models at Brandu River since 1981-2010.  

Similarly, the Figure 4.9 shows the overall comparison of the best performed SRC, ANN-LM, and 

ANFIS-GP with the measured sediment loads for whole month time series since 1981-2010. The 

ANN-LM and ANFIS-GP simulated the sediment loads very closed to measure SSY during almost 

all peak values. However, the SRC performance was less than ANN-LM and ANFIS-GP. The 

difference in the performance of these different models is due to difference in their model parameters, 

transfer functions as well as input combinations to build the network.    

The Figure 4.10 shows the scatter plot of daily measured and simulated sediment loads for overall 

period since 1981-2010. The Scatter plot between measured SSY and simulated SSY of SRC model 

shows the value of correlation coefficient with R2 as 0.60 for whole period since 1981-2010. Similarly, 

the scatter plot between measured SSY and ANN-LM modeled SSY loads show value of correlation 

coefficient with R2 as 0.89 for the period 1981-2010. The scatter plot of measured SSY and simulated 

SSY of ANFIS-GP shows the R2 value of correlation coefficient with R2 as 0.72 for whole of the period 

since 1981-2010. 

 
 

 

Figure 4. 10 Overall Comparison of the monthly measured SSY with the best outputs of SRC, ANN and 

ANFIS models at Brandu River since 1981-2010.  

4.5 Conclusion 

This study was formulated to develop the database sediment yield prediction model using the input 

of rainfall, temperature and NDVI for Brandu River catchment in Upper Indus Basin (UIB), Pakistan. 

The objective of study was to check the effectiveness of grid climatic inputs as rainfall and mean air 

temperature, along with NDVI as biophysical parameter in addition to stream flows to develop the 
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suitable modelling approach in Brandu River catchment. The selection of these input variables was 

decided based on the understanding made from hydrological and land use characteristics of the 

catchment. For this study the hydro-climatic and biophysical input of NDVI were used to test the 

applicability of ANN-LM, ANN-BR, ANN-GD, ANN-SCG, ANFIS-GP, ANFIS-SC and ANFIS-FCM 

databased models. From the results of this study it was concluded that prediction of daily SSY was 

not improved by using the biophysical NDVI in addition to hydro-climatic inputs. However, the 

ANFIS-GP performed best during testing period with input combination of flows and precipitation. 

For overall comparison between the four ANN, three ANFIS and one SRC modelling approach, the 

ANN-LM performed best with daily inputs of flows, precipitation and mean air temperature for the 

period 1981-2010 at Brandu River. The overall accuracy of R2 was improved by 28% of SRC by using 

the ANN-LM model for whole period since 1981-2010 with input combinations of flows, precipitation 

and mean air temperature. Similarly, the ANFIS-GP model improved the accuracy of sediment rating 

curve R2 by 11.5% since 1981-2010 with input combination of flows and precipitation. The 

performance of NDVI was poor probably due to the linear interpolation of by monthly NDVI to 

extract the daily values of NDVI or less domination factor of biophysical parameters or combination 

of both for sediment generation process. Further studies would be required to check the applicability 

of NDVI on monthly time scale as well as by using the other data-based model such as support vector 

machine (SVM), Multivariate adaptive regression splines (MARS) etc. for prediction of sediment 

loads. For development of reliable databased models, the preparation of suitable input variables and 

its high data quality is very important. In the present research availability of reliable high quality 

remotely sensed biophysical input of NDVI and hydro-climatic information could be its limited 

factors. 
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Chapter 5- Climate signaling in suspended sediment exports from 

Glacier and Snow Melts Sub-basins in the Upper Indus Basin (UIB) 

5.1 Abstract 

Exports of suspended sediments concentrations (SSC) during past decades from glaciers and snow 

dominated sub-basins in UIB is sensitive to the number of factors such as: changes of climate, 

activation-deactivation of sediment sources (proglacial area, hillslopes, gullies, river channel/banks 

etc.) and transport dynamics of sediment fluxes though fluvial river system.  The present research 

outcome reports a non-significant slight decrease of annual SSC in Gilgit basin contrary to the 

increase of annual SSC in Astore basin of UIB during the period 1981-2010. The possible decrease of 

SSC in snow-glacier dominated Gilgit basin measured at the outlet of the basin is explored with an 

explanation of increase of mean air temperature and precipitations. Similarly, the increase of SSC in 

Astore basin is explained with the increase of mean air temperature and decrease of precipitations in 

snow fed dominated basin. The exports of sediments in both the basins is explained in context of 

changes in channel discharges (transport capacity, activation-deactivation of potential sources of 

sediment supplies due to changes of climate. The increase/decrease of SSC is due to erosions process 

of spatially distributed precipitations and temperature derived snow melts rate, snow cover fractions, 

effective rainfall and ice melts rate simulated with temperature index model. The erosion process due 

to snow melts, snow cover fractions, ice melts etc. are critical analyzed and explained. The results of 

Mann-Kendall Trend test show an increase of winter precipitations, snow melts, stream discharges 

and SSC due to warming of temperature in Gilgit basin as well in Astore basin. However, during late 

spring seasons the precipitations increased significantly in Gilgit basin contrary to its significantly 

reductions in Astore basin, which resulted in an increase of snow cover fractions in Gilgit and 

reductions of its in Astore basin respectively. In the Gilgit basin during summers the combined effect 

of Karakorum climate anomaly and increased snow cover area reduced the supplies of sediments at 

the outlet due to covering of exposed proglacial landscape, reduced debris flows and reduced snow 

melts from debris glaciers. However, in the Astore due to warming of mean air temperature, 

reduction of springs precipitations, increase of effective rainfall and reduction of early summer snow 

cover resulted in an increase of SSC. In the results the hydrological shift of glacier to the snow and 

snow to the rainfall dominations for transport of fine sediments has been noticed for Gilgit and Astore 

basin respectively. In conclusion its particular to include the relevancy of climate changes in UIB on 

stream discharges, sediment budgeting and its prediction in future  
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5.2 Introduction 

Erosion of sediment yields are determined by four major factors (i) climate; (ii) land use; (iii) geology; 

and (iv) relief [1]. The climate changes, land use and earth surface evolution process respond to the 

denudation rates of drainage basins [2,3,4,5.6]. To understand the landscape evolution process in 

generation of orogenic erosions rates the knowledge about geological forcing, crustal thickness and 

glacier inheritance is important [7]. At global level the amount of discharges and basin relief 

characteristics are also strong factors to generate the sediment yields [8,9,10,11,12,13,14].  Khawaja 

F.A et al. [15] concluded that percentage of snow cover/ice cover (LCs) as a single independent 

variable explains 73.4% of the variance in sediment yields in Upper Indus Basin (UIB). He also 

furtherly explained that combination of percentage of snow cover/ice cover (LCs), climatic variables 

and relief represent the 98.5% variance of sediment yields in UIB. The glaciers of Himalayas covered 

with debris materials are evacuated from subglacial traction zone are primary source of sediment 

generations [16,17]. The amount of sediments generated depends upon long/short term storage and 

seasonal/diurnal variations of flow regime and seasonal influence of climate upon the glaciers 

[18,19,20]. Retrieval of glaciers [21,22,23] in UIB due to Karakorum Climate Anomaly [24,25] is 

reducing the summer sediment loads [26,27,28] along with less amount of seasonal discharges. 

