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Introduction

The study of transport phenomena in solids has shaped condensed matter physics since its beginnings.
Arguably, the Wiedemann-Franz law, based on work by Wiedemann and Franz [1], and developed by
Lorenz [2, 3], can be seen as one of the foundations of the field. Together with the discovery of the
electron by Thomson [4], it led to the first microscopic theory of transport – the Drude theory [5, 6].
Here, the electrons were treated as an ideal gas that scatters off the positive ions of the crystal lattice.
While the latter assumption is wrong, as is known since the work of Bloch [7], the idea to treat the
electrons as an ideal gas was fruitful. It was put on a sound basis by Sommerfeld by treating the
electrons as a Fermi gas and explains some important properties of solids, such as the low temperature
heat capacity [8].
However, treating the electrons as an ideal gas, one is bound to miss phenomena that are due to

interaction effects. Here, a useful analogy is that of a liquid. Gurzhi showed first, that electrons in
extremely clean materials can behave similar to a viscous liquid [9, 10]. He theoretically investigated
the conductivity of wires of a small diameter d. If the material has sufficiently small impurity and defect
concentrations, he found, and the temperature is low enough, such that electron-phonon scattering is
unimportant, furthermore, if the mean free path between electron-electron collisions lee is much smaller
than d, then the electrons move within the sample in a Brownian motion due to collisions with other
electrons. In a given period of time ∆t they travel a distance

√
leevF∆t, where vF is the Fermi velocity.

Electron-electron collisions conserve momentum, such that, if all above conditions hold, the only channel
of momentum loss is boundary scattering. On averge, the time passing between two collisions of an
electron with the boundaries will be τb = d2/

(
leevF

)
. Following Drude-Sommerfeld, the conductivity σ

will scale as σ ∝ τb. It is interesting, that stronger electron-electron interactions, i.e. smaller scattering
lengths lee, enhance the conductivity of the sample. The electrons act collectively and shield each
other from boundary collisions. This becomes particularely clear if the temperature dependence of
the conductivity is considered. According to Landau’s Fermi liquid theory, the lifetime of electron
quasiparticles τee, and therefore the electron-electron scattering length lee = τeevF is proportional to
the inverse square of the Temperature: lee ∼ TF /T 2, where TF is the Fermi temperature [11–13]. In the
above described regime the resistance of the sample, therefore, drops according to a 1/T 2 law. This was
Gurzhi’s original prediction, which is illustrated in Fig. 1. The same behavior follows, if the electrons
are treated as a viscous liquid, and the problem is solved by means of the Navier-Stokes equation [9].
The flow is then completely analogous to the well known Poiseuille flow of classical hydrodynamics [14].
Gurzhi’s discovery, often called Gurzhi effect or Gurzhi scaling, stands at the biginning of electron

hydrodynamics. At the same time, it outlines many challanges that have to be tackled, in order to
observe the viscous flow of electrons experimentally. The most fundamental difficulty is finding a
sample that is sufficiently clean, such that the scattering length of impurity scattering is much larger
than lee. Since in all materials lee grows with decreasing temperatures, whereas the distance between
impurities is constant, this condition sets a lower bound on temperatures at which hydrodynamic
behavior can be observed. The upper temperature bound is set by electron-phonon interactions, which
become increasingly important at high temperatures [15]. If the two regimes dominated by impurity and
phonon scattering do not overlap, a regime where the electrons behave hydrodynamically lies inbetween.
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Introduction

Figure 1: An illustration of the Gurzhi effect if shown. The resistance R
(
T
)
of a thin wire as a

function of the temperature T is shown. As the temperature rises above T1, the scattering length of
momentum conserving electron-electron collisions lee ∼ TF /T 2 becomes shorter than the diameter
of the wire, electrons begin to screen each other from collisions with the sample boundaries. As
these momentum dissipating collisions become less probable, the resistance drops according to
R (t) ∝ TF /T

2. The collective motion of electrons through the wire is more efficient than the
motion of single electrons. This behavior continues until the temperature T2 is reached, where the
resistance takes a minimal value set by the impurity concentration of the sample. At T3 momentum
non-conserving electron-phonon scattering sets in, and the resistance raises. The figure is copied
from Gurzhi’s originial work [9].

The experimental realization of this regime is very challenging. Several attempts were made [16–18],
however, the first fully accepted experimental observation of the Gurzhi effect was reported by de Jong
and Molenkamp more than thirty years after the theoretical prediction [19]. The experiments were
carried out with a two dimensional electron gas confined in GaAs heterostructures. The boundaries of
the two dimensional wires were imposed electrostatically.
Recently, electron hydrodynamics has started to attract the interest of an increasing number of exper-

imentalists and theoreticians. To a large extent, this is because more and more materials are becoming
available, in which the hydrodynamic regime can be reached. Here, the most important example is
graphene. Graphene crystals are exceedingly pure [20], and the electron-phonon interaction in this
material is suppressed by the high lattice stiffness, as well as by strong phase-space constraints [21, 22].
Another interesting experimental plattform for electron hydrodynamics are ultrapure delafossite met-
als, which have extremely low residual resistances [23]. The de Jong-Molenkamp experiment has been
repeated for the delafossite PdCoO2 with some success [24]. Similar behavior has been observed in the
Weyl material WP2 [25]. Many recent works are concerned with different methods for the detection of
hydrodynamic flows. Direct measurements of the Gurzhi effect are difficult, because the materials have
to have extremely low impurity concentrations, such that the effect can be measured over a wide range
of ratios w/lee, where w is the width of the mostly two dimensional samples. A different approach to
the detection of the hydrodynamic regime is the measurement of negative non-local resitances caused
by viscous vorices [26, 27]. This effect, however, can also appear in the ballistic regime [28]. Other
detection methods rely on the measurement of current profiles through the samples [29–31]. Here, the
problem is that impurity and boundary scattering can produce very similar profiles to those expected
for hydrodynamic flow [32]. Very recent progress was, however, achieved by Sulpizio et. al. [30]. Here,
parabolic Poiseuille profiles of electric currents in graphene in the Fermi liquid regime were observed
[30].
From a theoretical point of view, electron hydrodynamics is intriguing because of its universality. Hy-

drodynamic equations can be derived from simple symmetry principles and conservation laws, whithout

iv



much knowledge of the microscopic properties of the system [33]. This, in return, means that they are
applicable in strongly interacting systems where no clear theoretical picture of the underlying micro-
scopics is available [34, 35]. Another interesting point is, that the collective behavior of electrons in the
hydrodynamic regime can greatly enhance the transport properties of a material. This effect can be
anticipated from what was said about the Gurzhi effect. There, the coherent motion of electrons as a
liquid led to an enhanced conductivity at intermediate temperatures. A striking effect that is related
to Gurzhi’s result appears in quantum point contacts. A quantum point contact is a constriction which
confines electrons in the coordinate transverse to their flow direction. This leads to a quantization of
the electron states in the constriction. This, in its turn, results in the fact, that the conductance of
currents through the constriction is given by G = 2Ne2/h, where N is an integer number corresponding
to the number of states in the constriction that carry the current [36]. This conductance quantization is
a purely ballistic effect, which can be seen clearest at very low temperatures. It was shown theoretically
[37] and observed experimentally [38], that when the temperature is raised, such that the system enters
the hydrodynamic regime, the conductivity at each step N improves as compared to the ballistic value.
The majority of works on electron hydrodynamics focuses on graphene [22, 39]. This has several

reasons. First, high quality graphene is nowadays a widely available material [40, 41]. Second, graphene
is a two dimensional material and hence can be investigated by means of scanning techniques, such
as the scanning single-electron transistor technique, which allows to measure the current and voltage
profiles along a graphene sample [29]. Furthermore, due to its unique band structure [42], electrons in
graphene behave as massless Dirac particles with a linear spectrum [41] and a constant group velocity
v0. Thus, relativistic quantum physics [43], for example the Klein tunneling [44, 45] can be observed.
The charge density of graphene can be widely tuned by applying a gate voltage [46]. In this way,

two very different regimes can be accessed: the Fermi liquid regime at large charge densities, and the
Dirac liquid regime [47] at vanishing charge densities [22, 48]. The collective behavior of electrons
in the two regimes is very different. The Fermi liquid is characterized by a large chemical potential
µ � kBT , where kB is the Boltzmann constant. The lifetime of quasiparticles follows the well known
scaling τee ∼ ~µ/

(
kBT

)2[11–13]. In the Dirac liquid regime, the chemical potential vanishes, i.e. it
is tuned right to the so called Dirac point which separates the electron and hole bands. The only
remaining relevant energy scale is the thermal energy kBT . Therefore the quasiparticle lifetime must
be proportional to the inverse thermal energy of the quasiparticle τee ∼ ~/

(
kBT

)
[49]. Although the

energy and the inverse lifetime of the quasiparticle are of the same order, the quasiparticles are sharply
defined. This has the following reason: The interaction strength is determined by the fine structure
constant α0 = e2/

(
εv0~

)
, where ε is the dielectric constant of the substrate. If the excited quasiparticles

are confined to a small region kBT around the Dirac point, the fine structure constant is renormalized
to small values α0 → α � 1 [47]. Interactions between quasiparticles are then governed by the small
α, allowing for a perturbative approach. To leading order in α, the lifetime then is τee ∼ ~/

(
α2kBT

)
,

leading to pronounced quasiparticle behavior.
The Dirac liquid has a unique transport behavior. At the Dirac point, graphene exhibits a strong

violation of the Wiedemann-Franz law [50]. While the transport of heat in graphene is ballistic – because
of the linear spectrum, the energy current is proportional to the density of momentum – electric currents
can decay due to electron-electron interactions [49, 51, 52]. The latter phenomenon is caused by the fact
that graphene at the charge neutrality point is particle-hole symmetric. Oppositely charged electrons
and holes contribute equally to the electric current, but flow in opposite directions. The electric current
therefore does not carry any momentum and is not protected by momentum conservation. The violation
of the Wiedemann-Franz law, i.e. the divergence of the ratio of thermal and electrical conductivities,
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is a unique feature of graphene hydrodynamics. The interaction induced resistivity is a phenomenon
known from the theory of quantum critical systems [53]. In graphene, it was studiend in the two works
of Fritz et. al. and Kashuba [49, 54]. A very recent experiment by Gallagher et. al. [55] confirmed the
predictions of Refs. [49, 54].
An important general point is that the behavior in the hydrodynamic regime intrinsically depends

on the nature of electron-electron interactions in a system. For example, in two dimensional Fermi
liquids, a fundamental difference exists between the relaxation times of excitations which are even
and odd in momentum space. While the even modes relax according to the usual TF /T 2 law, the
odd modes relax by a factor of

(
TF /T

)2 slower. This law, originally due to Gurzhi and collabora-
tors [56, 57], was recently rediscovered [58]. Experiments on focussed electron beams confirmed the
theoretical predictions [59]. It was shown, that the effect has a direct influence on the current pro-
files in the hydrodynamic regime [60]. This results motivated a part of the original work presented here.

In this thesis several aspects of electron hydrodynamics will be addressed with an emphasis on
graphene at the charge neutrality point. The first three chapters provide a brief introduction to the
physics of the Dirac liquid (chapter 1), electron hydrodynamics (chapter 2) and the theory of anoma-
lous diffusion (chapter 3).
The topic of chapter 4 directly relates to the discussion of the Gurzhi effect, with which this

introduction began. This discussion showed the fundamental role of momentum dissipating electron-
boundary scattering, in the abscense of other mechanisms of momentum relaxation. To gain a more
quantitative picture of the Gurzhi effect, as well as of viscous electron flow in more complicated ge-
ometries, boundary scattering has to be treated more seriously. Following the general strategy of Refs.
[61–63], boundary conditions for the kinetic distribution function of electrons will be derived. To this
purpose, the boundary will be treated as a rough surface reflecting the impinging electrons. With this
microscopic picture in mind, boundary conditions for the electronic Navier-Stokes equations will be
derived. The central quantity here will be the so called slip length ζ, which relates the flow velocity
at the bondary to its gradient. ζ measures how strongly the liquid is slowed down by the boundary
and is determined by two aspects: how much momentum gets lost during electron-boundary collisions,
and how efficient the viscous transport of momentum towards the boundary is. A large slip length
corresponds to a weak slowdown of the liquid at the boundary. It will be shown, that the slip length is
large for smooth boundaries (due to the small momentum loss in single scattering events) and at low
temperatures (due to the inefficiency of viscous momentum transport). The results will be shown to
agree with experiments on the Gurzhi effect in graphene [27, 30] and PdCoO2 [24]. In general, it will
become clear, that the Gurzhi effect only has significant impact on the electron flow, if the slip length
is much smaller than the sample size, which is achived in most recent experiments [30]. At the same
time, interesting physics can be observed in the regime of large slip lengths. This will be demonstrated
by solving the Navier-Stokes equation of graphene at the charge neutrality point for the flow past an
impenetrable obstacle in a long graphene strip. For a large slip length, the pressure differences along
the strip arise due to viscous forces alone, providing a method to measure the viscosity of a Dirac
liquid. Furthermore, the so-called Stokes paradox can be observed: there exists no regime, in which
the response to an applied pressure gradient is linear.
In chapter 5, non-local transport in a Dirac liquid will be studied. The non-local conductivities,

wavenumber dependent quantities that govern the transport in spatially modulated fields or confined
geometries, will be derived. It will be shown that constitutive relations involving non-local conductivi-
ties are closely connected to hydrodynamic equations, and can be used to calculate the current profiles
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of hydrodynamic flows. To derive the non-local transport coefficients, the electron-electron scattering
in a Dirac liquid must be considered in detail. Building upon the quantum Boltzmann equation for the
Dirac liquid derived in the Refs. [49, 51], the full set of relaxation times τc/ε,m of excitations in different
angular harmonic channels m will be calculated. Here, the subscripts c/ε stand for excitations in the
charge and energy channels, respectively. It will be shown, that the scattering rates τ−1

c/ε,m increase lin-
early with growing m for large m: τ−1

c/ε,m ∼ |m|. This peculiar behavior will enable an exact solution of
the Boltzmann equation. Using this solution, the transport coefficients will be calculated. Furthermore,
the collective modes of a Dirac liquid will be studied. It will be shown, that the propagation of thermal
excitations in a Dirac liquid is goverend by a wave equation, rather than by a diffusion equation [52].
This phenomenon is called second sound, and is the analogue of a plasmon mode in Galilean invariant
system. Since in a Dirac liquid, thermal transport is ballistic, but electric transport is diffusive, the
two modes switch places. Besides these known excitations, an infinite set of strongly damped collective
modes corresponding to exotic excitations in higher angular harmonic channels will be found.
Finally, in chapter 6 the phase space dynamics of a Dirac liquid will be studied. It well be demon-

strated, that due to the non-analytic behavior of the scattering rates τ−1
c/ε,m ∼ |m|, graphene electrons

perform Lévy flights in phase space. Lévy flights are random walks with unusual statistical properties
and will be introduced in chapter 3. While many interacting plasmas and gases can be described by
ordinary Fokker-Planck equations [64–70], the behavior of the Dirac liquid is governed by a fractional
Fokker-Planck equation, and the phase space motion of graphene electrons is superdiffusive. This has
important consequences for the relaxational behavior of non-equilibrium states. As an example, the
decay of an injected focussed current beam will be considered. It will be shown, that the Lévy flight
behavior results in a superdiffusive heating of the Dirac liquid. The resulting heating rates are much
larger than in an ordinary gas or plasma, where the phase space dynamics is governed by normal
diffusion.
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1 Chapter 1

Fundamentals: Graphene

Graphene is a two dimensional crystal consisting of carbon atoms that are bound in a honeycomb
lattice. It was the first perfectly two dimensional material and opened the gateway to many exciting
experiments and applications [41]. For a long time it was believed that two dimensional crystals are
intrinsically unstable due to large thermal fluctuations and therefore cannot be found in nature or
synthesized [71]. This belief was based on ideas of Landau and Peierls that were further substantiated
by Mermin [72]. However, the experimental succes of Geim and Novoselov that brought us graphene,
showed that such materials indeed do exist [46]. The first graphene samples were mounted to a solid
substrate, but soon suspended samples followed [73]. It became clear under the electron microscope,
that suspended samples are not perfectly flat, but are crumpled on a nanometer scale, which, together
with a large lattice stiffness, stabilizes the graphene sheets[73]. The experimental success motivated
an enormous amount of works on graphene. However, even before the first samples were available, the
electronic structure of graphene aroused interest on the theoretical side. Notable examples are the band
structure calculations of Wallace [42], and the renormalization group study of electron interactions by
Gonzaleza et. al. [74] anticipating the concept of the Dirac liquid.
In electron hydrodynamics, graphene is the by far most studied material [22, 39]. As will be explained

in chapter 2, the hydrodynamic description of an electronic system is feasible, when the electron-electron
scattering length is the shortest length scale in the system. Other scattering mechanisms, such as
electron-impurity or electron-phonon scattering are therefore the natural enemies of hydrodynamics.
Graphene, however, is a system with remarkably low defect concentrations and impurity mean free paths
on the ten micrometer scale [20]. The electron-phonon scattering is small due to kinematic constraints
[21], and due to the fact that only a small fraction of the acoustic phonon states is thermally occupied
because of the high Debye temperature of the order of 103 K, which can be traced back to the high
lattice stiffness of graphene.
Graphene electrons are massless, Coulomb interacting Dirac fermions with a linear dispersion relation

εk,λ = λvk. Here, λ = ±1 is the band index labeling the electron (λ = +1) and hole (λ = −1) bands,
v is the group velocity, and k the particles’ wavenumber. Pristine graphene is a semimetal with a fully
filled hole band and an empty electron band. Thus, the chemical potential lies at the so-called Dirac
point – the touching point of the two bands. At finite temperatures the region around the Dirac point
is populated by thermally excited electrons and holes. These excitations form the so called Dirac liquid.
By doping or gating, the chemical potential can be raised or lowered, such that the system eventually
turns into an electron- or hole-doped Fermi liquid, when the condition

∣∣µ∣∣ � kBT is fulfilled. This
is illustrated in Fig. 1.1. In this thesis, mostly the Dirac liquid will be of interest. It will be shown
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1 Fundamentals: Graphene

Figure 1.1: The figure shows the Fermi liquid and Dirac liquid regimes of graphene in the colors
of the season. There is no sharp boundary between the regimes. The crossover is determined
by kBT ≈ µ, where µ is the chemical potential. Up to logarithmic corrections due to Coulomb
interactions (see section 1.2), it is µ ∼

√
n, where n is the charge density. If the chemical potential

is below the Dirac point, the system is in the hole doped Fermi liquid regime. For a positive
chemical potential, the system is an electron doped Fermi liquid.

in section 1.2, that the excitations of the Dirac liquid are clearly pronounced quasiparticles, whose
transport properties can be studied using a quantum Boltzmann equation.

1.1 Graphene: band structure

In this section, the nearest neighbor, tight binding band structure of graphene will be derived. A section
of the Graphene lattice is shown in Fig 1.2. The lattice separates into two sublattices A (white atoms
in Fig. 1.2) and B (blue atoms in Fig. 1.2). The primitive lattice vectors a1 and a2 can be chosen as

Figure 1.2: The honeycomb lattice of graphene. The A(B) sublattice is represented by white(blue)
spheres.

2



1.1 Graphene: band structure

a1 =
a

2

(
3,
√

3
)T

,

a1 =
a

2

(
3,−
√

3
)T

.

Here a ≈ 1.42 · 10−10m is the nearest neighbor spacing. The reciprocal basis can be found using the
condition ai · bj = 2πδij :

b1 =
2π

3a

(
1,
√

3
)T

,

b1 =
2π

3a

(
1,−
√

3
)T

.

The nearest neighbor vectors on the A sublattice are given by

δ1 =
a

2

(
1,
√

3
)T

,

δ2 =
a

2

(
1,−
√

3
)T

,

δ3 = a
(
−1, 0

)T
.

The nearest neighbor tight binding Hamiltonian for this configuration can be written in the form

Htb = −t
∑
〈i,j〉

(
a†ibj + b†jai

)
,

where a†i =
∑

k a
†
ke
−ik·ri , bj =

∑
k bke

ik·rj , etc. are creation and annihilation operators at lattice points
i, j. Spin quantum numbers were suppressed. In the Fourier representation, the above Hamiltonian
reads

Htb =
∑
k

(
ξka
†
kbk + ξ∗kb

†
kak

)
with ξk = −t

∑
j e

ik·δj . Introducing the spinor ψ†k =
(
a†k, b

†
k

)
the Hamiltonian becomes

Htb =
∑

ψ†k

[
0 ξk
ξ∗k 0

]
ψk.

It is

ξk = −te−ikxa
1 + 2 exp

(
i3kx

2
a

)
cos

(√
3ky
2

a

) ,

and the energy eigenvalues are
εk = ±

∣∣ξk∣∣ .
ξk and εk vanish at the points k = 2π

3a

(
±1,± 1√

3

)
. The low energy physics of graphene electrons will

therefore be governed by the behavior of εk around these points, two of which lie in the Brillouin zone:

K =
2π

3a

(
1,

1√
3

)
,

K′ =
2π

3a

(
1,− 1√

3

)
.
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1 Fundamentals: Graphene

Figure 1.3: The tight-binding band strucure of graphene. The Dirac point with the two Dirac
cones is highlited.

Expanding ξk around K and K′ we find

ξK+k = v
(
ky − ikx

)
e−iKxa,

ξK′+k = −v
(
ky + ikx

)
e−iKxa,

with the group velocity of electrons v = 3ta/2 ≈ 106m/s. Neglecting the constant phase factor, the
low energy physics around the Dirac point K is described by the effective Hamiltonian

H0 = v
∑
k

ψ†k
(
σ · k

)
ψk.

This is the Hamiltonian of massless Dirac particles. The regions around the two Dirac points K, K′ are
called Dirac valleys. The degeneracy of the Hamilonian is fourfold: 2 × 2 for spin×number of valleys.
The eigenvalues of the Dirac Hamiltonian are

εk = λvk,

where λ = ±1 labels the lower and upper Dirac cones (see Fig. 1.3). For details on the single particle
physics of graphene see Ref. [41], which was followed throughout this section.

1.2 Graphene: Coulomb interactions

The question whether the Coulomb interaction plays a crucial role in the physics of graphene is not
trivial. On the one hand the fine structure constant of free standing graphene is of the order of unity:
α0 = e2/

(
εv0~

)
≈ 2.2. Such a large value (compared to e.g. the fine structure constant of QED

αQED = 1/137) indicates that interaction effects in graphene should be very important. On the other
hand many experimental results can be understood using the non-interacting massless Dirac model.
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1.2 Graphene: Coulomb interactions

Some examples are the minimum conductivity of disordered samples [75], as well as the observations
of Klein tunneling [45] and the quantum hall effect [76, 77].
Monte-Carlo simulations showed that at α ∼ 1, graphene can be expected to exhibit a semimetal-

insulator transition due to chiral symmetry breaking [78]. Here the electrons acquire a finite mass
- a gap opens around the Dirac point. For small values of α, however, Coulomb interactions are
marginally irrelevant. The critical point corresponding to the semimetal-insulator transition is repulsive.
A crucial question therefore is, on which side of the semimetal-insulator transition graphene lies. Both,
experimentally [79] and theoretically [80], free standing graphene was shown to lie on the semimetal side
of the critical point. It follows that at low temperatures, α will be renormalized to lower values, and that
the physics of graphene will be governed by small α physics (see Fig. 1.4). Below the renormalization
group (RG) analysis of graphene will be performed to first order in α.

Figure 1.4: RG flux around the critical point of the Dirac semimetal - insulator transition.
Graphene lies to the left of the critical point of the semimetal-insulator transition αc, and is
thus flows to small values under the RG procedure. At low temperatures, a perturbative analysis,
where α is a small parameter, is justified.

There exits a number of studies concerned with the RG analysis of graphene [47]. The Coulomb
interaction between graphene electrons at charge neturality was shown to be marginally irrelevant [47].
At experimental temperatures the fine structure constant α is renormalized to small values. This
justifies a quasiparticle interpretation of the electronic Dirac liquid and explains why in a wide range
of regimes Coulomb interactions can be treated as a perturbation. Ultimately this behavior opens the
door to a description of transport properties of graphene in terms of a quantum kinetic equation - the
essential tool for the remainder of this thesis.
The following analysis closely follows Ref. [47], for technical details concerining the renormalization

group analysis see Ref. [81]. The action for the electron fields ψ†k, ψk in the Matsubara representation
reads

S = S0 + Sint

S0 =

∫
k,n

ψ†k (ωn)
(
−iωn + v0k · σ

)
ψk,n (ωn)

Sint =
1

2

∫
k1,n

∫
k2,m

∫
q,l
ψ†k1+q

(
ωn − ωl

)
ψ†k2−q

(
ωm + ωl

)
V
(∣∣q∣∣)ψk1 (ωn)ψk2 (ωm) . (1.1)

Here and in the following the abbreviation∫
k,n

= T
∑
n

∫
d2k

(2π)2

is used. The summation over pseudo-spin is implicitely assumed, as is the summation over the de-
generate spin and valley indices. The Coulomb potential of electrons on a 2D graphene sheet is given
by

V
(∣∣q∣∣) =

2πe2

ε
∣∣q∣∣ .
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1 Fundamentals: Graphene

Performing the RG, it should be kept in mind that, as usual in condensed matter physics, the system
has a natural momentum cut-off Λ which is set by coarse-graining nature of the solid lattice. The
physically relevant scale in the case of graphene Dirac electrons of is given by energies around 1eV,
above which the dispersion relation deviates from the linear Dirac spectrum.

1.2.1 Preliminary scaling analysis

A preliminary scaling analysis shows that Coulomb interactions in graphene are marginal. Ultimately,
the behavior at large length scales and small momenta will be of interest. Thermally excited electrons
will populate a small portion of the Dirac cone around the neutrality point. Their momenta will occupy
a range

∣∣k∣∣ ≤ Λ/b with b � 1. At this point, it is useful to separate the field operators into so called
slow and fast modes

ψk =

ψ>k Λ/b <
∣∣k∣∣ ≤ Λ

ψ<k
∣∣k∣∣ ≤ Λ/b

The fast modes can be “integrated out”, i.e. the functional integration of e−S over field variables ψ†>k ,
ψ>k with Λ/b <

∣∣k∣∣ ≤ Λ is carried out, leaving us with an effective distribution e−Seff characterized by
an effective action. This procedure will be presented in more detail in the next section. It is followed
by a rescaling of the variable k→ bk, such that the range of fluctuations of the remaining fields again
matches the original length scales (see Fig. 1.5). The hole transformation can be thought of as selecting
a small window in momentum space and zooming into it, or zooming out into a larger window in real
space thereby roughening the image.

Figure 1.5: Illustration of coarse graining in the RG procedure. Small wavelengths (high momen-
tum) physics is integrated out (a), followed by a rescailing of the wavelengths. This corresponds
to a zooming into smaller values in momentum space (b).

In this section, the discussion will be limited to an RG transformation at zeroth order in the coupling
constant. The contributions stemming from integrating out the high momentum fields ψ†>k , ψ>k of the
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1.2 Graphene: Coulomb interactions

interaction part of the action will be ignored. The functional integration over the fields ψ†>k , ψ>k in
the free part of the action just gives an overall factor, which is not important. The resulting effective
action is just the S of Eq. (1.1), where the momentum integrals are limited by Λ/b. For the rescaling,
a new set of variables is introduced:

k′ = bk

ω′n = bωn. (1.2)

The rescaling of the frequencies is chosen such that the free electron propagator propagator

Gk′

(
iω′n

)
=
(
−iω′n + vk′ · σ

)−1

scales in a consistent manner. It will change, once the interaction terms are considered. In general, the
frequency is rescaled according to ω′n = bzωn, with z depending on the power of k in the free electron
dispersion. Since the Matsubara frequencies are given by ωn = (2n+ 1)πT , the temperature scales
according to

T ′ = bT. (1.3)

The scaling behavior of the field variables can be chosen freely. To compare how the free and interactiong
parts of the action scale under the RG transformation, the rescaled field operators are defined as
ψ<k
′

= b−2ψ<k , such that the free part of the action is invariant, i.e. such that the factors of b cancel
in the free part. It turns out that the interaction part is invariant, too. At zeroth order, Coulomb
interactions are marginal. Higher orders will decide, that the effective interactions of Dirac electrons
near the charge neutrality point tend to decrease at small temperatures.

1.2.2 Renormalization at the one loop level

Since the scaling analysis of the last section did not provide insights into how interactions enter the
effective action of low energy Dirac electrons, a renormalization analysis to first order in the coupling
constant has to be performed. The field operators are subdivided according to ψk = ψ<k Θ

(
Λ/b−

∣∣k∣∣)+

ψ>k Θ
(∣∣k∣∣− Λ/b

)
Θ
(

Λ−
∣∣k∣∣). Schematically, the action subdivided into slow and fast modes can be

written as

S = S< + S> + S><,

where the first two terms are the just the original action where the field operators are replaced by their
fast or slow parts. Anticipating the functional integration over fast modes, we dropped all terms that
contain uneven powers of field operators. S><int consists of four non-vanishing contributions:

S>< =
1

2

∫
k1,n

∫
k2,m

∫
q,l
ψ†<k1+q

(
ωn − ωl

)
ψ†>k2−q

(
ωm + ωl

)
V
(∣∣q∣∣)ψ>k1

(ωn)ψ<k2
(ωm)

+
1

2

∫
k1,n

∫
k2,m

∫
q,l
ψ†>k1+q

(
ωn − ωl

)
ψ†<k2−q

(
ωm + ωl

)
V
(∣∣q∣∣)ψ<k1

(ωn)ψ>k2
(ωm)

+
1

2

∫
k1,n

∫
k2,m

∫
q,l
ψ†<k1+q

(
ωn − ωl

)
ψ†>k2−q

(
ωm + ωl

)
V
(∣∣q∣∣)ψ<k1

(ωn)ψ>k2
(ωm)

+
1

2

∫
k1,n

∫
k2,m

∫
q,l
ψ†>k1+q

(
ωn − ωl

)
ψ†<k2−q

(
ωm + ωl

)
V
(∣∣q∣∣)ψ>k1

(ωn)ψ<k2
(ωm) .
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1 Fundamentals: Graphene

To first order in the coupling constant, the effective action is given by e−Seff = e−S
<
〈
e−S

><
〉
>
≈

e
−S<−〈S><〉

> . Integrating over fast modes and carrying out the momentum integration, the first two
terms reduce to ∫

k1,n
ψ†<k1

(ωn) Σ
(
k1

)
ψ<k2

(ωm) , (1.4)

where Σ
(
q
)

=
∫ Λ/b<k<Λ
k1,n

Gk1+q

(
iωn
)
V
(∣∣k1

∣∣), with the momentum integration ranging from Λ/b to Λ

is the Fock contribution to the self energy. The last to terms correspond to Hartree self-energy contri-
butions. They can be neglected, since they are constants and therefore amount to a renormalization of
the chemical potential which is fixed to zero due to the assumption of charge neutrality. For the same
reason, only the Fock self energy to lowest order in q and at T = 0 contributes to the renormalization.
Higher orders in q and T in the expansion of Σ

(
q
)
are rendered irrelevant by the scaling behavior

given in Eqs. (1.2) and (1.3).
The self energy at T = 0 is given by [82]

Σ
(
q
)

=
2πe2

ε

∫
d2k

(2π)2

∫
dω

2π

ω + v0σ ·
(
k + q

)
ω2 + v2

0

(
k + q

)2 1∣∣k∣∣
=

1

4

e2

ε

(
σ · q

)
log
(
b
)

+O
(
q2
)
. (1.5)

Thus, the non-interacting part of the action renormalizes according to

S0 =

∫ Λ/b<k<Λ

k,n
ψ†<k (ωn)

(
−iωn + v0

(
1 +

α

4
log
(
b
))

k · σ

)
ψ<k,n (ωn) .

Since at lowest order the self energy (1.5) is frequency independent, only the group velocity is renor-
malized:

v = v0

(
1 +

α0

4
log
(
b
))

. (1.6)

Here α0 = e2/
(
εv0~

)
is the bare fine structure constant, which is renormalized according to (1.6):

α =
α0

1 + α0
4 log

(
b
) . (1.7)

Whenever the group velocity v, or the fine structure constant α appear in the text without a subscript
zero, the renormalized quantities are meant. The fine structure constant quantifies the ratio of Coulomb
interaction energy and kinetic energy. With increasing b, i.e. at small energies α is renormalized to
small values, as is evident from Eq. (1.7). This is an essential feature of Coulomb interactions in charge
neutral graphene. It demonstrates that at low temperatures graphene electrons and holes behave
as independent, well defined, interacting quasi-particles - a picture that motivates and justifies the
quantum-Boltzmann approach to transport in charge neutral graphene presented in Sec 5. Interaction
effects can be treated in terms of particle collisions and by replacing the bare quantities by their
renormalized versions.
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1.3 Summary

1.2.3 Temperature dependence and scaling

It has already been anticipated that the lower cut-off Λ/b can be set by the temperature T . Due
to the thermal broadening of the Fermi-Dirac distribution electrons and holes populate an area of
∼ kBT around the Dirac point. This scenario is relevant when dealing with the hydrodynamic regime.
Alternatively the cut-off can be set by a different scale, such as e.g. a frequency. Focusing on the first
case, the cut-off variable b can be expressed in terms of the band structure cut-off Λ and the physical
temperature T . Due to the renormalization of the group velocity v in (1.6), the scaling behavior of the
temperature (1.3) is modified, too:

T = ZT
(
b
)
T
(
b
)
, (1.8)

where ZT
(
b
)

= b−1
(

1 + α0
4 log b

)
. The upper cut-off is given by Λ, which corresponds to a temperature

TΛ = vΛ/kB . Fixing b such that the lower cut-off is given by the physical temperature T , Eq. (1.8)
yields T/TΛ = ZT

(
b
)
, which is solved by

b =
TΛ

T

1 + α0 log

(
TΛ

T

) (1.9)

for b � 1. Using relation (1.9) together with the renormalized group velocity (1.6) and fine structure
constant (1.7), the temperature dependence of different physical quantities can be deduced. The com-
pressibility κ = ∂n/∂µ is an example [47]. Replacing the bare velocity v0 by v in the free fermion result
gives

κ =
π
(
~v0

)2
4kBT log 2

(
1 +

α0

4
log
(
b
))2

.