Anthropogenic impacts on sediment yield is a recent consideration worldwide, and on global scale it 

covers the land cover/use changes due to deforestation, urbanization, increase of agriculture land, 

trapping the sediments in dams and hydro-power project etc. [29]. The anthropogenic activities 

impact the production of fine sediments in the basin [30,31]. Human activities are changing the 

amounts of sediment yields of the world’s rivers by increasing the soil erodibility of river systems 

and decreasing the sediment fluxes to the coastal delta due to upstream retention of sediments in 

water reservoirs [29,32,33]. Moreover, Glazyrin et al. and Evans M. [2,34] highlighted the importance 

of seismic and tectonics activities, solid precipitations, glacier dominance, and catchment lithology.  

The focus of present research work is on the dominating role of climatic factors [23,26,27,28] which 

start erosions process and transports the sediments in two selected snow/glacier dominated sub-

basins in UIB environment. The premise of this work explains the impact of climate changes during 

past three decades on generations of sediment yields in alpine environment of UIB. The erosions 

process depends mainly on transport capacity of the channel and supply of sediments from its 

sources. The supply of sediments is dependent upon spatial location of sediments and process (glacial 

erosion, subglacial erosion, hillslope/sheet erosion, channel bed/bank erosion and mass 

wasting/landslides etc.) involved in transporting the sediment. 

In this study the investigations looked at the specific erosion sources along with process-based 

perspective which depends upon the variations in hydroclimatic/land use (e.g. precipitation, snow 

cover, mean air temperature and runoff) conditions. The aim was to infer the effect of possible 

variation in hydroclimatic/land use parameters such as precipitations and its intensity, snow cover, 

increase/decrease of mean air temperature and flows on the sediment yields of the basin. Here, four 

major sediment sources were identifying; glacial erosion, hillslope/sheet erosion, river bed/bank 

erosion and landslides/mass wasting (rock falls, debris flows). Climatic and land use conditions such 

as precipitations, snow cover and mean air temperature activates these sources through different 

erosion process. At the base of glaciers, the abrasion of rocks/soil, bed rock fracture, and plucking 
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transport large amount of sediments to proglacial area during glacial erosion [35]. The subglacial part 

of glacier erosion covered with debris material evacuates the higher amount of sediments 

[16,17,36,37]. Moreover, the role of proglacial area during the spring/summer seasonal snow melts/ice 

melts and intense rainfall on snow free may entertain the erosion process, provided that the proglacial 

area is connected to river streams network [38]. The overland runoff and intensive rainfall erode the 

sediments as hillslope/sheet erosions from the permanently or partially frozen rock/soil [39]. During 

Autumns/Summer season intense rainfall may erode the sediments in the form of gully and rills 

where the sub catchments of UIB are largely snow free/bare soil. The rain storms trigger the mass 

wasting/landslides and debris flows and other mass movements [40,41]. Then other parameters in 

channel such as shear stresses, stream power and river morphology determine the channel sediment 

transport capacity and movements of sediments, hence this phenomenon transports the sediment to 

outlet of the catchment.  

The investigations to find the linkages of precipitations, mean air temperature, area of snow cover 

variations and changes of flow dynamics in context of sediment transports of UIB is critical under 

current climate/snow cover changes. In some part of UIB due to Karakorum climate anomaly glaciers 

are either stable/expanding during past few decades [24,25]. In UIB together with stabilization or 

expansion of glaciers, an increase in the annual/seasonal snow cover area has been observed during 

past decades. [42,43,44,45,46,47].  

The glacier and snow melts dominated Gilgit and Astore sub-basins of UIB lies in Hindukush and 

Western Himalayas respectively. Both the sub-basins drain into the main Indus River in the upstream 

of the Tarbela reservoir. The objective of this research is to explore the impact of climate 

warming/cooling on the dynamics of fine sediments transports in UIB. In this investigation the 

hydroclimatic forcing were conceptualized with the activation/deactivation of spatially distribution 

of sediment sources in Gilgit and Astore sub-basins. 

In addition to flows as transport capacity of the channel, this study also considered the other four 

important hydroclimatic factors: (i) melting of ice (IM), evacuation of fine sediments and production 

of the glacial erosion through subglacial channel [16,17,18,19,48]; (ii)  Snow cover fractions (SCF), 

impacts the amounts of ice melts  through increase/decrease of albedo results in decrease/increase of 

ablation process and glacial basal velocity [38,49]; (iii) melting of snow (SM) from snow covered area, 

generates hillslope/sheet erosion in downstream as well as channel erosions [50]; (iv) effective rainfall 

(ER) i.e. liquid precipitation, activates hillslope/sheet erosion, landslides/mass wasting and channel 

erosion due to increase in upstream discharges [40,41]. The main objectives in this investigation are 

(a) estimation of ice melts (IM), snow melts (SM), snow cover fractions (SCF) and effective rainfall 

(ER) in both the sub-basins since 1981-2010 b) trend estimations for flows, suspended sediments, ice 

melts (IM), snow melts (SM), snow cover fractions (SCF) and effective rainfall (ER) (c) critical analysis 

of the possible reasoning for increase/decrease of sediments and flows trends in relation to four 

selected process. 
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5.3 Data Collection and Methodology 

5.3.1 Study area and data collections 

Two sub-basins of UIB, snow and glacier fed Gilgit sub-basin and mainly snow fed Astore sub-basin 

were selected to calibrate and validate the snow and ice melts of temperature-Index model. The 

characteristics of 12681 km2 Gilgit River (snow and glacier fed) basin were also compared with the 

4019 km2 Astore River (snow-fed) basin shown in Figure 5.1. The snow and glacier melts from 

Hindukush and partially the glaciers of Karakorum ranges contribute to the Gilgit River sub-basin of 

UIB [46]. The Astore River sub-basin is north oriented snow-fed regime, lower and mid altitudes, 

compared to the south oriented Gilgit River sub-basin with high altitudes [45,46]. The Gilgit and 

Astore Rivers are both influenced by westerlies climate regime but slightly in a different pattern. The 

flows of Gilgit River mainly depend upon the westerlies winter snow falls that generates the high 

discharges in summer snow melts. Whereas the Astore River flows are driven by both the winter and 

spring rainfall at lower elevations. These rainfalls in Astore River catchment combines with winter 

snow falls by westerlies climate regime to generate the discharges in the basin. The discharges and 

rainfall regime of Gilgit and Astore basin are shown in Figure 5.2a. It shows that Astore basin is 

wetter than the Gilgit basin.  

The Table 5.1 summarizes the difference between the features of Gilgit and Astore Rivers basins. The 

ASTER Global DIGITAL ELEVATION MODEL (ASTR-GDEM) of 30 m resolution was used to 

delineate the watershed area. The Gilgit and Astore basins differ in their relative distribution of ≤3300, 

3301-4300, and >4300 m of altitudinal zones: 17%, 39% and 44% respectively, for Gilgit basin; 16%, 

50% and 34% for Astore basin. Gilgit and Astore basins have 5-7% of its catchment area above 5000 

m [46]. The elevation ranges of Gilgit and Astore basins vary from 1454-7048 m a.s.l and 1580-8058 m 

a.s.l respectively. The Gilgit and Astore basins area covered with glaciers area of 1327 km2 (10.9%) 

and 328 km2 (8.2%) respectively. The Table 5.2 shows the information of the data collected in current 

research for the period 1981-2010. The Gilgit and Astore mean basin grid precipitations are 670 

mm/year and 670 mm/year respectively. In both the basin rainfall are strongly influenced by the 

orography, blowing and drifting of solid precipitations and terrain characteristics etc. The ranges of 

averaged basin mean temperatures of Gilgit and Astore catchments are -16.70 to 5.70 ºC and 16.70 to 

4.47 ºC respectively (Fig. 5.2b). The Gilgit and Astore basins mean annual runoff are 291 and 241 

m3/sec respectively. The Gilgit basin is covered with 86% of its area with snows during winter which 

is depleted in summer’s ablation period to the 12%. Similarly, The Astore basin is also covered with 

90% of its area with snows during winter and reduces to 9% during summer’s season. 

Table 5.2 represents the datasets of variables collected, analyzed and simulated in this research. Daily 

flows and intermittent daily suspended sediment concentrations (SSC) for the period 1981-2010 was 

collected from the Water and Power Development Authority (WAPDA) of Pakistan. The grid data of 

precipitation and temperature of 5 × 5 km resolution determined in the HI-AWARE project for the 

Indus, Ganges, and Brahmaputra river basins were collected [51,52]. The Shuttle Radar Topography 

Mission’s (SRTM) digital elevation model (DEM) data of 30-m resolution were applied as well. The 

mean basin precipitation data were extracted from the corrected rainfall data of the HI-AWARE 

project using DEM. Estimation of glacier areas was based on the glacier polygons of the Global Land 
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Ice Measurement (GLIMS) database. In this study, DEM is used to estimate the glacier area for each 

sub-basin from downloaded GLIMS polygons [53]. Snow cover maps derived from satellite imagery 

8-day product MOD10A2 retrieved from Moderate Imaging Spectroradiometer (MODIS) 500 m 

resolutions were collected for the period 2000-2010. The procedure of previous literatures [46,43] to 

retrieve the snow cover area from snow cover product MOD10A2 was used to find snow cover 

fractions from by weekly MODIS images. The linearly interpolation between by weekly snow cover 

fractions was carried out to find the missing information of remaining days.  

5.3.2 Methodology 

The objectives of present work are to explore the impact of climate on dynamics of suspended 

sediments for Gilgit (glacier and snow-fed) and Astore (rainfall & snow) dominated basins during 

the period 1981-2010. The Table 5.2 describes the observed/simulated hydroclimatic and sediment 

transport variables. The Table 5.2 enlists the observed variables of discharges (Q), suspended 

sediment concentrations (SSC), mean basin precipitation (P) and mean basin temperatures (T); 

simulated spatially distributed snow cover fraction (SCF), snow melts (SM), ice melts (IM) and 

effective rainfall (ER). The Temperature-Index model consisting of snow and ice melt approach was 

used in the research. The interpolation of input datasets of precipitations and temperature on 250×250 

m grid resolution was carried out by nearest neighbor interpolation approach. The analysis of 

variables enlisted in the Table 2 was carried out on monthly basis averaged over the basin. To detect 

and quantify the changes in suspended sediments and hydroclimatic variables, Mann Kendall Trend 

test and Sens slope was used for the time series period of 1981-2010. The Chapter 2 explains the 

detailed methodology of Mann Kendall Trend test and Sens Slope estimator. 
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Figure 5. 1 Map of the Gilgit and Astore sub-basins of UIB with topography (GDEM 30 m resolutions), river networks and glacierized areas.  
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Figure 5. 2 Graphical presentations of (a) discharges (Q) and mean basin rainfall (R) (b) mean 

basin snow covered area (SCA), and mean basin temperature (T) for Gilgit and Astore sub-basins of 

UIB. 

Table 5. 1 Characteristics of the Gilgit River basin in the Upper Indus River.  

River flow gauging station Gilgit at Gilgit 

Longitude 74° 18’ 25’’ 

Latitude 35° 55’ 35’’ 

Elevation of stream gauging station 1454 m 

Catchment drainage area 12681 km2 

Glacier-covered area 1327 km2 (source GLIMS) [53] 

Glacier cover percentage 10.90 % 

Mean elevation ~ 4250 m [46] 

River flow gauging station Astore at Doyian 

Longitude 74° 42’ 15’’ 

Latitude 35° 33’ 35’’ 

Elevation of stream gauging station 1580 m 

Catchment drainage area 4019 km2 

Glacier-covered area 328 km2 (source GLIMS) [53] 

Glacier cover percentage 8.20 % 

Mean elevation ~  4100 m [46] 
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Table 5. 2 List of variables data collected, analyzed and simulated for Gilgi and Astore Sub-

basins in UIB. 

Variable Data description Period Source 

Q 
Daily mean 

discharge [m3 s–1] 
Daily, 1981–2010 

Water and Power Development 

Authority (WAPDA), Pakistan 

SSC 
Suspended sediment 

concentration [mg l–1] 

Intermittent days 

per week 

1981–2010 

Water and Power Development 

Authority (WAPDA), Pakistan 

SCF 

Snow cover fractions 

ranging [0–1] 

extracted from 

MODIS satellite data 

Basin avg. 

2000–2010 
https://nsidc.org/data/MOD10A2 

T 

Daily mean, 

maximum & 

minimum air 

temperature [° C] on 

a 5x5 km grid 

Daily, basin avg. 

1981–2010 
HI-AWARE project [51, 52] 

P 

Daily mean rainfall 

[mm day–1] on a 5x5 

km grid 

Daily, basin avg. 

1981–2010 
HI-AWARE project [51, 52] 

SCF 

(simulated) 

Daily mean basin 

snow cover 

[fractions]  

Daily, basin avg. 

1981–2010 
Temperature-Index model 

SM 
Daily snow melts 

rate [mm day–1]  

Daily, basin avg. 

1981–2010 
Temperature-Index model 

IM 
Daily ice melts rates 

[mm day–1]  

Daily, basin avg. 

1981–2010 
Temperature-Index model 

ER 

Daily mean basin 

effective rainfall [mm 

day–1] 

Daily, basin avg. 

1981–2010 
Temperature-Index model 

5.3.3 Temperature index-snow melt model 

The temperature-Index (degree-day model) snow model is a simple spatially distributed model to 

simulate the snow melts. It requires lesser amount of data in comparison to the physical distributed 

hydrological models. The spatially distributed temperature index model is used successfully in 

pervious researches [54, 55] for large as well as small basins. In present modelling of snow melts the 

model has simulated the long-term snow melts and snow cover fractions after calibration and 

validation of the simulated snow cover fraction with the MODIS snow cover fractions. The model 

https://nsidc.org/data/MOD10A2
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0190224#pone.0190224.ref045
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was tested against MODIS snow cover and modelled snow cover for the period 2000-2007 and 2008-

2010 in calibration and validation respectively. 

The snow melts model account for snow accumulation and snow melts on spatial and temporal basis.  

In the Temp-Index snow melt model the grid precipitation P is first separated into snow and liquid 

rain form on daily time scale. The threshold temperature TRS [°C], daily maximum temperature [°C] 

and daily minimum temperature [°C] separates the snow and liquid rainfall as: 

{
Rain = R = CpP             

Snow = S =  (1 − Cp)P
                                                                                             (1) 

Where, 

Cp is calculated as: 

{
 
 

 
 Cp = 1 if Tmin > TRS                                     

Cp = 0 if Tmax ≤ TRS                                     

Cp =
Tmax − TRS
Tmax − Tmin

 if Tmin ≤ TRS < Tmax

                                                                       (2) 

The precipitation is partitioned into snow and rainfall based on (a) daily minimum temperatures Tmin 

(˚C), daily maximum temperature Tmax (˚C) and rain-snow threshold temperature TRS (˚C). In equation 

2 Cp is the factor calculated to find the percent of snow or rainfall in the basin for each grid cell. 

Then daily rates of snow melt [mm day–1] is estimated as: 

{
Msnow = Ksnow(Tmean − TSM)   if Tmean > TSM           
Msnow = 0   if Tmean > TSM                                               

                                                  (3)                                                                                              

Here the Ksnow [mm day–1 °C] is the degree day factor for snow melts, 𝑇mean [°C] is the mean daily air 

temperature and 𝑇SM [°C] is the threshold temperature. 