This result is in reasonable agreement with experiment [47, 83]. Further insights can be won by
explointing the scale invariance of the linear graphene dispersion. E.g. the dimensionless (in 2D),
interaction induced electrical conductivity at zero frequency is a function of temperature and the fine
structure constant: σ

(
T, α0

)
. Due to scale invariance, the conductivity at the physical temperature T

should be equal to the conductivity at the cut-off temperature TΛ and a renormalized fine structure
constant:

σ
(
T, α0

)
= σ

(
TΛ, α

(
T
))
.

It is immediately clear that the temperature dependece is entering σ
(
TΛ, α

(
T
))

through the fine

structure constant α
(
T
)
. On the other hand, according to Fermi’s golden rule, the scattering rate

of quasiparticles has to be proportional to the squared modulus of the transition matrix element, i.e.
to α2 (t). The conclusion is that at zero frequency σ ∼ α−2

(
T
)
, i.e. the temperature dependence of

electric conductivity is due to the renormalization of v and α.

1.3 Summary

Some fundamental aspects of graphene physics were introduced in this chapter. The band structure
of graphene was studied in section 1.1. It was shown, that at low energies the nearest neighbor tight
binding model hamiltonian reduces to a massless Dirac hamiltonian

H0 = v0

∑
k

ψ†k
(
σ · k

)
ψk

9



1 Fundamentals: Graphene

with a fourfould spin-valley degeneracy N = 4. Here, σ is the vector of Pauli matrices and v0 ≈ 106m/s
is the electron group velocity.
It was shown in section 1.2, that thermally excited electrons and holes in graphene at the charge

neutrality point, which form a so called Dirac liquid, behave as sharply defined quasiparticles. This is
because the graphene fine structure constant

α =
e2

εv~
,

which quantifies the interaction strength, is renormalized to small values for excitations that are con-
fined to the narrow region ∼ kBT around the Dirac point. This behavior of α is mediated by the
renormalization of the electron group velocity v0 → v appearing in the denominator, where

v = v0

1 +
α0

4
log

(
Λ

kBT

)
[47, 74]. The weakening of interactions with the renormalization group flow allows for the use of
perturbation theory with the renormalized fine structure constant α as a small parameter. Thus, the
quantum Boltzmann equation (see sections 2.4 and 5.1.1) can be used to study the transport properties
of the system.
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2 Chapter 2

Fundamentals: Electron hydrodynamics

The analogy between electronic systems in solids and gases goes back to the celebrated Drude model of
1900 [5, 6]. It was successful in explaining some fundamental properties of electron transport in systems
dominated by impurity scattering. In the 1960s, Gurzhi proposed [9, 10], that the interacting electrons
can behave similar to a classical liquid. For example, they should follow the same scaling with the sample
width, as a classical liquid in the regime of Poisuille flow (see section 2.1.3). This, however, is only
possible, if the crystal hosting the electrons is exceedingly free of any impurities, dislocations and other
mechanisms of momentum dissipation, as is a pipe through which flows a classical liquid. This condition
is fulfilled, if the mean free path of momentum conserving electron-electron interactions is shorter than
the mean free paths of the momentum dissipating scattering mechanisms: impurity scattering, boundary
scattering, phonon scattering. If lee � limp, lgeo, lphonon, a hydrodynamic description is appropriate.
Another condition on hydrodnymic flow is that there is a scale separation between the time scales of
external perturbations and the (shorter) internal time scales of electron-electron interactions. If this is
the case, and the above condition on the scattering lengths holds, the electron liquid is in a state of
local equilibrium, i.e. its behavior at any point can be characterized by a few parameters such as flow
velocity, pressure and density, whereas the intricate details of electron-electron interactions average
out. Speaking loosely, the hydrodynamic regime in this sense can be defined as the regime of slow
excitations on long scales.
Hydrodynamic equations can be deduced from very simple considerations of symmetries and con-

servation laws. Thus, they hold even in the case of strongly interacting electrons, where no coherent
quasiparticle picture can be constructed [34]. This universality makes electron hydrodynamics a partic-
ularely intriguing subject of study. However, when dealing with a system of pronounced quasiparticles
as in the case of the Dirac liquid, hydrodynamics can be derived from the underlying kinetic theory of
quasiparticle collisions. The transport coefficients governing the hydrodynamic flow can be calculated
and the nature of electron-electron collisions itself can be studied in more detail.
In this chapter, the derivation of the Navier-Stokes equations from macroscopic considerations and

from the kinetic equation will be discussed. Basic notions of tranport theory will be interoduced. The
quantum Boltzmann method, upon which builds the kinetic equation of chapter 5, will be summerized
and some experimental results on electron hydrodynamics reviewed.
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2 Fundamentals: Electron hydrodynamics

2.1 Hydrodynamics from a macroscopic point of view

2.1.1 The Navier-Stokes equations

Here, an elegant and simple derivation of the hydrodynamic equations based on Ref. [14] is presented,
which is not based on any microscopic details of the liquid. Imagine a small liquid volume element V
that is subject to pressure as an accelerating force. The total force on V is given by the surface integral
of pressure over the boundary of V :

Fint = −
∮
pdA = −

∫
∇p dV.

In the last step a well known integral theorem was used. For a Galilean invariant system, by Newton’s
second law the change of the fluid element’s flow velocity u is

ρm
du

dt
= −∇p. (2.1)

ρm is the mass density of the fluid. The derivative du (x) /dt is not the acceleration of the fluid element
at a certain point x in space, rather the fluid element travels a distance dx during dt. The total
derivative du (x) /dt is therefore the sum of the acceleration during the time dt at point x and the
difference of velocities at the two points connected by dx:

du (x)

dt
=
∂u (x)

∂t
+

(
u (x) · ∂

∂x

)
u (x) .

Inserting the above equation into (2.1) yields

∂u

∂t
+
(
u · ∇

)
u = − 1

ρm
∇p. (2.2)

The expression (2.2) is the so called Euler equation. To derive it, translational invariance and momen-
tum conservation were implicitely assumed. The Euler equation governs the dynamics of an ideal fluid.
To describe a real fluid, viscous forces have to be added to Eq. (2.2). For what follows, it is convenient
to recast the Euler equation to the form

∂

∂t

(
ρmuα

)
= −∂βΠαβ. (2.3)

Here, Παβ = pδαβ +ρmuαuβ is the momentum current tensor. Obviously, (2.3) is a continuity equation
for the momentum density ρmuα, which also establishes the interpratation of Παβ as the momentum
current tensor. It is clear from everyday experience that viscous forces transport momentum from the
fast moving parts of the fluid to the slower moving parts. The viscous terms should therefore appear
in the momentum current tensor. Furthermore, viscous forces act only when there are gradients in
the flow velocity; the viscous terms must be poportional to terms ∂αuβ . There are no viscous forces
acting in a unifromily rotating fluid, where the flow velocity can be written as uα = εαβγΩβxγ . Here
Ωβ is the rotation axis. It is clear, that this condition is satisfield, if only the symmetric combinations
∂αuβ + ∂βuα and δαβ∂γuγ enter the viscous terms. Let τ ′αβ be the viscous contribution to Παβ . In two
dimesions, the most general τ ′αβ satisfying the above conditions is

τ ′αβ = η
(
∂αuβ + ∂βuα − δαβ∂γuγ

)
+ ζδαβ∂γuγ . (2.4)
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2.1 Hydrodynamics from a macroscopic point of view

η and ζ are the so calles shear and bulk viscosities. The two terms in Eq. (2.4) are constructed such
that the first one is traceless. The equation of motion of the viscous fluid now reads

∂

∂t

(
ρmuα

)
= −∂β

(
pδαβ + ρmuαuβ + τ ′αβ

)
.

This is the Navier-Stokes equation. Usually, it can be assumed that the spatial dependencies of η, ζ
are small and these quantities can be interchanged with the derivative ∂β . The Navier-Stokes equation
then can be written in its conventional form:

ρm

(
∂u

∂t
+
(
u · ∇

)
u

)
= −∇p+ η∆u +

(
ζ +

η

3

)
∇
(
∇ · u

)
. (2.5)

If the fluid is incompressible, i.e. ∇ · u = 0 holds, the last term in Eq. (2.5) can be dopped, and the
Navier-Stokes equation reads

∂u

∂t
+
(
u · ∇

)
u = − 1

ρm
∇p+

η

ρm
∆u. (2.6)

No microscopic details were assumed in this derivation. It is mainly based on the conservation of
momentum and general symmetry considerations. Even in the context of strongly coupled materials,
this equations provide an adequate description of the behavior of the electronic fluid [34].

2.1.2 Stokes flow

The Navier-Stokes equation of an incompressible liquid, Eq. (2.6), is nonlinear due to the second left
hand side term. This term was found from kinematic considerations. Speaking in terms of the free
/ interacting dichotomy, it appears due to the free particle dynamics of the fluid. It is particularely
important for nearly ideal fluids, in which inter-particle collisions are not too important. On the other
hand, the viscosity η is a measure for the particle’s interaction strength. For strongly interacting
systems the last right hand side terms dominates the dynamics of the fluid. If the nonlinear term
can be neglected, the equation is significantly simplified. These considerations are quantified by the
Raynolds number

R =
ρmlgeou

η
.

This number can be thought of as the ratio between the terms
(
u · ∇

)
u and η/ρm∆u. The characteristic

length scale of the studied geometry lgeo enters through the spatial derivativs. Sometimes the quantity

ν = η/ρm

is referred to as kinetmatic viscosity. It is this quantity, rather than η, that is associated with the
common sense notion of viscosity is fluids like water and honey. For R� 1, the full nonlinear dynamics
of the fluid has to be considered. Turbulence occurs in this regime. On the other hand, for R � 1,
the nonlinear term can be dropped. This limit is called Stokes flow. In the steady state, the linearized
Navier-Stokes equation then reads

η∆u = ∇p. (2.7)
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2 Fundamentals: Electron hydrodynamics

R� 1 Stokes flow: low velocity, creeping flow
R� 1 Nonlinear regime, turbulence

Table 2.1: Regimes of fluid flow at different Raynolds numbers R.

Figure 2.1: Two dimensional Poiseuille flow for different boundary conditions in a channel of width
w. The flow velocity is shown as a blue curve. In each of the three pictures, the same current I0

passes through the sample.

2.1.3 Poiseuille flow, boundary conditions and Gurzhi scaling.

The Poiseuille flow is a paradigmatic example of a hydrodynamic flow, where the fluid is confined to an
infinitely long channel (a pipe in 3D or a strip in 2D) of width w. It governs fluid behavior from pipe
flows to blood vessels. It is also an ideal example to illustrate the importance of boundary conditions in
hydrodynamic flow (see Fig. 2.1). For Poiseuille flow, the Stokes equation (2.7) reduces to an ordinary
second order differential equation. If we assume that the channel is oriented parallel to the x-axis, the
equation reads

η
∂2u

∂y2
=
∂p

∂x
. (2.8)

The gradient of the pressure is assumed to be constant along the x and y axes. This equation can
be easily integrated, after the appropriate boundary conditions at y = ±w have been applied. The
boundary conditions for viscous electron flows were one of the publications on which this theses is based
[84] and were shown to be of the form

utα

∣∣∣
S

= ζ nβ
∂utα
∂xβ

∣∣∣∣∣
S

, (2.9)

Where nβ is the normal vector of the sample boundary and utα is the tangential flow velocity of the
fluid at the boundary. The velocity component orthogonal to the boundary has to vanish for obvious
reasons. ζ is the so called slip length. It quantifies how strongly the fluid sticks to the boundaries. In
most classical liquids ζ = 0 and there is no slip: utα

∣∣∣
S

= 0. However, the slip length is relevant for
quantum fluids. In certain extreme cases, even the no-stress conditions ζ →∞ can be realized [84].
Solving Eq. (2.8) with the general boundary conditions (2.9) gives.

ux =
1

8η

(
w2 + 4ζw − 4y2

) ∂p
∂x
. (2.10)

For ζ = 0 the characteristic classical parabolic Poiseuille profile appears; for ζ →∞ the profile becomes
flat (see Fig. 2.1).
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2.2 Quasiparticle picture of electron hydrodynamics.

The shape of the profile is a benchmark of hydrodynamic behavior that is used in experimental
studies [30]. It is also connected to the Gurzhi effect, which predicts the hydrodynamic electron current
to scale as wd+1 in d dimensions:

I ∝ wd+1.

Integrating the flow velocity (2.10) over y to obtain the total current yields

I ∝ 1

2η

(
w3

6
+ ζw2

)
∂p

∂x
. (2.11)

The Gurzi effect is most pronounced at ζ → 0. Finding the correct slip length is crucial to most
experiments in electron-hydrodynamics and is the subject of chapter 4.

2.2 Quasiparticle picture of electron hydrodynamics.

2.2.1 The kinetic equation

Alternatively to the macroscopic derivation of section 2.1, the hydrodynamic equations can be derived
from the kinetic equation. This equation appropriately describes the behavior of a many body systems,
if the system consists of sharply defined quasiparticles. Such systems are e.g. the Fermi liquid [13], the
superfluid-insulator quantum critical point [53], or the Dirac liquid [49]. The structure of the kinetic
equation is very similar to the Boltzmann equation known from statistical physics. In Sec. 2.4 the
quantum Boltzmann equation (QBE) will be derived from field theoretical considerations. However,
to obtain a general picture the details are unimportant. In the quantum version of the Boltzmann
equation, the notion of the particle velocity is slightly generalized to the group velocity of quasiparticles
vk = ∂εk/∂k, where εk is the quasiparticle dispersion. The equation reads(

∂t + vk · ∇x + F
(
x, t
)
· ∇k

)
fk
(
x, t
)

= Cf, (2.12)

where C is the collision operator and F
(
x, t
)
a force term that can depend on coorinates and time. For

electrons the collision term in many cases assumes the form

Cfk = −
4∏
i=2

∫
ddki

(2π)d
W
(
k,k2;k3,k4

) [
fkfk2

(
1− fk3

)(
1− fk4

)
−
(
1− fk

) (
1− fk2

)
fk3fk4

]
,

(2.13)
where the function W

(
k,k2;k3,k4

)
is essentially given by the modulus squared of the corresponding

matrix elements of the interaction potential. Eq. (2.12) is a complicated non-linear equation. The
distribution function fk

(
x, t
)
gives density of particles in a certain region of phase space at a time t.

Physical quantities of interest are found by averaging over fk
(
x, t
)
, for which it is useful to use the

notation 〈...〉 =
∫

(...) fkd
dk/ (2π)d. The particle density ρ, particle current j and momentum current

tensor Π are given by

ρ
(
x, t
)

= 〈1〉 ,

jα
(
x, t
)

=
〈
vk,α

〉
,

Παβ

(
x, t
)

=
〈
vk,αkβ

〉
. (2.14)
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2 Fundamentals: Electron hydrodynamics

Often additional quantum numbers corresponding to spin or band indeces appear in the kinetic equation.
The averages are then extended over these numbers. Later on, the band index λ = ±1 labelling
the upper and lower Dirac cones will be important. The Boltzmann equation immediately leads to
continuity equations for conserved quantities. Integrating (2.12) over k in the absence of a field F

(
x, t
)
:

∂tρ+∇xj = 0.

The conservation of the particle density is expressed through
∫ (
Cf
)
ddk/ (2π)d = 0, which is clear

from the form of the collision operator (2.13). Finally, multiplying the Boltzmann equation by k and
integrating over k leads to the continuity equation for the momentum density ρk,α =

〈
k
〉
(2.3):

∂

∂t
ρk,α = −∂βΠαβ.

2.2.2 The Chapman-Enskog method

One way to attack the equation (2.12), is the Chapman-Enskog method [85], where the Boltzmann
equation is expanded in terms of the Knudsen number Kn. Roughly speaking Kn is the fraction of the
right and left hand side of Eq. (2.12). It is typically expressed in terms of the electron-electron mean
free path lee and the geometrical lengths scale lgeo, which is either the scale on which the force F

(
x, t
)

varies, or the scale of the geometrical confinement due to a given sample size. The Knudsen number
then is

Kn =
lee
lgeo

.

The Knudsen number does not appear in the kinetic equation expicitely. It is convenient to introduce
the small, dimensionless number ε and write(

∂t + vk · ∇x + F
(
x, t
)
· ∇k

)
fk
(
x, t
)

=
1

ε
Cf,

this expression can be though of as a properly rescaled kinetic equation, where the length units are
chosen such that 1/ε appears on the right hand side. Intoducing ε and expanding fk

(
x, t
)
in powers

of ε, then setting ε → 1 helps to avoid the explicit rescaling of Eq. (2.12). The distribution function
then reads

fk
(
x, t
)

=
∞∑
i=1

εif
(i)
k

(
x, t
)
.

To lowest order in ε the expansion yields

0 = Cf(0)
k . (2.15)

This equation corresponds to the situation where no forces act on the system and the particles are
not geometrically confined. It is solved by the local equilibrium distribution function. For a system in
which particle number and momentum are conserved the local equilibrium distribution function reads

f
(0)
k =

1

e
β
(
εk−µ−u(x,t)·k

)
+ 1

. (2.16)

This is simply a general function solving Eq. (2.15), but suggestive symbols are chosen for the quantities
µ and u because they correspond to the chemical potential and the flow velocity. For example in the
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2.2 Quasiparticle picture of electron hydrodynamics.

case εk = k2/2m, the particle current calculated from Eq. (2.14) is j = ρu. Here u is identical with
the flow velocity of the preceeding section.
The approximation (2.16) is sufficient to derive the Euler equation in the form (2.2). To this end

f
(0)
k is inserted into the Boltzmann equation. Multiplying the Boltzmann equation by k and averaging
over momentum in the absence of external forces (F

(
x, t
)

= 0) gives

∂t
〈
kα
〉

0
=

1

m
∇x,β

〈
kαkβ

〉
0
, (2.17)

if the system is Galilean invariant and therefore the is dispersion εk = k2/2m. 〈...〉0 stands for averaging

over f(0)
k . The right hand sight can be written as〈

kαkβ

〉
0

=

〈(
kα − uα

) (
kβ − uβ

)〉
0

+
〈
kαuβ

〉
0

+
〈
uαkβ

〉
0
−
〈
uαuβ

〉
0
.

Using
〈
kα
〉

0
= mρuα, which is easily proved by performing a coordinate shift k → k + mu in the

averaging integral, the above expression becomes〈
kαkβ

〉
0

=

〈(
kα − uα

) (
kβ − uβ

)〉
0

+ ρuαuβ.

Performing a coordinate shift k→ k +mu, it is also easy to see that the first term is proportional to
δαβ . In fact this term is the pressure tensor Pδαβ . The zeroth order momentum current tensor is then
given by

Π
(0)
αβ = uβ∇x,βuα + Pδαβ. (2.18)

Inserting these results into Eq. (2.17) finally yields the Euler equation (compare to (2.2))

∂tuα + uβ∇x,βuα =
1

mρ
∇x,αP.

The next iteration of the Chapman-Enskog procedure gives corrections due to geometrical constraints
or external forces. To first order in ε the kinetic equation reads(

∂t + vk · ∇x + F
(
x, t
)
· ∇k

)
f

(0)
k

(
x, t
)

= C(1)f(1). (2.19)

The operator C1 is the collision operator linearized in ε, which is a good approximation if the deviations
from local equilibrium are small. It is given by

C(1)f(1) = −
4∏
i=2

∫
ddki

(2π)d
W̃
(
k,k2;k3,k4

) (
ψk + ψk1 − ψk2 − ψk3

)
.

Here ψk is defined via f(1) = f
(0)
k

(
1− f(0)

k

)
ψk, with f

(0)
k taken at u = 0, and W̃ is given by the

function W of Eq. (2.13) multiplied by the factor f(0)
k f

(0)
k2

(
1− f(0)

k3

)(
1− f(0)

k4

)
(see Ref. [15] for

the details of this calculation). The linearized collision operator for the electrons of a Dirac liquid will
have a similar form (see Eq. (5.10)). The left hand side of Eq. (2.19) is known and C(1) has to be
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2 Fundamentals: Electron hydrodynamics

inverted to find f(1)
k . The result will be of first order in the field F

(
x, t
)
, i.e. valid in the regime of

linear response. The viscous contribution to the momentum current tensor can be calculated setting
F
(
x, t
)

= 0. In the static case in 2D, the left fand side of (2.19) can be written as

vk · ∇xf
(0)
k

(
x, t
)

= εkIαβKαβf
(0)
k

(
1− f(0)

k

)
,

with the tensors

Iαβ =

(
kαkβ
k2
− 1

2
δαβ

)
Kαβ =

(
∂αuβ + ∂βuα − δαβ∂γuγ

)
.

Inverting (2.19) yields the function f(1). To linear order in u, the viscous contribution to Παβ is then

Π
(1)
αβ =

∫
d2k

(2π)2 vk,αkβf
(1)

= η
(
∂αuβ + ∂βuα − δαβ∂γuγ

)
.

This determines the viscosity η.

2.2.3 Relaxation time and BGK approximations

A simple model for the collision operator is the relaxation time approximation. In its simplest form,
this approximation reads

Cf = −
f − f(0)

∣∣∣∣
u=0

τ
.

Writing such a term in the Boltzmann equations means, that any initial non-equilibrium state f(t0)

will exponentially decay to the equilibrium distribution funtion f(0)
∣∣∣∣
u=0

, or, if continuously driven by

a field, the system will enter a steady state. The flow velocity u is purposefully set to zero. Thus the
equilibrium state to which the system evolves at t → ∞ does not allow for a finite current. This is
appropriate if a system is disordered and momentum is not conserved.
It is possible to incorporate momentum conservation into the relaxation time approximation by

allowing a non-vanishing u 6= 0 in f(0):

Cf = −
f − f(0)

∣∣∣∣
u6=0

τ
. (2.20)

The flow velocity itself (for εk = k2/2m) is defined as

u =
1

ρm

〈
k
〉

The state to which the system relaxes then carries a finite momentum, which has to be determined self-
consistently. This usually leads to integral equations for u that can be complicated in finite geometries
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2.3 Basic transport theory

[19, 86, 87]. The collision operator (2.20) is commonly referred to as Bhatnagar-Gross-Krook (BGK)
operator. It was proposed by the three authors in Ref [88]. It is easily seen that the BGK collision
operator conserves momentum:∫

ddk

(2π)d
k
[
Cf
]
k

= −1

τ

∫
ddk

(2π)d
k

[
fk −

(
eβ(εk−u·k) + 1

)−1
]

= −1

τ

[
ρmu−

∫
ddk

(2π)d
k

(
eβ(εk−u·k) + 1

)−1
]

= −1

τ

[
ρmu− ρmu

]
= 0.

In the second to last step
〈
kα
〉

0
= mρuα was used (see Sec. 2.2). The BGK approximation provides a

simple but efficient approximation for the collision operator, in situations where momentum conserva-
tion is crucial, but the particularities of the relaxation process are not of great importance [19, 86, 87].
It is also the foundation of the celebrated lattice Boltzmann method [89].

2.3 Basic transport theory

2.3.1 Transport coefficients

Chapter 5 of this thesis will be devoted to the non-local transport coefficients of a Dirac liquid. There-
fore, in this section, some basics of transport theory shall be reviewed. Transport coefficients such as
thermal and electrical conductivity and viscosity quantify the response of a system to applied forces
and are defined via constitutive relations of the form

J = νF , (2.21)

where J is a current sourced by the field F and ν is the corresponding transport coefficient. The relation
(2.21) is linear in the field F . Typically, this is only an approximation for small F . The corresponding
regime is called the regime of linear response. In this thesis, among other topics, the transport properties
of graphene will be studied in linear response. If the field F is spatially inhomogeneous Eq. (2.21) has
to be generalized to a non-local constitutive relation. This case is treated in the following section.
For an electric field, the constitutive relation (2.21) reads

j = σE.

Here, j is the electric current, E is the electric field and σ is the electric conductivity. In general, σ is
a second rank tensor. However, if the system of interest is isotropic and homogeneous, σ reduces to a
number. The most important facts about the electrical conductivity can be derived from the simple
Drude-Sommerfeld model [8]. Electrons are assumed to scatter off crystal impurities. The average time
that passes between two scattering events is the mean free time τ . In theses collisions the electrons loose
all memory of their state prior to the collision. For an oscillating electric field of the form E = E0e

−iωt,
the Drude expression for σ reads

σ =
e2τρ

m

(
1

1− iωτ

)
(2.22)
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2 Fundamentals: Electron hydrodynamics

Figure 2.2: Real and imaginary part of the Drude conductivity 2.22.

m is the electron mass and ρ the density of conduction electrons. Other transport coefficients have a
very similar ω, τ dependence. The imaginary part describes the phase shift of the current with respect
to the applied field. Im (σ) is peaked around ω ∼ 1/τ . The real part of the conductivity describes
resistive losses in the material. For ω →∞, the conductivity vanishes, i.e. the tranport becomes more
and more lossy (see Fig. 2.2).

2.3.2 Non-local transport

If the external force depends on the spatial coordinate r, or one is interested in transport in a finite
geometry, the constitutive relation (2.21) has to be generalized to its non-local form

J
(
r, ω
)

=

∫
ddr′ ν

(
r− r′, ω

)
F
(
r′, ω

)
. (2.23)

Again J
(
r, ω
)
is a current sourced by the external field F

(
r, ω
)
and ν

(
r− r′, ω

)
is a spatially depen-

dent transport coefficient. Being a convolution, the relation (2.23) assumes a much simpler form once
it is Fourier transformed:

J
(
q, ω

)
= ν

(
q, ω

)
F
(
q, ω

)
. (2.24)

At this point, some heuristic considerations are helpful. Imagine a crystal with impurities spaced at an
average distance lmf - the mean free path. The wave number dependent transport coefficient ν

(
q, ω

)
will vary on scales corresponding to the inverse mean free path qmf ≈ 2π/lmf . Typically ν

(
q, ω

)
will

be peaked around q = 0 and its width will be of the order of qmf . On the other hand, the scale of
relevant wave vectors will be set by the spatial dependence of the external field, or the geometry of
the sample - lgeo. If lgeo � lmf , the approximation ν

(
qgeo

)
≈ ν

(
q = 0

)
can be made. Then it is

ν
(
r− r′

)
≈ ν

(
q = 0

)
δ
(
r− r′

)
, and the constitutive relation (2.23) reduces to its local form (2.21):

J (r) = νF (r) . The non-locality of Eq. (2.23) matters if lgeo . lmf . On scales comparable to the mean
free path, transport is intrisically non-local, because particles loose their memory of previous events
through collisions with other particles or impurities - a mechanism that ceases to be efficient. This is
illustrated in Fig. 2.3 .
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2.3 Basic transport theory

Figure 2.3: Having started at the point marked 1, the electron looses the memory of its initial
state at large scales through many scatterings. On scales comparable to the mean free path, e.g.
if the electron is confined to the orange rectangle, the electron retains some memory of its earlier
states and the transport is non-local. To obtain the current at a given point of the orange rectangle,
an average over the whole rectangle has to be performed. This results in formula (2.23).

Further conclusions about the non-local transport coefficients can be drawn from symmetry consid-
erations. The electrical conductivity will be used as an example. In an isotropic system, a reference
direction for the non-local conductivity is set by the wavevector q. Thus, the response of the system
can be different depending on whether the electric field is parallel or orthogonal to q, i.e. longitudinal
or transverse. The projectors on longitudinal and transverse directions are given by

P‖,αβ =
qαqβ
q2

P⊥,αβ = δαβ − P‖,αβ.

The current response ot longitudinal and transverse field must be given by two distinct conductivities.
These conductivities are called longitudinal and transverse conductivities. The conductivity tensor can
be written as

σαβ
(
q, ω

)
= σ‖

(
q, ω

) qαqβ
q2

+ σ⊥
(
q, ω

)
P⊥,αβ. (2.25)

This expression is constructed such that the longitudinal and transverse components of the electric field
are projected out, assigned their corresponding conductivities, and added to give the total current. Here,
q is the modulus of q.
In the Kubo formalism (see Ref. [81]), the conductivity can be related to the current-current corre-

lation function χJαJβ
(
q, ω

)
:

χJαJβ
(
q, ω

)
= −iωσαβ

(
q, ω

)
. (2.26)

χJαJβ
(
q, ω

)
in its turn can be related to the charge density-density correlation function with the help

of the continuity equation:
χρρ

(
q, ω

)
=
qαqβ
ω2

χJαJβ
(
q, ω

)
.

In follows
iωχρρ

(
q, ω

)
= q2σ‖

(
q, ω

)
.

This result implies
σ‖
(
q 6= 0, ω = 0

)
= 0.
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Figure 2.4: The Keldysh contour.

In fact, the violation of this identity would lead to an infinite accumulation of charge at certain points
and thus is forbidden by charge conservation.

2.4 Quantum Boltzmann equation

The description of nonlocal transport presented in this thesis relies upon the quantum Boltzmann
(quantum kinetic) equation developed in the Refs. [49, 51]. A brief introduction to the quantum
Boltzmann formalism is therefore in order. The approach here, as in [49, 51], is based on the simple
and efficient equation of motion technique of Refs. [90, 91]. The quantum Boltzmann equation can
also be derived within the Keldysh functional integral technique; the interested reader is referred to
[92]. The quantum Boltzmann equation derived in this chapter will be related to the kinetic equation
of graphene electrons in chapter 5.

2.4.1 Green’s functions on the Keldysh contour

Dealing with equilibrium problems in quantum many body physics, it is usually assumed that at t = −∞
the system is in the ground state of the non-interacting problem, then interactions are switched on
adiabatically and at t =∞ again turned off. The Green’s function is then defined as

G
(
t− t′,x− x′

)
= −i

〈
T ψI

(
t,x
)
ψ†I

(
t′,x′

)
S
(
−∞,∞

)〉
〈
S
(
−∞,∞

)〉 .

λ is a set of quantum numbers, ψ†I
(
t,x
)
, ψI

(
t,x
)
are the field operators in the interaction representa-

tion. The S matrix, which encorporates all interaction effects, reads

S
(
−∞,∞

)
= T exp

(
−i
∫ ∞
−∞

dtHint (t)

)

T is the time ordering operator (see [91], chapter 2 for details). The notion that the system returns
to the non-interacting ground state is problematic in the context of non-equilibrium systems, where,
roughly speaking, energy and momentum are generated in the system. An alternative is provided by
the Keldish contour CK , where time evolves along a curve starting at t = −∞ running to t = t0 (forward
branch) and returning back to t = −∞ (backward branch) (see Fig. ). In this way one avoids specifying
the state at t =∞ is avoided. The limit t0 →∞ is then taken. The S matrix on the Keldysh contour
is defined as

S = T exp

(
−i
∫
CK
dtHint (t)

)
,

where the time ordering operator T orders along the Keldysh contour. This calls for a variety of Green’s
functions, e.g. time ordered Green’s functions and anti-time ordered Green’s functions (corresponding
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2.4 Quantum Boltzmann equation

to the action of T on the backwards branch of CK). Again, the reader is referred to Ref. [91], chapter
2. The most important Green’s functions here are

G<
(
x1, x2

)
= i

〈
ψ† (x2)ψ (x1)

〉
G>

(
x1, x2

)
= −i

〈
ψ (x1)ψ† (x2)

〉
Gt
(
x1, x2

)
= θ (t1 − t2)G>

(
x1, x2

)
+ θ (t2 − t1)G<

(
x1, x2

)
Gt̄
(
x1, x2

)
= θ (t1 − t2)G<

(
x1, x2

)
+ θ (t2 − t1)G>

(
x1, x2

)
ψ†λ (x), ψλ (x) are field operators in the Heisenberg representation. The variable x stands for the
coordinate in space and time

(
t,x
)
. For G< the time t1 is on the forward branch on CK , while t2 is on

the backward branch. For G> the time t2 is on the forward branch on CK , while t1 is on the backward
branch. For the time ordered Green’s function Gt

(
x1, x2

)
both times are on the forward branch, while

for the anti-time-ordered Gt̄
(
x1, x2

)
both timer are on the backward branch.

2.4.2 Quantum Boltzmann equation

The equations of motion for G≷ will ultimatively lead to the Quantum Boltzmann equation. It is
convenient to introduce the matrix notation

G̃ =

[
Gt −G<
G> −Gt̄

]

Σ̃ =

[
Σt −Σ<

Σ> −Σt̄

]
,

where Σ̃ is the self energy defined through the Dyson equation

G̃
(
x1, x2

)
= G̃0 (x1 − x2) +

∫
ddx3

∫
ddx4G̃0 (x1 − x3) Σ̃

(
x3,x4

)
G̃
(
x4, x2

)
. (2.27)

Using the Dyson equation (2.27) and an alternative form, there in the right hand side integral G̃0 and
G̃ shift places and arguments, one can derive two equations of motion for G̃:(

i
∂

∂t1
−H0 (x1)

)
G̃
(
x1, x2

)
= 1δ (x1 − x2) +

∫
ddx3Σ̃

(
x1, x3

)
G̃
(
x3, x2

)
G̃
(
x1, x2

)(
i
∂

∂t2
−H0 (x2)

)†
= 1δ (x1 − x2) +

∫
ddx3G̃

(
x1, x3

)
Σ̃
(
x3, x2

)
. (2.28)

Note, that the time derivative and the Hamiltonain in the second equation acts on the field operator
ψ† (x2) from the left. The quantity of interest is G<. It is related to the distribution function of the
quantum Boltzmann equation. First center of mass and relative coordinates in space and time are
introduced:

X =
1

2
(x1 + x2)

T =
1

2
(t1 + t2)

x = x1 − x2

t = t1 − t2. (2.29)
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Now, the Green’s function G< can now be rewritten in terms of the new variables

G<
(
X, T ;x, t

)
= i

〈
ψ†λ

(
X− 1

2
x, T − 1

2
t

)
ψλ

(
X +

1

2
x, T +

1

2
t

)〉
.

The Fourier transform with respect to the relative coordinates

G<
(
X, T ;k, ω

)
=

∫
ddxeiωt−ik·xG<

(
X, T ;x, t

)
(2.30)

gives the distribution function

2πδ
(
ω − εk

)
f
(
X, T ;k, ω

)
= −iG<

(
X, T ;k, ω

)
. (2.31)

This can be seen as the definition of the distribution function, which is justified by the fact that
averages over f

(
X, T ;k, ω

)
with respect to k, ω give expectation values for densities, currents, etc. of

physical quantities (see Ref. [91], chapter 3). The prefactor 2πδ
(
ω − εk

)
is due to the fact, that sharp

quasiparticles with a well defined dispersion were assumend. This is true because the life time of the
quasiparticles is τ ∼ 1/

(
α2kBT

)
, where α is small. Thus the energy of a thermally excited quasiparticle

is allways much larger than the inverse life time: kBT � 1/τ . A lengthy calculation beginning with
subtracting the equations of motion (2.28) and performing a so called gradient expansion leads to the
Quantum Boltzmann equation for f

(
X, T ;k, ω

)
. This procedure is described in chapter 9 of Ref. [90].