After the snow model simulations, the snow water equivalent or snow depth [mm] for each grid 

numbers of i is calculated as: 

SDi(t) =     SDi(t − 1) + Si(t) −  Msnowi
(t)                                                               (4)                                                    

Finally the snow cover fraction SCF for i = 1, 2, 3, 4,…., N number of grids for the selected catchment 

is estimated for calibration and validation with the MODIS snow cover fraction as: 

SCF (t) =  
1

N
∑ H [SDi(t)]                                                                                                     (5)       
N
i=1       

Here, H = unit step function; when H = 0, SD = 0 and H = 1 then SD > 0. The area of integration N is 

the entire basin, sub-basins and elevation bands etc. The snow melts for the entire catchment are the 

arithmetic means of all grid melt rates [mm/day] averaged over the whole basin as; 

SM (t) =  
1

N
∑  𝑆𝑀𝑖  (t)                                                                                                        (6)       
N
i=1       
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The threshold temperature TRS to define the type of precipitation into rain/snow and TSM the threshold 

temperature for snow melt process depends upon numerous factors like boundary layer condition of 

atmosphere, temperature and air humidity etc. Depending upon the modelling approaches, region 

of study and altitudes of catchments the TRS varies in the range -5 – 6 [°C] [56, 57]. The threshold 

snow/rainfall temperature TRS for Gigit and Astore basins was selected -3 [°C] and -5 [°C] respectively. 

Similarly, the threshold temperature of snow melts TSM was -4 [°C] and -6 [°C] for Gilgit and Astore 

basin. 

5.3.4 Temperature Index-Ice melt model 

The temperature index ice melts model simulates the ice melts similar to the snow melt model on 

spatial distributed grid cells that are covered with glaciers/ice. The model simulates the ice melts rates 

[mm/day] of each snow free glacier grids as; 

{
IMi = Kice(Tmean − TIM)   if Tmean > TIM           

   IMi = 0   if Tmean ≤ TIM                                               
                                                     (7)                 

Here, 𝑇mean [°C] = mean daily air temperature 

𝑇IM [°C] = threshold daily temperature for onset of ice melt, and Kice [mm day-1 °C-1] = Ice melt factor 

To estimate the total ice melts for whole catchment the ice melt rates of all number of grid cells are 

taken as arithmetic mean over all ice-covered grid cells in the basin as follow;  

IM (t) =  
1

N
∑ 𝐼𝑀𝑖  (t)                                                                                                   (8)                                                   

N

i=1

 

The threshold temperature of glacier melting TIM for Gilgit and Astore basins was also set equals to 

threshold temperature of snow melts TSM. Ice melts (IM) start when the glacier cells are snow free. 

The value of TIM was also -4 [°C] and -6 [°C] for Gilgit and Astore basin. 

5.3.5 Performance measurement metrics for model evaluation  

The performance of snow melt model was measured using following statistics as; 

 Root mean square error (RMSE) 

 

𝑅𝑀𝑆𝐸 = √
1

𝑁
 ∑ ((𝑆𝑖𝑜) − (𝑆𝑖𝑠)) 

2𝑁
𝑖=1                                                                                       (9)                                                 

 

Nash-Sutcliffe efficiency (NSE) 

𝑁𝑆𝐸 = 1 − 
∑ (𝑆𝑖𝑜 − 𝑆𝑖𝑠)

2𝑁
𝑡=1  

∑ (𝑆𝑖𝑠 − 𝑆𝑖𝑠̅̅̅̅ )
2𝑁

𝑡=1  
   − ∞  ≤ 𝑁𝑆𝐸 ≤ 1                                                            (10) 

 

 

Pearson’s correlation coefficient (R2) 
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𝑅2     =

(

 
∑ (𝑆𝑖0 − 𝑆𝑖𝑜̅̅ ̅̅ )(𝑆𝑖𝑠 − 𝑆𝑖𝑠̅̅̅̅ )
𝑁
𝑖=1

√∑ (𝑆𝑖0 − 𝑆𝑖𝑜̅̅ ̅̅ )
2𝑁

𝑖=1 ∑ (𝑆𝑖𝑠 − 𝑆𝑖𝑠̅̅̅̅ )
2𝑁

𝑖=1 )

 

2

                                                               (11)   

 

Here N refers the data quantity, Sio is observed values of output/snow cover fraction and Sis is the 

simulated values of output and 𝑆𝑖𝑠̅̅̅̅  is mean of simulated values of output variable.  

The calibration of ice-melt factor Kice for both the basins is performed on basis of daily measured 

discharges during the months of ice melts (June-October) as well as during the whole year. 

Calibration is performed during the period 1981-2005 and validation covers the period 2006-2010. 

The optimum a value of Kice is found by calculated the mass balance error (MBE) for the period of 

glacier ablation as well as for annual period as; 

 

    

MBE𝑎𝑏𝑙𝑎𝑡𝑖𝑜𝑛/𝐴𝑛𝑛𝑢𝑎𝑙 = 100 × 
∑ (𝑉𝑂𝑏𝑠𝑖 − 𝑉

𝑠𝑖𝑚
𝑖)

𝑛𝑦
𝑖=1

∑ 𝑉𝑂𝑏𝑠𝑖
𝑛𝑦
𝑖=1

                                         (12)   

 

where,  

ny = number of calibration years, 𝑉𝑂𝑏𝑠𝑖 = observed discharge per volumes per unit area at the outlet 

[mm year-1] and 𝑉𝑠𝑖𝑚𝑖 = simulated discharge per volumes per unit area at the outlet [mm day-1] 

 

𝑉𝑂𝑏𝑠𝑖  =  ∑  𝑄𝑂𝑏𝑠𝑗                                                                                                        (13)                                                   

nd

j=1

 

𝑉𝑠𝑖𝑚𝑖  =  ∑  𝑄𝑠𝑖𝑚
𝑗
= ∑  (𝑅𝑗  + 𝑆𝑀𝑗  + 𝐼𝑀𝑗  )                                                

nd

j=1

 (14)                                                 

nd

j=1

 

 

Here, 

nd = number of observation of days during ablation period or whole year 

𝑄𝑂𝑏𝑠
𝑗
 = daily observed discharge per unit area at the outlet of basin [mm day-1] 

𝑄𝑠𝑖𝑚𝑗  = daily simulated discharge per unit area at the outlet of basin [mm day-1] 

𝑅𝑗, 𝑆𝑀𝑗  and 𝐼𝑀𝑗  are daily rainfall, snow melts and ice melts over the grids of whole basin. 

Rainfall and snows melts are estimated with snow melt model whereas ice melts are estimated with 

the ice melt model. In the current research does not cover the glacier evolution process, thickness of 

glacier ice due to expansion or retreat of glaciers, nor the glaciers ice discharges. 
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5.4 Results and Discussion 

5.4.1 Simulation of snow melts and snow cover area 

The model is calibrated and validate for the period 2000-2007 and 2008-2010 using snow and ice melts 

models for both the Gilgit and Atore basins. First the snow model was calibrated and validated based 

on the snow cover fractions of MODIS (SCFMod) and model simulated snow covers fraction (SCFM). 

The snow model simulated the snow melts and snow-covered area in the catchments. Table 5.3 show 

the results of degree day factors for snow melts in both the basins. In the literature of regional 

researches [25, 58, 59, 60, 61, 62] the value of Ksnow ranges from 3-7 [mm day–1 °C–1] in Upper Indus 

basin (UIB). The Table 5.3 shows that value of Ksnow of 3.1 and 4.2 [mm day–1 °C–1] in Gilgit and 

Astore basins lies within the ranges of past studies respectively. The difference between the value of 

Ksnow in present and pervious research works is probably due to difference of their input datasets 

resolutions, length and period of calibrations  

Table 5. 3 Results of performance measurement statistics during calibration (2000-2007) 

and validation (2008-2010) period of Temperature-Index snow model for simulations of 

snow melt and snow cover fraction.  

Gilgit Basin ksnow = 3.1 [mm day–1 °C–1] 

 Calibration 

Period (2000-2007) 

Validation 

Period (2008-2010) 

R2 0.90 0.90 

NSE 0.72 0.70 

RMSE 0.15 0.15 

Astore Basin ksnow = 4.2 [mm day–1 °C–1] 

 Calibration 

Period (2000-2007) 

Validation 

Period (2008-2010) 

R2 0.92 0.92 

NSE 0.84 0.75 

RMSE 0.13 0.15 

The Table 5.3 shows the results of snow melts model during calibration and validation periods. The 

value of R2 is found 0.90 and 0.92 during calibration as well as validation period of the Gilgit and 

Astore basins respectively. The results of performance measurements of R2, NSE and RMSE shows 

that goodness of fit between the model and observed MODIS snow cover maps is more than 70% 

which is satisfactory in estimation of both the snow melts and snow cover area. Figure 5.3 shows the 

comparison between the MODIS snow cover fractions and snow model simulated snow cover 

fractions for both Gilgit and Astore basins.  

The ice melt model was calibrated following the procedure of section 5.3.4. The value of degree day 

factor of ice melt Kice was 7 [mm day–1 °C–1] and 9 [mm day–1 °C–1] of Gilgit and Astore basins 

respectively. Figure 5.4 shows the seasonal/annual patterns of observed flows and simulated snow 
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melts (SM), effective rainfall (R), ice melts (IM) after calibration and validation of temperature index 

model. Two goodness of fit measures (MBES) during ablation and (MBEA) during whole year period 

were calculated for both the basins. The value of seasonal mass balance (MBES) varies from 10.2 to 

13.4 percent. Similarly, the value of annual mass balance error (MBEA) varies from 7 to 36%.  

 

 

 
Figure 5. 3 Comparison between the MODIS observed snow cover fractions and temp-index 

snow model simulated snow cover fractions for Gilgit and Astore basins. 
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Table 5. 4 Results of goodness of fit measures: mass balance errors (MBES) computed 

during ablation period (June-October) and mass balance errors (MBEA) during whole year 

for ice melt model calibrations. 

Gilgit Basin kice = 7 [mm day–1 °C–1] 

 Calibration 

Period (2000-2007) 

Validation 

Period (2008-2010) 

MBEs(%) 10.2 10.5 

MBEA(%) 7.0 26.0 

Astore Basin kice = 9 [mm day–1 °C–1] 

 Calibration 

Period (2000-2007) 

Validation 

Period (2008-2010) 

MBEs(%) 11.7 13.4 

MBEA(%) 36.0 22.0 

 
 

 
 

Figure 5. 4 Comparison of mean monthly/annual observed and simulated flows with different 

flow process for the period 1981-2010: (a) Gilgit basin (monthly) (b) Astore basin (monthly) (a) Gilgit 

basin (Annual) (b) Astore basin (Annual). Simulated SM+R+IM are the sum of snow melts (SM), 

effective rainfall (R) and ice melts (IM). 
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5.4.2 Effect of frequency of intermittent SSC Sampling 

The cumulative distribution functions of measured flows, simulated snow cover fractions (SCF), 

snow melts (SM), ice melts (IM) and effective rainfall (ER) on continuous (all days) and intermittent 

(SSC daily measurements) frequency basis is shown in the Fig.5.5. Although during the intermittent 

days few extreme high and low events of SCF, SM, IM and ER may be missed in intermittent days, 

however the cumulative frequency distribution plot of both continuous and intermittent days are 

illustrated similar for Gilgit basin. Which implied that the intermittent samplings of SSC have ability 

to capture accurate and similar pattern of parameters measured/simulated on daily basis. It further 

supports that the conclusion about the statistical monthly/annual trends of flows, SSC, snow cover 

fractions, snow melts, ice melts and effective rainfall are not much influenced by the intermittent 

daily sampling of the SSC. 

 

 

   

 

 

 

 

 

 

 

 

 

Figure 5. 5 Plots of Cumulative distribution functions of (a) measured flows, (b) snow cover 

fractions (SCF), (c) snow melts (SM), (d) ice melts (IM), and (e) effective rainfall (ER) on continuous 

(all days) and intermittent (SSC daily measurements) frequency of the Gilgit basin. 

Note: line in blue colour represents continuous (all days) and line in red colour represents 

intermittent (SSC daily measurements) frequency. 
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5.4.3 Hydroclimatic changes and activation of sediment sources 

The Figure 5.7 shows the warming of annual mean air temperature and basin annual rainfall in Gilgit 

basin during the period 1981-2010. The simultaneous increase in annual mean temperature and 

rainfall of Gilgit basin increases the annual flows contrary to the stable/decreasing trends of SSC. The 

warming trend of annual temperature in Gilgit basin is due to significantly increase of monthly 

temperature during the autumns and winters are mainly increasing (Oct-March), while changes 

during the late springs and summer are signalling cooling trends in Figure 5.8a.  

Similarly, the Figure 5.8b also shows that the increase of annual precipitation in Gilgit basin is mainly 

due to the significant increase of monthly precipitation in winter and springs season (December-

April) and partially due to increasing trend during summers.  

The increase of mean annual flows is due to increase of summer flows shown in Figure 5.8d. The 

increase of effective rainfall and ice melts contributions is increasing the summer flows in Gilgit basin 

(Fig.5.8b, Fig.5.9c, Fig.5.9d). However contrary to the non-significant increase of flows during 

summer (June-Aug) the SSC are decreasing due to cooling of summer temperature, increase of snow 

cover fractions, increase of solid precipitations and decrease/no significant change in snow melts 

contributions basin (Fig.5.8c, Fig.5.9a, Fig.5.9b).  

The precipitation and mean air temperature are the driving factors for snow melts, glacier melts and 

rainfall hydrological process. Both precipitation and mean air temperature are also much important 

for the relative contribution of effective rainfall and snow cover dynamics. The increase of snow cover 

during summer or late spring season, decrease of snow melts and cooling of summer mean air 

temperature called as Karakorum climate anomaly [24,25] are likely stabilizing or expanding the 

glacier over past three decades.  