It is based on the observation that in thermal equilibrium, in a homogeneous system, the Green’s
function G<

(
k, ω

)
depends only on the k, ω coordinates and has the form

G<
(
k, ω

)
= inF (ω)A

(
k, ω

)
,

where nF (ω) = (eβω + 1)−1 is the Fermi-Dirac distribution and A
(
k, ω

)
is the spectral function (see

chapter 3 of Ref. [91]). For well defined quasiparticles A
(
k, ω

)
is sharply peaked around ω ∼ εk, where

εk is the electron dispersion. The Fourier transform of the Green’s function of a quasiparticle with a
decay rate γ is then approximately given by

G<
(
x, t
)
∼
∫

ddk

(2π)d
eβεke−iεkt+ik·r.

Thus, in real space G<
(
x, t
)
will decay on length scales of the thermal wavelength λT ∼ v~β, the

same will be true for the decay in time. Here, v is the particles’ group velocity. The precise form of
the decay will depend on the dispersion relation and the dimensionality. The dependence on X, T ,
induced by external perturbations, will share the spatio-temporal scales of the perturbations. If these
external perturbations, that bring the system out of equilibrium, have frequencies much smaller than
the thermal energy ~ωext � β−1 and wave-numbers much smaller that the inverse thermal wavelength
q � 2πλ−1

T , there will be a clear scale separation between the variablesX, T and x, t. Roughly speaking,
the gradient expansion consists of approximating T + 1

2 t ≈ T , X + x ≈ X in quantities appearing on
the right hand side of the subtracted Eqs. (2.28). The resulting expression is transformed according to
the Wigner transformation (2.30), giving the quantum Boltzmann equation(

∂

∂T
+ vk · ∇X + eE · ∇k

)(
−iG<

)
= −Σ>G< + Σ<G>. (2.32)
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2.5 Some experimental results

The Green’s functions and self energies have arguments
(
X, T ;k, ω

)
. Eq. (2.32) is equvalent to Eqs.

(9-7a) of Ref. [90] and (8.286) of Ref. [91]. Note that as will be seen in the explicit calculation for
graphene in chapter 5, the self energies Σ≷ contain only terms of second order in the coupling constant.
This corresponds to the fact that Σ≷ represent collisional contributions. Mathematically, this follows
from the definition (2.27) when the appropriate Feynman rules for the Keldysh formalism are applied
[93].

2.5 Some experimental results

As discussed in the introduction to this chapter, the hydrodynamic regime is reached when the electron-
electron scattering length becomes the smallest length scale of the system: lee � limp, lgeo, lphonon.
This is only achieved in the purest materials. Recently a number of such ultra-pure materials has
been developed, the most important examples being semiconductor heterostructures [19], graphene
[22, 27, 30, 39, 50, 55], delafossite metals [23, 24] and the Weyl semimetal tungsten diphosphide [25].
Many experiments find fingerprints of hydrodynamic behavior in Poiseuille flow geometries. The

arguably first observation of a hydrodynamic electron flow is due to Molencamp and de Jong [19] in
two dimensional high mobility GaAs heterostructures and dates back to 1995. The fact that more than
30 years passed since the first theoretical works of Gurzhi [10] shows that reaching the hydrodynamical
regime experimentally is a highly nontrivial task. The authors used electrostatically induced boundaries,
which, together with measuring at different temperatures, allowed them to tune the ratios of lee, limp

and lgeo = W , where W is the channel width. De Jong and Molenkamp were able to demonstrate
the crossover between Knudsen and Gurzhi regimes (inlet of Fig. 2.5). In the Knudsen regime, where
lee/W � 1, the conductivity drops when the ratio lee/W decreases. Interparticle-collisions disturb the
trajectories of individual particles, so that they hit the boundaries more often. Since particles loose
their momentum in boundary collisions, the conductivity dops. In the Gurzhi regime lee/W � 1, this
behavior changes. The particles enter the hydrodynamic regime and begin to act collectively. Particles
in the middle of the sample are screened from the boundaries and the conductivity increases when
lee/W is lowered further. Mathematically this can be deduced from the expression (2.11). As will be
seen later, but is physically rather clear already at this point, the viscosity behaves as η ∝ lee. Thus it
follows from Eq. (2.11) that the current in the hydrodynamic regime scales as

I ∝ w2

(
lee
w

)−1

.

Similar experiments were performed by Moll et. al. with ultra clean samples cut from the delafossite
PdCoO2 [24]. Essentially, the same features were observed, this time in a pure bulk material.
A different experiment designed to observe the hydrodynamic behavior of electrons is the measure-

ment of negative resistances induced by vortices in the fluid flow. Such voritces, also called “electron
whirlpools” (see Fig. 2.6), are common to electron fluids and classical fluids. Electron whirlpools were
observed in (doped) graphene [27] (see Fig. 2.6). However, the question whether electron whirlpools are
indeed a smoking gun evidence for hydrodynamic electorn flow is the subject of an ongoing discussion.
Theoretical considerations suggest that similar effects can occur in the balistic regime [28].
Recently it has become possible to directly measure the Poisuille velocity profile in two dimensional

samples. Measurements of Poisuille flow profiles through graphene channels have been reported in [30].
Fig. 2.7 showes the measured profiles. Though even in such measurements it is difficult to distinguish
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2 Fundamentals: Electron hydrodynamics

Figure 2.5: The figure is copied from Ref. [19] and shows the results of seminal experiments
carried out by de Jong and Molenkamp with 2D high mobility GaAs wires. The inlet shows the
conductivity of the high mobility wire in terms of an effective mean free path Leff , which is given
in units of the width W . The crossover between Knudsen and Gurzhi regimes (see main text) is
observed. The main figure shows the corresponding flow profiles. When the values of lee/W are
lowered, the profiles approach the parabolic shape of the classical Poiseuille flow of Eq. (2.10).
However, as W grows, impurity scattering starts to dominate the flow, and the profile turns flatter
in the middle of the sample. This is best seen in the flow profile corresponding to the lowest value
of lee/W .

hydrodynamic and ballistic flows, they demonstrate that electron hydrodynamics is becoming more
and more intriguing for condensed matter experimentalists.
Most relevantly for the physics of this thesis, hydrodynamic transport has been measured in graphene

at the charge neutrality point [50, 55]. While Ref. [50] reports a violation of the Wiedemann-Franz
law, as expected for hydrodynamic transport in charge neutral graphene (see Fig. 2.8), Ref. [55]
demonstrates that the interaction-induced conductivity due to momentum conserving electron-electron
scattering can be disentangled from other contributions to the graphene conductivity.

2.6 Summary

In this chapter the basic notions of electron hydrodynamics were reviewed. The Navier-Stokes equa-
tions were derived macroscopically, as well as using kinetic theory. The Chapman-Enskog method was
discussed, and the importance of boundary conditions for the hydrodynamic electron flow was pointed
out. Momentum conserving (BGK) and non-conserving relaxation time approximations were intro-
duced, and basic tranport theory reviewed. After sketching the derivation of the quantum Boltzmann
equation, the chapter was concluded with a brief review of experimental results on electron hydrody-
namics. The purpose of this chapter was to introduce the physics of electron hydrodynamics upon
which the subsequent chapters will build.
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2.6 Summary

Figure 2.6: Measuring electron whirlpools (vortices) in graphene. The figure is copied from Ref.
[27] and edited. The upper panel shows the streamlines of a fluid vortex at the right edge of the
sample. The lower left figure shows a photograph of the experimental sample. A vortex at the right
edge of the sample leads to a negative voltage betweeen the two indicated spots. The lower right
figure shows the measured negative resistance (measured voltage / applied current). The x-axis
shows the charge density in the sample. The negative resistance is measured away from charge
neutrality.

Figure 2.7: The figure is copied from Ref. [30] and edited. Ballistic (left) and hydrodynamic
Poiseuille profiles of the electron flow through graphene channels. The hydrodynamic regime is
reached by increasing the temperature of the sample to T = 75 K. Leading to small mean free
paths lee ∼ 1/T .
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2 Fundamentals: Electron hydrodynamics

Figure 2.8: Rates of electron-electron and electron-impurity scatterings as extracted from resis-
tivity measurements in charge neutral graphene. The interaction induced and impurity induced
conductivities can be disentangled. Electron-electron scattering dominates over the whole temper-
ature range. Figure adapted from [55].
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3 Chapter 3

Fundamentals: Lévy flights and
anomalous diffusion

The notion of a Lévy flight builds upon the work of Paul Lévy and Alexander Khinchin on stable
distributions [94–96]. A Lévy flight can be thought of as a random walk with very specific properties.
In Brownian motion a random walker propagates in small steps and the continuous time dynamics of
the random walk is determined by the ordinary diffusion equation. The distribution function of step
sizes is either Gaussian, or has a well defined second moment, so that Gaussian behavior emerges with
an increasing number of steps, as follows from the central limit theorem. During a Lévy flight, the
walker occasionally make large leaps, which, in the continuous time description, lead to non-localities.
The statistics of Lévy flights does not follow the central limit theorem in its usual form [97], instead
the notion of Lévy stable distributions becomes important.
Lévy flights are the subject of many studies concerned with the statistical behavior of biological,

ecological and financial systems. Examples are hungry animals in search of food and search strategies
in general [98–100], the propagation of earthquake epicenters [101] and prize fluctuations on the stock
market [102].

3.1 Gaussian and Lévy-stable random walks

The random walk of a particle is a sequence of steps li added up in space. The step sizes are determined
by ρ

(
l
)
- the step size distribution function. After N steps the particle travels a distance

XN =
N∑
i=1

li.

As an example, consider a one-dimensional walk. Assuming that ρ
(
l
)
is a symmetric function, the

expectation value of travelled distances XN vanishes,
〈
XN

〉
= 0, and its variance is given by

〈
X2
N

〉
=

N
〈
l2
〉
, where

〈
l2
〉

is the variance of the step size distribution function. Thus if
〈
l2
〉

is finite, and
each step takes the particle a time ∆t, it is〈

X2
N

〉
=

t

∆t

〈
l2
〉
. (3.1)
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3 Fundamentals: Lévy flights and anomalous diffusion

Figure 3.1: Left panel: The trajectory of a foraging shark travelling along the eastern coast of
Australia. Large leaps made by the shark indicate Lévy flight behavior. The figure was copied
from Ref. [103]. Right panel: Log-log plots of the step size distributions of foraging bigeye tunas
(upper image) and magellanic penguins (lower image). The distributions correspond to Lévy-stable
random walks (see table 3.1). The figure is due to Ref. [100]. Notice the different conventions
for the exponent µ. The µ used in Ref. [100] corresponds to µ + 1 in the rest of this chapter.
Remarkably, it can be shown that an exponent µ ≈ 1 (in the convention used in the chapter)
corresponds to an optimal search pattern [104, 105].

The same dependence on t follows if
〈
l
〉
is finite. Conclusions on the distribution of XN for N → ∞

can be drawn with the help of the central limit theorem even without knowing the precise form of ρ
(
l
)
.

For a one dimensional random walk, the probability that the particle is at a position XN after N steps,
up to a normalization factor, is∫ N∏

j=1

dljρ
(
li
)
δ

XN√
N
− 1√

N

N∑
j=1

lj

 =

∫ N∏
j=1

dljρ
(
li
) ∫ dk

(2π)
e
ik

(
XN√
N
− 1√

N

∑N
j=1 lj

)

=

∫
dk

(2π)
e
ik
XN√
N

(∫
dlρ
(
l
)
e
−i k√

N
l

)N
. (3.2)

If the condition
〈
l
〉

= 0 is fulfilled,

∫
dlρ
(
l
)
e
−i k√

N
l

=

〈
e
−i k√

N
l
〉

= 1− 1

N

k2
〈
l2
〉

2
+O

(
1/N3/2

)
(3.3)

holds. With the identity limx→∞
(
1 + x/N

)N
= ex, for N → ∞, the probability distribution of the

distance XN the particle travelled after N steps becomes

P
(
XN

)
=

1√
N

∫
dk

(2π)
eikξN e

− 1
2
k2
〈
l2
〉

=
1√

2π
〈
l2
〉
N

e
−

X2
N

2〈l2〉N . (3.4)
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3.1 Gaussian and Lévy-stable random walks

A glance at Eq. (3.3) shows, that for any step size distribution function ρ
(
l
)
with a finite second

moment
〈
l2
〉
, the random walker behaves according to Eq. (3.4). The simplest example is a Gaussian

distribution ρ
(
l
)

=

√
1/2π

〈
l2
〉
e
−l2/2

〈
l2
〉
, which is fully characterized by its second moment

〈
l2
〉
. Such

a distribution function leads to a random walk where the probability distribution of the the travelled
distance XN is, up to a scaling factor

√
N , the same the step size distribution:

√
NP

(
XN

)
= ρ

(
XN/

√
N
)

(3.5)

Now, cases will be examined where the second moment of ρ
(
l
)
can diverge. These cases correspond

to anomalous diffusion [97]. ρ
(
l
)
shall be symmetric, such that

〈
l
〉

= 0. A central notion is that of
Lévy stability. A distribution function F is said to be stable, if the sum Σ =

(
ξ1 + ξ2 + ...+ ξN

)
/cN ,

where ξi are random variables all distributed according to F and cN is a scaling factor, is distributed
according to the same function F .
The definition of stability is reminiscent of the above calculation for a Gaussian random walk. Eq.

(3.2) is evaluating a sum just like cNΣ. It is immediately clear from Eqs. (3.2)-(3.4) that the Gaussian
distribution is stable, but it is not the only stable distribution. Stable distrubutions in general can
be classified by the behavior of cN . Roughly speaking, cN determines the distance a random walker
travels in N steps. It is convenient to define the characteristic function of the step size distribution

ρ̃
(
k
)

=

∫
dlρ
(
l
)
e−ikl

Examining the Eq. (3.2), one sees that a necessary condition for the stability of step size distribution
function is

ρ̃
(
k
)N

= ρ̃
(
cNk

)
. (3.6)

Then, the distribution for the distance travelled in N steps XN becomes

P
(
XN

)
=

∫
dk

(2π)
eikXN ρ̃

(
cNk

)
=

1

cN
ρ
(
XN/cN

)
,

which is in complete analogy to Eq. (3.5) for the Gaussian random walk. The condition (3.6) is fulfilled
by the functions

ρ̃µ
(
k
)

= e−γ|k|
µ

with
cN = N

1
µ . (3.7)

where γ is an arbitrary constant.
The characteristic functions of stable distributions must necessarily have this form [106]. The case

µ = 2 obviously just gives the Gaussian distribution with its typical
√
N growth of the travelling

distance. For µ = 1 a Cauchy distribution is obtained:

ρ1

(
l
)

=
1

π

γ

γ2 + l2
. (3.8)

As expected the Cauchy distribution has a divergent second moment. Travelling distances grow ∝ N .
The cases 0 < µ < 1 and 1 < µ < 2 can be estimated with the help of the expansion ([97], Appendix
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3 Fundamentals: Lévy flights and anomalous diffusion

B.3) ∫ ∞
−∞

dk

(2π)
eikx−|k|

µ

= π−1
∞∑
k=1

(−1)k+1 x
−(µk+1)

k!
Γ
(
1 + kµ

)
sin
(
πµk/2

)
.

For large arguments the step sizes are distributed according to

ρµ ≈
1

π

γΓ
(
1 + µ

)
sin
(
πµ/2

)
lµ+1

, l→∞. (3.9)

An important property of random walks is that if for N → ∞ the distribution of travelling length
approaches a certain distribution PN→∞

(
XN

)
, this distribution must be Lévy stable [106]. Hence the

importance of stable distributions.

µ step size distribution behavior
〈
l2
〉

0 < µ < 1 ρµ
(
l
)
∼ l−(µ+1) Lévy flights undefined

µ = 1 ρµ
(
l
)

= 1
π

(
1 + l2

)−1
Cauchy flight undefined

1 < µ < 2 ρµ
(
l
)
∼ l−(µ+1) Lévy flights undefined

µ ≥ 2 ρ
(
l
)

=
√

1/4πe−l
2/4 normal (Gaussian) diffusion finite

Table 3.1: Regimes of random walks governed by Lévy stable step size distributions with charac-
teristic functions ρ̃µ

(
k
)

= e−|k|
µ

. In all cases the particles travel a dictance ∝ N1/µ in N steps.
The Cauchy flight is a special case of the Levy flight where the step-size distribution has the sim-
ple Cauchy form. Notably, the phase space diffusion of graphene electrons is characterized by a
wrapped Cauchy distribution, as will be shown in chapter 6.

Random walks governed by Lévy stable distributions with µ 6= 2 differ very much from Brownian
motion. It follows from the definition of Lévy stability that the distance travelled by random walkers
in N steps is given by N1/µ. Thinking of the behavior for large N in terms of a continuous process
with N = t/∆t, where ∆t is the time corresponding to one step, the travelled distance follows the law
∝ t1/µ. Brownian motion (µ = 2) is therefore the slowest process for large times. The reason is the
fast decay of the Gaussian step size distribution at large step sizes l. The particle only travels in small
steps. In Lévy type motion, the frequent small steps are interrupted by rare large distance jumps, which
are extremely improbable for Gaussian random walks. Therefore such random walks are called Lévy
flights. Here, the jumps do occur because the distribution function decays as a power-law (see Eqs.
(3.8) and (3.9)). The distinct features of a Gaussian random walk and a Lévy flight are demonstrated
in Fig. 3.2.

3.2 Fractional diffusion equations

3.2.1 The normal diffusion equation

Differential equations are a useful tool to describe diffusion processes [107]. The well known diffusion
equation describes normal diffusion processes, e.g. Brownian motion, in the continuous limit ∆t → 0.
It determines the behavior of the probability distribution function (PDF) P

(
x, t
)
to find the particle
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3.2 Fractional diffusion equations

Figure 3.2: The trajectories of four Lévy stable random walks with different exponents µ (see
table 3.1) are shown. The number of steps is N = 1000µ in each case, such that approximately
the same volume is covered by each random walk. The red curve shows a Gaussian random walk
with one million steps, while the blue curve has a comparable size with only 33 steps. One can
clearly see, how the slowly decaying step size distributions for µ < 2 trigger large jumps within the
trajectories.

at a given point x at the time t. Assuming that P
(
x, t+ ∆t

)
is determined by the influx of particles

to the location x during the time interval ∆t, one finds

P
(
x, t+ ∆t

)
=

∫
P
(
x−∆x, t

)
ρ
(
∆x
)
d
(
∆x
)
. (3.10)

ρ
(
∆x
)
is a step size distribution that accumulates the effects of many steps travelled in the period ∆t.

For a small time interval ∆t, and small distances ∆x follows

∂P
(
x, t
)

∂t
≈ D

∂2P
(
x, t
)

∂x2
, (3.11)

with the diffusion constant D =
〈

∆x2
〉
/
(
2∆t

)
. It is easy to see, that the diffusion equation describes

processes, where the particles spread according to a
√
t law, as expected for Gaussian processes. A

simple solution of Eq. (3.11) for the initial condition P
(
x, t = 0

)
= δ (x) is P

(
x, t
)

= e−x
2/4Dt/

√
4πDt.

The second moment of this distribution is 〈
x2
〉

= 2Dt.

3.2.2 Superdiffusive fractional diffusion equations

The situation is more complicated for Lévy-stable step size distributions ρµ
(
l
)
with µ < 2. An expan-

sion as in the Gaussian example (3.11) is not possible because of the divergent second moment of ρµ
(
l
)
.
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3 Fundamentals: Lévy flights and anomalous diffusion

Instead one can use the Fourier representation with regard to the variable x. Eq. (3.10) becomes

P̃
(
k, t+ ∆t

)
= P̃

(
k, t
)
ρ̃µ
(
k,∆t

)
. (3.12)

Here, ρ̃µ
(
k,∆t

)
= e−γ

′∆t|k|µ is an effective distribution function of distances travelled during the time
interval ∆t. This form of ρ̃µ

(
k,∆t

)
follows immediately from the fact that ρµ

(
l
)
is Lévy stable (see

Eq. 3.6), and N steps are taken during ∆t. Expanding Eq. (3.12) for small ∆t and taking the limit
∆t→ 0 yields

∂P
(
k, t
)

∂t
= −γ′

∣∣k∣∣µ P (k, t) .
This equation can be rewritten using the Riesz fractional derivative: F

[∣∣k∣∣µ f (k)] = −∆µ/2f (x),
where ∆ is the laplace operator [108]. Therefore a fractional diffusion equation can be formulated for
processes governed by Lévy stable random walks. In the one dimensional case one obtains:

∂

∂t
ρ
(
x, t
)

= γ′

(
∂2

∂x2

)µ
2

ρ
(
x, t
)
, (3.13)

where 0 < µ < 2 and γ′ plays the role of a fractional diffusion constant. Because the mean-squared
distance diverges in Lévy flight scenarios, and particles spread faster in space, one often speaks of
superdiffusive behavior. This can be illustrated in the following manner. Introduce a fractional mean
displacement

〈
x (t)δ

〉
[109, 110], where δ is chosen such, that the term is finite. It follows〈

xδ
〉
∝ γ′tδ/µ.

A rescaling δ → 2 shows that the behavior is indeed superdiffusive. This could have been, of course,
anticipated from the N1/µ behavior of travelling distance. The fractional derivative of Eq. (3.13) can
be represented as an integral:(

∂2

∂x2

)µ
2

f(x) =
Γ
(
1 + µ

)
sin
(
πµ/2

)
π

∫
f(x′)∣∣x− x′∣∣1+µ dx

′.

Note, that the integral is subject to proper regularizations that are incorporated in alternative expres-
sions [108, 110, 111]. This integral representation demonstrates the intrinsic non-locality of the Lévy
flight. The evolution of the PDF at a given point as given by (3.13), depends on the PDF at all other
points of the domain in question.

3.2.3 Subdiffusive fractional diffusion equations

Another type of anomalous diffusion, that shall be briefly reviewed is subdiffusion. During subdiffusion
particles travel slower than in a diffusive process. Their mean squared displacement grows according
to 〈

x2
〉

= 2Dζt
ζ ,

where 0 < ζ < 1. Such a behavior can stem from a random walk with a Gaussian step size distribution
function, where waiting times for the walker are introduced, i.e. there is a chance that the particle
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3.3 Summary

remains on a certain position for a long time [109]. Instead of the simple diffusion equation, the PDF
follows a different kind of fractional differential equation. One possible way to write this equation is
[109, 110, 112]

∂

∂t
ρ
(
x, t
)

= KζD
1−ζ
t

∂2

∂x2
ρ
(
x, t
)
,

with the operator

D1−ζ
t f (t) =

1

Γ
(
ζ
) ∂
∂t

∫ t

0

f
(
t′
)

(
t− t′

)1−ζ .
3.3 Summary

In this chapter the notions of normal and anomalous diffusion were introduced. Some properties of
Brownian motion were discussed. It was shown that, following the central limit theorem, the tavelled
distance of any random walker follows the

√
N scaling of Brownian motion for large numbers of steps

N , if the distribution of step sizes has a well defined second moment. The concept of Lévy stability
was then introduced. Lévy stable distributions were classified using their characteristic functions and
their behavior at large arguments. It was shown that for random walks whose step size distributions
have polynomially decaying tails and divergent second moments (see table 3.1), the travelled distance
of a random walker scales as N1/µ with 0 < µ < 2, i.e. the random walker is faster. Such a motion was
called superdiffusive.
It was argued, that in the continuous time limit ∆t → 0, where ∆t is the time between successive

iterations of the random walk, the dynamics of the distribution function for the position of the random
walker can be described by means of diffusion equations. In the case of normal diffusion, the dynamics is
follows the ordinary diffusion equation. In the Lévy flight case, a fractional diffusion equation, involving
a Riesz-Feller derivative ∆µ/2 instead of the second derivative of the ordinary diffusion equation, must
be used. A similar fractional diffusion equation will be seen to describe the superdiffusive phase space
dynamics of graphene electrons in chapter 6.
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4 Chapter 4

The boundary conditions of viscous
electron flow

As outlined in section 2.1.3, in most effects that are characteristic for hydrodynamic electron flow the
behavior of electrons at the sample boundaries is crucial. Often, hydrodynamic electrons are described
with the help of Navier-Stokes equations (see e.g. [22, 26, 27, 39, 113]). These equations are second
order partial differential equations and need to be supplimented with boundary conditions, when solved
on a finite domain. In the simplest case of low Reynolds numbers, the stationary, linearized Stokes flow
(see section 2.1.2) can be considered. The Stokes equation reads

η∆u = ∇p, (4.1)

where u is the flow velocity, η the shear viscosity and p the pressure. Let S be the boundary of the
fluid.
A variety of boundary conditions at S can be formulated. In classical hydrodynamics, in an over-

whelming number of cases, the no-slip boundary condition

utα

∣∣∣
S

= 0 (4.2)

applies. Here,ut = u−(u · n)n is the tangential velocity of a boundary with normal vector n. The fluid
is at rest at boundaries. Roughly speaking, it is slowed down at by momentum dissipating collisions
of the particles with the rough boundary walls. Contrary to first intuition, even if on average the
particles lose all of their momentum in particle-wall collisions, the condition (4.2) does not necessarily
apply. This will be discussed later, and it will become clear, why the no-slip condition (4.2) holds in
an overwhelming majority of classical hydrodynamic problems.
A different condition applies at the interaface of a liquid and a gas. Here, solutions of the Stokes

equation (4.1) have to satisfy

nβ
∂utα
∂xβ

∣∣∣∣∣
S

= 0. (4.3)

This is the so-called no-stress boundary condition. Remembering the result of section 2.2 that gra-
dients of the flow velocity ∂αuβ correspond to momentum currents, the no-stress boundary condition
prohibits a momentum flow towards the boundary. The physical reason for this is, that no momentum
is dissipated at S, and therefore the influx of momentum must vanish.
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4 The boundary conditions of viscous electron flow

Figure 4.1: Two dimensional Poiseuille flow for different boundary conditions in a channel of width
w. The flow velocity is shown as a blue curve. In each of the three pictures, the same current I0

passes through the sample.

Finally, a mixed boundary condition of the form

utα

∣∣∣
S

= ζ nβ
∂utα
∂xβ

∣∣∣∣∣
S

. (4.4)

can be imposed. The quantitiy ζ is called the slip length. It is the length at which the flow velocity
ut vanishes, if it is prolonged with a streight line of slope ∂utα/∂xβ

∣∣∣
S
outside the boundary. This is

illustrated in Fig. 4.2. In the limits ζ → 0 and ζ →∞, the no-slip and no-stress conditions are restored.
To clarify the role of ζ, it is useful to take a look at the example of Poiseuille flow, which is the

simplest model solution to the Stokes equation (4.1). The formula for the two dimensional Poiseuille
flow in x-direction confined to a sample of width w in y-direction reads (see section 2.1.3):

ux =
1

8η

(
w2 + 4ζw − 4y2

) ∂p
∂x
. (4.5)

For a large ζ � w, the classical parabolic profile, represented by the last term in brakets, is subleading
to the slip induced constant term proportional to ζ. For ζ → 0 the parabolic profile is restored.
The flattening of the flow profile with increasing ζ and fixed total current through the sample is
demonstrated in Fig. 4.1. From (4.5) follows, that the total current through the sample is I =∫ w/2
−w/2 uxdy ∝ w2(6ζ + w). The scaling I ∝ w3 that holds in the no-slip case is known as the Gurzhi
effect [10]. In experiments with relatively narrow doped graphene samples [27] no clear manifestations
of Gurzhi effect were observed. A possible explanation is a large slip length, which serves as a good
motivation to take a closer look at ζ. The results presented in this chapter were reported in Ref. [84].
The slip length is an effective quantity that sums up information on the nature of the boundary, and

the scattering of fluid particles near the boundary. In the immediate vecinity of the boundary, the fluid
is far from local equilibrium, and the hydrodynamic description does not apply. This area is called
the Knudsen layer. At distance that is comparable to the momentum conserving mean free path, local
equilibrium is restored, and the fluid can be described hydrodynamically. In this chapter the slip length
ζ will be derived for Dirac and Fermi liquids. To this end, first a kinetic theory of particle-boundary
scattering has to be developed. The boundary conditions for the quantum Boltzmann equation have to
be derived microscopically. Solving the kinetic equation in the vicinity of the boundary and averaging
over the resulting distribution function will give a boundary condition of the form of Eq. (4.4), and an
explicit expression for ζ. This chapter is based on Ref. [84].
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4.1 Boundary conditions for the kinetic distribution function.

Figure 4.2: The slip length ζ is the length at which the flow velocity ut vanishes, if it keeps
dropping with a slope ∂utα/∂xβ

∣∣∣
S
outside the boundary. ζ characterizes the behavior of the liquid

at the boundary and thus sums up all information about the microscopic properties of the boundary
and the physics of the Knudsen layer, where the particle behavior is dominated by collisions with
the wall, rather than by particle-particle collisions. The width of the Knudsen layer is comparable
to the momentum conserving mean free path.

4.1 Boundary conditions for the kinetic distribution function.

Here a microscopic theory of boundary scattering will be developed. The case of charge neutral graphene
will be examined. The generalization to Fermi liquids requires only minimal changes and will be
adressed later. It should be remembered that it is the thermal current jE that is proportional to the
electron flow velocity u in charge neutral graphene. This issue has already been adressed in Sec. 4.6.
The starting point is the Hamiltonian of massless Dirac electrons in two spatial dimensions

H = v~k · σab. (4.6)

a and b label the two sublattices of graphene. Taking interaction effects into account into account,
insofar v is the renormalized group velocity of electrons (see section 1.2)

v = v0

(
1 + α ln

(
Λ/kBT

))
, (4.7)

where v0 is the bare group velocity. Here, and in the following the spin and valley indices will be
supressed. The spin-valley degeneracy can be easily incorporated at the end of the calculaten giving
an overall factor of N = 4. The renormalization of the group velocity (4.7) is accompanied by a
renormalization of the coupling constant α0 → α = e2/(4πε~v). The massless Dirac Hamiltonian (4.6)
is diagonalized by the unitary transform

Uk =
1√
2

[
1 o∗k
1 −o∗k

]
, (4.8)

where ok =
(
kx + iky

)
/
√
k2
x + k2

y, leading to the spectrum ελk = λv~k. λ = ±1 is the band index,
labeling particle and hole bands (upper and lower Dirac cones), respectively.
To derive the boundary conditions consider a semi-infinite graphene sheet that lies in the y > 0

half-plane and whose edge aligns with the x-axis (see Fig. 4.3). The flow u is parallel to the edge
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4 The boundary conditions of viscous electron flow

Figure 4.3: A semi-infinite graphene sheet. The sample boundary aligns with the x-axis. The
Dirac fluid flows parallel to the boundary. The flow is uniform in x-direction.

everywhere in the half-plane. Formally, the problem of simultaneous scattering of electrons on each
other and on the sample edge has to be solved. In principle the quantum Boltzmann equation contains
two scattering terms (

∂

∂t
− vλ · ∇

)
fλ,k (r) = Ce.e.λk

[
f
]

+ Cedgeλk
[
f
]
. (4.9)

Ce.e.λk
[
f
]
describes electron-electron scattering and has the form of Eq. (2.13). Cedgeλk

[
f
]
describes

electron-edge collisions. However, here a different approach based on Ref. [114] is chosen. The edge
contribution to the scattering part in the quantum Boltzmann equation can be reduced to boundary
conditions for the distribution function at the edge fλ,k

(
y = 0

)
. Let f>λ,k

(
y = 0

)
be the distribu-

tion function of electrons (holes) reflected from the wall, i.e. those having a velocity vyλ,k > 0. Let
f<λ,k

(
y = 0

)
be the distribution function of electrons travelling towards the wall with vyλ,k < 0. The

boundary condition will relate f>λ,k
(
y = 0

)
to f<λ,k

(
y = 0

)
. Once f>λ,k

(
y = 0

)
and f<λ,k

(
y = 0

)
have

been found, a hydrodynamic boundary condition in the form of Eq. (4.4) can be derived from the
assumption, that no momentum current can flow across the sample edge: i.e. the momentum current
transverse to the edge has to vanish at y = 0:

0 = 2N

∫
<

ddk

(2π)
vy+,kkxf

<
+,k

(
y = 0

)
+2N

∫
>

ddk

(2π)
vy+,kkxf

>
+,k

(
y = 0

)
. (4.10)

Only the distribution function of electrons (λ = +1) appears in the above formula, the factor of 2
accounts for the identical hole contribution. The factor N = 4 accounts for the spin valley gegeneracy.
The superscripts≷ denote that the integrals have to be taken over the regions in momentum space where
vyλ,k > 0, or vyλ,k < 0, respectively. Clearly, f≷λ,k depends on u and its gradients, the Chapman-Enskog
method of Sec. 2.2 therefore seems a good way to attack the problem.

4.1.1 Two limiting cases of boundary scattering

There exist two distinct limiting cases of boundary scattering that result in very different flow behavior
at the boundaries. First there is specular scattering, i.e. perfect reflection at the boundary. In this
case the velocity component vyλ,k of scattered particles is inverted, while vxλ,k remains unchanged. For
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4.1 Boundary conditions for the kinetic distribution function.

the setting of Fig. 4.3 this boundary condition corresponds to mirroring the graphene half-plane on the
x-axis and considering an infinite sheet of graphene. The fluid will behave as if there is no boundary.
This limit will be called the specular limit.
In the second limit, the momentum component parallel to the edge is fully absorbed in particle-wall

collisions. It is enough to assume that the distribution function of reflected electrons f>λ,k is isotropic[61,
115]. Then, on average, reflected electrons do not carry any tangential momentum. Following [61] this
limit will be called the diffuse limit.
More complicated scenarios necessarily lie between these two limiting cases. Early phenomenological

theories introduce a scattering parameter that describes the fractions of mean particle momenta before
and after the collision with the wall. Here, a more microscopic approach that models the reflection on
an uneven boundary will be followed [63]. The boundary roughness will be treated as a small parameter.
This nearly specular limit will be considered first

Nearly specular limit

Let the rough edge be oriented along the x-axis, and its precise shape given by the function ξ (x).
This setting is shown in Fig. 4.4. Before adressing the question of how the edge roughness influences

Figure 4.4: A disordered graphene edge. The edge is described by the function ξ (x). Two length
scales characterize the disorder: the mean roughness amplitude h, and the correlation length h′.
Both lengths are much smaller than the thermal wavelength of electrons λT ∼ ~v/kBT . On average,

the edge is described by the correlation function ξ (x1) ξ (0) = h2 exp

(
− x2

1
h′2

)
.

the kinetic theory, one needs to establish the quantum mechanical boundary conditions for the wave
functions of Dirac electrons on the sample edge. This issue was adressed by Akhmerov and Beenakker
in Ref. [116]. Here, boundary conditions for clean cuts through the graphene plane for different cutting
angles with respect to the lattice basis vectors were considered. Two well known cases are the zigzag
and armchair boundaries (see Fig. 4.5). It was shown in Ref. [116] that the boundary conditions for
the wave function can be approximated by zigzag boundary conditions, if the sheet is cut at an angle∣∣δ∣∣ ≥ 0.1 rad with respect to the armchair axis. In the case of a disorderd edge, the cutting angle is
disordered, too. It is very improbable that a large portion of the edge will remain within the range∣∣δ∣∣ ≤ 0.1 rad. To a good approximation, the zigzag boundary condition can be used here. As shown in
Fig. 4.5, the zigzag boundary consists of atoms on one of the two sublattices. The boundary condition
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4 The boundary conditions of viscous electron flow

Figure 4.5: Zigzag and armchair boundaries of a graphene sheet. There are significant differences
between the two boundary forms (e.g. between the spectra of graphene nano-ribbons) [41]. However
the boundary conditions for an arbitrary streight cut through the graphene plane will resemble the
boundary conditions for the zigzag boundary, except if the cutting angle is in a narrow range
(0.1 rad) [116].

for the wave function ψa, where a ∈
{

1, 2
}
lables the sublattice, is

ψa=1

(
x, y = ξ (x)

)
= 0. (4.11)

The edge function ξ (x) is characterized by two lengths. The amplitude of the roughness h and
the correlation length along the edge h′ (see Fig. 4.4). In the nearly specular case, it can be safely
assumed that h and h′ are are much larger than the interatomic distances, but much smaller than the
characteristic wavelength of the electrons, which in our case is the thermal wavelength λT ∼ ~v/kBT :

h, h′ � λT .

This means that the wave function can be expanded in the small variation ξ (x) along y = 0:

ψ1

(
x, 0
)

+ ξ (x)
∂ψ1

(
x, y
)

∂y

∣∣∣∣∣∣
y=0

= 0. (4.12)

The boundary scattering is static and therefore elastic. It is therefore useful to introduce the projection
of the wave function ψ1 onto quasifree plane waves with a given energy ε:

ψ1,ε (x) =
∑
λ

∫
d2k

(2π)2 δ
(
ε− ελ,k

)
γk,λU

−1
1,λ

(
k
)
eik·r. (4.13)

Here, ελ,k = λv~k is the electron dispersion and U−1
a,λ

(
k
)
transforms the wavefunctions γk,λ from the

band basis into the sublattice basis. ψk,a =
∑

λ γk,λU
−1
a,λ

(
k
)
is the Bloch function projected onto

the sublattice. The boundary conditions for the kinetic distribution function can now be derived as
follows: Insert ψ1,ε (x) into (4.12), carry out the kx integration, and perform a Fourier transform. Then,
to second order in ξ (x) a relation between the wavefunctions γkx,|ky|,λ and γkx,−|ky|,λ on the boundary
is obtained. This relation holds for λ = ±1 separately, because the scattering process is elastic. Then,
an average over the edge functions ξ (x1) ξ (x2) must be taken. Upon averaging, one has:

ξ
(
k1

)
ξ
(
k2

)
= 2πδ

(
k1 + k2

)
W
(
k1

)
. (4.14)

The functionW
(
k
)
describes the correlations of the surface roughness. The kinetic distribution function

is given by the modulus squared of the wave functions γk,λ

fk,λ =
(

2πvykx,λ

)−1
∣∣∣∣γkx,ky(ε,kx),λ

∣∣∣∣2, (4.15)

42



4.1 Boundary conditions for the kinetic distribution function.

where the prefactor
(

2πvykx,λ

)−1
stems from a variable change kx, ε→ k. In this fashion one arrives at

the boundary condition

f>
(
kx, ky

)
= f<

(
kx,−ky

)
(4.16)

−4f<
(
kx,−ky

)
ky

∫
dk′x
2π

k′yW
(
kx − k′x

)
+4ky

∫
dk′x
2π

k′yW
(
kx − k′x

)
f<
(
k′x,−k′y

)
.

The above equation is this section’s main result. Except for the matrix elements Ua,λ
(
k
)
, which

ultimately cancel out due to the unitarity of the transformation, and the fact that two bands λ = ±1
have to be kept track of, the calculation is completely analogous to the one presented by Falkovsky in
[63]. The details are summerized in Appendix A.1. The domain of integration in (4.16) ranges from

k′x = −ε/v to k′x = ε/v where ky =
√(

ε/v
)2 − k2

x. The result of Eq. (4.16) remains unaltered if the
sublattice indices in Eq. (4.11) are interchanged.
The precise form of the edge correlation function ξ (x1) ξ (0) is not known. It depends on the micro-

scopic details of the edge, which, in their turn, depend on the fabrication process. Two things are clear:
the edge correlation function is proportional to h2, and it has to decay on a scale h′ with increasing
distance between x1 and x = 0. However, it is clear from Eq. (4.16), that the boundary condition
will not strongly depend on the precise form of the edge correlation function, as long as the two above
conditions are satisfied. A Gaussian distribution is a good choice

ξ (x1) ξ (0) = h2e−
x2
1

h′2 .

The Fourier transform is then given by

W
(
kx
)

=
√
πh2h′e−

1
4
k2
xh
′2
.

Since the wavelengths of electrons are given by λT and the condition

h′ � λT

holds, it is k2
xh
′2 � 1 and W

(
kx
)
can be safely approximeted by a flat function:

W
(
kx
)

=
√
πh2h′.

The presence of the small parameter
κ = h2h′/λ3

T

in the nearly specular limit does not only simplify the boundary conditions but also allows a controlled
calculation of the slip length. Integrating Eq. (4.16) over kx, one easily sees that the boundary condition
conserves the particle number.

Diffuse limit

In the diffuse limit, electrons and holes loose all tangential momentum upon reflection on the boundary.
The distribution function of the reflected electrons then is isotropic:

f>λ,k = f>λ

(∣∣k∣∣) . (4.17)
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4 The boundary conditions of viscous electron flow

The diffuse limit is appropriate when the boundary if very rough, or other momentum sinks, such as
for example phonons, dissipate momentum at very fast rates. The boundary condition (4.17) obviosly
makes no assumtions on the microscopic mechanism of momentum dissipation.

4.2 The slip length of a Dirac liquid

To derive the hydrodynamic slip length, first the kinetic theory of momentum flow near the boundary
has to be adressed. A Chapman-Enskog-like ansatz can be used. The Chapman-Enskog method was
summerized in Sec. 2.2. The bulk (subscript b) kinetic distribution function can be written in the form

f
∣∣∣
b

= f l.e. − f(0)
(

1− f(0)
)

Ψ, (4.18)

where the function Ψ, characterizing the deviations from local equilibrium, should not be confused
with the notation for the electron wave function used above. To avoir confusion we will refer to the
local equilibrium function of Sec. 2.2 as f l.e. and f(0) will stand for the Fermi-Dirac distribution:
f(0) = f l.e.

∣∣∣
u=0

. For charge neutral graphene the local equilibrium distribution function reads

f l.e.λ,k =
1

e
β
(
ελ,k−u(r,t)·k−µ

)
+ 1

.

The reponse of the Coulomb interacting Dirac liquid to stresses caused by gradients of u will be
examined in chapter 5. Here, some results will be used to calculate the slip length [51]. The non-
equilibrium contribution Ψ of Eq. (4.18) is given by

Ψ =
1

2
λ
(
a0 + a1βvk

)
IαβXαβ

Xαβ =
∂uα
∂xβ

+
∂uβ
∂xα

− δαβ∇ · u

Iαβ =

(
kαkβ
k2
− 1

2
δαβ

)
. (4.19)

Here, a0 and a1 are numerical coefficients that will be calculated in chapter 5. They correspond to zero
modes of the collinear part of the collision operator of the quantum Boltzmann equation for graphene
electrons. These modes are dominant at small values of the fine structure constant α. As shown in Sec.
1.2, the behavior of thermally excited electrons and holes is governed by small α physics. Formally,
Eq. (4.19) is very similar to the Chapman-Enskog expressions of Sec. 2.2.

4.2.1 The nearly specular limit

Eq. (4.19) describes the response to stresses in the bulk. Here, the contribution of the boundary is
of interest. In the nearly specular scenario, corrections on the order of κ = h2h′/λ3

T due to the edge
roughness can be exprected. A good ansatz for the distribution function f<λ,k

(
y = 0

)
of impinging

particles therefore is
f<λ,k

(
y = 0

)
= fλ,k

∣∣∣
b

+O (κ)A
(
IαβXαβ

)
. (4.20)
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4.2 The slip length of a Dirac liquid

Here A
(
IαβXαβ

)
is an unknown function of spatial gradients of u and of momenta k. Later on, it

will be shown that the function A
(
IαβXαβ

)
contributes to the slip length only to second order in κ

and can be ignored. It is sufficient to use the bulk distribution function for impinging electrons. The
loss of tangential momentum is therefore described by Eq. (4.16) and the influence of the boundary on
momentum currents does not need to be considered. Inserting Eq. (4.20) into (4.16), an expression for
the full distribution function fλ,k

(
y = 0

)
at the edge is obtained.

A hydrodynamic boundary condition of the form of Eq. (4.4) can now be obtained with the help of
Eq. (4.10). Performing the integrations, only those parts of the distribution function contribute, which
are proportional to cos

(
ϕk

)
, where ϕk is the angle of k. The last right hand side term of (4.16) does

therefore not contribute to the momentum current average (4.10) for a flat W
(
kx
)
. The result is

0 = −κAux +
(
η − κB

) ∂ux
∂y

,

with A = N31π11/2

672β3v3~2 . The term with coefficient B that is unimportant in the limit of small κ (showing
that the boundary correction for impiging particles in Eq. (4.20) is irrelevant). η is the viscosity of the
Dirac liquid [51]

η = N

(
π3a0 + 27ζ(3)πa1

)
48π2β2v2~

≈ 0.449N

4α2v2~
(
kBT

)2
, (4.21)

In the limit κ → 0, the boundary condition reduces to the no-stress condition (4.3). This shows, that
if the edge is sufficiently smooth on the scale of the electron wavelength, the liquid will not be slowed
down at the boundary. With the above expressions, the slip length is

ζ =

(
λ3
T

h2h′

)
χ ≈ 0.008κ−1lee, (4.22)

where χ = 672β3v3~2

N31π11/2 η. For the mean free path due to electron-electron scattering lee = v~/
(
C1α

2kBT
)
,

with numerical coefficient C1 = 1.950, was used. This result is only cited here. The electron-electron
scattering scattering length will be examined in detail in chapter 5.

4.2.2 The diffuse limit

The diffuse limit can be treated similarely to the nearly specular limit, however, there is no small
parameter. A natural first assumption is that the bulk distribution function describes the behavior of
particles right up to the boundary. Similar assumptions have been made in the theory of classical gas
flow. They lead to the famous Maxwell boundary condition for rarified gas flow [115, 117, 118].
In view of Eq. (4.17) it is clear, that only the impinging particles contribute to the momentum

current average (4.10). Eq. (4.10) then gives

ζ =
π2β3v3~2

3Nζ(3)
η ≈ 0.6lee. (4.23)

Again, the result is written in terms of the electron-electron mean free path lee = v~/
(
C1να

2kBT
)
,

C1 = 1.950.
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4 The boundary conditions of viscous electron flow

4.2.3 Discussion

For T → 0 the slip length in both, the nearly specular, and the diffuse limits diverge. In the diffuse case
it is ζ ∼ T−1 ln3

(
TΛ/T

)
with TΛ = Λ/kB. The logarithmic factor stems from the renormalization of

the electron velocity at low temperatures (see Sec. 1.2). Λ is a band structure dependent cut-off on the
order of 1 eV. In the nearly specular limit holds ζ ∼ T−4 ln6

(
TΛ/T

)
. The reasons for this behavior are

twofold. The slowing down of the liquid at the boundary depends on how effective the boundary absorbs
momentum (roughness), but also on how efficient the momentum tranport towards the boundary is.
Both mechanisms fail at low temperatures. The momentum tranport becomes less efficient because it
is caused by electron-electron collisions and the corresponding scattering length diverges as 1/T . This
fact is responsible for the 1/T divergence of the slip length in the diffuse limit. On the other hand, the
boundary scattering becomes less efficient as the thermal wavelength λT = ~v/kBT of electrons grows
compared to the edge roughness. This mechanism is responsible for the additional factor of 1/T 3 in
the expression for the nearly specular limit. The temperature dependencies of the slip lengths in both
limits are shown in Fig. 4.6.

Figure 4.6: The temperature dependence of the slip length ζ for (a) diffuse scattering at the
boundary of graphene at the charge neutrality point (continuous line) and at a finite chemical
potential µ = 0.25 eV (dashed line) and (b) scattering at a microscopically rough edge with a
typical roughness amplitude h = h′ = 250Å at charge neutrality. At charge neutrality the slip
length grows as T−4 ln6

(
TΛ/T

)
in the nearly specular and as T−1 ln

(
TΛ/T

)
in the diffuse limits.

TΛ = Λ/kB is the cut-off temperature. Λ = 1 eV was used here. At a finite chemical potential, the
slip length behaves as ζ ∼ T−2/ ln

(
εF /T

)
in both limits, but is parametrically larger in the nearly

specular case.

In the renormalization of velocity v0 → v = v0

(
1 + α ln

(
Λ/kBT

))
and coupling constant α→ αr =

e2/(4πε~v) a cut-off of Λ = 1 eV was used. A permittivity of ε = 5ε0 was assumed. The small parameter
κ for the nearly specular limit remains reasonably small up to h = h′ ≈ 250Å at temperatures below
100K.
In the diffusive limit, for the above parameter values, ζ ranges from 100µm at 1K to 0.4µm at 100K.

In the nearly specular limit, for a small roughness of the order of h = h′ = 10Å, ζ can compete with
the length of the Trans-Siberian Railway at T = 1K and ranges to 1mm at T = 100K. For a fairly
rough edge of h = h′ = 250Å it is ζ = 3.5 km at 1K, and at T = 100K the slip length shrinks to
ζ ≈ 0.6µm and approaches the diffuse limit.
The value of ζ has to be compared to the width of the sample. If ζ is comparable to, or smaller than

the width, the mixed boundary condition of Eq. (4.4) should be applied, in certain situations even the
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4.3 The slip length of Fermi liquids

no-stress boundary conditions (4.3) can be appropriate.

4.3 The slip length of Fermi liquids

Now, the calculation of the slip length for a Fermi liquid, which includes graphene at finite charge
densities (εF � kBT ) will be adressed. The above results can be easily generalized to this case. In two
dimensions, the same set-up with a semi-infinite current carrying sheet at y > 0 will be considered.
Again, the flow shall be tangential to the sample boundary. In three dimensions, the flow is in x-
direction and shall not depend on the z coordinate.
The bulk distribution function has the form of Eq. (4.18), where following Ref. [13], the non-

equilibrium contribution Ψ, which describes the response to gradients of the flow velocity u, is written
in the from of

Ψ = +q
(
k
)
kx

∂ε

∂ky

∂ux
∂y

. (4.24)

The dispersion relation is given by ε = vF~
(
k − kF

)
+ εF . The physical content is hidden in the

function q
(
k
)
, which determines the electron-electron scattering time

τ =

∫ ∞
−∞

dx
q (x)(

2 cosh
(
x
2

))2 . (4.25)

Here, x = (ε− εF ) /
(
kBT

)
is a dimensionless variable. Quantities of interest can be written in terms

of τ . For example the viscosity in d = 3 dimensions equals

η =
2

15
v2
FρF εFm

∗τ (4.26)

and for d = 2

η =
1

4
v2
FρF εFm

∗τ. (4.27)

Here ρF is the density of states at the Fermi surface, m∗ is the effective mass of the electrons (m∗ =
~kF /v for graphene).
It was shown in Ref. [13] that in d = 3, q (x) can be approximated by a constant. The leading

temperature dependece at εF � kBT then is η ∝ q ∝ T−2. The only change in the boundary condition
for the kinetic equation (4.16) is that the integrations have to be extended over the two dimensions of
the xz-surface. Only the λ = +1 part is relevant for a finite Fermi-energy and a spin degeneracy of
N = 2 is assumed (for graphene N = 4 due do the 2× 2 spin valley degeneracy).
The characteristic wavelength of electrons is now given by the Fermi wavelength λF = 2π/kF . This

is important for the nearly specular limit. Since λF � λT , Fermi liquids are more susceptible to edge
roughness; the roughness parameter κ = h2h′2/λ4

F is larger. The slip length can be derived from Eq.
(4.10), and it holds

ζ =

(
1

h2h′2k4
F

)
χ ≈

(
1

h2h′2k4
F

)
3lee, (4.28)

where χ = 45π2

k4
F ~
η. In the limit of diffuse scattering the slip length is given by

ζ =
8π2

k4
F~
η ≈ 0.5lee. (4.29)
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Here lee = vF τ and ρF = m∗kF /
(
~π
)2 were used. The temperature dependence of the slip length in

the diffuse scattering limit as well as in the nearly specular limit is ζ ∼ 1/T 2. Since the wavelength of
Fermi liquid electrons does not depend on the temperature, the behavior in both limits is governed by
the efficiency of momentum transport towards the boundary; the limiting factor is the 1/T 2 divergence
of the electron-electron scattering length.
The situation is slightly different for d = 2. Here, the scattering time τ can be crudely approximated

by the quasiparticle lifetime, which is suppressed by a logarithmic factor compared to the d = 3 case
[119]. The lifetime of Fermi liquid quasiparticles in d = 2 is the subject of a number of publications
[120–122]. It can be estimated as

τqp = A
εF~(
kBT

)2 1

ln
(

εF
kBT

) , (4.30)

where A is a coefficient of the order of one. The momentum current balance equation (4.10) gives, in
the nearly specular limit,

ζ =

(
~3v3

F /ε
3
F

h2h′

)
χ ≈

(
1

h2h′k3
F

)
1.1lee, (4.31)

with χ = 2√
π
vF τ , and in the diffuse limit ζ = 3π

8 vF τ , so that

ζ ≈ 1.2lee. (4.32)

These results also apply to graphene at a finite chemical potential. The viscosity of graphene away
from the Dirac point is given by η = 1

8ρ
G
Fµ

2τ , where ρGF is the graphene density of states at the Fermi
surface, and µ � kBT the chemical potential. Due to the 1/T 2 divergence of the scattering length,
the slip lengths of Fermi liquid graphene are larger than those of the Dirac liquid (see Fig. 4.6). For
µ = 0.25 eV, they can range from 0.8µm at 100K to 3mm at 1K. The due to the short wavelength λF
of Fermi liquid excitations, the boundary scattering can be expected to saturate in the diffusive limit
for smaller roughnesses then at charge neutrality.

4.4 Comparison to known theoretical results

The importance of the slip length was brought to the attention of the quantum fluid community in the
1980s, in the context of measurements of the viscosity of Fermi liquid He3 [87]. Ref. [87] calculates the
slip length using the Bhatnagar-Gross-Krook theory (see Sec. 2.2.3). Here, the beautiful approach of
Ref. [87] will be outlined. In particular, it is demonstrated in Ref. [87] that Maxwell’s idea to use the
bulk distribution function to approximate the behavior of particles impinging the wall, which was also
used here to derive the slip length in the diffuse limit, gives a good lower bound on the slip-length. In
general, however, the physics of the Knudsen layer - an approximately one mean free path wide layer at
the boundary of the liquid - has to be considered. Here the fluid dynamics is dominated by particle-wall
collisions and the distribution function strongly deviates from the local equilibrium (see Fig. 4.7).
The collision integral is modelled by the BGK ansatz of Eq. (2.20). The deviation of the distribution

function f from the local equilibrium is called g:

g = f − f l.e..

Let the two or three dimensional liquid be contained in the volume y > 0 and the y axis be orthogonal
to the sample boundary. For the moment the dispersion relation ε doesn’t have to be specified, and
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Figure 4.7: The Knudsen layer is a thin fluid layer located at the sample boundary. Here, physics
is dominated by particle-wall collisions and the distribution funcion largely deviates from local
equilibrium. The Knudsen layer is not described by hydrodynamics. Instead, the slip lenght
provides an effective quantity encompassing all information on the edge-fluid bondary.

the kinetic equation reads

vy
∂g

∂y
− vypx

∂f0

∂ε

∂ux
∂y

= −g
τ
. (4.33)

It is ∂f0/∂ε = βf(0)
(

1− f(0)
)

with β = 1/
(
kBT

)
. One solution to this first order differential

equation for g is given by

gvy>0 = pxu (0)
∂f0

∂ε
e
− y
τvy +

∫ y

0
dy′pxu

′
(
y′
) ∂f0

∂ε
e
− |y

′−y|
τvy

gvy<0 = −
∫ ∞
y

dy′pxu
′
(
y′
) ∂f0

∂ε
e
|y′−y|
τvy . (4.34)

This solution has several important features. At an infinite distance from the wall it is

g (∞) = τvypx
∂f0

∂ε
u′ (∞) . (4.35)

This corresponds to a finite gradient of the flow velocity u; at y → ∞ the deviation from local equi-
librium is small and is governed by the law of hydrodynamics. Here, the fluid particles have lost all
memory of collisions with the wall. On the other hand, diffuse scattering at the wall can be modelled
by assuming that the distribution of reflected particles (vy > 0) at the edge is f> (0) = f(0), which is
equivalent to

g (0) = pxu (0)
∂f0

∂ε
,

holding for vy > 0. The influx of tangential momentum into the Knudsen layer is given by −ηu′(∞).
The authors of Ref. [87] assume that this current is constant in the whole Knudsen layer, and is only
converted into a tangential flow at the boundary, giving rise to a velocity slip. In our treatment of
the kinetic distribution in the nearly specular case (Sec. 4.2.1), we showed that the variation of the
tangential momentum current gives a contribution subleading in the small parameter h2L/λ3

T . Thus,
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we explicitly saw that the assumption holds. If it holds in the totally diffuse case as well, we can write

−ηu′ (∞) =

∫
>

ddk

(2π)d
vyp

2
xu (0)

∂f0

∂ε
e
− y
τvy

+

∫
>

ddk

(2π)d
vyp

2
x

∫ y

0
dy′u′

(
y′
) ∂f0

∂ε
e
− |y

′−y|
τvy

−
∫
<

ddk

(2π)d

∫ ∞
y

dy′vyp
2
xu
′
(
y′
) ∂f0

∂ε
e
|y′−y|
τvy . (4.36)

This is an integral equation for u′
(
y
)
. Ref. [87] presents an elegent way to derive the slip length

without solving this equation explicitely. To this end, an auxilary function Ln
(
y
)
is introduced:

Ln
(
y
)

= gN

∫
>

ddk

(2π)d
vyp

2
x

(
τvy

)n−1
(
−∂f

0

∂ε

)
e
− y
τvy . (4.37)

The factor gN accounts for degeneracies. In the case of graphene gN = 2N = 8 due to the spin-valley
degeneracy and the equal contributions of electrons and holes. Physical quantities can be expressed
with the help of Ln

(
y
)
. For the viscosity holds

η = τ

∫
ddk

(2π)d
v2
yp

2
x

(
−∂f

0

∂ε

)
= 2L2 (0) . (4.38)

Defining the function Φ (z) via the equation u′ (z) = u′ (∞)
(
1 + Φ (z)

)
and abbreviating y0 = u (0) /u′ (∞),

Eq. (4.36) can be written as

z0L1 (z)− L2 (z) = −
∫ ∞

0
dz′Φ

(
z′
)
L1

(∣∣∣z − z′∣∣∣) . (4.39)

The function Φ (z) is positive everywhere, since the flow velocity in the Knudsen layer is smaller than
the hydrodynamic flow velocity uS = ζu′ (∞) at y = ∞. Additionally Φ (z) vanishes for y → ∞. A
look at Fig. 4.7 shows, that for the slip length ζ holds

uS = u′ (∞) ζ = u (0) +

∫ ∞
0

u′
(
z′
)
− u′ (∞) dy′, (4.40)

or, using the function Φ (z)

ζ = y0 +

∫ ∞
0

Φ
(
y′
)
dy′. (4.41)

Combining the Eqs. (4.41) and (4.39) one obtains

ζL1

(
y
)
− L2

(
y
)

= −
∫ ∞

0
dy′Φ

(
y′
)(

L2

(∣∣∣y − y′∣∣∣)− L1

(
y
))

. (4.42)

Using the fact that dLn
(
y
)
/dy = −Ln−1

(
y
)
, the above equation can be integrated over the region

y > 0. This leads to another identity for the slip-length

ζL2 (0)− L3 (0) =

∫ ∞
0

dy′Φ
(
y′
)(

L2

(
y′
)
− L2 (0)

)
. (4.43)
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The identities (4.42) and (4.43) lead to lower and upper bounds on the slip length. It is Ln
(
y > 0

)
<

Ln (0), and on the other hand Φ (z) > 0 holds, therefore from Eq. (4.42) follows

ζ >
L2 (0)

L1 (0)
. (4.44)

Similarly, (4.43) yields

ζ <
L3 (0)

L2 (0)
. (4.45)

The lower bound can be improved [87]:

ζ >
1

2

(
L2 (0)

L1 (0)
+
L3 (0)

L2 (0)

)
. (4.46)

The bounds are typically very close, giving a good estimate on ζ. For graphene, the upper bound and
the lower bound are very close: ζupper ≈ 1.15ζlower. The result of the Maxwell approach (using the bulk
distribution for the impinging particles) as used in Sec. 4.2.2, is in fact equivalent to the lower bound
(4.44). Remembering the parametrization (4.18), the momentum current balance equation (4.10) can
be written as

0 = −1

2
η
∂ux
∂y

+

∫
ddk

(2π)
vyp

2
xu (0)

(
−∂f

0

∂ε

)
, (4.47)

where the degeneracies have been omitted. Approximating ζlower = u (0) /
(
∂ux/∂y

)
(for the exact slip

length we need to replace u (0) by uS), one obtains

ζlower =
η/2∫

ddk

(2π)
vyp2

x

(
−∂f0

∂ε

) =
L2 (0)

L1 (0)
. (4.48)

This result is exactly the lower bound (4.44). It is also identical to the slip lengths of (4.23), (4.29).

4.5 Experimental results

There exists a great number of works studying the specularity of edges of different materials using
transverse magnetic focusing [123]. A focused electron beam is injected into the material. Due to a
transverse magnetic field the trajectory of the beam is circular. Starting at the edge, the electron beam
is again deflected towards the edge by the magnetic field, reflected on the boundary, and send onto a
new (semi-)circular trajectory (see Fig. 4.8). The specularity is measured in terms of a coefficient q
- the fraction of specularely reflected electrons. For the edges of oxygen-plasma-etched graphene a q
between 0.2 and 0.5 was reported [124]. In this case the slip length ζ can be expected to lie between
the nearly specular and the diffuse limits.
Several recent experiments allow to draw conclusions on the slip lengths of electron liquids in graphene

and delafossite metals. Signatures of hydrodynamic transport in the ultrapure delafossite metal PdCoO2

were reported in Ref. [24]. The estimated viscosity of the electron liquid is 6× 10−3 kg/ms. Eq. (4.29)
predicts a slip length of ζ = 0.45, which is consistent with the reported observation of Poiseuille flow
(Gurzhi effect) considering the sample sizes of up to 60µm. Similar values were reported in Ref. [25]
for the Weyl semimetal WP2. The reported viscosity seem, however, very small considering the low
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4 The boundary conditions of viscous electron flow

Figure 4.8: A magnetic focusing experiment measuring the specularity of the edge of a solid
material (red). A focused electron beam is moving on a circular trajectory due to the out of plane
magnetic field B. In each reflection from the edge, a fraction q of electrons is specularely reflected.
q is called the specularity coefficient.

temperature at which the experiments were carried out. Much higher viscosities are expected for a
typical Fermi liquid due to the η ∼ E2

F /
(
kBT

)2 scaling [13].
The results of Eqs. (4.22) and (4.23) explain the findings of Ref. [27] for relatively narrow (doped)

graphene sheets. Here, no Gurzhi effect in samples of up to 4µm width could be measured, up to
temperatures of 100 K. A small signature of the Gurzhi effect as been reported at temperatures around
100 K. This is in fact consistent with the results presented here. At a temperature of 100 K the slip
length indeed drops below 1µm (see Fig. 4.6).
The most up to date measurements of Poiseuille flow in (doped) graphene are those made by Sulpizio

et. al. [30] (see also Sec. 2.5) shown in Fig 4.9. Here an experimental estimate for the slip-length was
given: 0.5µm at 75 K, which is close to the value predicted by Eq. (4.23) (see Fig. 4.6). Considering
the large sample witdh used in this experiment, Poseuille flow, indeed, should be observed.

Figure 4.9: Poiseuille profile of the electron liquid of graphene as measured in the experiment of
Sulpizio et. al. [30]. The nonzero velocity at the boundary implies finite slip. The extrapolated
slip length of 0.5µm at 75 K agrees with the value predicted by Eq. (4.23) (see Fig. 4.6). The
figure was copied from Ref. [30].

4.6 Flow through a strip with a circular defect: an example for the
no-stress flow of a Dirac liquid.

Materials in electron hydrodynamics often have sizes in the µm range. At low temperatures, and/or
for specular boundaries, slip lengths can be of the same order of magnitude or larger and the no-
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4.6 Flow through a strip with a circular defect: an example for the no-stress flow of a Dirac liquid.

stress conditions of Eq. 4.3 describe the behavior of the electron fluid at the sample edges. If so, the
conductivity of a Poiseuille sample is infinite, or limited by non-hydrodynamic parameters such as e.g.
impurity concetrations. The Gurzhi effect seases to be an accurate indicator of hydrodynamic flow [27].
However, in more complicated geometries, e.g. if the fluid has to pass an obstacle, viscous shear

forces dominate the conductivity. This can be used to indentify hydrodynamic behavior, even if the
Gurzhi effect is not observable due to a large slip length.
As an example the flow of a Dirac fluid confined to a long strip, past a circular defect (see Fig. 4.10)

will be examined. The hydrodynamics of a Dirac liquid has several distinct features setting it apart
from classical and Fermi liquids. These include that the hydrodynamic flow velocity u is connected to
the heat current jE . In Galilei invariant systems the charge current density j is proportional to the flow
velocity u

j = neu. (4.49)

Here n is the charge density and e the electron charge. Therefore, in a clean material where no
momentum is dissipated, the hydrodynamic equations describe the flow of charge and the flow patterns
can be inferred from measurements of the charge current density j.
Charge neutral graphene, however, shows a very different behavior. Here, due to the linear dispersion

relation (see Sec 1.1), the flow velocity is related to the thermal current jE [39]:

jE =
3nEu

2 + u2/v2
. (4.50)

nE = is the energy density of the Dirac liauid. The graphene dispersion is εk = λvk and the group
velocity vλ = λvk/k, where λ = ±1. The heat current vλεk = vk is proportional to momentum.
On the other hand, the charge current evλ = λevk/k is not. Charge neutral graphene possesses an
electron-hole symmetry. Electrons (λ = 1) and holes (λ = −1) equally contribute to charge and
thermal currents. However, under the influence of an electric field electrons and holes move in opposite
direction (sign of vλ), and the sum of their momenta averages out. This means that charge currents
are not protected by momentum conservation and can decay, leading to a finite interaction induced
conductivity in perfectly clean graphen samples [49]. The transport of heat, on the other hand, is
protected by momentum conservation and clean graphene samples at the charge neutrality point have
an infinite heat conductivity. This is the reason for the violation of the Wiedemann-Franz law observed
in [50] (see Sec. 2.5). A temperature gradient has to be applied to excite a finite momentum density.
This can be seen from the Gibbs-Duhem relation Ω = −pV . With the differential of the grand potential
∇Ω = S∇T +N∇µ− p∇V , and assuming charge neutrality (n = 0 see Appendix A.3 for details) one
finds

∇p = s∇T. (4.51)

Inserting this into the Stokes equation (2.7) gives

s∇T = η∆u. (4.52)

Thus hydrodynamics in charge neutral graphene can be probed by measuring thermal currents stemming
from applied temperature gradients.
To illustrate these features, the flow and pressure profiles in a graphene strip of width w will be

calculated. The strip extands from y = −w/2 to y = w/2 and is infinitely long. At y = 0 an
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impenetrable disk of radius a hinders the flow. One quantity of interest is the pressure difference
between the opposite ends of the strip at x = −∞ and x = ∞, which translates to a temperature
difference according to Eq. (4.51)

4.6.1 Stokes’ paradox and Oseen’s equation

An interesting effect in two dimensional hydrodynamics is the Stokes paradox. It can be statet as “the
velocity u of the flow past an impenetrable object in two dimensions is not a linear function of the
pressure gradient ∇p for small ∇p”. Imagine an object being dragged through the fluid. A natural
assumption would be that the fluid is at rest at infinity u (x) → 0 as |x| → ∞. The paradox here
is, that Stokes’ equation (4.1), which is linear in u, has no non-trivial solution with vanishing flow
at infinity. This problem does not appear in three dimensions, where the object is a less significant
perturbation due to the higher dimensionality. The solution was found by swedish physicist Oseen
[125, 126] in terms of what is now known as Oseen’s equation.
The full Navier-Stokes equation for graphene electrons reads [51, 113]

w̃

v2

(
∂tu +

(
u · ∇

)
u
)

+∇p+
∂tp

v2
u− η∇2u = 0. (4.53)

w̃ is the enthalpy density w̃ = 3nE/2
2+|u|/v ≈ w̃0 = 3

2nE , where nE is the energy density. The idea behind
Oseen’s equation is to linearize around a constant uniform flow U instead of linearizing around u = 0.
Writing

u = U + q,

the linearized Navier-Stokes equation reads

w̃0

v2

(
U · ∇

)
q +∇p− η∇2q = 0. (4.54)

For the strip geometry to be studied here U = U êx is an obvious choise.