The increase of snow cover during summer season in Gilgit basin are probably covering the unstable 

proglacial landscape. The snow cover on the debris covered glaciers with high snow cover albedo 

can also decrease the snow melt and ice melts rates which are driving forces for glacial and snow 

melts erosions. Moreover, the cooling of summer mean air temperature could be reducing the flood 

risk imposed by glacial lakes and the probability of permafrost degradation. As the permafrost 

degradation decreases the slope stability resulting in the increase of erosion process [63,64,65].  

The warming of winter temperature and precipitations is increasing the snow melts which ultimately 

increases the winter flows and SSC in Gilgit basin (Fig5.8, Fig.5.9a). During winter the significant 

increase of temperature is more dominated in generation of sediments and flows by increasing snow 

melts. The increase in snow melts during winter could activate the snow melts erosions and supply 

of discharges in channel. The increase in supply of channel discharges due to winter snow melts 

could increases the transport capacity of river to erode the seasonal glacial deposits as a wash loads.  

The Figure 5.6a shows that the contribution of snow melts is more than effective rainfall and ice melts 

during winter, springs and early summers period in Gilgit basin. It also shows the importance of 

precipitation stored in the form of snow during winters and contributing then in the form of snow 

melts till the start of ablation period.  
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Figure 5. 6 Plots of Cumulative distribution functions of (a) measured flows, (b) snow cover 

fractions (SCF), (c) snow melts (SM), (d) ice melts (IM), and (e) effective rainfall (ER) on continuous 

(all days) and intermittent (SSC daily measurements) frequency of the Gilgit basin. 

  

  

Figure 5. 7 Observed (a) mean basin air temperature (b) mean basin precipitations (c) suspended 

sediment concentrations (SSC) (d) measured discharge for the period 1981-2010 of Gilgit basin. 

 

During summer the contribution of ice melts is also significant up to 30% in the month of July. During 

the months of late summers, the contribution of snow melts is more than summer effective rainfall. 

The Effective rainfall is more dominated factor in flow generation process during the autumn season 

(Sep-Nov) when precipitations contribute in the liquid form rather than snow due to again increase 
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of air temperature (Fig.5.6, Fig.5.8a). So, the increase in SSC during autumns season could be due to 

increase in the amount of precipitation in liquid form on snow free area of Gilgit catchment.  

 

 

 

 

 

 
 

  

Figure 5. 8 Observed (a) mean basin air temperature (b) mean basin precipitations (c) suspended 

sediment concentrations (SSC) (d) measured discharge for the period 1981-2010 of Gilgit basin. 
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Figure 5. 9 Monthly changes in (a) mean basin snow melts (SM) (b) mean basin snow cover 

fractions (SCF) (c) mean basin ice melts (IM) (d) mean basin effective rainfall (ER) for the period 1981-

2010 of Gilgit basin. 
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The Figure 5.10 shows the warming of annual mean air temperature but decrease of basin annual 

rainfall in Astore basin during the period 1981-2010. The simultaneous increase in annual mean 

temperature of Astore basin increases the annual flows as well as annual SSC. The warming trend 

during annual temperature in Astore basin reveals that monthly temperature during the autumns 

and winters (Oct-Mar) are mainly increasing, while changes during the late springs and summer are 

signalling cooling trends shown in Figure 5.11a. However, the decrease of annual precipitation in 

Astore basin is mainly due to the significant decrease of monthly precipitation in spring season 

(March-May) shown in Figure 5.11b. As shown in the Figure 5.2 the months of springs (March-May) 

have major rainfall contribution in total annual rainfall of Astore basin. The significant decrease of 

spring rainfall during this period is an important factor contributing the stream flows during early 

summers (Fig. 5.11b). The non-significant increase of mean annual flows in Astore catchment is due 

to increase of springs snow melts, ice melts and effective rainfall contribution in annual flows (Fig. 

5.10, Fig.5.11 d, Fig. 5.12a, Fig. 5.12c, Fig. 5.12 d). As the precipitations in winter increases the winter 

snow cover accumulation also increases during winter. With the start of spring seasons an increase 

of spring temperature increases the snow melts from winter snows accumulation rapidly beside the 

decrease of springs rainfall which can increase the annual flows of Astor River. The decrease in the 

snow cover during spring and early summers in Astore basin is probably due to the reduction of 

spring/early-summer precipitations.  

The increase of annual SSC is probably due to increase in monthly SSC during winter, late springs 

and early summers. The warming of mean air temperature during winter is significant increasing the 

flows, snow melts and SSC (Fig. 5.11a, Fig. 5.11c, Fig. 5.11d, Fig. 5.12a). The increase of SSC during 

springs (March-April) coincides with the increase of Astore River flows, snow melts and effective 

rainfall (Fig.5.11 c, Fig. 5.12a, Fig. 5.12c, Fig. 5.12 d). Similarly, the reduction of snow cover fraction 

during early summer seasons implies an increase in the contribution of effective rainfall on snow free 

area to erode the sediments in Astor basin (Fig. 5.12b & 5.12d). Moreover, the reduction in snow cover 

albedo during spring and summer due to lesser amount of seasonal precipitations could be exposing 

the paraglacial unstable landscape, which are high source of sediment erosions activated by snow 

melts, glacier melts and effective rainfall [66,67]. During autumn season (Sep-Oct) the slightly 

increase in the SSC also coincide with slightly increase of seasonal precipitation, effective rainfall and 

reduction of snow fractions (Fig. 5.11b, Fig. 5.11 b, Fig. 5.12b, Fig. 5.12d). Reduction of snow cover 

during autumn season (Sep-Oct) implies more precipitation occurs in the liquid form to generate the 

erosions. Similarly, increase of rainfall during autumns could increase the hillslope erosions, 

activation of mass wasting, enhance of channel and bank erosions [40,41]   

The Figure 5.6b shows that the contribution of effective rainfall is more dominated factor during 

autumn and partially during winter season in flow generation process. However, the contribution of 

snow melts is more than effective rainfall and ice melts during springs and summers season in Astore 

basin. It also shows the importance of springs snow cover fractions, spring solid/liquid precipitations 

and snow melts contribution as dominating factor in springs discharges. The contribution of ice melts 

is less during the summers in comparison to the snow melts.  The effective rainfall has lesser 

contribution during summer season than ice melts.  
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The signalling of climate in context of sediment dynamics is important for future climate projections.  

Under the challenges of large uncertainty for future climate changes and its projections the current 

results depict the important consideration of increase of mean annual air temperature and mean 

annual precipitations for future climate change models in Gilgit basin. The results of this research 

further highlight the shift of snow dominated characteristics of Astore basin to the rainfall-dominated 

hydrological regime. This shift of hydrological regime interpreted from the hydroclimatic trends of 

Astore catchment is resulting in the reduction summer flows, increase of winter snow melts, 

reduction of spring precipitations and significant reduction of springs snow covers fraction. In 

contrast to shift of these hydrological regimes the changes and prediction of sediment fluxes in future 

could be highly unrealistic, less reliable using the future climate change model. The sediment 

estimation/predictions are uncertain due to complex process of sediment transport, feedback of 

different hydrological process, inherent stochastic in sediment transport and mobilization of 

sediment from its source.     

 

 

 
 

  

Figure 5. 10 Observed (a) basin mean temperature (b) mean basin precipitations (c) suspended 

sediment concentrations (SSC) (d) measured discharge for the period 1981-2010 of Astore basin. 
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Figure 5. 11 Observed (a) mean basin air temperature (b) mean basin precipitations (c) suspended 

sediment concentrations (SSC) (d) measured discharge for the period 1981-2010 of Astore basin. 
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Figure 5. 12 Monthly changes in (a) mean basin snow melts (SM) (b) mean basin snow cover 

fractions (SCF) (c) mean basin ice melts (IM) (d) mean basin effective rainfall (ER) for the period 1981-

2010 of Astore basin. 
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5.5 Conclusions 

The main focus of current research was to analyse the changes/trends of hydroclimatic variables and 

suspended sediments of the Gilgit basin (Hindukush range) and Astore basin (Western Himalayas) 

during the period 1981-2010. In addition, the non-significant decrease of annual suspended sediments 

in Gilgit and increase of annual sediment in Astore basin suggested a causal linkage between the 

transport dynamics of fine sediments and climatic changes. Four important factors highlighted as: (a) 

warming mean annual air temperature (b) increase/decrease of mean basin precipitations (c) 

increase/decrease of snow cover albedo and (d) enhanced SSC has a linkage in the form of an increase 

transport capacity and activation/deactivation of sediment sources to increase/decrease the sediment 

supplies. The results of present research conclude that transport capacity of the channel due to 

discharges is not sufficient to explain the decrease/increase of annual suspended sediment 

concentrations (SSC). The conclusion of analysis is that reduction/increase of annual precipitation 

under the warmer climate impacts the transport dynamics of fine sediments through 

activation/deactivation of sediment sources influencing the sediment production and transport in the 

catchment.  

To understand the phenomena of sediment supplies, the present research work analysed the three 

sediment fluxes as: (1) sediment erosions due to snow melts in the form of hillslope/gully and 

channel/stream erosions (2) sediment erosions due to erosivity of effective rainfalls over snow free 

landscape in the form of hillslope erosion, channel bank erosions and erosion from landslides/mass 

wasting (3) sediment transports due to glacier melts. The changes in snow and ice melt rates together 

with snow cover fractions and amounts of rainfalls were also analysed to understand the changes in 

SSC during the period 1981-2010. 

The results of this work show that the changes in mean annual precipitations and mean annual air 

temperatures during the period 19821-2010 does not clearly show the evident similar pattern of 

change in the SSC. However, the increase/decrease of monthly snow covers, snow melts, ice melts 

and effective rainfall clearly shows the relevant pattern of changes in monthly flows and SSC. The 

increase of winter precipitations of both Gilgit and Astore basin are evident along with increasing 

snow melts, SSC and winter flows. However, the spring precipitations increases in Gilgit basin 

contrary to the significant reduction of spring precipitations in Astore basin. Here, the clear evident 

was also found about the increase of snow cover fractions in late springs/early summers in Gilgit 

basin contrary to the Astore basin. Which was probably due to the reduction in seasonal 

precipitations and decrease/increase of effective rainfall. These changes in snow cover dynamics, 

snow melts rates and seasonal precipitations link with the changes in SSC.  The changes of monthly 

mean air temperature are alike to the changes in SSC in both of the basins during whole of the year. 

It was assessed that the changes of monthly/seasonal SSC in Gilgit basins are altered due to combined 

effect of changes in monthly/seasonal precipitations and monthly/seasonal mean air temperatures in 

Gilgit basin. The increase of winter and spring precipitations along with warming/cooling trend of 

climate, increase of snow cover fractions during summer is altering the hydrological regime and 

sediment erosion process over the year in Gilgit basin. The increased springs/early summer 

precipitations along with the increase of snow cover fractions during summers is in accordance with 

the reduction of SSC during summers in Gilgit basin. This shows the relevancy of snow melts, snow 
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cover and ice melts in transports of sediments in Gilgit basin. Contrary to the Gilgit basin the spring 

precipitations in Astore basin has been reduced significantly along with the reductions of snow cover 

fractions, increase of effective rainfall and reduction of SSC. Which implies that the hydrological 

regime of Astore basin is shifted from the snow-dominated basins to the rainfall dominated basins. 

Contrary to the Gilgit basin the amounts of seasonal/annual precipitations in Astore basin are more 

dominated than ice melt rates and mean air temperature in altering the sediment dynamics and 

hydrological regimes.  

In the Gilgit basin the changes in sediments are not consistent with the changes of flows and channel 

transport capacity, the main emphasise of current research is to understand the sediment productions 

and its transports due to different hydrological process (SM, IM, SCF and ER) responsible for 

activation/deactivation of sediments in the catchments in addition to sediment transports in the 

channel. Due to constraints of the hydrological modelling and limitations of the data inputs incurrent 

study it is difficult to conclude that in which directions sediment flux will be changed in future. 

However, a more reliable Glacio-hydrological modelling can show a better understanding of process-

based understanding connecting the hydrological changes, sediment transport and present/future 

climate changes for both the Gilgit and Astore basins. 
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Chapter 6- Conclusion and Recommendations 

6.1 Conclusions 

The present research focuses on the assessment of climate changes on generation process of 

suspended sediments and development of a suitable data-based modelling approach for sediment 

predictions by introducing the innovative input combination of snow cover fractions and normalized 

difference vegetative index (NDVI) in addition to the hydroclimatic datasets in alluvial river of UIB 

in the Pakistan. Estimation of suspended sediments with the measured data collected from the field 

is very expensive, time consuming and required a lot of resources especially in the Alpine mountain 

environments of UIB. The availability of remotely sensed data from satellites such as air temperature, 

precipitation, snow cover fraction and NDVI as biophysical parameter provide the opportunity to 

check the applicability of suitable modelling framework to quantify and predict the sediment loads. 

The methodological framework in present research was divided into four different objectives to 

assess the changes and prediction of suspended sediments: (1) Comparative Assessment of Spatial 

Variability and Trends of Flows and Sediments Under the Impact of Climate Change in The Upper 

Indus Basin (2) Application of soft computing models with input vectors of snow cover area in 

addition to hydro-climatic data to predict the sediment loads (3) Prediction of sediment yields by 

using the hydroclimate and normalized difference vegetation index (NDVI) datasets with soft 

computing models (4) Climate signaling in suspended sediment exports from Glacier and Snow 

Melts Sub-basins in the Upper Indus Basin (UIB). The conclusion drawn from this research are 

summarized as: 

• Assessment of climate changes flows and suspended sediments in UIB  

The upper Indus River comprises the catchment area of 172,000 km2 upstream of Tarbela reservoir in 

Pakistan. The sediment transport of alluvial river in UIB depends upon the discharges originating 

from glacier and snow melts in higher mountains and rainfall contributions in lower part of the 

catchment. The difference in physiography, climate and hydrological process generate the different 

sediments concentrations in each sub-basin. To assess the climate change and spatial pattern of flows 

and SSC in UIB an effort has been made in this work. The assessment of trends of climate changes on 

flows and SSC in this research work concludes that the annual flows and sediments in lower part of 

main Indus River at Besham Qila i.e. upstream of Tarbela dam are in a balanced state during the 

period 1981-2010. However, the annual SSC in the upper snow- and glacier-dominated Hindukush 

and Karakorum basins were decreased during this period. Similarly, in the upper snow and rainfed 

basin of Western and Central Himalayas the annual SSC are increased. The SSC during summers in 

upper snow-and glacier-dominated Hindukush and Karakorum basins has significantly reduced due 

to its Karakorum climate anomaly. However, during the months of winter season the flows and SSC 

were significantly increased due to warming of mean air temperature in the glacier- and snow-

dominated basins. In lower part of UIB, Indus at Daggar and Gorband the SSC and flows are 
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decreased due to significant reduction of rainfalls during spring, autumn and summer seasons. On 

the main Indus River at Kachura the SSC during the winter and spring season SSC has increased with 

increase of its discharges which might be eroding the seasonal deposits of glaciers in alluvial channel. 