4.6.2 Solution with the method of image charges

In Appendix A.2 the general solution to Eq. (4.54) is given. The analysis of Ref. [127] was generalized
to arbitrary boundary conditions in the form of Eq. (4.4), and the flow around the obstacle for an
arbitrary ζ on an infinite domain was calculated. If the flow is not confined to the strip, the pressure
induced by the obstacle vanishes at infinity, where it behaves as p ∼ 1/r. If, however, the flow is
bounded to the region y = ±w/2, the obstacle induces a pressure difference along the strip. The
boundary conditions imposed on the electron flow by the two walls at y = ±w/2 are

qy
(
y = ±w/2

)
= 0

∂qx
(
y = ±w/2

)
∂y

= 0. (4.55)

These are no-stress boundary conditions, appropriate for a large slip length. The boundary conditions
can be implemented using the method of images, known from electrostatics. The expression

qtot =
∞∑

j=−∞
q
(
x, y + jw

)
, (4.56)
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Figure 4.10: The method of images can be used to solve Eq. (4.54) for a strip-like sample geometry
with a circular obstacle. The sample and the electron flow are drawn in color, the image fields
are shown in light grey. Infinitely many image solutions must be placed symmetrically around the
obstacle in the middle of the sample.

where q
(
x, y
)
is the infinite domain solution obtained in the Eqs. (A.12)-(A.20), does satisfy Eq. (4.54)

everywhere inside the strip and matches the conditions of Eq. (4.55). It corresponds to infinitely many
image fields placed along the y-axis, symmetrically to the original obstacle at y = 0 (see Fig. 4.10).
The solution qtot is only approximate, because the boundary condition at the surface of the obstacle
is not matched exactly. It is matched, however, at r = a and y = 0. Therefore, the error is of order
∼ a

w , i. e. small, if the obstacle is small compared to the width of the strip. The pressure distribution
along the sample can then be calculated from the function

φj = φ
(
x, y + jw

)
. (4.57)

φ solves the Laplace equation and is defined in Eq. (A.14). The pressure generated by every single
image field is

p
(
x, y + jm

)
= U

w̃0

v2
∂φj/∂x

(for details see appendix A.2 and Ref [127]). The total pressure at y = 0 is

ptot =

j=∞∑
j=−∞

p
(
x, jm

)
=

πA0U
2

w

w̃0

v2
coth

(
πx

w

)
+sgn(x)

π2A1U
2

w2

w̃0

v2
sinh

(
πx

w

)−2

. (4.58)

The constants A0 and A1 are given in Eqs. (A.18) and (A.19). While the pressure of any single
image field p

(
x, jm

)
vanishes for x→ ±∞, the sum over all image fields remains finite. The pressure

difference across the sample then is

∆p = ptot (x→∞)− ptot (x→ −∞) = 2
πA0U

2

w

w̃0

v2
. (4.59)
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Using Eqs. (A.18), (A.20) and expanding the coefficient B0 for small Reynolds R = 2Ua/ν, as well as
taking the limit ζ →∞ for the slip length at the obstacle, one obtains

∆p = − 8πU

3− 2

(
log
(
aU
4ν

)
+ γ

) w̃0

v2

ν

w
. (4.60)

ν is the kinematic viscosity ν =
(
v2/w̃0

)
η. As expected, the pressure arising due to a small flow

velocity U cannot be linearized, which is a manifestation of Stoke’s paradox. This result can be linked
to an experimental setup in which a heat flow through the sample will induce a temperature difference.
With the help of Eq. (4.51) the pressure difference is written as a temperature difference. The relation
between the flow velocity U and the heat current density is given by the formula [113]

jE =
3nEU

2 + U2/v2
≈ 3

2
nEU. (4.61)

With the total energy current being IE = jEw, Eq. (4.60) becomes

∣∣∆T ∣∣ =
16πIEη/

(
nEw

2s
)

9− 6

(
log
(

1
9
IEa
v2ηw

)
+ γ

) . (4.62)

γ ≈ 0.58 is the Euler constant. Formula (4.62) can be used to determine the viscosity η. The entropy
density is given by [51]

s = N
9ζ (3)

π
kB

(
kBT

)2
~2v2

.

Fig. 4.11 shows the dependece of the induced temperature difference on the heat current through
a 10µm wide graphene sample at 50K for an obstacle of radius a = 1µm. The dependence of the
temperature difference

∣∣∆T ∣∣ on the radius a is shown on right panel of Fig. 4.11. The scaling behavior
of the current with a and w is non-trivial due to the presence of a third length scale ν/U . Since no
momentum is dissipated at the sample boundaries the temperature difference along the sample, far
enough from the disc, does not depend on the length of the sample. The temperature difference is
induced in the region near the disc only.

Figure 4.12: Flow velocity u for graphene electrons confined to a 10µm wide strip with a circular
defect of radius a = 1µm. For small Reynolds numbers the flow is nearly symmetric with respect
to the defect. No-stress conditions were applied at the defect and at the edges of the graphene
sample.
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Figure 4.11: Left panel: Temperature difference induced by a heat current IE through a 10µm
wide strip of charge neutral graphene at 50K with a circular obstace of radius 1µm at the center of
the strip (see Fig. 4.10). At a heat current of 0.1µm the Reynolds number is ∼ 0.74, approaching
unity. The temperature difference is induced by viscous shear forces and can be used to measure
the viscosity of Dirac liquid (4.62). Right panel: Temperature difference for a fixed heat current of
IE = 0.5µW through a 10µm wide graphene channel at 50K as a function of the obstacle radius
a. Notice the logarithmic divergence at small a - a feature that can be traced back to the Stokes
paradox.

4.7 Summary

Hydrodynamic electron flow sensitively depends on the nature of the boundary conditions for the
velocity flow field. These boundary conditions can be efficiently characterized by the slip length ζ,
which is defined through the equation

utα

∣∣∣
S

= ζ nβ
∂utα
∂xβ

∣∣∣∣∣
S

, (4.63)

where ut
∣∣∣
S
is the flow velocity tangential to the sample boundary S, n is the normal vector on S,

and xα are the spatial coordinates. ζ quantifies the ability of the boundary to absorb the fluid’s
momentum. In the no-stress case ζ → ∞, the flow profile at the boundary is perfectly flat, meaning
that no momentum is transported towards the boundary by viscous forces, and none is absorbed. For
ζ → 0 the flow velocity at the boundary vanishes. The condition utα

∣∣∣
S

= 0 is thus referred to as no-slip
boundary condition.
In order to obtain a quantitative understanding of the slip length in electron fluids, slip lengths

at different kinds of edges for Dirac and Fermi liquids were derived. It was found, that for viscous
electronic flow the slip length can always be written in the form

ζ = f (κ) lee,mc (4.64)

with the dimensionless ratio κ = h2h′d−1/λd+1 and the scattering length of momentum conserving
electron-electron collisions lee,mc. κ depends on the roughness amplitude h and the correlation length
h′ of the scattering edge, as well as on the electron wavelength λ. For graphene at the neutrality point,
the latter is strongly temperature dependent (λ = ~v/(kBT )), while it corresponds to the Fermi wave
length in the case of Fermi liquids (λ = 2π/kF). The scattering length lee,mc determins how effective
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4 The boundary conditions of viscous electron flow

Figure 4.13: The slip length can be written in the form ζ = f (κ) lee,mc, where lee,mc is the
scattering length of momentum conserving electron-electron collisions, and f (κ) is a dimensionless
function of the parameter κ = h2h′d−1/λd+1, characterizing the nature of boundary scattering. For
large κ (strong scattering), f (κ) saturates, whereas for small κ it diverges according to f (κ� 1) =
f0/κ.

momentum transport towards the boundary is. The dimensionless function f (κ) diverges for small κ:
f (κ� 1) = f0/κ, while it approaches a constant for strong interface scattering: f (κ→∞)→ f∞. We
determined f∞ using the assumption of diffuse scattering. The numerical values for the coefficients f0

and f∞ depend sensitively on the electronic dispersion relation and dimensionality of the system. They
are given in Eqs. (4.23), (4.22) for the Dirac liquid, in Eqs. (4.29), (4.28) for the three-dimensional
Fermi liquid and in Eqs. (4.32), (4.31) for the two dimensional Fermi liquid.
Since for all quantum fluids the mean free path diverges as the temperature approaches zero, the

ultimate behavior of the slip length at low temperatures is ζ →∞ and the no-stress boundary conditions
are appropriate. For Dirac fluids in samples with weakly disordered edges even the ratio ζ/lee diverges
as T → 0. At intermediate temperatures the slip lengths are such that no-slip boundary conditions are
justified for large sample sizes. In particular, it was shown that the electron viscosity of PdCoO2 [24]
and WP2 [25] is small enough, such that Poiseuille type flow can manifest itself, as seen experimentally.
The same applies to recent experiments with large graphene samples [30].
The fact that for a range of parameters no-stress boundary conditions hold is a characteristic feature

of electron hydrodynamics, which sets it apart from its classical counterpart. Therefore, the flow of
a Dirac liquid through a strip geometry with a disc-like obstacle was studied. No-stress boundary
conditions were assumed to hold at the boundaries of the strip, as well as at the circumference of
the disc. This is a realistic scenario for smooth boundaries at low temperatures. By solving Oseen’s
equation with the method of images, the pressure drop across the sample was calculated. Unlike with
no-slip boundary conditions, here the pressure drop occurs exclusively due to viscous forces. The
temperature difference that arises due to the pressure drop according to the formula ∇p = s∇T (see
section 4.6 and appendix A.3) can be used to measure the shear viscosity of the Dirac liquid. Another
interesting feature of such a flow is Stokes’ paradox. Whereas for boundaries with a small slip length,
Stokes’ paradox is regularized by the loss of momentum at the boundaries [128], for no-stress conditions∣∣∆T ∣∣ ∝ IEη

log
(
IE
) (4.65)

holds for a small energy current IE through the sample. There is no well defined linear response regime,
which is a manifestation of Stokes’ paradox.
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5 Chapter 5

Non-local hydrodynamic transport and
collective excitations in Dirac fluids

The transport in a Dirac liquid is in many respects different from the archetypical example of the
Fermi liquid. One important difference is that electric currents in a Dirac liquid are not protected
by momentum conservation, and therefore decay even in a perfectly clean system. Negatively charged
electrons and positive holes flowing in opposite directions sum up to a finite electric current with zero
momentum. Thus, even in the absence of impurities, graphene at the charge neutrality point has a
finite conductivity due to selectron-electron interactions [49, 54]. On the other hand, the energy current
is proportional to the momentum density, and therefore propagates ballistically (see section 5.2.1 and
the Refs. [51, 129]). Both phenomena, the interaction induced resistivity and the ballistic transport
of energy, are relevant in the broader context of quantum criticality [53, 130]. Several experiments
addressed the unique transport properties of the Dirac liquid. A violation of the Wiedemann-Franz
law was observed in Ref. [50], indicating the ballistic transport of energy. The interaction induced
resistivity was recently measured at finite frequencies [55] and showed to be comparable to theoretical
predictions [49, 54].
In this chapter, the non-local hydrodynamic transport properties of the Dirac liquid will be studied.

The analysis is based on the quantum Boltzmann equation approach of Ref. [49]. The distribution
function will be expanded in terms of so-called collinear zero modes. These modes dominate the
transport in the hydrodynamic regime (see section 5.1.2). The electrical and thermal conductivities, as
well as the viscosity will be callculated at finite wavenumbers and frequencies. It will be shown, how
these transport coefficients determine the hydrodynamics of the Dirac liquid.
In a clean system, hydrodynamics prevails when the electron-electron scattering rate lee is much

smaller than the system size lgeo. The ratio between the two lengths is the Knudsen number

Kn =
lee
lgeo

.

In the abscence of strongly inhomogeneous external fields, the characteristic wavenumber is set by
the geometry of the sample q ∼ 2π/lgeo. Therefore, for finite Knudsen numbers, the wave-vector
dependence of tranport coefficients determines the behavior of the fluid. Thinking in real space, this
means that higher order spatial derivatives have to be included into the equations of motion of the
fluid, and the flow becomes highly non-local. From a physical point of view, this is due to the fact that
electrons loose memory of previous scattering events (e.g. collisions with the boundaries of the sample)
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5 Non-local hydrodynamic transport and collective excitations in Dirac fluids

through electron-electron collisions on scales comparable to lee. In the case lee > lgeo, the trajetory of
an electron at a given point depends on much of its history, which gives rise to a significant non-locality.
This phenomenon is discussed and illustrated in Sec. 5.4 using the Poiseuille flow as an example.
The kinetic theory presented here also gives access to the collective excitations of the Dirac liquid. The

dispersion relations of collective modes can be derived from the poles of transport coefficients, or found
from the solutions of the homogeneous quantum Boltzmann equation. Focusing on the charge neutral-
ity point, the work presented here goes beyond the phenomenological treatment of electron-electron
interactions of Refs. [131, 132]. It is demonstrated that charge neutral graphene exhibits a plasmon
mode that is damped due to the interaction induced resistivity and a second sound mode that describes
the ballistic propagation of energy waves. Furthermore, a detailed analysis reveals a complex structure
of damped collective excitations. These excitations are similar to the so-called “non-hydrodynamic”
modes that were shown to be relevant for the equilibration of unitary fermi gases [133] and the hydro-
dynamization of quantum chromodynamics [134–136]. In fact, the term non-hydrodynamic is somewhat
misleading. It is meant that these modes correspond to excitations of high angular momentum compo-
nents of the kinetic distribution function, which are not described by the Navier-Stokes equations.
Remarkably, the calculations presented in this chapter are essentially exact in the limit of a small

graphene fine structure constant α, which is the experimentally relevant case, because at experimental
temperatures α is renormalized to small values (see Sec. 1.2). To calculate the non-local transport
coefficients, relaxation rates of non-equilibrium excitations of high angular harmonics m have to be
calculated. Surprisingly, the relaxation rates grow linearly with increasingm. This unexpected behavior
allows to solve the Boltzmann equation exactly. The presentation here closely follows Ref. [137].

5.1 Theoretical framework

5.1.1 Kinetic equation

The basic methodological framework of this chapter builds upon the quantum Boltzmann equation. In
its rudimentary form the quantum Boltzmann equation was derived in Sec. 2.4. Here, the specifics
massless Dirac particles will be added. The analysis follows the derrivation presented in Ref. [49]. The
Hamiltonian describing the interactions of electrons in graphene at charge neutrality is

H = H0 +Hint, (5.1)

where the free part is given by

H0 = v~
∫
k

∑
a,b,i

ψ†a,i
(
k
) (

k · σ
)
ab
ψb,i

(
k
)
, (5.2)

and the interaction part reads

Hint =
1

2

∫
k,k′,q

∑
a,b,i,j

V
(
q
)
ψ†k+q,a,iψ

†
k′−q,b,jψk′,b,jψk,a,i. (5.3)

V
(
q
)

= 2πe2

ε|q| is the 2D Coulomb potential. The indices i, j = 1, 2 ..., N = 4 refer to the spin and valley

quantum numbers of an electron, whereas the two sublattices are labelled by the indices a, b. The free
particle Hamiltonian H0 is diagonalized by the unitary transformation

Uk =
1√
2

[
1 o∗k
1 −o∗k

]
, (5.4)
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5.1 Theoretical framework

where ok =
(
kx + iky

)
/
√
k2
x + k2

y. The central quantity of interest is the kinetic distribution function
of Eq. (2.31). For the derivation of the quantum Boltzmann equation, it is convenient to use the band
representation of Dirac spinors ψλ,k = Uk,λaψk,a with λ = ±1 labeling the upper and lower dirac cones.
In this way, one can easily distinguish between processes that involve the creation of particle hole pairs
and those that do not. The thermally excited electron-hole pairs occupy states in a window of kBT
around the Dirac point. Thus, if the applied fields have frequencies ω < 2kBT/~, which is true in
the hydrodynamic regime, processes that create electron-hole pairs are unlikely and can be neglected.
This translates to neglecting the off-diagonal components of the distribution function. Transforming
the Green’s function from the sublattice basis to the band basis,

g<
(
X, T ;k, ω

)
= U †kG

<
(
X, T ;k, ω

)
Uk,

the distribution function is defined as

2πδ
(
ω − εk

)
fλ
(
X, T ;k, ω

)
δλλ′ = −ig<λλ′

(
X, T ;k, ω

)
.

In the following, there will be no need to distinguish between center of mass and relative coordinates.
X and T describe the space and time dependencies of the distribution function and will be relabeled
X→ x, T → t. The separation of scales discussed in Sec. 2.4 holds true in the hydrodynamic regime,
where the characteristic scales of interactions and external fields are smaller than the characteristic
wavelength of thermally excited electrons and holes λT ∼ ~v/kBT . The quantum Boltzmann equation
then reads (

∂t + vkλ · ∇x +
(
F
(
x, t
)

+ eEV

)
· ∇k − C

)
fkλ

(
x, t
)

= 0. (5.5)

Here, vkλ = ∂εkλ/∂k is the group velocity and F
(
x, t
)
an external force, in our case due to an electric

field, or a thermal gradient. EV is a self consistent electrich field produced by an inhomogeneous
distribution of charges - the so called Vlasov field. It will be dealt with at the end of this section.
C represents the Boltzmann collision operator describing short range electron-electron interactions.
Details on the derivation of C are summerized in Appendix B.1, based on Refs. [49, 138].
Studying the linear response to F

(
x, t
)
, we expand the distribution function around the local equi-

librium distribution f(0)
kλ

fkλ
(
x, t
)

= f
(0)
kλ + f

(0)
k

(
1− f(0)

k

)
ψkλ

(
x, t
)
. (5.6)

where f0
k,λ is given by

f
(0)
kλ =

1

eβ(εkλ−u·k) + 1
. (5.7)

The product f(0)
k

(
1− f(0)

k

)
does not depend on λ, and the corresponding index is dropped in Eq.

(5.6) and in the following. Linearized in the external force, the Boltzmann equation (5.5) reads(
L+ V − C

)
ψ = S. (5.8)

L is the Liouville operator (without the linearized terms due to external forces and the without the
Vlasov term) and is given by

(
Lψ
)
k,λ

=

(
∂

∂t
+ vλk · ∇x

)
f

(0)
k

(
1− f(0)

k

)
ψk,λ. (5.9)
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5 Non-local hydrodynamic transport and collective excitations in Dirac fluids

V represents the Vlasov term. This linearization scheme is equivalent to the Chapman-Enskog method
carried out to first order in Sec. 2.2. The collision operator takes the form(

Cψ
)
kλ

=
2π

~

∫
k′q
δ

(
k + k′ −

∣∣k + q
∣∣− ∣∣∣k′ − q

∣∣∣) (5.10)

×
(

1− f(0)
k

)(
1− f(0)

k′

)
f

(0)
|k+q|f

(0)
|k′−q|

×
{
γ

(1)
k,k′,q

(
ψk+q,λ + ψk′−q,λ − ψk′,λ − ψk,λ

)
+ γ

(2)
k,k′,q

(
ψk+q,λ − ψ−k′+q,λ̄ + ψ−k′,λ̄ − ψk,λ

)}
.

The matrix elements γ(1)
k,k′,q, γ

(2)
k,k′,q are given in Appendix B.1. The right hand side of Eq. (5.8) is

determined by the forces acting on the system S = F
(
x, t
)
· ∇kf

(0)
kλ . The three forces studied here

are the electric fields, thermal gradients and viscous forces. For an electric field E0 oriented along the
x-axis, E0 = E0êx, it reads

SE = −eE0 cos θ
(
λvβ

)
f

(0)
k

(
1− f(0)

k

)
, (5.11)

where θ is the polar angle of the momentum k. The corresponding term for a thermal gradient ∇T is
given by

ST = −k
∣∣∇T ∣∣ cos θkB

(
vβ
)2
f

(0)
k

(
1− f(0)

k

)
. (5.12)

A viscous force is present if the drift velocity u in the local equilibrium distribution function (5.7) is a
function of the coordinate x. Then the drift term of the Boltzmann equation (5.5) can be thought of
as a force term:

SS = −vkλ · ∇xf
(0)
kλ

= −vkX0,αβ

(
kαkβ
k2
− 1

2
δαβ

)
λβf

(0)
k

(
1− f(0)

k

)
,

= −1

2
kX0 sin

(
2θ
) (
λvβ

)
f

(0)
k

(
1− f(0)

k

)
, (5.13)

where the stress tensor is given by

X0,αβ =
1

2

(
∂uα
∂xβ

+
∂uβ
∂xα

− 2δαβ∇ · u

)
.

In the following, we consider a flow with u
(
y
)

= u
(
y
)
êx and therefore only include the component

X0,xy, which is relevant for the calculation of the shear viscosity.
Another important term in the kinetic equation describes the electrostatic forces that arise due to

an inhomogeneous distribution of charges. These forces are mediated by a self consistent electric field
EV , first introduced by Vlasov [139]. It reads

eEV = −αvN∇x

∫
d2x1

∑
λ

∫
d2k

(2π)2

f
(0)
k

(
1− f(0)

k

)
ψk,λ (x1)

|x− x1|
. (5.14)
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A rigorous derivation of the term can be found in Ref. [90] (Eqs. (7-3) and (9-16)). Applying a Fourier
transform to Eq. (5.14) one findse

eEV = −αvN
(
iq
)∑

λ

∫
d2k

(2π)2

2πf
(0)
k

(
1− f(0)

k

)
ψk,λ (x1)

q
.

The corresponding term in the Boltzmann equation, linearized in ψk,λ, reads

V = eEV · ∇kf
0
kλ. (5.15)

5.1.2 Collinear zero modes

This section summerizes how Eq. (5.8) is solved in the limit of a small fine structure constant. A
standard way to deal with an integral equation like (5.8) is to expand the function ψk,λ into a set of
suitable basis functions. The choice of this basis is facilitated by the fact that for small values of the
graphene fine structure constant α, the collision operator (5.10) logarithmically diverges, if the velocities
of involved particles are parallel to each other. This is a consequence of the linear single particle
spectrum and the resulting momentum independent velocity of massless Dirac particles. Intuitively
speaking, the scattering is enhanced, because particles travelling in the same direction interact with
each other during a particularely long period of time. A more mathematical picture of this so-called
collinear scattering is presented in Appendix (B.2). It is convenient to write the collision operator as a
sum of the so-called collinear part Cc and the non-collinear part Cnc:

C = log
(
1/α

)
Cc + Cnc. (5.16)

The factor log
(
1/α

)
is large at small α. Both operators, C and Cc, are hermitian with respect to the

scalar product 〈
φ
∣∣χ〉 =

∑
λ

∫
d2k

(2π)2φk,λχk,λ. (5.17)

Let ϕnk,λ be the orthogonal eigenfunctions of Cc such that(
Ccϕn

)
k,λ

= bnϕ
n
k,λ. (5.18)

ψk,λ is expanded in terms of these functions:

ψk,λ =
∑
n

γnϕ
n
k,λ. (5.19)

Suppose, some of the orthogonal basis functions ϕn, namely those with n < n0, set the collinear part
of the collision operator to zero, i.e.

Ccϕn<n0 = 0. (5.20)

Then, inserting the expansion (5.19) into Eq. (5.8) and projecting it onto the basis functions ϕn′ , one
finds

γn′>n0 =

〈
ϕn
′
∣∣∣S〉− 〈ϕn′ ∣∣∣ (L − Cnc)ψ〉

bn′ log
(
1/α

) . (5.21)
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5 Non-local hydrodynamic transport and collective excitations in Dirac fluids

This means that if there exist zero eigenfunctions of Cc, they are dominant by the large factor log
(
1/α

)
.

In fact, such eigenfunctions do exist. The functions

χ
(m,s)
k,λ = λmeimθ

{
1, λ, λβv~k

}
, (5.22)

where m labels the angular momentum, s ∈
{

1, 2, 3
}
the modes

{
1, λ, λβvk

}
, and θ is the polar angle

of the momentum vector k, set the integral (5.10) to zero for collinear processes (see Appendix B.2).
The modes of Eq. (5.19) are commonly referred to as collinear zero modes [49].
From Eq. (5.21) follows that for small values of α, only the collinear zero modes have to be retained

in the expansion of Eq. (5.19), i.e. the kinetic equation (5.5) can be solved using the restricted subspace
of basis functions of Eq. (5.22). To proceed, the matrix elements of Eq. (5.8) in this basis must be
calculated. The matrix elements of the Liouville operator L are given by〈

χ
(m,s)
k,λ

∣∣L∣∣χ(m′,s′)
k,λ

〉
=

(
−iωδm,m′ +

1

2
ivq
(
e−iϑqδm,m′+1 + eiϑqδm,m′−1

))(
vβ~

)−2
Ls,s′ , (5.23)

where ϑq is the polar angle of the wavevector q

L =


log(2)
π 0 0

0 log(2)
π

π
6

0 π
6

9ζ(3)
2π

 . (5.24)

The rows and columns of the matrix notation refer to the mode index s of Eq. (5.22). The matrix
elements of the collision operator C are calculated numerically (some values are given in Appendix
B.3). Due to the rotational invariance of the low-energy Dirac Hamiltonian (5.1), they are diagonal
in the angular momentum representation. That the matrix elements asymptotically approach a linear
behavior for large |m|: 〈

χ
(m,s)
k,λ

∣∣C∣∣χ(m′,s′)
k,λ

〉
=

δm,m′

v2β3~3

(
|m| γs,s′ − ηs,s′

)
(5.25)

as |m| → ∞. γs,s′ and ηs,s′ are numerical coefficients that will be defined below Eqs. (5.35) and (5.37).
This surprising result allows to solve the Boltzmann equation exactly, as will be seen later. The linear
behavior of the scattering rates is shown in Fig. 5.1. To find closed expressions for the non-local
transport coefficients, the scattering rates are approximated by Eq. (5.25) for m > 2. In principle,
the numerically exact scattering rates up to an arbitrary m can be included. Here, rates for m > 2
will be approximated to keep the algebraic effords at a minimum. The projections of the force terms
(5.11)-(5.13) onto collinear zero modes read

〈
SE

∣∣∣χk,λ

〉
= − eE0

2~2βv
δ|m|,1

 log(2)
π
0
0

 , (5.26)

〈
ST

∣∣∣χk,λ

〉
=

∣∣∇T ∣∣ kBπ4

vβ~2
δ|m|,1

 0
π
6

9ζ(3)
2π

 , (5.27)
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Figure 5.1: The matrix elements of the collision operator (5.10) with respect to the collinear zero
modes (5.22) grow linearly with increasing angular harmonic numbers m. The linear fits of Eqs
(5.35), (5.37) are plotted as solid blue and orange lines. The linear behavior of the matrix elements
and scattering rates allows to solve the quantum Boltzmann equation exactly.

〈
SS

∣∣∣χk,λ

〉
= − iX0

4
(
vβ~

)2 sign (m) δ|m|,2

 0
π
6

9ζ(3)
2π

 . (5.28)

For the Vlasov term (5.15) on finds〈
ψ

(m,s)
k,λ |V|ψ(m′,s′)

k,λ

〉
= iαN

(
e−iϑqδm,1 + eiϑqδm,−1

)

×
δ1,sδ1,s′δm′,0

2v2β3~3

 log(2)2

π2

0
0

 (5.29)

The non-equilibrium part of the distribution function expanded in the subset of colinear zero modes
becomes

ψk,λ =
∞∑

m=−∞

3∑
s=1

am,s
(
ω,q

)
χ

(m,s)
k,λ . (5.30)

Together, the expressions (5.8), (5.23), (5.25), (5.26)-(5.28), (5.29) and (5.30) provide a linearized
kinetic equation restricted to the basis of collinear zero modes that becomes exact for small values of
the fine structure constant α. Since no assumptions on the spatial dependencies were made, except that
they are be within the limits of the applicability of the kinetic equation, this expansion can be used
to derive the non-local transport coefficients in the linear-response regime, as well as the dispersion
relations of collective excitations.
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5 Non-local hydrodynamic transport and collective excitations in Dirac fluids

5.2 Non-local Transport

5.2.1 Effects of electron-hole symmetry, momentum conservation and thermal
transport

Within the kinetic approach, the charge current jc and the heat current jε are given by

jc = e
∑
λ

∫
k
λv

k

k
fk,λ, (5.31)

jε =
∑
λ

∫
k
v2~kfk,λ. (5.32)

In these expressions intraband processes that create particle-hole pairs are neglected (see Appendix
B.1). Thus the even in λ part of the distribution function fk,λ contains information about thermal
transport, whereas the odd part governs the transport of charge. Since the electric field contribution
to the kinetic equation (5.11) is odd in λ, and the thermal gradient leads to a term that is even in
λ (Eq. (5.12)), the phenomena of thermal and charge transport are decoupled to linear order in the
external fields. This can be traced back to particle-hole symmetry. The distribution function has a
similar structure for higher m: The collinear modes of Eq. (5.22) are proportional to λm for s = 1 and
to λm+1 for s = 2, 3. Consequently the kinetic equation in the subspace of collinear zero modes is block
diagonal in the s = 1 and s = 2, 3 modes, as can be seen from Eqs. (5.10), (5.23), (5.11)-(5.29). In the
following this will further simplify the calculation of transport coefficients.
Another important consequence of the linear graphene spectrum is that the heat current jε is pro-

portional to the momentum density np =
∑

λ

∫
k ~kfk,λ and therefore conserved. The charge current,

unlike in Galileian invariant systems, is not conserved, and decays due to interactions, giving rise to a
finite restistvity in the clean system.

5.2.2 Scattering times

The matrix elements of the collision operator determine the scattering rates of the three collinear zero
modes in different angular harmonic channels. In the absence of spatial inhomogeneities and external
forces, the kinetic equation in the basis of collinear zero modes (5.22) reads∑

s′

(
∂tδs,s′ + Γs,s

′
m

)
am,s′ = 0, (5.33)

where the am,s are the coefficients of the expansion (5.30). Posed as an initial value problem, this
equation describes the exponential decay of collinear zero modes. This decay governs the behavior of
the system at long time scales, because modes that do not set the collinear part of the collision integral
to zero decay faster by a factor log

(
1/α

)
(see Eq. (5.16)).

The scattering rates Γs,s
′

m are given by

Γs,s
′

m =
(
vβ~

)2
L−1
s,s′

〈
χ

(m,s)
k,λ

∣∣C∣∣χ(m′,s′)
k,λ

〉
. (5.34)

Because of the definition of the scalar product in Eq. (5.17), the matrix elements have dimension
length2/time. Vanishing scattering rates indicate conservation laws, and the corresponding modes are
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zero modes of the full collision operator as well as its collinear part. These modes reflect the conservation
of particle density, imbalance density, energy density and momentum density:

χ
(s=1,m=0)
k,λ = 1, χ

(s=2,m=0)
k,λ = λ,

χ
(s=3,m=0)
k,λ = λβv~k, χ

(s=3,m=1)
k,λ = λeiθβv~k.

The imbalance density is conserved only to order α2, as it decays due to higher order interaction
processes. An important simplification stems from the fact that all scattering rates, for large |m|,
share the asymptotic behavior Γm ∼ |m|. This becomes a reasonable approximation for the scattering
rates with m ≥ 2. In the next section it is shown, how this behavior allows us to obtain closed form
expressions for the non-local transport coefficients. As discussed in the previous section, the matrix of
scattering rates Γs,s

′
m is block diagonal in the modes describing charge (s = 1) and thermal excitations

(s = 2, 3), i.e. Γ1,2
m = Γ2,1

m = Γ1,3
m = Γ3,1

m = 0. Therefore, the scattering times determining the non-local
electric conductivity are given by τc,m = 1/Γ1,1

m : τc,0 → ∞, τc,1 = 1
α2

~
kBT

log 2
0.804π , τc,2 = 1

α2
~

kBT
log 2

2.617π as
well as

τc,m ≈
1

α2

~
kBT

log 2

π

(
γc · |m| − ηc

)−1
if m > 2, (5.35)

where γc = 2.57 and ηc = 3.45 (see Appendix B.3 for more numerical values). It is also convenient to
define an effective scattering time for the Vlasov term:

τV =
2π2β~

αN log (2)
. (5.36)

Notice, that τV /τc,m ∼ 1/α is large for small α.
In the thermal sector, there are two relevant modes. However, the s = 3 mode is physically more

important, because the vanishing of the corresponding scattering rates for the m = 0 and m = 1
channels indicate the conservation of energy and momentum. In the following, it is shown that the
neglecting of the s = 2 imbalance mode in the calculation of the thermal conductivity and viscosity,
while significantly simplifying the analysis, does only result in a small numerical error. Therefore, for
the purpose of calculating the transport coefficients, only the s = 3 energy mode will be considered.
The scattering times are then given by τε,m = 1/Γ3,3

m . Because of energy and momentum conservation,
we have τε,m=0,1 →∞, and for m = 2, it is τε,2 = 1

α2
~

kBT
9ζ(3)

3.341·2π . For m > 2 the linear approximation
can be used:

τε,m ≈
1

α2

~
kBT

9ζ(3)

2π

(
γε · |m| − ηε

)−1
m > 2, (5.37)

with γε = 5.18 and ηε = 11.3.

5.2.3 Non-local transport coefficients

Non-local transport coefficients have been discussed in section 2.3.2 using impurity scattering as an
example. Here, a clean system is studied and electron-electron collisions take the role of impurity
scattering. Neverthesess, much of what was discussed in Sec. 2.3.2 applies here. The consitutive
relations in Fourier space have the form

J
(
q, ω

)
= ν

(
q, ω

)
F
(
q, ω

)
, (5.38)
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where J
(
q, ω

)
is a current sourced by the external field F

(
q, ω

)
. The q-dependence of the conduc-

tivity ν
(
q, ω

)
matters when the sample size is comparable to the mean free path of electron-electron

collisions lgeo . lee, or the applied field varies on scales comparable to lee. In the following, the electric
conductivity, thermal conductivity and viscosity of graphene at charge neutrality are calculated using
the kinetic equation (5.5) and the collinear zero mode expansion summerized in the previous section
5.1.2.

Electric conductivity

As mentioned in Sec. 5.2.2, only the first collinear mode s = 1 is involved in the calculation of the
electric conductivity. Inserting the expansion of the distribution function in terms of collinear zero
modes (5.30) into the kinetic equation (5.8) using its matrix representation of Eqs. (5.23), (5.25),
(5.26)-(5.28) and (5.29), the left hand side of (5.8) can be transformed into a recurrence relation for the
coefficients a1,m, where, for the rest of this section, the s = 1 index is dropped. A similar analysis for
electrons in a random magnetic field was performed in Ref.[140]. For m > 2, Eq. (5.35) can be used,
and the recurrence relation reads

am+1 =
2ie−iϑq

vq

(
iω − τ−1

c,m

)
am − e−2iϑqam−1. (5.39)

This recurrence relation has the form

am+1 =
(
α′m+ β′

)
am − eiδam−1 (5.40)

with α′ = −2ie−iϑq
vq

kBT
~

π
log 2γc, β

′ = 2ie−iϑq
vq

(
iω − ηc kBT~

π
log 2

)
and δ = −2ϑq. It has two solutions that

can be given in terms of modified Bessel functions. The physically interesting solution is

am = c · e
i δ
2

(
m+ β′

α′

)
I
m+ β′

α′

(
−2eiδ/2

α′

)
, (5.41)

where Iν (z) is the modified Bessel function of the first kind. Another solution that diverges for m→∞
is given by

cm = c · e
i δ
2

(
m+ β′

α′

)
K
m+ β′

α′

(
2eiδ/2

α′

)
.