The deposition in this area during summers could be explained with absence of any significant 

discharges responsible to transport the suspended solids in natural morpho dynamic process of River 

sediment transports. 

• Applicability of soft computing models with input vectors of snow cover area in addition to 

hydro-climatic data to predict the sediment loads 

In the case of prediction of sediment loads in Gilgit basin, an ANN, ANFIS and MARS modelling 

approach was developed using the hydroclimatic and generated snow cover fractions using 

temperature index snow melt model. The results of these data-based model demonstrate the 

capability of these models to generate better results than tradition sediment rating curve. Combining 

the inputs of snow cover fraction in addition to discharge and climate parameters the performance 

of the models was significantly improved. It can be concluded that in snow and glacier dominated 

basins like Gilgit the inputs of snow cover fractions can improve the results of the data-based models 

in addition to hydroclimatic variables.  

It was also demonstrated that the measured peak sediment yields can also be predicted accurately 

using ANN, ANFI-FM and MARS models. The relative accuracy of the ANFIS-FCM, ANN and 

MARS models were less than the other models against the peak measured sediment values. Over all, 

the ANFIS-FCM model was successful to predict the sediment loads in glacier and snow melt 

dominated basins like Gilgit basin. These findings can be useful for the hydrologists to use this model 

to estimate the sediment loads during extreme flood events in glacier and snow dominated basins.  

• Applicability of prediction models with the normalized difference vegetation index (NDVI) 

as biophysical parameter in addition to hydroclimatic input datasets 

The attempt has been made to investigate the applicability of ANN-LM, ANN-BR, ANN-GD, ANN-

SCG, ANFIS-GP, ANFIS-SC and ANFIS-FCM databased models to predict the suspended sediment 

loads by introducing the normalized difference vegetation index (NDVI) as biophysical parameters 

with flows and climate parameters in rainfall and irrigated Brandu basin of UIB. These input 

parameters with various combinations were tried using data-based models to check and compare the 

effectiveness of biophysical/ and rainfall/temperature parameter in addition to daily discharges for 

prediction of the sediment load. It was found that the performance of NDVI representing biophysical 

and land cover feature of the catchment has less performance in its all combinations with other 

parameters such as discharges and climate. During testing period ANFIS-GP model performance was 

better with inputs of flows and precipitation. It shows that the rainfall is the second parameter 

dominated after transport capacity of the channel due to its increased discharges. Rainfall is more 

important than the NDVI for prediction of sediment load in this catchment. From the overall 

comparison of between all the models ANN-LM model performed best both during training and 

testing period. The ANN-LM improved the accuracy of model up to 28% compared to the results of 

sediment rating curve (SRC).   
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• Climate signaling in export of suspended sediment exports in glacier and snow melt basins 

For better understanding of sediment exports the present research analyzed the phenomena of 

sediment supplies and its sources activated/deactivated due to (1) snow melts in the form of 

hillslope/gully and channel/stream erosions (2) erosivity of effective rainfalls over snow free 

landscape in the form of hillslope erosion, channel bank erosions and erosion from landslides/mass 

wasting (3) glacier melts. The results of two sub-basins Gilgit (glacier and snow-fed) and Astore 

(snow-rainfall) shown that the increase of winter precipitation and warming of mean air temperature 

increased the winter snow melts rates. The increased of snow melts further enhanced the river 

discharges and significantly increased sediment loads in both Gilgit and Astore basin due to 

stream/channel erosion and hill/gully erosions. In Gilgit basin the significantly increase of late spring 

and early summers precipitations with cooling of summer temperature significantly increased the 

snow cover area during summer season and resulted in reduction of sediment supplies. It can also 

be interpreted as that the increased snow cover during summer reduces the supply of sediments by 

covering the exposed landscape of proglacial area and debris cover with high albedo of snows. Which 

can also reduce the melt rates contributions from the debris glacier to wash the sediment loads in the 

channel. 

In Astore basin the results shown a significant reduction of precipitation during the spring and 

summer season reduced the snow cover area and increased the role of effective rainfall to erode the 

sediments on largely snow free area in the catchment. It can also be concluded that in Gilgit basin the 

seasonal precipitation and seasonal mean air temperature both are important in exports of sediment. 

However, in Astore basin the role of seasonal precipitation is more obvious than mean air 

temperature for altering the sediment dynamics and hydrological regimes.  

6.2 Significance of the research 

The present scientific research has resulted in advancement of knowledge of proposing the 

framework for prediction of sediment yields using the remotely sensed datasets of snow cover maps 

and normalized difference vegetation Index (NDVI) in addition to the hydroclimatic data sets for 

sparsely distributed gauged basins. This frame work for prediction of SSC with data-based modelling 

approach is robust, accurate and dependent upon the freely and easily available global remote 

sensing datasets to the research community, which offer the opportunity to apply it for other similar 

sparsely distributed River basins of the world with its similar catchment hydrology, challenges of 

scare data availability and economical method to accurately predict and quantify the sediments at 

the outlet of the basin.  

This scientific work presented by assessment of climate changes on flows and sediment yields in UIB 

provided the better practical understanding and technical contribution in assessment of changes of 

sediment yields due to climate. Introducing the snow cover and NDVI as biophysical factor for 

prediction of sediments using data-based models has given the satisfactory results. Simulation of 

snow melts, ice melts, snow cover and effective rainfall etc. helped to figure out the dominated flow 

process, which enhanced the better understanding of the sediment erosion and its transport dynamics 

due to these different flow process in the catchment. 
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Identification of spatial patterns of sediments, application of multi data values extracted from the 

satellite imagery and processed in Arc-GIS environment for sediment predictions using artificial 

intelligence models in addition to flows as an input provided a cost effective, robust and efficient 

approach to study and estimate the sediments yields.  

This methodology is thus useful to understand the erosion processes in Alpine catchments like UIB, 

and also provide an economical way for estimation of sediments for better planning, management of 

sediments and design/operations of water infrastructures in future.  

The results of this research are useful of ensuring the water demands for agriculture, drinking and 

hydropower generation purposes in an increasing population of Karakorum Hindukush and 

Himalayas mountainous area. It can also help in sustainable development of water resources and 

envisaging the remedial water management strategies to reduce the risks of climate vulnerability, 

food security and livelihood of the people. 

6.3 Recommendation of Future Work 

This research has some limitations and provide some suggestion to improve the data gaps and future 

research in these areas: 

1. Application of long-term real time daily snow cover and NDVI datasets for prediction of 

sediment and flows 

2. Improving the frequency of sediment measurements in the field and installation of climatic 

stations in sparsely distributed UIB especially at higher mountains with elevations more than 

3000 m. am. sea level. 

3. Modelling the snow and ice melts using spatially distributed physical models with more 

detailed and correct information of climate in the basin for better assessment of variations in 

sediments yields and discharges due to climate changes.  

4. Extending the research work introducing the NDVI as biophysical factor to assess the 

sediment yields and flows in lower Indus basins as well in the catchments of Tsunami Tree 

project using other data-based algorithms such Support Vector Machine and Deep Learning 

etc. 

5. Application of extended framework using the inputs of snow cover, snow melts and ice melts 

etc. to predict the sediments using machine learning in other sparsely distributed catchments 

of the world. 
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