Kν is the modified Bessel function of the second kind. Making use of the coefficients am for m > 2 as
given by Eq. (5.41), the kinetic equation can be reduced to a 5× 5 component matrix equation:
−iω +Mc

(
q, ω

)
1
2 ivqe

iϑq 0 0 0
1
2 ivqe

−iϑq −iω + τ−1
c,1

1
2 ivqe

iϑq 0 0

0 1
2 ivqe

−iϑq −iω 1
2 ivqe

iϑq 0

0 0 1
2 ivqe

−iϑq −iω + τ−1
c,1

1
2 ivqe

iϑq

0 0 0 1
2 ivqe

−iϑq −iω +Mc

(
q, ω

)




a−2

a−1

a0

a1

a2

 =


0

eE0βv
2
0

eE0βv
2
0

 ,
(5.42)

where Mc

(
q, ω

)
= τ−1

c,2 + a3

(
q, ω

)
/a2

(
q, ω

)
is a memory function containing information on scattering

channels with higher angular momentum numbers. Using the Eqs. (5.40) and (5.41), the memory
function is written

Mc

(
q, ω

)
= τ−1

c,2 +
1

2
vq

I3+ ηc
γc
−iωτc

(
τcvq

)
I2+ ηc

γc
−iωτc

(
τcvq

) , (5.43)
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with the abbreviation τc = ~
kBT

log 2
π γ−1

c . Notice, that the Vlasov term of Eqs. (5.14), (5.15) does
not enter the matrix Boltzmann equation (5.42) explicitely. By definition, the electric conductivity
characterizes the response to E - the total electric field in the system. In Eq. (5.5), the total electric
field is E = F

(
x, t
)

+ eEV . Thus, only a forcing according to Eq. (5.26) is included. It is now
straightforward to calculate the electric conductivity from the relation

jc,x
(
q, ω

)
= σxx

(
q, ω

)
Ex
(
q, ω

)
. (5.44)

The non-local conductivity can be decomposed into a longitudinal part σ‖
(
ω, q

)
and a transverse part

σ⊥
(
ω, q

)
, both depending on the modulus of q. The longitudinal and transverse parts describe currents

that flow in the direction of q, or orthogonal to q, respectively:

σαβ =
qαqβ
q2

σ‖
(
q, ω

)
+

(
δαβ −

qαqβ
q2

)
σ⊥
(
q, ω

)
. (5.45)

We assumed that the electric field is parallel to the x-axis. According to Eq. (5.45), σ‖
(
q, ω

)
can be

read off from the x-component of the current density jc,x by letting q be parallel to ex, and σ⊥
(
q, ω

)
by considering the case q ‖ ey. The conductivities are then given by

σ‖ =
σ0

1− iτ1,cω + 1
4v

2τc,1q2

(
2i
ω + 1

Mc(q,ω)−iω

) ,
σ⊥ =

σ0

1− iτc,1ω +
1
4
v2τc,1q2

Mc(q,ω)−iω

, (5.46)

where σ0 = N
e2 log(2)τc,1

2πβ~2 is the quantum critical conductivity calculated in Ref. [49]. Note that
σ‖
(
q 6= 0, ω = 0

)
= 0 holds, which also follows from formula (5.48). If this was not the case, static

currents with a finite wave-vector q would lead to an infinite accumulation of charge at certain points,
which is forbidden by the conservation of charge. In Fig. 5.2 the charge conductivities are plotted as
functions of ω for different values of q.
The electric conductivity tensor σαβ

(
q, ω

)
of Eq. 5.46 gives access to different electric response

functions. The current-current correlation function is given by

χJαJβ
(
q, ω

)
= −iωσαβ

(
q, ω

)
, (5.47)

where α, β denote the components of the current vector (see e.g. Ref. [141]). With the help of the
continuity equation, the charge density-density correlation function is obtained from Eq. (5.47):

χρρ
(
q, ω

)
=
qαqβ
ω2

χJαJβ
(
q, ω

)
.

=
q2

iω
σ‖
(
q, ω

)
. (5.48)

Finally, the charge compressibility K = ∂ρ/∂µ is given by

K
(
q
)

= χρρ (ω = 0) . (5.49)
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5 Non-local hydrodynamic transport and collective excitations in Dirac fluids

Figure 5.2: Longitudinal (upper row) and transverse (lower row) electric conductivities of charge
neutral graphene as functions of the electric field frequency ω as given by Eqs (5.46). Different
colors indicate different values of the wavenumber q. Frequencies and wavenumbers are normalized
to the characteristic scattering times and lengths τc,1, lc,1 = vτc,1. σ0 is the interaction induced
conductivity at the neutrality point [49, 54]. The graphs show distinct resonant features at fre-
quencies ω ∼ q/v, where v is the electron group velocity. Whereas the real part of the longitudinal
and the imaginary part of the transverse conductivities are peaked around ω ∼ q/v, the imaginary
part of the longitudinal conductivity exhibits a sign change indicating an abrubt phase change
of the current response. The real parts approach σ0 for q → 0, ω → 0. For q 6= 0, ω = 0 the
longitudinal conductivity vanishes. This general property of the charge conductivity follows from
the conservation of charge (see Eq. (5.48)).
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5.2 Non-local Transport

Thermal conductivity

Next we presemt our analysis for the non-local thermal conductivity. Since momentum conservation
implies for a Dirac liquid the conservation of the heat current, thermal transport is expected to display
classical hydrodynamic behavior, i.e. one expects non-local effects to be even more important than for
charge transport.[129, 141].
As pointed out in Sec. 5.2.2, the s = 3 energy mode must be kept in the calculation of the thermal

conductivity, whereas the s = 2 imbalance mode can be neglected, contributing only a small correction
to the overall result. With only a single mode involved, the calculation is formally analogous to the
calculation of the electrical conductivity in Sec. 5.2.3, even though there are crucial differences in
the actual result, given the distinct role of momentum conservation. The relaxation time τc,m must
be replaced by τε,m as given by Eq. (5.37). The conservation of momentum is incorporated via
τε,1 → ∞, whivch follows from the Boltzmann approach. The resulting longitudinal and transverse
thermal conductivities read

κ‖
(
q, ω

)
=

κ0

iωτε,2 − 1
4v

2q2τε,2

(
2i
ω −

1
Mε(q,ω)+iω

)
κ⊥
(
q, ω

)
=

κ0

iωτε,2 +
1
4
v2q2τε,2

Mε,2(q,ω)+iω

, (5.50)

with the memory function

Mε

(
q, ω

)
= τ−1

ε,2 +
1

2
vq

I3+ ηε
γε

+iωτε

(
τεvq

)
I2+ ηε

γε
+iωτε

(
τεvq

) .
The abbreviation τε,2 = 1

α2
~

kBT
9ζ(3)

3.341·2π is used. For convenience κ‖/⊥ is given in units of a thermal
conductivity κ0 = 9Nπ3kBζ(3)τε,2/2β

2~2, however, τε,2 is the relaxation time in the |m| = 2 channel,
and should not be confused with an alleged relaxation time of the energy current, which is infinite due
to the conservation of momentum.
In Fig. 5.2 the thermal conductivities are plotted as functions of ω for different values of q. The fact

that thermal currents are protected by momentum conservation leads to a divergence of the thermal
conductivity at small frequencies: for q = 0, κ is purely imaginary and shows the characteristic 1/ω
Drude behavior.

Non-local shear viscosity

The non-local viscosity is defined through a constitutive relation of the form of Eq. (5.38), linking the
shear force X0,αβ

(
r′
)
to the momentum-current tensor ταβ :

ταβ
(
r, t
)

=

∫
d2r′

∫
dt′ ηαβγδ

(
r− r′, t− t′

)
X0,γδ

(
r′, t′

)
. (5.51)

Since the system is isotropic, the shear force can be chosen such that the flow velocity is aligned
with the x-axis, and its gradient shows in the y direction. It is assumed that the shear force is
wavelike: X0,xy (r) = X0,xye

iq·r−iωt. The wave-vector q can have an arbitrary direction in the xy-
plane, introducing a preference direction to the system’s response. In addition to τxy, this gives rise to
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5 Non-local hydrodynamic transport and collective excitations in Dirac fluids

Figure 5.3: The figure shows the longitudinal (upper row) and transverse (lower row) thermal
conductivities (5.46) as functions of the electric field frequency ω. Different colors indicate different
values of the wavenumber q. The conductivities are normalized to κ0 = 9Nπ3kBζ(3)τε,2/2β

2~2.
For small ω and vanishing q, the imaginaty part of κ‖/⊥ diverges as 1/ω, whereas the real part
vanishes - a behavior indicating that thermal transport in the system is ballistic. The solid lines
show the analytical result of Eq. (5.50), the dashed lines show the full numerical result including
all modes and the exact scattering times.
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5.2 Non-local Transport

nonzero components τxx, τyy, if q does not align with the x or the y-axes. The viscosity tensor ηαβxy
can be decomposed into transverse and longitudinal parts (see Eq. (5.45)) analogously to the electric
and charge conductivities. Because ηαβxy is a fourth rank tensor the decomposition is slightly more
involved and the reader is referred to Appendix B.4 for details. The general q-dependent viscosity
tensor can be constructed with the help of three rank two tensors:

e
(1)
αβ =

qαqβ
q2

e
(2)
αβ = δαβ −

qαqβ
q2

e
(3)
αβ =

1√
2

(
qαpβ + pαqβ

)
/
(
pq
)
, (5.52)

where
pα = qγεγα. (5.53)

The viscosity tensor is parameterized by two frequency and momentum dependent functions, η‖
(
q, ω

)
and η⊥

(
q, ω

)
, which we will call longitudinal and transverse viscosities:

ηαβγδ
(
q, ω

)
= η1

(
q, ω

)(
e
(1)
αβ e

(1)
γδ + e

(2)
αβ e

(2)
γδ

)
+ η2

(
q, ω

)
e
(3)
αβ e

(3)
γδ .

Let the flow be in x-direction: u
(
y
)

= u
(
y
)
êx, and let the wave-vector be parameterized by q =

q

(
cos
(
ϑq

)
, sin

(
ϑq

))T
, where θ is measured with respect to the x-axis. For ϑq = 0 or ϑq = π/2

follows e(
1,2)
αβ = 0, ηxxxy = ηxxyx = 0 and ηxyxy = η2/2. This corresponds to the familiar shear flow

in e.g. a Poiseuille geometry where τxx = τyy = 0. The momentum current flows orthogonal to the
direction of the momentum density. For ϑq = π/4, the viscosity is determined by η1: ηxyxy = η1/2.
As in the case of thermal conductivity, dropping the s = 2 imbalance mode produces only a small

numerical correction in the final result for the viscosity. With an external shear force of the form of
Eqs. (5.13), (5.28) applied to the system, the kinetic equation can be written as 5 × 5 component
matrix equation, similar to the case of an applied electric field (see Eq. (5.42)). The force acts in the
|m| = 2 channels, and the equation reads

−iω +Mε

(
q, ω

)
1
2 ivqe

iθ 0 0 0
1
2 ivqe

−iθ −iω 1
2 ivqe

iθ 0 0
0 1

2 ivqe
−iθ −iω 1

2 ivqe
iθ 0

0 0 1
2 ivqe

−iθ −iω 1
2 ivqe

iθ

0 0 0 1
2 ivqe

−iθ −iω +Mε

(
q, ω

)




a−2

a−1

a0

a1

a2

 =


− iX0

4
0
0
0
iX0

4

 .
(5.54)

Solving the matrix equation (5.54) for a±2, the viscosity is calculated with the help of Eq. (5.51) which
takes the form τxy = N

∑
λ

∫
k vxkyfk,λ = ηxyxyX0,xy. As explained above, the viscosity components

η1 and η2 can be read off from the general result ηxyxy

q = q

(
cos
(
ϑq

)
, sin

(
ϑq

))T
, ω

 by setting
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ϑq = 0 and ϑq = π/2:

η1

(
q, ω

)
=

2η0

−iτε,2ω − q2v2 iτε,2ω
2q2v2−4ω2 + τε,2Mε

(
q, ω

) ,
η2

(
q, ω

)
=

2η0

−iτε,2ω − q2v2τε,2
4iω + τε,2Mε

(
q, ω

) .
(5.55)

Here, η0 is the viscosity at q = 0, ω = 0, η0 = N
(
kBT

)3
τε,2/

(
8~2v2

)
, as it was first calculated in Ref.

[51] including both modes, s = 2 and s = 3.

5.3 Collective modes

Collective modes are solutions to the homogeneous part of the kinetic equation (5.5), (5.8) (see e.g.
[22]). Consider Eq. (5.8). With the force terms set to zero it holds(

L+ V + C
)
ψ = 0.

Here, L and C have are the matrix operators of Eqs. (5.23) and (5.25). Solutions to this equation exist
only if

det
(
L+ V + C

)
= 0 (5.56)

holds. This is only the case for certain values of the variable pairs ω, q. Eq. (5.56) is an eigenvalue
problem where the eigenvalues ω

(
q
)
determine the dispersion relations of the collective modes. On the

other hand, collective modes can be found from poles of response functions for an external force S. The
two methods are equivalent. Within the kinetic equation formalism, response functions are calculated
as averages over the distribution function ψ =

(
L+ V + C

)−1
S. If the condition (5.56) is fulfilled, the

operator
(
L+ V + C

)−1 is singular and thus singularities in the response to S appear. We will use Eq.
(5.56) to study the collective modes in charge neutral graphene.
As in the previous sections, the kinetic equation will be expanded in terms of collinear zero modes

(5.22): χ(m,s)
k,λ = λmeimθ

{
1, λ, λβv~k

}
. For m = 0 these modes correspond to excitations of the charge,

imbalance and energy densities; for |m| = 1 they correspond to the associated currents. At the end of
this section it will be shown that including non-collinear zero modes in the calculation does not change
the result as long as the fine structure constant α is kept small.
To get a feeling for the structure of collective modes in the system, it is useful to begin with the

case q = 0. In the subspace of collinear zero modes, the kinetic equation reduces to Eq. (5.33) and the
condition (5.56) reads

det
(
−iωδs,s′ + Γs,s

′
m

)
= 0. (5.57)

This is an eigenvalue equation for the frequencies of collective modes that can be solved independently
for any m. Since, as pointed out in Sec. 5.2.1, Γs,s

′
m is block-diagonal in the subspaces of electric (s = 1)

and imbalance/energy (s = 2, 3) excitations, the above equation, as well as its extension to q 6= 0, can
be solved independently in these two sectors. For s = 1, the eigenfrequencies are ωm

(
q = 0

)
= −i/τc,m.

Since in this scenario the time evolution of the modes is given by the factor e−iωmt, all but the m = 0
mode, which is protected by charge conservation, exponentially decay at a rate inversely proportional
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to their scattering time. The m = 0 zero mode corresponds to the charge density, which is conserved,
and therefore does not decay. In the following two sections, the collective charge, as well as energy
and imbalance excitations will be described at finite q. Figs. 5.4, 5.5, 5.6, 5.7, 5.8 show the dispersion
relations of these modes.

5.3.1 Collective charge excitations

In general, conserved modes do not decay at q = 0, and therefore their dispersion relations must vanish
in a spatially homogeneous system. The only conserved mode in the charge sector is the charge density

mode χ(m=0,s=1)
k,λ = 1. In the limit q � vτc,1, the memory matrix (5.43) reduces to Mc

(
q, ω

)
≈ τ−1

c,2

and Eq. (5.56) can be solved analytically. The dispersions of the two lowest modes are

ωcharge diff. ≈ ω± = − i

2τc,1
±
√
vq

τV
− 1

4τ2
c,1

. (5.58)

The conserved charge density mode is described by ω−. The dispersion relations of Eq. (5.58) have a
non-vanishing real part for

q > q∗pl =
τV

4vτ2
c,1

. (5.59)

For wave-vectors below q∗pl, the plasmon is over-damped (see Fig. 5.4). However, we have vq∗pl ∼
α3kBT/~ such that the plasmon mode becomes more and more pronounced at low temperatures.
The plasmon mode is gapped out due to the intrinsic interaction induced resistivity. At q = 0 it has

a vanishing real part and its decay rate is given by the scattering rate in the m = 1 channel:

ωpl
(
q → 0

)
= −i/τc,1 (5.60)

(see also [113]). It is the most weakly damped of an infinite set of modes corresponding to higher
angular harmonics (see Fig. 5.4). It is clearly seen, that the modes relate to different angular harmonic
channels m. For q = 0 their dispersions approach ωm

(
q = 0

)
= −i/τc,m. Such modes play a crucial

role in the relaxation mechanism of focused current beams in graphene [138]. Similar collective modes
have been argued to influence the relaxation behavior of unitary fermi gases [133] and QCD plasmas
[134–136].

5.3.2 Collective energy and imbalance excitations

In the energy sector spanned by the modes s = 2, 3, the Eqs. (5.56) and (5.57) give rise three zero eigen-

values. These correspond to the conserved energy (χ(m=0,s=3)
k,λ = λβv~k) and quasiparticle (imbalance)

densities (χ(m=0,s=2)
k,λ = λ), as well as momentum (χ(m=1,s=3)

k,λ + (−)χ
(m=−1,s=3)
k,λ = 2

(
i
)
βv~kx(y)).

The first two conservation laws lead to two diffusive modes. The conservation of momentum gives rise
to second sound - ballistic thermal waves propagating through the two dimensional graphene plane [52].
This mode is the analogue of the density modes of a clean neutral Galilean invariant system.
Truncating the mode expansion of Eq. (5.56) at m = 2, which is a good approximation for low

wave-numbers, yields the dispersions

ωheat diff. ≈
1

4
v2q2τε,2,

ωqp diff. ≈
1

8
v2q2τε,2, (5.61)

75



5 Non-local hydrodynamic transport and collective excitations in Dirac fluids

Figure 5.4: The imaginary parts of the dispersion relations of collective charge excitations in
different angular harmonic channels m are shown. The wave-vector q is given in units of the
inverse scattering length vτ−1

c,1 . The grey symbols correspond to the numerical solution of Eq.
(5.56). The purely imaginary m = 0 diffusive mode is the only mode approaching zero for small q -
a behavior necessitated by charge conservation. Modes with a higher m are damped and approach
the values −i/τc,m for q → 0. The corresponding excitations decay even in the absence of spatial
inhomogeneities. At a value q = q∗pl (Eq. 5.59), the dispersions of the diffusive mode and the m = 1
excitation merge, giving rise to a plasmon mode, which has a finite real part (see Fig 5.5). This
value is slightly overestimated by the simplified expression of Eq. (5.59).

Figure 5.5: The figure shows the real parts of the dispersion relations of collective charge excita-
tions in different angular harmonic channels m. The wave-vector q is given in units of the inverse
scattering length vτ−1

c,1 . The grey symbols correspond to the numerical solution of Eq. (5.56). The
plasmon mode is gapped out by the interaction induced conductivity and only obtains a finite real
part around q = q∗pl (the simplified value of q∗pl given in Eq. (5.59) (red dashed line) overestimates
the branching point). At higher q, other, strongly damped modes corresponding to higher angular
harmonics appear. The dampings of these modes are given by the m > 1 modes of Fig. 5.4.
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5.3 Collective modes

Figure 5.6: The figure shows the imaginary part of the dispersion relations of second sound, heat
diffusion, and quasiparticle (imbalance) diffusion excitations. The wavevector q is given in units of
the inverse scattering length vτ−1

c,2 . The grey symbols correspond to the numerical solution of Eq.
(5.56). The damping of second sound is due to scattering in the m = 2 channel and follows the
dispersion Im

(
ωsec. sound

)
≈ 1

8v
2q2τε,2 (red curve). For small q the imaginary part of the second

sound dispersion and the dispersion of the quasiparticle diffusion mode merge. A third diffusive
mode corresponds to the diffusion of heat (orange curve).

for the heat and quasiparticle (imbalance) diffusion modes, respectively. The second sound dispersion
is given by

ωsec. sound ≈
vq√

2
+ iτε,2

v2q2

8
. (5.62)

Second sound mediated by phonons has been previously observed in solids [142] and had a velocity
comparable to the velocity of sound. Here, the second sound is carried by electrons and propagates
with a velocity v0/

√
2. The above dispersion relations are shown in Figs. 5.6 and 5.8. The dispersion

of the quasiparticle diffusion mode and the imaginary part of the second sound dispersion merge at low
wavenumbers. As in the case of charge excitations, there exists an infinite number of damped modes
associated with scattering in higher angular harmonic channels. These modes are depicted in Figs. 5.7
and 5.8. Note, that modes associated with imbalance excitations (s = 2) are damped stronger by an
order of magnitude as compared to energy excitations (s = 3).

5.3.3 Validity of the collinear zero mode approximation for collective modes

The discussion so far was carried out in the restricted subspace of collinear zero modes. In this section
it is shown that the results for collective excitations obtained within the restricted subspace remain
valid, if this restriction is lifted, and non-collinear zero modes are added. These modes introduce large
corrections to the matrix of scattering rates Γs,s

′
m , and it is not obvious that they can be neglected. It

is sufficient to consider the q = 0 case. The extension to finite wavenumbers is straightforward.
The scattering rate matrix Γs,s

′
m of Eq. (5.34) is extended to include modes that are not collinear
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5 Non-local hydrodynamic transport and collective excitations in Dirac fluids

Figure 5.7: The imaginary part of the dispersion relations of collective charge excitations in
different angular harmonic channels m are shown. The wave-vector q is given in units of the
inverse scattering length vτ−1

c,2 . The grey symbols correspond to the numerical solution of Eq.
(5.56). For small q, the modes approach values given by the scattering rates −i/τc,m and are thus
strongly damped. At larger values of q, the dispersions tend to merge in a complex fashion. Fig.
5.6 shows the weakly damped modes (second sound and diffusive modes) for small values of q.

Figure 5.8: The real parts of the dispersion relations of collective energy and imbalance excitations
are depicted. The grey symbols correspond to the numerical solution of Eq. (5.56). The linear
dispersion of the second sound mode given by vq/

√
2 for small q is shown in orange color. The

wave-vector q is given in units of the inverse scattering length vτ−1
c,2 .
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zero modes, which are labeled with indices s > 3. It is useful to define the following matrices

S =
(
vβ~

)2〈
χ

(s<3)
k,λ

∣∣C∣∣χ(s′<3)
k,λ

〉
P =

(
vβ~

)2〈
χ

(s>3)
k,λ

∣∣C∣∣χ(s′<3)
k,λ

〉
Q =

(
vβ~

)2〈
χ

(s<3)
k,λ

∣∣C∣∣χ(s′>3)
k,λ

〉
R =

(
vβ~

)2〈
χ

(s>3)
k,λ

∣∣C∣∣χ(s′>3)
k,λ

〉
.

Here, χ(s<3)
k,λ are the familiar collinear zero modes (5.22). χ

(s>3)
k,λ are modes with a different

∣∣k∣∣-
dependence, such that the full set of modes forms a complete basis. Since C is Hermitian, we have
Q = P T . The mode expansion of the Liouville operator Ls,s′ of Eq. (5.23) also has to be enlarged by
the s > 3 modes. However, we do not need to know the precise values of the correponding elements of
L. The eigenvalue equation (5.57) reads

det
(
−iωL− F

)
= 0, (5.63)

where F is the composite matrix

F =

[
S P
P T R

]
.

In the following, the Liouville matrix L will also be separated into blocks corresponding the same

subspaces: L =

((
LS , LP

)
,
(
LTP , LS

))
. It follows from Eq. (5.16) and the Hermiticity of the collinear

part of the collision operator Cc that

S ∼ P ∼ 1

R ∼ log
(
1/α

)
,

meaning that non collinear zero modes are scattered faster by a factor of log
(
1/α

)
. The determinant

can be found using the block matrix identity1

det

[
A B
C D

]
= det

(
D
)

det
(
A−BD−1C

)
. (5.64)

Applying this identity to Eq. (5.63) and noticing that for α → 0 the inverse matrix in the last
determinant vanishes, one has

det
(
iωL+ F

)
≈ det

(
iωLR +R

)
det
(
iωLS + S

)
.

Eq. (5.63) therefore separates into two independent parts: det
(
iωLR +R

)
= 0 and det

(
iωLS + S

)
= 0.

The second equation is equivalent to the eigenvalue equation (5.57). In the limit of a small fine structure
constant, the weakly damped collective modes can therefore be found by solving the kinetic equation in
the restricted subspace of collinear zero modes, even if there is significant coupling between all modes.

1I’m greatful to B. Jeevanesan for bringing this identity to my attention.
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5.4 Poiseuille profiles

The wavevector-dependence of transport coefficients is of importance when the currents in a system
are spatially inhomogeneous, either because the applied fields are inhomogeneous, or because the in-
homogeneity is imposed by the geometry of the system. The simplest example for the latter case is
the Poiseuille flow. In undoped graphene, the energy current is conserved due to the conservation of
momentum, however it is dissipated by the uneven boundaries of the sample [138]. In a Poiseuille
geometry, which consists of an infinitely long, streight sample of width w, the boundaries slow down
the current flow. The current profile becomes parabolic across the sample. On the other hand, charge
currents decay in the bulk of undoped graphene due to the interaction induced resistivity. In this case,
there exists a crossover from an almost flat current profile if w � vτ1,c to a more parabola-like shape
at w < vτ1,c. However, as shown in Ref. [138], the slowing down of the flow by the boundaries becomes
inefficient when w . vτ2,c, again changing the profile. In this section we investigate the Poiseuille
profiles of charge currents in undoped graphene using the full non-local conductivity (5.46).

5.4.1 Flow equations and boundary conditions

The thermal and charge flow is governed by the constitutive relations κ−1
(
q, ω

)
αβ
jε,β = −∂αT and

σ−1
(
q, ω

)
αβ
jc,β = Eα, where jε,β is the thermal current and jc,β the electric current. With the

thermal and electric conductivities κ and σ depending on the wave vector q, these equations can be
seen as Fourier transforms of differential equations. Similar equations have been studied to describe
non-localities induced by vortices in type II superconductors [143]. The temeprature gradient −∂αT
and the electric field Eα act as source terms. In a Poiseuille geometry, the force fields act perpendicular
to the gradient of the flow velocity, i.e. it is E ⊥ q, ∇T ⊥ q. Therefore, the currents are determined
by the transverse conductivities. Let the sample be oriented in y-direction and centered around x = 0.
The equations then read

κ−1
T

(
qx, ω

)
jε,y

(
qx, ω

)
= −∂yT, (5.65)

σ−1
T

(
qx, ω

)
jc,y

(
qx, ω

)
= Ey. (5.66)

To solve the above equations, boundary conditions at the sample boundaries at ±w/2 are needed. As
discussed in the previous chapter, the partial slip boundary conditions of Eq. (4.4) are appropriate:

jε/c,y
(
x = ±w/2, ω

)
= ∓ζ

∂jε/c,y

∂x

∣∣∣∣∣
x=±w/2

. (5.67)

It was shown in chapter 4, that if the boundaries are sufficiently rough, the so-called slip length ζ is of
the order as the mean free path associated with the m = 2 scattering time: ζ ∼ vτε/c,2. In principle, the
Eqs. (5.65), (5.66) represent infinite order differential equations and require infinitely many boundary
conditions. However, this problem does not appear explicitely in the calculation. The finite width of
the sample w sets a natural cut-off for the wavenumbers q and therefore only the low powers of q are
relevant on the right hand side of Eqs. (5.65), (5.66). For simplicity, the boundary condition (5.67) is
used, which is reasonable for not too small widths.
The Eqs. (5.65), (5.66) now can be solved by performing a Fourier transform. To fix the boundary

conditions two pointlike delta-function inhomogneities are positioned at ±w. In real space the equations
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take the form

κ−1
T

(
∂x, ω

)
jε,y

(
x, ω

)
= −∂yT − αδ (x− w)− βδ (x+ w) (5.68)

σ−1
T

(
∂x, ω

)
jc,y

(
x, ω

)
= Ey − αδ (x− w)− βδ (x+ w) . (5.69)

If the constants α, β are chosen such that Eq. (5.67) is satisfied, the solution inside the sample will be
identical to the solution of the homogeneous equations with the matching boundary conditions.
Here, the profiles of electric current flows through samples of different widths will be calculated.

Solving the Eq. (5.68) in Fourier space one obtains

jc,y
(
qx, ω

)
=(

2πEyδ
(
qx
)
− αe−iwqx − βeiwqx

)
σT
(
qx, ω

)
. (5.70)

Inserting this result into Eq. (5.67) gives two algebraic equations, from which α and β can be deter-
mined:

ζ

∫
dqx
2π

(
iqx
)(

αe−iqx
3w
2 + βeiqx

w
2

)
σT
(
qx, ω

)
=∫

dqx
2π

(
αe−iqx

3w
2 + βeiqx

w
2

)
σT
(
qx, ω

)
−

EyσT
(
0, ω

)
ζ

∫
dqx
2π

(
iqx
)(

αe−iqx
w
2 + βeiqx

3w
2

)
σT
(
qx, ω

)
=

−
∫
dqx
2π

(
αe−iqx

w
2 + βeiqx

3w
2

)
σT
(
qx, ω

)
+

EyσT
(
0, ω

)
.

The above integrals are calculated with the FFT algorithm. Once α, β are found, a Fourier transform
the of the solution (5.70) gives the desired flow profiles.
Figs. 5.9 and 5.10 show the results for different widths w. For demonstrational purposes no-slip

boundary conditions (ζ = 0) were assumed in Fig. 5.9. Here, for w > vτc,1 the flow profile turns flat
in the middle of the sample and steeply descends to zero at the boundaries (as necessitated by the
boundary conditions). This is behavior is due to the interaction induced conductivity that dissipates
momentum uniformily across the sample - at a distance d > vτc,1 away from the boundary a uniform
flow is restored. On the other hand, for w < vτc,1 the current relaxing scattering in the m = 1 channel
becomes less and less important. The scattering in the m = 2 channel dominates. It acts in the same
way viscous forces act when flows with finite momentum are considered. Current is transported from
the middle of the sample, where it is maximal, to the sample edges, where current is dissipated. A
finite sliplength (as discussed, ζ = vlc,2 was chosen for simplicity) alters these results (see Fig. 5.10):
Whereas for widths w > vτc,1 the finite slip gives the current a non-negligable velocity at the sample
boundary, for small widths w < vτc,2, the flow profiles are rendered flatter, and the boundary effects
become negligable. In the crossover region w ∼ vτc,1, the profiles are curved and resemble a parabola.
This takes place around w ∼ 0.5vτc,2 and is in accordance with the general expectations [84]: for
w < vτc,2 the quasi-viscous transport of currents from the middle of the sample towards the boundaries
becomes inefficient, and the boundary does efficiently dissipate the current.
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5 Non-local hydrodynamic transport and collective excitations in Dirac fluids

Figure 5.9: Poiseuille profiles of charge currents in undoped graphene samples of different widths
w. Although physically incorrect, no-slip boundary conditions were assumed for clarity. The
profiles are normalized to the current at x = 0. At large widths w > vτc,1, the flow profiles turn
flat. In the bulk they resemble Ohmic flow. For small widths w < vτc,1, the momentum non-
conserving scattering becomes inefficient. The electrons travel a distance corresponding to several
width before loosing their momentum. Consequently, the profiles take a parabolic form, resembling
classical Poiseuille flow. The profiles were calculated from Eq. (5.70).

Figure 5.10: Poiseuille profiles of charge currents in undoped graphene samples of different widths
w, normalized to the current at x = 0. Partial slip boundary conditions with a slip length ζ = vτc,2
were applied. At very small widths w � ζ, boundary scattering ceases to be an efficient mechanism
for the dissipation of electric current. The profiles turn flat, as they do in the nearly Ohmic regime
w > vτc,1. In the crossover regime at widths w ∼ 0.5vτc,1, profile curvature is most pronounced.
The profiles were calculated from Eq. (5.70).
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5.5 Summary

This chapter focussed on the non-local tranport properties and collective excitations of graphene elec-
trons at the charge neutrality point. The quantum Boltzmann method developed in Ref. [49] was used.
This method relies on the fact that at experimental temperatures the graphene fine structure constant
α is renormalized to small values. Thermally excited electrons and holes therefore appear as sharply
defined quasiparticles, whose transport properties can be studied by means of a kinetic equation. The
solution of this equation is facilitated by the presence of so-called collinear modes, whose scattering
rates are enhanced by a large factor of log

(
1/α

)
. Here, the velocities of the interacting particles are

parallel to each other. Due to the linear graphene spectrum, all particles travel at the same speed,
regardless of their momentum. Particles traveling in parallel have a particularely long time to interact
with each other, hence the strong enhancement. Transport in the hydrodynamic regime, however, is
dominated by processes, which have the smallest scattering rates (for details see Eq. (5.16) and below).
Such “slow” processes are represented by collinear zero modes – functions that set the collinear part of
the collision operator to zero [49, 54].
In this chapter, the kinetic equation was solved by reducing it to a matrix equation in the space of

collinear zero modes χ(m,s)
k,λ = λmeimθ

{
1, λ, λβv~k

}
. Here, θ is the polar angle and k the modulus of

the momentum variable k, λ = ±1 is the band index, m labels the angular harmonics and s ∈
{

1, 2, 3
}

labels the three basis functions written in curly brakets.
It was found that, to an excellent approximation, it is sufficient to retain only the s = 1 and

s = 3 modes. These modes describe charge (c) and energy (ε) excitations, respectively. A numerical
evaluation of the collision integral showed, that the relaxation rates of these modes grow linearly with
increaling m:

τ−1
ε/c,m ∼ |m| , (5.71)

for large m (see sections 5.1.2 and 5.2.2). It is an important feature of charge neutral graphene, that
the hydrodynamic modes excited by electric and thermal fields decouple in linear response and in the
abscence of magnetic fields [51, 144]. They are characterized by the distinct scattering rates of Eq.
(5.71). Due to the surprising linear behavior of the relaxation rates, an exact solution to the linearized
Boltzmann equation could be found, which is valid to first order in the Knudsen number. The Boltznann
equation could be rewritten into a recurrence relation, which has solutions in terms of modified Bessel
functions (see Eq. 5.39 and below). Using this result, the non-local, i.e. wavevector-dependent, charge
and thermal conducitivities as well as the non-local viscosity were calculated. The results are given
in Eqs. (5.46), (5.50), and (5.55), respectively. The transport coefficients show pronounced resonance
features at vq ≈ ω where q and ω are the wavenumber and frequency of the applied electric field or
thermal gradient (see Figs. 5.2, 5.3). The non-local charge conductivity is of possible relevance to
experiments with surface acoustic waves [145–147].
Non-local transport coefficients determine the transport behavior in spacially inhomogeneous fields or

in confined geometries. The latter case was illustrated for the electric conductivity, using the Poiseuille
geometry as an example. The constitutive relation linking the electric current to the electric field along
the channel was interpreted as a differential equation (Eq. (5.66)) and solved with the appropriate
boundary conditions (Eq. (5.67)). These boundary conditions were the subject of the preceding
chapter 4. It was found, that the flow profiles strongly depend on the channel width w as compared
to the electron-electron scattering lengths in the m = 1 and m = 2 channels: lc,1 = vτc,1, lc,2 = vτc,2.
While lc,1 governs the decay of charge currents, lc,2 determines the effectiveness of current transfer
from regions with high current density to regions with low current density. This latter mechanism is

83



5 Non-local hydrodynamic transport and collective excitations in Dirac fluids

analogous to viscous momentum transfer. The flow profiles in dependence on w can be separated into
three regimes. For w � lc,1 > lc,2, the samples are in the Ohmic regime, where the current is dissipated
uniformily across the sample. The flow profile is flat. For lc,1 < w < lc,2, the profile curvature is
maximal, since on the one hand the current decay due to electron-electron scattering in the m = 1
channel becomes inefficient, on the other hand the current transfer to the boundaries of the sample,
where the flow is slowed down, is sufficiently strong. For even smaller widths w < lc,2, the profile
turns flat again, because the current transfer mechanism associated with lc,2 ceases to be efficient. This
characteristic pattern is shown in Fig. 5.10. Current profiles are accessible experimentaly, e.g. through
the scanning single electron transistor technique of Refs. [29, 30].
Finally, the collective modes of a Dirac liquid were studied. As do the transport coefficients, the

collective modes separate into a sector of charge excitations and a sector of energy and imbalance
excitations (s = 2). These two sectors are decoupled and can be studied separately. It was found,
that while the plasmon mode is gapped out at small wavenumbers due to the interaction induced
resistivity (see Fig. 5.5), a so-called second sound mode, corresponding to the wavelike propagation
of energy, appears (Fig. 5.8). Diffusive modes, corresponding to the diffusion of charge, heat and
quasiparticles were found (see Figs. 5.4, 5.6). Their dispersion relations were calculated and showed
to agree with known results [52, 113, 132]. Besides these well studied modes, an infinite set of damped
modes connected to excitations in higher angular harmonic channels was found (see Figs. 5.4, 5.7). The
dispersions of these modes are purely imaginary at vanishing wavenumbers and approach the values
ωm
(
q = 0

)
= −i/τε/c,m for the m-th angular harmonic in the energy (ε) or the charge (c) channels. At

finite wavenumbers, these modes show a complex structure of merging branches. Similar modes play
an important role in the equilibration of unitary fermi gases [133]. They also determine the unusual
phase space dynamics of graphene electrons presented in the next chapter.
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6 Chapter 6

Lévy flights and superdiffusion in phase
space

In this chapter it is shown, that the phase space dynamics of the electron-hole plasma in charge neutral
graphene is described by a Fokker-Planck equation involving a fractional derivative. Such equations are
known from the theory of anomalous diffusion and were reviewed in section 3. In the case of graphene,
the dynamics is superdiffusive, and the underlying trajectories of single particles (viewed as classical
objects) are Lévy flights.
The description of interacting gases and plasmas by means of Fokker-Planck equations is well de-

veloped [64–68]. Applications range from the computational physics of plasma confinenment [69] to
the study of galaxy clusters [70]. In these cases, the single particle tajectories are Gaussian random
walks through phase space. The kinetic equation can be reduced to a Fokker-Planck equation describ-
ing diffusion in phase space. The kinetic equation of graphene electrons, however, cannot be handled
in the same way. Graphene electrons can make huge leaps through phase space – a behavior known
from the theory of Lévy flights. As a consequence, the equations governing the behavior of the kinetic
distribution functions become highly non-local, necessitating the use of integral operators or fractional
derivetives. The connection between Lévy flights and fractional Fokker-Planck equations was estab-
lished in sec. 3. In the following, the fractional Fokker-Planck equation for graphene will be derived
and applied to study the relaxation behavior of a focussed current beam. The results presented here
have been published in Ref. [138].

6.1 Relaxation behavior of collinear zero modes

The problem of deriving a Fokker-Planck-type equation for graphene at charge neutrality can be at-
tacked by the quantum Boltzmann methods of chapter 5. Again the notions of collinear and non-
collinear scattering processes are crucial. In collinear scattering the velocities of scattered particles
point in the same direction, whereas they can point in different directions for non-collinear scattering.
The expansion of the quantum Boltzmann equation in terms of collinear zero modes, introduced in
chapter 5, again proves a useful tool. In chapter 5 it was shown, following Ref. [49], that the scattering
rates of collinear processes are enhanced by a large factor of

log
(
1/α

)
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6 Lévy flights and superdiffusion in phase space

Here, α is the small graphene fine structure constant. Intuitively, this enhancement is due to the fact
that because of the linear spectrum of graphene, all particles are travelling at the same speed, regardless
of their momentum. Therefore, particles whose velocities point in the same direction, interact with each
other for a particularly long period of time. so-called collinear zero modes, which set the collinear part
of the collision integral to zero, i.e. describe only non-collinear processes, prevail in the hydrodynamic
limit of long times and slow excitations. In the preceding chapter 5, it was shown that an effective
kinetic equation can be constructed by projecting the full quantum Boltzmann equation onto collinear
zero modes. This projection was used, to calculate the transport coefficients of charge neutral graphene
in the hydrodynamic limit. Here, relaxation processes will be studied, and therefore a slightly different
perspective will be taken.
Imagine that at t = 0 the system is in a state of strong non-equilibrium. At t > 0 this state begins

to relax. The equilibration is caused by electron-electron collisions and takes place on two separate
time scales. First there are the collinear processes that are enhanced by the factor log

(
1/α

)
. These

processes will very soon relax the system to a near-equilibrium state where the distribution function
can be expanded in the usual form:

fkλ
(
x, t
)

= f
(0)
kλ + f

(0)
k

(
1− f(0)

k

)
ψkλ.

The deviation from local equilibrium ψkλ can be expanded in terms of the not yet decayed collinear
zero modes

χ
(m,s)
k,λ = λmeimθ

{
1, λ, λβv~k

}
. (6.1)

It is

ψk,λ =
∞∑

m=−∞

3∑
s=1

am,s
(
ω,q

)
χ

(m,s)
k,λ . (6.2)

Here m labels the angular harmonics and s the collinear zero modes. Considering, for simplicity,
excitations connected to charge currents and electric fields, only the s = 1 modes of Eq. (6.1) are
relevant (see the discussion of Sec. 5.2). They are given by

χ
(m,1)
k,λ = λmeimθk . (6.3)

These modes depend on the polar angle of the momentum vector, θk, but not its modulus k. There is
therefore a fast relaxation in k, and a slower hydrodynamic relaxation in the angular variable θk. The
latter is slower by the factor log

(
1/α

)
. As a result, for times t→∞ the overall evolution of the system

is governed by the collinear zero mode hydrodynamic theory introduced in chapter 5. This long-term
behavior is studied here. Fig. 6.1 illustrates the relaxation process and its time scales.
It has already been discussed in chapter section 5.1.2 that the scattering rates of collinear zero modes

grow like |m| with increasing angular harmonic numbers m. This behavior is demonstrated in Fig. 5.1
and for the s = 1 mode, that is of interest here, on the log-log plot of Fig. 6.2. It is the non-analytic
dependence on the absolute value of m, that leads to the unusal superdiffusive behavior. To simplify
the analysis, the scattering times of Eq. 5.35 can be approximated by

τ−1
m = τ−1

L |m| (6.4)

with
τ−1
L = κτ−1

c,1
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Figure 6.1: The time scales of a typical relaxation process. At short times t < log
(
1/α

)
τL the

relaxation is dominanted by collinear scattering processes. Due to their suppressed scattering rate,
the collinear zero modes dominate the long time behavior t > log

(
1/α

)
τL (blue curve). This

regime is characterized by Lévy flights and hydrodynamic superdiffusion. τL is the characteristic
time scale of the hydrodynamic Lévy process. Whereas in the fast regime the system equilibrates
along the energy axis, in the slow regime an equilibration in the angular coordinate θk takes place.

where κ = 3.2 is a constant stemming from the numerical evaluation of the collision integral. τ−1
c,1 is the

relaxation rate of a homogeneous charge current defined above Eq. (5.35). It appears in the expression
for the interaction induced conductivity [49]

σ0 =
2e2 log (2) τc,1
πkBT~2

.

While the approximation (6.4) is not too good at low |m|, it captures the essential features of the Lévy
flight dynamics, for which the linear behavior at large |m| is relevant. The location of the crossover
between the fast relaxation and the slow Lévy flight regime can be estimated by τL/ log

(
1/α

)
. By that

time, the collinear modes have decayed and only collinear zero modes remain.

6.2 Fractional Fokker-Planck equation

In this section the quantum Boltzmann equation of chapter 5 will be reduced to a fractional Fokker-
Planck equation, where the appearance of the fractional derivative will be necessitated by the non-
analytic m-dependence of the scattering rates. The linearized kinetic equation for graphene electrons
of section 5.1) reads (

∂t + vkλ · ∇x − C
)
ψk,λ

(
x, t
)

= Skλ. (6.5)

Here and in the following, it is tacitly assumed, that the system is in the hydrodynamic regime, and

that only the charge mode χ(m,1)
k,λ = λmeimθk is excited, so that the expansion (6.2) reads ψk,λ =∑∞

m=−∞ λ
mam

(
ω,q

)
eimθk . The collision operator C is characterized by its matrix elements with

respect to the modes χ(m,1)
k,λ , which in their turn give the scattering rates τ−1

m . The action of C on an
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Figure 6.2: Log-log plot of the matrix elemets of the collision operator given in Eq. (5.10). m
is labels the angular harmonics eimθk . It is demonstrated that the linear in m behavior can be
destiguished from e.g. an |m| log |m| dependence.

arbitrary θ-dependent function can be examined by performing a Fourier transformation:

∑
m

eim(θ−θ′)τ−1
m = −

τ−1
L

2

1

sin2
(
θ−θ′

2

) = τ−1
L

∂

∂θ

1

tanh
(
θ−θ′

2

) . (6.6)

With the convolution theorem, for a function g
(
θ
)
follows

∑
m

eim(θ−θ′)τ−1
m gm = τ−1

L

∂

∂θ

∫ 2π

0

g
(
θ′
)

tanh
(
θ−θ′

2

)dθ′.
This result can be written using the Riesz-Feller derivative ∆µ/2 [108, 148] with µ = 1:(

∂2

∂θ2

)1/2

g
(
θ
)

=
∂

∂θ

∫ 2π

0

g
(
θ′
)

tanh
(
θ−θ′

2

)dθ′.
This generalization of the a derivative builds upon its Fourier representation: for the second derivative
holds ∂2/∂θ2 → m2, for the fractional derivative one has ∂µ/2/∂θµ/2 → |m|µ/2. Using the fractional
derivative, the Boltzmann equation (6.5) can be written as∂t + vkλ · ∇x − τ−1

L

(
∂2

∂θ2
k

)1/2
ψk,λ

(
x, t
)

= Skλ. (6.7)

This equation is a fractional Fokker-Planck equation type of the of Eq. (3.13). The second term in
brackets is a drift term, and vanishes if the system is homogeneous. The discussion of section 3.2 showed
that the dynamics of Eq. (6.7) corresponds to Lévy flights of particles on horizontal cuts through the
Dirac cone.
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6.3 Lévy flight interpretation

The scattering rates for different angular harmonic channels are determined by the matrix elements of
the collision operator: 〈

m
∣∣C∣∣m〉 ∝ τ−1

m .

(see section 5.2.2). A Fourier transformation of Eq. (6.6) gives〈
θ
∣∣C∣∣ θ′〉 ∝ 1

sin2
(
θ−θ′

2

) , (6.8)

where the index k of θk was dropped. Eq (6.8) shows that most collisions will be of forward scattering
type due to the divergence at θ = θ′, scattering events away from forward scattering are only weakly

suppressed by the power law ∼
(
θ − θ′

)−2
. Therefore large angle scattering events are relatively

probable. Taking up the discussion of section 3.1, where the Lévy flight was defined as a random walk
whose step size distribution decays as a power law, a random walk governed by the scattering behavior
(6.8) is expected to be a Lévy flight.
According to section 3.2, the step size distribution function is given by the solution of the fractional

Fokker-Planck equation (6.7). In a spatially homogeneous scenario, the drift term vanishes. Focussing
on states on the upper Dirac cone λ = +1, let the initial condition at t = 0 be ψ+

(
t = 0, θ

)
= δ

(
θ
)
,

ψ−
(
t = 0, θ

)
= 0. The solution in Fourier space is easily found: ψ+,m (t) = e−τ

−1
L |m|t. A Fourier

transform gives the solution in phase space. Inserting t = ∆t, where ∆t is the small time interval
during which a step of the random walk takes place, the step size distribution reads

ψ+,m

(
∆t
)

=
sinh

(
∆t/τL

)
cosh

(
∆t/τL

)
− cos

(
θ
) . (6.9)

This is a so-called wrapped Cauchy distribution. It determinines the random walk of a particle on a
horizontal cut through the Dirac cone. Like the matrix elements (6.8), it is characterized by the power
law decay of step sizes ∼ θ2. It is useful to compare Eq. (6.9) to the solution that one would have
obtained for ordinary diffusion. Here, the fractional dericative in Eq. (6.7) has to be replaced by the
second derivative ∂2/∂θ2. The solution reads ψλ,m (t) = δhΘ (t)

∑
m λ

meimθ−τ
−1
L m2t. The sum gives

an expression involving the Jacobi theta function, however the von Mises distribution ψGauss
λ

(
θ, t
)

=

δhΘ (t) ecos(θ)τL/∆t/
(

2πI0

(
τL/∆t

))
is a good approximation [149]. Clearly, large angle scattering is

much stronger suppressed in the Gaussian case. A random walk for the step size distribution (6.9)
is shown in Fig. 6.3 in comparison to a Gaussian random walk, which would correspond to normal
diffusion. Finally, it must be stressed, that the notion of an electronic random walk sustained by
electron-electron collisions is problematic, because electrons are indistiguishable particles. However, it
is appropriate on a semi-classical level, and provides a good illustration of the physics behind electron-
electron scattering in charge neutral graphene.

6.4 Decay of injected current beams and anomalous heating

An immediate consequence of the fact that graphene electrons perform Lévy flights through phase space,
is the superdiffusive decay of focused current beams and the unconventional heating of the system. The
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6 Lévy flights and superdiffusion in phase space

Figure 6.3: Comparison between Gaussian random walks (upper row) and Lévy flights (lower row)
on the Dirac cone. Due to their long tail step size distribution, Lévy flights cover the available
phase space more quickly. They dominate the dynamics in the slow hydrodynamic regime, where
they are confined to horizontal sections through the Dirac cone with typical energies on the scale
of kBT (right side).

injection of focused electron beams as a tool to investigate electron-electron scattering in hydrodynamic
electron systems was first applied to two dimensional electron gases in semiconductor heterostructures
[59]. In the following, the behavior of a focussed electron beam in graphene is examined.
The injection such a beam can be modelled by inserting the term

Skλ (t) = δ (t) f
(0)
k

(
1− f(0)

k

)∑
m

δhλme
imθ (6.10)

into Eq. (6.7). The beam consists of electrons and holes in a window ±kBT around the Dirac point,

which is ensured by the factor f(0)
k

(
1− f(0)

k

)
. The linearized Boltzmann equation can be used if∣∣δhλm∣∣� 1 holds for the coefficients in the expansion in angular harmonics. Choosing δhλm = δhλm,

the s = 1 collinear zero mode of Eq. (6.3) is excited, which corresponds to a charge current. Intuitively,
one can think of identical beams of electrons and holes flowing in opposite directions. Because electrons
and holes have opposite charge, the total current is twice the contribution of one species. The solution
of the Fokker-Planck equation is

ψλ
(
θ, t
)

= δhΘ (t)
sinh

(
t/τL

)
cosh

(
t/τL

)
− λ cos

(
θ
) , (6.11)

where Θ (t) is the step function. ψ+

(
θ, t
)
is shown on the left hand side of Fig. 6.4.

For t = 0, ψλ
(
θ, t
)
corresponds to two delta functions due to particle and hole flows in opposite

directions. In the following, it is sufficient to concentrate on the particle channel λ = +1. For short
times t� τL, the peak in the initial current direction decays as

ψ+

(
t, θ = 0

)
≈ δhτL

πt
, (6.12)
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6.4 Decay of injected current beams and anomalous heating

Figure 6.4: Left hand side: Post-injection dynamics of the distribution function calculated from
the fractional Fokker-Planck equation, Eq. 6.7, with the external perturbation of Eq.6.10. Right
hand side: Comparison of superdiffusive and diffusive dynamics at short times. The initial peak at
θ = 0 decays and broadens. At angles away from the peak, superdiffusion leads to a faster growth
of the distribution function. Inset: the initial peak at θ = 0 decays as 1/t for superdiffusion and
1/
√
t for ordinary diffusion. This behavior dominates the heating of the system, as is shown in the

main text.

while the distribution function grows linearly for all non-zero angles:

ψ+

(
t, θ 6= 0

)
≈ δh

4π sin2
(
θ/2
) t
τL
. (6.13)

The same behavior occurs for λ = −1 with the shift θ → θ + π. This is in contrast to what follows
from usual Fokker-Planck diffusion, where one has τ−1

m ∼ m2. The spreading due to Gaussian diffusion
occurs with ψ+

(
t, θ = 0

)
∝ t−1/2 and ψ+

(
t, θ 6= 0

)
∝ t2 (right hand side of Fig. 6.4). While in the

forward direction the beam decays slower for Levy flights than for normal diffusion, the growth at larger
angles is much faster, hence the name superdiffusion.
One observable manifestation of this superdiffusive charge motion is the heating of the system after

the injection. The heating rate can be calculated from the rate of entropy growth. Using the standard
expression for the entropy of a fermionic system [15] s = −kB

∑
λ

∫
dk
(
fkλ log fkλ +

(
1− fkλ

)
log
(
1− fkλ

))
one obtains for the entropy production rate

ṡ = 4kB
∑
λ

∫
k

log

(
1− fkλ
fkλ

)
∂fkλ
∂t

. (6.14)

Inserting the distribution function of Eq. (6.11) gives th

ṡ =
4 log 2

9ζ (3)

seq

τL

(
δh
)2

sinh2
(
t/τL

) , (6.15)

where seq = 4
9ζ(3)
π kB

(kBT)
2

~2v2 is the equilibrium entropy density [51]. This formula can be used to
estimate the heating rates after the injection of the current beam: q̇ = T ṡ. For the Lévy flight
process governing the electron behavior in graphene one finds q̇ ∝ 1/t2 for small t. For the Gaussian
process it is q̇ ∝ 1/t3/2. For small t, the heating rate of the Lévy process is larger, reflecting its
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6 Lévy flights and superdiffusion in phase space

Figure 6.5: Heating after the injection of a focussed current beam. The time dependent heat
density of the system is given by q (t) = Ts (t). The quantity δq (t) corresponds to the heat
produced by the injected beam.

superdiffusive nature. For t → ∞ the entropy approaches its equilibrium values s → seq, and thus

s (t) = seq

(
1−

(
δh
)2 4 log(2)

9ζ(3)

(
coth

(
t
τL

)
− 1

))
. As illustrated in Fig. 6.5 the heat density caused by

the injection is given by δq (t) = T
(
seq − s (t)

)
. The initial heating occurs according to the law

δq (t) ∝ Tseqδh
2 τL
t
. (6.16)

In order to stay within the regime of linear response, the condition t > δhτL must hold. This result is
a direct consequence of the superdiffusive behavior, in particular of the slow decay along the forward
direction (see Eq. (6.12)). In the case of ordinary diffusion follows δq (t) ∝ t−1/2 which is a faster
power-law (see Fig. 6.4). It is important to note, that the total amounts of heat released by the
superdiffusive and the diffusive processes is different. Adjusting δh such that the same amount of heat
is produced for Lévy and diffusive behavior, the initial heating of the Lévy flight is faster.
Finally, it should be said that there exist many other systems in which anomalous phase space

diffusion can be found. One example are electrons in a random magnetic fields, as they occur in
the description of composite fermions in the fractional quantum Hall regime [140]. The scattering
rates were predicted to behave as τ−1

m ∝ |m| and thus the system should show similar Lévy flight
behavior. Two dimensional Fermi liquids are another example. Here the scattering rates are given
by τ−1

m ∝
(
T 2/TF

)
log |m| for even m and τ−1

m ∝
(
T 4/T 3

F

)
m4 log |m| for odd m, in the regime

1 < |m| <
√
TF /T , where TF is the Fermi temperature, whereas for |m| > M it is τ−1

m ∝ T 2/TF . This
corresponds to an anomalous behavior in a broad regime of temperatures [57, 58].

6.5 Summary

The phase space evolution of many interacting gases and plasmas is governed by normal diffusive
behavior [64–68]. These systems can be described in terms of Fokker-Planck equations in phase space.
Graphene electrons at the charge neutrality point behave differently. In this chapter, starting from the
quantum Boltzmann equation (6.5), it was shown, that in the hydrodynamic regime the electron-hole
plasma of graphene undergoes Lévy flights on the Dirac cone [138]. This results in a superdiffusive
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dynamics, which can be captured by the fractional Fokker-Planck equation∂t + vkλ · ∇x − τ−1
L

(
∂2

∂θ2

)1/2
ψk,λ

(
x, t
)

= Skλ. (6.17)

here, ψk,λ is the non-equilibrium contribution to the kinetic distribution function, vkλ = λvk/k is the
group velocity of electrons

(
λ = −1

)
and holes

(
λ = +1

)
, θ is the polar angle of the momentum variable

k, Skλ represents forces acting on the system and τL is the characteristic time scale of the underlying
Lévy process. The fractional derivative is of the Riesz-Feller type [108, 148].
As in chapter 5, use has been made of the fact, that collinear electron-electron scattering is enhanced

by the large factor log
(
1/α

)
. Here, α is graphene’s fine structure constant, which is renormalized to

small values at low temperatures (see section 1.2). In the long time limit, only so-called collinear zero
modes (see Eq. 6.1) survive. These modes do not decay due to collinear processes. Correspondingly,
their decay is slower by the factor log

(
1/α

)
and governs the long term evolution of the system. The

phase space dynamics of the collinear zero mode associated with charge excitations (see Eq. 6.3) is
confined to the polar angle θ of the momentum variable k. The Lévy flight nature of this dynamics
is due to the non-analytic behavior of the scattering rates of collinear zero modes in different angular
harmonic channels m:

τ−1
m = τ−1

L |m| . (6.18)

The anomalous phase space dynamics has deep consequences for the relaxational behavior of charge
neutral graphene, for example on the decay of an injected focussed charge current beam. Here, the
evolution of an initial perturbation consisting of an electron beam and an oppositely directed hole beam
was calculated. The directional spreading of the current beam (see Eq. 6.11 and Fig. 6.4) was shown
to be faster than in ordinary diffusion. It was found, that the heating of the system after the injection
is characterized by laws that reflect the superdiffusive nature of the relaxation process. In particular,
the heating rate is determined by q̇ = 1/t2. This is in contrast to the much slower normal diffusive
heating q̇ ∝ 1/t3/2.

Figure 6.6: Lévy flight of a particle on a horizontal section through the Dirac cone, as described
by equation (6.17). Small angle scattering events are separated by large jumps. The step size
distribution governing the particle’s random walk is a long-tailed wrapped Cauchy distribution.
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A Appendix A

The boundary conditions of viscous
electron flow

A.1 Boundary condition for the kinetic equation

Falkovsky [62, 63] gave a microscopic derivation of the boundary conditions for the kinetic distribution
function at a rough surface. The resulting boundary conditions are similar to those of earlier phe-
nomenological approaches [61, 115], however, the effective parameters are expressed in terms of the
surface roughness. Consider a sample oriented in the x-direction with a disordered edge ξ (x) centered
around y = 0. Important information is contained in the edge autocorrelation function

ξ (x1) ξ (x2) = W (x1 − x2) .

The overline in ξ (x1) ξ (x2) indicates an average over disorder realizations. If the edge is uniform on
average, the autocorrelation will only depend on the distance between the two correlated points. For
the Fourier transformation then holds

ξ
(
k1

)
ξ
(
k2

)
= 2πδ

(
k1 + k2

)
W
(
k1

)
. (A.1)

As pointed out in the main text (section 4.1.1) the boundary condition for the wavefunctions of Dirac
electrons is

ψa
(
x, y = ξ (x)

)
= 0, (A.2)

where a is one of the two sublattice indices. Since the scattering at the boundary is elastic, the derived
boundary conditions will be diagonal in the energy ε. It is therefore usefull to introduce the projection
of the wave function ψa onto quasifree plane waves with a given energy ε:

ψa,ε (x) =
∑
λ

∫
d2k

(2π)2 δ
(
ε− ελ,k

)
ψk,λUa,λ

(
k
)
eik·r. (A.3)

Here, ελ,k = λv~k is the electron dispersion and Ua,λ
(
k
)
transforms the wavefunctions ψk,λ from the

band basis into the sublattice basis: ψk,a =
∑

λ ψk,λUa,λ
(
k
)
. Note, that in this appendix the notation

ψk,λ is used for the wavefunctions γk,λ of chapter 4. Assuming that the length scale on which the
wavefunction varies near the boundary is large compared to the typical disorder scale of the edge h,
i.e. the for the wavelength of electrons holds

λT � h,
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A The boundary conditions of viscous electron flow

one can expand the boundary condition (A.2) to first order in ξ around y = 0 giving

ψa
(
x, y = 0

)
+ ξ (x)

∂ψa
(
x, y
)

∂y

∣∣∣∣∣∣
y=0

= 0. (A.4)

Carrying out the integration over ky in equation (A.3), one has to differentiate between the two bands
with negative and positive energies λ = ±1:

ε > 0 :

ψa,ε (x) =
∑
λ

∫
d2k

(2π)
δ

(
ε− λv

√
k2
x + k2

y

)
ψk,λUa,λ

(
k
)
eik·r

=

∫
d2k

(2π)

v2
g

√
ε2

λ2v2
g

− k2
x/ε

−1
δ
ky −

√
ε2

v2
g

− k2
x

+ δ

ky +

√
ε2

v2
g

− k2
x




×ψk,+Ua,+
(
k
)
eikxx+ikyy

=

∫
dkx
(2π)

1∣∣∣vy (ε, kx)∣∣∣
[
ψ+

(
kx, ky

)
Ua,+

(
kx, ky

)
eiky(ε,kx)y

+e−iky(ε,kx)yψ+

(
kx,−ky

)
Ua,+

(
kx,−ky

)
eikxx

]
(A.5)

and
ε < 0 :

ψa,ε (x) =
∑
λ

∫
d2k

(2π)
δ

(
ε− λv

√
k2
x + k2

y

)
ψk,λUa,λ

(
k
)
eik·r

=

∫
d2k

(2π)

v2
g

√
ε2

λ2v2
g

− k2
x/ε

−1
δ
ky −

√
ε2

v2
g

− k2
x

+ δ

ky +

√
ε2

v2
g

− k2
x




×ψk,−Ua,−
(
k
)
eikxx+ikyy

=

∫
dkx
(2π)

1∣∣∣vy (ε, kx)∣∣∣
[
ψ−

(
kx, ky

)
Ua,−

(
kx, ky

)
eiky(ε,kx)y

+e−iky(ε,kx)yψ−

(
kx,−ky

)
Ua,−

(
kx,−ky

)
eikxx

]
. (A.6)

Remember, that ky = ky
(
kx, ε

)
is not an independent component. Inserting into the wavefunction

boundary condition

ψa=1,ε

(
x, y = 0

)
+ ξ (x)

∂ψa=1,ε

(
x, y
)

∂y

∣∣∣∣∣∣
y=0

= 0,
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one gets

0 =

∫
dkx
2π

1∣∣∣vy (ε, kx)∣∣∣
[
ψλ

(
kx, ky

)
Ua,λ

(
kx, ky

)
+ ψλ

(
kx,−ky

)
Ua,λ

(
kx,−ky

)]
eikxx

+

∫
dqx
2π

ξ
(
qx
)
eiqxx

∫
dkx
2π

iky
(
ε, kx

)∣∣∣vy (ε, kx)∣∣∣
×
[
ψλ

(
kx, ky

)
Ua,λ

(
kx, ky

)
− ψλ

(
kx,−ky

)
Ua,λ

(
kx,−ky

)]
eikxx.

Here, no summation over the indicex λ is impled. A Fourier transform
∫
dx e−ik

′
xx yields

0 = ψλ

(
k′x, k

′
y

)
Ua,λ

(
kx, ky

)
+ ψλ

(
k′x,−k′y

)
Ua,λ

(
kx,−ky

)
+

∣∣∣∣vy (ε, k′x)∣∣∣∣ ∫ dkx
2π

ξ
(
k′x − kx

) iky
(
ε, kx

)∣∣∣vy (ε, kx)∣∣∣
[
ψλ

(
kx, ky

)
Ua,λ

(
kx, ky

)
−ψλ

(
kx,−ky

)
Ua,λ

(
kx,−ky

)]

ψλ

(
k′x, k

′
y

)
= −ψλ

(
k′x,−k′y

) Ua,λ (k′x,−k′y)
Ua,λ

(
k′x, k

′
y

)

−i

∣∣∣∣vy (ε, k′x)∣∣∣∣
Ua,λ

(
k′x, k

′
y

) ∫ dkx
2π

ξ
(
k′x − kx

) ky
(
ε, kx

)∣∣∣vy (ε, kx)∣∣∣
[
ψλ

(
kx, ky

)
Ua,λ

(
kx, ky

)
(A.7)

−ψλ
(
kx,−ky

)
Ua,λ

(
kx,−ky

)]
. (A.8)

Four separate equations are obtained, since (A.4) devides into four independet parts for a = 1, 2 and
ε ≶ 0. Now, an expression for the wavefunction of the reflected electrons in terms of the wavefunction
of incident electrons can be derived. Incident electrons with λ = +1 carry momentum ky < 0, while
incident holes with λ = −1 carry momentum ky > 0. First, the case

λ = +1

will be considered. Starting with a = 1 one has:

ψ+

(
k′x, k

′
y

)
= −ψ+

(
k′x,−k′y

) εk′
k′x−ik′y
εk′

k′x+ik′y

−i
∣∣∣∣vy (ε, k′x)∣∣∣∣ 1

εk′
k′x+ik′y

∫
dkx
2π

ξ
(
k′x − kx

) ky
(
ε, kx

)∣∣∣vy (ε, kx)∣∣∣
×

[
ψ+

(
kx, ky

) εk
kx + iky

− ψ+

(
kx,−ky

) εk
kx − iky

]
.
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The above formula is an integral equation for ψ+

(
k′x, ky

(
ε, k′x

))
. Iterating it for ψ+

(
k′x, ky

(
ε, k′x

))
gives to second order in ξ

ψ+

(
k′x, k

′
y

)
= −ψ+

(
k′x,−k′y

) k′x + ik′y
k′x − ik′y

+ 2i

∣∣∣∣vy (ε, k′x)∣∣∣∣ (k′x + ik′y

)
×
∫
dkx
2π

ξ
(
k′x − kx

) ky
(
ε, kx

)∣∣∣vy (ε, kx)∣∣∣ψ+

(
kx,−ky

) 1

kx − iky

+2

∣∣∣∣vy (ε, k′x)∣∣∣∣ (k′x + ik′y

)
×
∫
dkx
2π

∣∣∣vy (ε, kx)∣∣∣ (kx + iky

)∫ dk′′x
2π

ξ
(
k′x − kx

)
ξ
(
kx − k′′x

)
×
ky
(
ε, kx

)∣∣∣vy (ε, kx)∣∣∣
ky

(
ε, k′′x

)
∣∣∣vy (ε, k′′x)∣∣∣ψ+

(
k′′x,−k′′y

) 1

kx + iky

1

k′′x − ik′′y
.

Abbreviating
∣∣∣∣vy (ε, k′x)∣∣∣∣ =

∣∣vy∣∣′, etc:
ψ+

(
k′x, k

′
y

)
= −ψ+

(
k′x,−k′y

) k′x + ik′y
k′x − ik′y

+2i
∣∣vy∣∣′ (k′x + ik′y

)∫ dkx
2π

ξ
(
k′x − kx

) ky
|vy|

ψ+

(
kx,−ky

) 1

kx − iky
+2
∣∣vy∣∣′ (k′x + ik′y

)
×
∫
dkx
2π

∫
dk′′x
2π

ξ
(
k′x − kx

)
ξ
(
kx − k′′x

)
ky

k′′y

|vy|′′
ψ+

(
k′′x,−k′′y

) 1

k′′x − ik′′y
.(A.9)

Factors of the form ky
(
ε, kx

)
/
∣∣vy∣∣ do not depend on momentum and can be taken outside the integrals:

ψ+

(
k′x, k

′
y

)
= −ψ+

(
k′x,−k′y

) k′x + ik′y
k′x − ik′y

+2ik′y

(
k′x + ik′y

)∫ dkx
2π

ξ
(
k′x − kx

)
ψ+

(
kx,−ky

) 1

kx − iky
+2k′y

(
k′x + ik′y

)
×
∫
dkx
2π

∫
dk′′x
2π

ξ
(
k′x − kx

)
ξ
(
kx − k′′x

)
ky
(
ε, kx

)
ψ+

(
k′′x,−k′′y

) 1

k′′x − ik′′y
.
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Finally,
∣∣∣∣ψ+

(
k′x, k

′
y

)∣∣∣∣2 is calculated to second order in ξ. Anticipating that upon taking the average

over disorder terms linear in ξ must vanish, they are dropped:∣∣∣∣ψ+

(
kx, ky

)∣∣∣∣2 =

∣∣∣∣ψ+

(
kx,−ky

)∣∣∣∣2
−2ky

(
kx − iky

)
ψ∗+

(
kx,−ky

)
×
∫
dk′x
2π

∫
dk′′x
2π

ξ∗
(
kx − k′x

)
ξ∗
(
k′x − k′′x

)
ky

(
ε, k′x

)
ψ+

(
k′′x,−k′′y

) 1

k′′x − ik′′y
−2ky

(
kx + iky

)
ψ+

(
kx,−ky

)
×
∫
dk′x
2π

∫
dk′′x
2π

ξ
(
kx − k′x

)
ξ
(
k′x − k′′x

)
ky

(
ε, k′x

)
ψ∗+

(
k′′x,−k′′y

) 1

k′′x + ik′′y

+4k2
y

(
k2
x + ik2

y

)
×
∫
dk′x
2π

∫
dk′′x
2π

ξ
(
kx − k′x

)
ξ∗
(
kx − k′′x

)
ψ+

(
k′x,−k′y

)
ψ∗+

(
k′′x,−k′′y

) 1

k′x − ik′y
1

k′′x + ik′′y
.

Averaging over disorder with the help of (A.1) and using ξ∗
(
k
)

= ξ
(
−k
)
results in∣∣∣∣ψ+

(
kx, ky

)∣∣∣∣2 =

∣∣∣∣ψ+

(
kx,−ky

)∣∣∣∣2
−2ky

(
kx − iky

)
ψ∗+

(
kx,−ky

)∫ dk′x
2π

W
(
kx − k′x

)
ky

(
ε, k′x

)
ψ+

(
kx,−ky

) 1

kx − iky

−2ky

(
kx + iky

)
ψ+

(
kx,−ky

)∫ dk′x
2π

W
(
kx − k′x

)
ky

(
ε, k′x

)
ψ∗+

(
kx,−ky

) 1

kx + iky

+4k2
y

(
k2
x + ik2

y

)∫ dk′x
2π

W
(
kx − k′x

)
ψ+

(
k′x,−k′y

)
ψ∗+

(
k′x,−k′y

) 1

k′x − ik′y
1

k′x + ik′y
,

which reduces to∣∣∣∣ψ+

(
kx, ky

)∣∣∣∣2 =

∣∣∣∣ψ+

(
kx,−ky

)∣∣∣∣2
−4ky

∣∣∣∣ψ+

(
kx,−ky

)∣∣∣∣2 ∫ dk′x
2π

W
(
kx − k′x

)
ky

(
ε, k′x

)
+4k2

y

∫
dk′x
2π

W
(
kx − k′x

) ∣∣∣∣ψ+

(
k′x,−k′y

)∣∣∣∣2 . (A.10)

The same relation for
∣∣∣∣ψ+

(
kx, ky

)∣∣∣∣2 follows, if the calculation is carried out for the other sublattice.

Since for negative energies,
λ = −,
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the reflected particles have momentum ky < 0, Eq. (A.7) is rewritten for ψλ
(
k′x,−k′y

)
:

ψλ

(
k′x,−k′y

)
= −ψλ

(
k′x, k

′
y

) ua,λ

(
k′x, k

′
y

)
ua,λ

(
k′x,−k′y

)

−i

∣∣∣∣vy (ε, k′x)∣∣∣∣
ua,λ

(
k′x,−k′y

) ∫ dkx
2π

ξ
(
k′x − kx

) ky
(
ε, kx

)∣∣∣vy (ε, kx)∣∣∣
×
[
ψλ

(
kx, ky

)
Ua,λ

(
kx, ky

)
− ψλ

(
kx,−ky

)
Ua,λ

(
kx,−ky

)]
.

Iterating in ψλ
(
k′x,−k′y

)
gives

ψ−

(
k′x,−k′y

)
= −ψ−

(
k′x, k

′
y

) Ua,λ

(
k′x, k

′
y

)
Ua,λ

(
k′x,−k′y

)

−2i

∣∣∣∣vy (ε, k′x)∣∣∣∣
ua,−

(
k′x,−k′y

) ∫ dkx
2π

ξ
(
k′x − kx

) ky
(
ε, kx

)∣∣∣vy (ε, kx)∣∣∣ψ−
(
kx, ky

)
Ua,−

(
kx, ky

)

+2

∣∣∣∣vy (ε, k′x)∣∣∣∣
ua,−

(
k′x,−k′y

) ∫ dkx
2π

∫
dk′′x
2π

×ξ
(
k′x − kx

)
ξ
(
kx − k′′x

)
ky
(
ε, kx

) ky (ε, k′′x)∣∣∣vy (ε, k′′x)∣∣∣ψ−
(
k′′x, k

′′
y

)
Ua,−

(
k′′x, k

′′
y

)
,

or explicitly for a = 1:

ψ−

(
k′x,−k′y

)
= −ψ−

(
k′x, k

′
y

) k′x − ik′y
k′x + ik′y

−2i

∣∣∣∣vy (ε, k′x)∣∣∣∣ (k′x − ik′y)∫ dkx
2π

ξ
(
k′x − kx

) ky
(
ε, kx

)∣∣∣vy (ε, kx)∣∣∣ψ−
(
kx, ky

) 1

kx + iky

+2

∣∣∣∣vy (ε, k′x)∣∣∣∣ (k′x − ik′y)∫ dkx
2π

∫
dk′′x
2π

×ξ
(
k′x − kx

)
ξ
(
kx − k′′x

)
ky
(
ε, kx

) ky (ε, k′′x)∣∣∣vy (ε, k′′x)∣∣∣ψ−
(
k′′x, k

′′
y

) 1

k′′x + ik′′y
.

Comparting to the analogous expression for positive energies (A.9), one sees that the modulus squared
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of ψ−
(
k′x,−k′y

)
is given by the expression (A.10), with ky and −ky interchanged:

∣∣∣∣ψ− (kx,−ky)∣∣∣∣2 =

∣∣∣∣ψ− (kx, ky)∣∣∣∣2
−4ky

∣∣∣∣ψ− (kx, ky)∣∣∣∣2 ∫ dk′x
2π

W
(
kx − k′x

)
ky

(
ε, k′x

)
+4k2

y

∫
dk′x
2π

W
(
kx − k′x

) ∣∣∣∣ψ− (k′x, k′y)∣∣∣∣2 . (A.11)

Bearing in mind that the calculated probability density
∣∣∣∣ψλ,ε (kx, ky (ε, kx))∣∣∣∣2is a function of ε and kx

as is clear from (A.5), (A.6), one needs to change variables to find the Boltzmann distribution function
fk,λ. The distribution function is obtained by equating the probabilities of each phase space element:

dkx
(2π)

dky
(2π)

fk,λ = dε
dkx
2π

1

2πvy
kx,ky(kx,ε),λ

fkx,ky(kx,ε),λ = dε
dkx
2π

1

2πvy
kx,ky(kx,ε),λ

∣∣∣∣ψλ,ε (kx, ky (ε, kx))∣∣∣∣2 .
Thus, one can identify (again in shorthand notation)

fk,λ =
(

2πvykx,λ

)−1
∣∣∣∣ψλ,ε (kx, ky)∣∣∣∣2 .

Eqs. (A.10), (A.11) then take the form

f+

(
kx,
∣∣∣ky∣∣∣) = f+

(
kx,−

∣∣∣ky∣∣∣)
−4f+

(
kx,−

∣∣∣ky∣∣∣) ∣∣∣ky∣∣∣ ∫ dk′x
2π

∣∣∣k′y∣∣∣W (
kx − k′x

)
+4
∣∣∣ky∣∣∣ ∫ dk′x

2π

∣∣∣k′y∣∣∣W (
kx − k′x

)
f+

(
k′x,−

∣∣∣k′y∣∣∣) ,
f−

(
kx,−

∣∣∣ky∣∣∣) = f−

(
kx,
∣∣∣ky∣∣∣)

−4f−

(
kx,
∣∣∣ky∣∣∣) ∣∣∣ky∣∣∣ ∫ dk′x

2π

∣∣∣k′y∣∣∣W (
kx − k′x

)
+4
∣∣∣ky∣∣∣ ∫ dk′x

2π

∣∣∣k′y∣∣∣W (
kx − k′x

)
f−

(
k′x,
∣∣∣k′y∣∣∣) ,

It is important to remember, that the function ky
(
ε, kx

)
=
√
ε2/v2

g − k2
x is always positive.
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A.2 Flow around a circular obstacle: Solution on an infinite domain

The general solution in polar coordinates (r, θ) to Eq. (4.54) can be given in terms of modified Bessel
functions of the first and second kind, Im and Km:

qr = −U
∞∑
n=1

An
cos
(
nθ
)

rn+1
− 1

4
U
∞∑
m=0

Bm

 2

kr
+
∞∑
n=1

Φm,n

(
kr
)

cos
(
nθ
)

qθ = −U
∞∑
n=1

An
sin
(
nθ
)

rn+1
− 1

4
U
∞∑
m=0

∞∑
n=1

BmΨm,n

(
kr
)

sin
(
nθ
)
, (A.12)

Φm,n

(
kr
)

=
(
Km+1 +Km−1

) (
Im−n + Im+n

)
+Km

(
Im−n−1 + Im−n+1 + Im+n−1 + Im+n+1

)
,

Ψm,n

(
kr
)

=
(
Km+1 −Km−1

) (
Im−n − Im+n

)
+Km

(
Im−n−1 − Im−n+1 − Im+n−1 + Im+n+1

)
,(A.13)

with k = U/ (2ν), where ν is the kinematic viscosity ν =
(
v2/w̃0

)
η [127]. The Bessel functions in the

above equations have the argument
(
kr
)
. The pressure is given by

p = U
w̃0

v2

∂φ

∂x
, (A.14)

with

φ = UA0 log (r)− U
∞∑
n=1

An
n

cos
(
nθ
)

rn
. (A.15)

For details of the calculation, we refer to Ref. [127]. The Reynolds number of the problem is

R =
Ud

ν
= 4ka. (A.16)

In our case, the general boundary condition of Eq. (4.4) reads

qr = −U cos
(
θ
)

qθ = U sin
(
θ
)

+ ζ
∂qθ
∂r

. (A.17)

Inserting the general solution (A.12) into the boundary conditions (A.17) we derive an infinite set
of coupled equations for An, Bm. If the set is truncated at some mmax and nmax = mmax + 1 the
coefficients An≤nmax , Bm≤mmax are uniquely determined. The higher the Reynolds number, the larger
m, n have to be considered. Here, we restrict ourselves to m = 0. While it might be important to
include terms with higher m, n to describe the behavior near the obstacle, the pressure far away is
gouverned by the m = 0 term, which decays slowest (see Eqs. (A.14) and (A.15)). For completeness,
we give the coefficients A0, A1 and B0:

A0 = −B0

2k
(A.18)

A1 = a2 − 1

2
a2B0

(
(I0(ak) + I2(ak)K0(ak) + 2I1(ak)K1(ak)

)
(A.19)

B0 =
2(a+ ζ)

(a+ ζ)I0(ak)K0(ak) + (a+ 3ζ)I1(ak)K1(ak)
. (A.20)
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A.3 Pressure and temperature gradients in charge neutral graphene

In this appendix, it is shown how pressure gradients can be related to temperature gradients in graphene
at charge neutrality. From the Gibbs-Duhem relation follows, that the pressure of a system is equal to
minus the grand potential density

Ω

V
= −p.

The standard expression for Ω/V can be integrated by parts to give

Ω

V
= −β−1

∑
λ

∫
d2k

(2π)2 ln

(
1 + e

−β
(
ελ,k−µ

))

= β−1
∑
λ

∫
d2k

(2π)2ki
∂

∂ki
ln

(
1 + e

−β
(
ελ,k−µ

))

− 1

4π
Λ2
(
vΛ− µ

)
.

An upper cut-off Λ for the momentum integration over the λ = −1 band was introduced. Therefore it
is

p =
∑
λ

∫
d2k

(2π)2

λviki

1 + e
β
(
ελ,k−µ

)
+

1

4π
Λ2
(
vΛ− µ

)
.

The first right hand side term is the expression for pressure pkin as it enters the kinetic theory. The
second term is the Fermi pressure pΛ of the occupied lower Dirac cone:

p = pkin + pΛ.

The pressure gradient can be written

∇pkin =
∂pkin
∂T
∇T +

∂pint
∂µ
∇µ.

Since pΛ does not depend on temperature, the relation

s = −
∂
(
Ω/V

)
∂T

=
∂pkin
∂T

holds, where s is the entropy density. On the other hand, at charge neutrality (µ = 0) one has

∂pkin
∂µ

∣∣∣∣∣
µ=0

= −
∑
λ

∫
d2k

(2π)2

(
λviki

) ∂

∂ελ,k

1

eβελ,k + 1

=
∑
λ

∫
d2k

(2π)2

1

eβελ,k + 1
− 1

4π
Λ2,

where again the last term stems from the integration limit λ = −1, k →∞. Keeping in mind that∑
λ

∫
d2k

(2π)2

1

eβελ,k + 1
=

∫ 2π

0

dϕ

(2π)2

∫ Λ

kdk 1,

107



A The boundary conditions of viscous electron flow

one finds
∂pkin
∂µ

∣∣∣∣∣
µ=0

= 0,

and therefore
∇pkin = s∇T.

For simplicity, in the main text pkin is referred to as p.
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B Appendix B

Non-local hydrodynamic transport and
collective excitations in Dirac fluids

The calculations of this Appendix are adopted from Ref. [138].

B.1 Collision operator

Transformed to the band basis, the interaction part of the Hamilton operator (5.1) reads

Hint =
1

2

∫
k,k′,q

∑
αβ

Tλµµ′λ′
(
k,k′,q

)
γ†λ′
(
k + q, t

)
γ†µ

(
k′ − q, t

)
γµ′
(
k′, t

)
γλ
(
k,t
)

(B.1)

where the matrix elements Tλµµ′λ′
(
k,k′,q

)
Tλµµ′λ′

(
k,k′,q

)
= V

(
q
) (
Uk+qU

−1
k

)
λ′λ

(
Uk′−qU

−1
k′

)
µµ′

. (B.2)

U is the usual transformation from sublattice space to the band space (see Eq. 5.4). For the quan-
tum Boltzmann equation. the self energies Σ≷

λ

(
k,ω
)
and the Green’s functions g≷λ′

(
X, T ;k

)
are of

interest (the small g is used for the Green’s function transformed to the band basis g≷
(
X, T ;k, ω

)
=

UkG
≷
(
X, T ;k, ω

)
U †k). The off diagonal elements of greens functions in band space can be neglected if

the frequencies of interest are smaller than the energies of thermally excited particles: ω � kBT (see
main text). In the following, only the weak space and time dependencies induced by external forces and
represented by the center of mass coordinates will be of interest. For simplicity, the notation will be
changed: X→ x, T → t. The Green’s functions g≷λ′

(
x, t;k

)
can be related to the distribution function:

g>λ
(
x,t,k

)
= −i2πδ

(
ω − ελ

(
k
)
− Upot (x)

)(
1− fλ,k

(
x, t
))

g<λ
(
x,t,k

)
= i2πδ

(
ω − ελ

(
k
)
− Upot (x)

)
fλ,k

(
x, t
)

(B.3)
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To second order in perturbation theory, for the self-energies

Σ≷
λ

(
k,ω
)

= N
∑
µµ′λ′

∫
d2qd2k′dω1dω2

(2π)6

∣∣∣∣Tλµµ′λ′ (k,k′,q)∣∣∣∣2
× g≷λ′

(
k + q,ω1

)
g≷µ

(
k′ − q,ω2

)
g≶µ′
(
k′,ω1 + ω2 − ω

)
−

∑
µµ′λ′

∫
d2qd2k′

(2π)4

∫
dω1dω2

(2π)2 Tλλ′µ′µ

(
k,k′,k′ − q− k

)
Tλµµ′λ′

(
k,k′,q

)∗
× g≷λ′

(
k + q,ω1

)
g≷µ

(
k′ − q,ω2

)
g≶µ′
(
k′,ω1 + ω2 − ω

)
(B.4)

holds. N = 4 accounts for the spin-valley degeneracy.
The collision operator, as it appears on the right hand side of Eq. (2.32), can now be determined

from the self energies Σ< and Σ>. The delta function δ
(
ω − ελ

(
k
)
− Upot (x)

)
sets the left hand side

of Eq. (2.32) to zero and therefore cancels out. The collision operator can then be written in terms of
the distribution function fλ

(
k
)
:

Cλ
(
k
)

= −iΣ<
λ

(
k, ελ

(
k
))(

1− fλ
(
k
))
− iΣ>

λ

(
k, ελ

(
k
))
fλ
(
k
)
. (B.5)

Inserting Eqs. (B.3) into the self energies, parametrizing the deviations of fλ
(
k
)
from the equilibrium

distribution function as shown in Eq. (5.6), and linearizing in ψkλ

(
x, t
)
leads to the collision operator

of Eq. (5.10). The matrix elements γ(1,2)
k,k′,q of Eq. (5.10) are given by:

γ1

(
k,k′,q

)
=

(
N − 1

) ∣∣∣∣TA (k,k′,q)∣∣∣∣2 +
1

2

∣∣∣∣TA (k,k′,k′ − q− k
)
− TA

(
k,k′,q

)∣∣∣∣2
−
∣∣∣∣TA (k,k′,k′ − q− k

)∣∣∣∣2
γ2

(
k,k′,q

)
=

(
N − 1

) ∣∣∣∣TB (k,k′,k′ − k− q
)∣∣∣∣2 +

(
N − 1

) ∣∣∣∣TA (k,k′,q)∣∣∣∣2
+

∣∣∣∣TA (k,k′,q)− TB (k,k′,k′ − q−k
)∣∣∣∣2 , (B.6)

with

TA

(
k,k′,q

)
= T++++

(
k,k′,q

)
= T−−−−

(
k,k′,q

)
= T+−−+

(
k,k′,q

)
= T−++−

(
k,k′,q

)
=

V
(
q
)

4

(
1 +

(
K +Q

)
K∗∣∣k + q
∣∣ k

)1 +

(
K ′ −Q

)
K ′∗∣∣k′−q∣∣ k′
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and

TB

(
k,k′,q

)
= T++−−

(
k,k′,q

)
= T−−++

(
k,k′,q

)
=

V
(
q
)

4

(
1−

(
K +Q

)
K∗∣∣k + q
∣∣ k

)1−

(
K ′ −Q

)
K ′∗∣∣k′−q∣∣ k′

 (B.7)

Upper-case letters like K = kx + iky etc. combine the two components of the momentum vector onto
a complex variable.
Since the quantum Boltzmann equation only accounts for the diagonal in λ components of the

distribution function, the currents also have to be decomposed into contributions that involve particle-
hole pair creation

(
jinter

)
and those who do not

(
jintra

)
. Here, the identity

UkσU
−1
k =

k

k
σz −

k× ez
k

σy (B.8)

is usefull. The charge current

jc = ev

∫
k
ψ†
(
k
)
σψ
(
k
)

(B.9)

can be written as
jc = jc,intra + jc,inter, (B.10)

where the two contributions are given by

jc,intra = ev

∫
k

∑
λ=±

λk

k
γ†k,λγk,λ

jc,inter = iev

∫
k

k× ez
k

(
γ†k,+γk,− − γ

†
k,−γk,+

)
. (B.11)

The energy current jε and the momentum current tensor τxy can be decomposed in a similar manner.
This leads to the expressions (5.31) and (5.32) of the main text and the expression that is used for
τxy in Sec. 5.2.3. As discussed above, in the hydrodynamic regime, it is legitimate to focus on the
intra-band contributions, which dominate the transport behavior of the system.

B.2 Collinear scattering and collinear zero modes

Here, the logarithmic divergence of the collision operator for collinear processes is demonstrated fol-
lowing Ref. [49]. The essential mathematics behind the divergence is contained in phase space density
available for two particle collisions. The phase space is restricted by the delta function ensuring energy
conservation: δ

(
k + k1 −

∣∣k + q
∣∣− ∣∣k1 − q

∣∣). This can be seen from power counting in Eq. (5.10)
using Eqs. (B.6), (B.7).
Choosing k =

(
k, 0
)
with k > 0, and writing k1 =

(
k1, k⊥

)
, q =

(
q, q⊥

)
, collinear scattering occurs

when k1 > 0, k + q > 0, k1 − q > 0 and q⊥ ≈ 0, k⊥ ≈ 0. For small q⊥, k⊥ the argument of the delta
function can be approximated as

k + k1 −
∣∣k + q

∣∣− ∣∣k1 − q
∣∣ ≈ k2

⊥
2k1
−

q2
⊥

2
(
k + q

) − (k⊥ − q⊥)2
2
(
k1 − q

) . (B.12)
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The right hand side of this equation is a polynomial in q⊥, and can be written in terms of linear factors
as

k2
⊥

2k1
−

q2
⊥

2
(
k + q

) − (k⊥ − q⊥)2
2
(
k1 − q

) = − k1 + k

2
(
k + q

) (
k1 − q

) (q⊥ − ζ1k⊥
) (
q⊥ − ζ2k⊥

)
.

It is then easy to see by performing the q⊥ integration that∫
dk⊥dq⊥δ

(
− k1 + k

2
(
k + q

) (
k1 − q

) (q⊥ − ζ1k⊥
) (
q⊥ − ζ2k⊥

))
∝
∫
dk⊥
k⊥

.

This behavior leads to a logarithmic divergence. The divergence is however cut off by the screening of
the Coulomb potential [144]

V
(∣∣q∣∣)→ V

(∣∣q∣∣+ qTF

)
,

where qTF is the Thomas Fermi screening length. In the case of charge neutral graphene qFT = αkBT/v.
If the screening is included, the integrad of (5.10) vanishes in the infrared. Thus, the contribution of
collinear processes to the scattering rates is enhanced by the large factor

log
(
1/α

)
.

It was demonstrated in sec. 5.1.2 of the main text, that relaxation processes in the hydrodynamic
regime are dominated by collinear zero modes. As demonstrated above, these modes describe scattering
events in which all particle velocities show in the same direction. Examining the delta function respon-
sible for energy conservation δ

(
k + k1 −

∣∣k + q
∣∣− ∣∣k1 − q

∣∣), it is easy to see that, if all momenta are
parallel to each other, energy is only conserved, if the above conditions k > 0, k1 > 0, k + q > 0,
k1 − q > 0 apply (except for unimportant isolated points in phase space). The exchange momentum q,
however, can be positive or negative. To find those ψkλ that correspond to collinear zero modes, two
terms in the collision operator Eq. (5.10) have to be considered:

A
(1)
k,k1,q,λ

= ψk+qλ + ψk1−qλ − ψk1λ − ψkλ

A
(2)
k,k1,q,λ

= ψk+qλ − ψ−k1+qλ̄ + ψ−k1λ̄
− ψkλ. (B.13)

Using the parametrization
ψk,λ = aλ,m

(
k
)
eimθk (B.14)

yields

A
(1)
k,k′,q,λ =

(
aλ,m

(
k + q

)
+ aλ,m

(
k1 − q

)
− aλ,m

(
k1

)
− aλ,m

(
k
))
eimθk

A
(2)
k,k′,q,λ =

(
aλ,m

(
k + q

)
− (−1)m aλ̄,m

(
k1 − q

)
+ (−1)m aλ̄,m

(
k1

)
− aλ,m

(
k
))
eimθk . (B.15)

For collinear zero modes

A
(1)
k,k′,q,λ = 0

A
(2)
k,k′,q,λ = 0

has to hold. A(1)
k,k′,q,λ is set to zero by aλ,m

(
k
)

=
{

1, λ, βv~k, λβv~k
}
. A(2)

k,k′,q,λ is more restrictive.
For even m its zero modes are given by aλ,m

(
k
)

=
{

1, λ, λβv~k
}
, for odd m the zero modes are

aλ,m
(
k
)

=
{

1, λ, βv~k
}
. Summing up the collinear zero modes are given by

aλ,m = λm
{

1, λ, λβv~k
}
eimθk .
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B.3 Matrix elements of the collision operator

The values of some matrix elements are shown in Table B.1. For m ≥ 2 the values can be approximated
by 〈

χ
(m,s=1)
k,λ

∣∣C∣∣χ(m,s=1)
k,λ

〉
= 2.574 · |m| − 3.456〈

χ
(m,s=2)
k,λ

∣∣C∣∣χ(m,s=2)
k,λ

〉
= 1.825 · |m| − 2.741〈

χ
(m,s=3)
k,λ

∣∣C∣∣χ(m,s=3)
k,λ

〉
= 5.184 · |m| − 11.37〈

χ
(m,s=2)
k,λ

∣∣C∣∣χ(m,s=3)
k,λ

〉
= 2.042 · |m| − 4.398.

(B.16)

All values are given in units of 1
v2β3~3 .

B.4 Decomposition of the viscosity tensor into longitudinal and
transverse parts

Consider a system in which a preference direction is introduced by the wavevector q. It is useful to
define the orthogonal tensor basis

e
(1)
αβ =

qαqβ
q2

e
(2)
αβ = δαβ −

qαqβ
q2

e
(3)
αβ =

1√
2

(
qαpβ + pαqβ

)
/
(
pq
)
, (B.17)

which is normalized according according to∑
αβ

e
(i)
αβ e

(j)
αβ = δij .

Here it is
pα = qγεγα.

In this basis, the symmetric shear force tensor X0,αβ can be written

X0,αβ = X(1)e
(1)
αβ +X(2)e

(2)
αβ +X(3)e

(3)
αβ . (B.18)

The same holds for the momentum current (stress) tensor

ταβ = τ(1)e
(1)
αβ + τ(2)e

(2)
αβ + τ(3)e

(3)
αβ . (B.19)

Since the system is fully isotropic, except for the preference direction set by q, the response of the system
to different components of X0,αβ can only be distinct as far as these components relate differently to
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m s s′
〈
χ

(m,s)
k,λ

∣∣C∣∣χ(m,s′)
k,λ

〉
0 1 1 0
0 1 2 0
0 1 3 0
0 2 2 0
0 2 3 0
0 3 3 0
1 1 1 0.804
1 1 2 0
1 1 3 0
1 2 2 0.463
1 2 3 0
1 3 3 0
2 1 1 2.617
2 1 2 0
2 1 3 0
2 2 2 1.745
2 2 3 1.243
2 3 3 3.341
3 1 1 4.728
3 1 2 0
3 1 3 0
3 2 2 3.167
3 2 3 2.573
3 3 3 6.647
4 1 1 6.988
4 1 2 0
4 1 3 0
4 2 2 4.722
4 2 3 4.122
4 3 3 10.456
5 1 1 9.345
5 1 2 0
5 1 3 0
5 2 2 6.351
5 2 3 5.800
5 3 3 14.610

Table B.1: Matrix elements of the collision operator (5.10) with respect to the collinear zero modes

χ
(m,s)
k,λ = λmeimθ

{
1, λ, λβv~k

}
. The index m labels the angular harmonic and s one of the modes

in curved brackets.

114



B.4 Decomposition of the viscosity tensor into longitudinal and transverse parts

the direction of q. Eqs (B.18) and (B.19) are decompositions of the shear force and momentum current
tensors into such components. The fourth rank viscosity tensor ηαβγδ is defined through the constitutive
relation

ταβ = ηαβγδX0,γδ.

In general, such a tensor connecting the quantities ταβ and X0,αβ as given by Eqs. (B.18), (B.19) can

be written as ηαβγδ =
∑

ij e
(i)
αβ e

(j)
γδ η

(ij). However it follows from an Onsager reciprocity relation that
ηαβγδ has to be symmetric with respect to interchanging the first and last pairs of indices:

η(αβ)(γδ) = η(γδ)(αβ).

This condition further restricts the form of ηαβγδ to

ηαβγδ =
∑
i

e
(i)
αβ e

(i)
γδ η

(i). (B.20)

Calculating the scalars η(i) using the quantum Boltzmann equation one finds η(1) = η(2) 6= η(3). For
reasons explained in the main text, η(1) = η(2) = η⊥ is called the transverse and η(3) = η‖ the londitu-
dinal viscosity. In the sence that ηαβγδ is spanned by projection operators onto the tensorial subspaces
which span the force and current tensors and are given in Eqs. (B.17), the decomposition (B.20) is
completely analogous to the decomposition of a conductivity tensor into transverse and longitudinal
parts (see Eq. (5.45)).
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C Appendix C

Green’s function for the quantum
Boltzmann equation

Here, a Green’s function for the charge sector of the quantum Boltzmann equation of chapters 6
and 5 will be derived. In the absence the Boltzmann equation for the s = 1 collinear zero mode

χ
(m,s=1)
k,λ = λmeimθ (see Eq. 5.22) reads

∑
m′

[(
−iω + τ−1

m

)
δm,m′ +

i

2
vqe−iϑδm,m′+1 +

i

2
vqeiϑδm,m′−1

]
am′

(
x, t
)

= 0. (C.1)

The scattering rates τ−1
m are those of Eq. (C.2):

τ−1
m = τ−1

L |m| (C.2)

with
τ−1
L = κτ−1

c,1 (C.3)

where κ = 3.2 and τ1,c = 0.804 log 2
π

~
kBT

(see Eq. (5.35)). Eq. (C.1) can be written as a recurrence
relation for the sequence am:

am+1 =
2ie−iϑq

vq

(
iω − τ−1

m

)
am − e−2iϑqam−1. (C.4)

This recurrence relation has the form

am+1 =
(
α′m+ β′

)
am − eiδam−1, (C.5)

with α′ = −2ie−iϑq
vq τ−1

L , β′ = −2e−iϑq
vq ω and δ = −2ϑq, where ϑq is the polar angle of q. The solutions

for m > 0 are

am = c · e
i δ
2

(
m+ β′

α′

)
I
m+ β′

α′

(
−2eiδ/2

α′

)
(C.6)

cm = c · e
i δ
2

(
m+ β′

α′

)
K
m+ β′

α′

(
2eiδ/2

α′

)
(C.7)
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Iν and Kν are modified Bessel functions of the first and second kind. The solutions for m < 0 are
obtained by making the replacements m→ −m, ϑq → −ϑq.
The Green’s function gm′,m′′ is defined as the solution to Eq. (C.1) for a point source. In real space

and time coordinates, the equation for gm′,m′′ reads

∑
m′

(∂t + τ−1
m

)
δm,m′ +

1

2
v∇ ·

[ 1
−i

]
δm,m′+1 +

[
1
i

]
δm,m′−1


 gm′,m′′ (x, t) = δ (x) δ (t) δm,m′′ .

(C.8)
Performing a Fourier transform and rewriting it in terms of the coefficient α′, the equation becomes
(compare (C.5)): (

α′ |m|+ β′
)
gm,m′′ − eiδgm−1,m′′ − gm+1,m′′ = α′τLδm,m′′ . (C.9)

To find gm,m′′
(
x, t
)
it is convenient to choose specific indices m′′ = m1. Assuming that m1 ≥ 2, one

has

gm,m1 =


s · am m > m1

u · am + w · cm 0 ≤ m ≤ m1

t · a−m
(
−δ
)

m < 0.

(C.10)

gm,m1 must have this form, since the solution cm is divergent for m → ±∞. The
(
−δ
)
is a reminder,

that for negative m, the replacement ϑq → −ϑq has to be made. The coefficients s, u, w and t can be
found by inserting the ansatz (C.10) into Eq. (C.9). Then, four equations are obtained for m = m1 +1,
m = m1, m = 0, m = −1, respectively. For example, the equation for m = m1 reads:(

α′m+ β′
)

(u · am + w · cm)− eiδ
(
u · am−1 + w · cm−1

)
− s · am+1 = α′τL

u · am+1 + w · cm+1 − s · am+1 = α′τL.

In the last line the recurrence (C.5) was used. The full set of equations reads

−sam1 + uam1 + wcm1 = 0 (C.11)
sam1+1 − uam1+1 − wcm1+1 = α′τL (C.12)
ua1 + wc1 − ta−1

(
ϑ→ −ϑ

)
= 0 (C.13)

ua0 + wc0 − ta0

(
ϑ→ −ϑ

)
= 0. (C.14)

The solution is

u = −α′τL
am1

(
c1a0

(
−δ
)
− c1a−1

(
−δ
))(

a1a0

(
−δ
)
− a0a−1

(
−δ
)) (

am1+1cm1 − am1cm1+1

) (C.15)

w = α′τL
am1

am1+1cm1 − am1cm1+1
(C.16)

s = −α′τL

(
cm1

(
a0a−1

(
−δ
)
− a1a0

(
−δ
))

+ am1

(
c1a0

(
−δ
)
− c0a−1

(
−δ
)))

(
a1a0

(
−δ
)
− a0a−1

(
−δ
)) (

am1+1cm1 − am1cm1+1

) (C.17)

t = −α′τL
am1 (a1c0 − a0c1)(

a1a0

(
−δ
)
− a0a−1

(
−δ
)) (

am1cm1+1 − am1+1cm1

) . (C.18)
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The solution for m1 ≤ 2, the solution is “mirrored” on m = 0:

gm,m1 =


s · a−m

(
−δ
)

m < m1

u · a−m
(
−δ
)

+ w · c−m
(
−δ
)

0 ≥ m ≥ m1

t · am m > 0.

(C.19)

Furthermore, the replacement δ → −δ must be made.
The cases m1 = ±1 and m1 = 0 have to be treated separately. For m1 = 0 and m1 = −1, one can

chose

gm,m1 =

s · am m ≥ 0

t · a−m
(
−δ
)

m < 0.
(C.20)

For m1 = 0, Eq. (C.9) then gives:

eiδt · a1

(
−δ
)
− eiδs · a−1

(
+δ
)

= α′τL

t · a0

(
−δ
)
− s · a0

(
+δ
)

= 0.

The solution is

s =
α′τLe

−iδa0

(
−δ
)

a0

(
+δ
)
a1

(
−δ
)
− a0

(
−δ
)
a−1

(
+δ
)

t = s
a0

(
+δ
)

a0

(
−δ
)

For m1 = −1, one has

eiδt · a1

(
−δ
)
− eiδs · a−1

(
+δ
)

= 0

t · a0

(
−δ
)
− s · a0

(
+δ
)

= α′
(
−δ
)
τL.

These equations are solved by

s =
α′
(
−δ
)
τLa1

(
−δ
)

a−1

(
+δ
)
· a0

(
−δ
)
− a0

(
+δ
)
a1

(
−δ
)

t = s
a−1

(
+δ
)

a1

(
−δ
)

Finally, for m1 = 1 the ansatz

gm,m1 =

s · am m > 0

t · a−m
(
−δ
)

m ≤ 0
(C.21)

must be chosen. The equations for s and t then are

eiδs · a0

(
+δ
)
− eiδt · a0

(
−δ
)

= α′τL

t · a−1

(
−δ
)
− s · a1

(
+δ
)

= 0,
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C Green’s function for the quantum Boltzmann equation

which is solved by

s =
α′τLe

−iδa−1

(
−δ
)

a0

(
+δ
)
a−1

(
−δ
)
− a1

(
+δ
)
· a0

(
−δ
)

t = s
a1

(
+δ
)

a−1

(
−δ
) .

Thus, all components of gm′,m′′ are known.
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