Synthetic Methods

Cornforth-Evans Transition States in Stereocontrolled Allylborations of Epoxy Aldehydes

Robert R. A. Freund, ${ }^{[a]}$ Matthias van den Borg, ${ }^{[b]}$ Daniel Gaissmaier, ${ }^{[b, c, d]}$ Robin Schlosser, ${ }^{[a]}$ Timo Jacob, ${ }^{[b, c, d]}$ and Hans-Dieter Arndt ${ }^{*[a]}$
Dedicated to the memory of Professor Dr. Kilian Muñiz.

Abstract

Allylboration reactions rank among the most reliable tools in organic synthesis. Herein, we report a general synthesis of trifunctionalized allylboronates and systematic investigations of their stereocontrolled transformations with substituted aldehyde substrates, in order to efficiently access diverse, highly substituted target substrates. A peculiar transition in stereocontrol was observed from the polar FelkinAnh (PFA) to the Cornforth-Evans (CE) model for alkoxy- and epoxy-substituted aldehydes. CE-type transition states were

uniformly identified as minima in advanced, DFT-based computational studies of allylboration reactions of epoxy aldehydes, conforming well to the experimental data, and highlighting the underestimated relevance of this model. Furthermore, a mechanism-based rationale for the substitution pattern of the epoxide was delineated that ensures high levels of stereocontrol and renders α, β-epoxy aldehydes generally applicable substrates for target synthesis.

Introduction

Complex natural products frequently display contiguous stereogenic substitution which contributes polarity, induces specific conformations, and allows three-dimensional branching (Figure 1). While specific biosynthesis is realized by enzymes, ${ }^{[1]}$ many of these motifs are still a considerable challenge for synthesis. Prominently occurring chiral motifs in natural products are polyhydroxylated 1,2,3,4-substituted alk(en)yl carbon
[a] R. R. A. Freund, R. Schlosser, Prof. Dr. H.-D. Arndt
Institut für Organische Chemie und Makromolekulare Chemie
Friedrich-Schiller-Universität Jena
Humboldtstr. 10, 07743 Jena (Germany)
E-mail: hd.arndt@uni-jena.de
[b] M. van den Borg, D. Gaissmaier, Prof. Dr. T. Jacob
Institut für Elektrochemie
Universität Ulm
Albert-Einstein-Allee 47, 89081 Ulm (Germany)
[c] D. Gaissmaier, Prof. Dr. T. Jacob
Electrochemical Energy Storage
Helmholtz-Institute UIm (HIU)
Helmholtzstr. 11,89081 Ulm (Germany)
[d] D. Gaissmaier, Prof. Dr. T. Jacob
Karlsruhe Institute of Technology (KIT)
P.O. Box 3640

76021 Karlsruhe (Germany)
Supporting information and the ORCID identification number(s) for the au-
thor(s) of this article can be found under: https://doi.org/10.1002/chem. 202001479.
Of © 2020 The Authors. Published by Wiley-VCH Verlag GmbH \& Co. KGaA. This is an open access article under the terms of Creative Commons Attribution NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.
chains (A, Figure 1). These are frequently found in polyketides such as the antibiotics erythromycin A and rifamycin $S,{ }^{[2]}$ in terpenes such as parthenolide and micheliolide, ${ }^{[3]}$ as well as in

chlorosulfolipids

parthenolide

micheliolide
terpenes

MK7607
carbasugars

Figure 1. The chiral $1,2,3,4$-substituted alkenyl carbon chain (A) as a prevalent motif in natural products.
carbasugars like MK7607. ${ }^{[4]}$ Furthermore, such structural fragments are important synthetic building blocks, for example as synthetic precursor for the chlorosulfolipid mytilipin A. ${ }^{[5]}$
A broadly useful access to motif A may be provided by nucleophilic ring-opening of α, β-epoxy alcohol B (Scheme 1). The

Scheme 1. 1,2,3,4-substituted alkenyl carbon chains accessible by allylboration.
regio- and stereochemistry of such transformations can be predictably controlled by electronic and/or steric properties of the substrate, by OH -group coordination, or by specific catalysis. ${ }^{[6]}$ During work on terpene natural products we established the fragment-linking allylboration of enantioenriched ${ }^{[6 a]} \alpha, \beta$-epoxy aldehydes \mathbf{C} by using substituted allylboronates \mathbf{D} for a direct, stereocontrolled access to α, β-epoxy alcohols B (Scheme 1). ${ }^{[7]}$ The configuration of the two stereogenic centers created by addition to the carbonyl group should be established by 1,2asymmetric induction of the stereochemically-defined epoxide and the given, stable configuration of the allylboronate. ${ }^{[8]}$

However, α, β-epoxy aldehydes (\mathbf{C}) do not fit well to the common stereochemical prediction models due to the $s p^{2}$ character of the α - and β-carbon atoms and the unique geometry of the three-membered ring. ${ }^{[9]}$ Therefore substrate-controlled stereoselectivity in the addition to the carbonyl group lacks general understanding with respect to direction and origin of chirality transfer (electrostatics vs. stereoelectronics) and to the influence of substitution patterns. ${ }^{[10]} 1,2$-Asymmetric induction by an α-heteroatom substituent $\left(C_{\alpha}-X\right)$ is typically rationalized by the polar variant of the Felkin-Anh-Eisenstein model (polar Felkin-Anh, PFA). ${ }^{[8 b, 11]}$ This model favors a transition state (TS) which is stabilized by hyperconjugation, that is, a favorable interaction of the nucleophile's filled non-bonding orbital $\left(n_{\text {Nu }}\right)$ with the mixed empty $\pi^{*}{ }_{C=0}$ and $\sigma^{*}{ }_{C-O}$ acceptor orbitals (Scheme 2). Additional consideration of the Bürgi-Dunitz trajectory for productive overlap $\left(\alpha_{B D}=105 \pm 5^{\circ}\right)^{[12]}$ leads to a transition state with an $\mathrm{O}=\mathrm{C}-\mathrm{C}-\mathrm{O}$ dihedral angle of $\Theta=75 \pm 5^{\circ}$ and $285 \pm 5^{\circ}$, from where nucleophilic addition occurs from the sterically less encumbered side. ${ }^{[11]}$ Additions to carbonyl compounds featuring moderately electronegative groups in the α position, such as $N R_{2}, \mathrm{SR}$, or PR_{2}, were shown to be under PFA control. ${ }^{[13]}$

Alternatively, the Cornforth-Evans (CE) model may operate in case of strongly electronegative substituents in the α-position. ${ }^{[13,14]}$ In this model, dipole moment minimization outweighs hyperconjugation, leading to an antiperiplanar orientation of the $\mathrm{C}=\mathrm{O}$ and $\mathrm{C}_{\alpha}-\mathrm{O}$ bond vectors in the transition state (Scheme 2). This arrangement fits to two possible ground state

Scheme 2. Stereocontrolled allylboration of α, β-epoxy aldehydes: polar Felkin-Anh or Cornforth-Evans control in the context of cyclic, quasi-neutral transition states. ${ }^{[8 b, 13,14 b, 17]}$
(GS) conformations displaying a dihedral angle of $\Theta_{G S}=165 \pm$ 15° and $195 \pm 15^{\circ}$, covering "late" (product-like) to "early" (sub-strate-like) TS geometries. ${ }^{[14 b, 15]}$ The re and si face of the carbonyl group is then discriminated by minimizing steric interactions with the approaching nucleophile.

While both models are clearly different, their dichotomy may easily go unnoticed because for simple nucleophiles, both the PFA and the CE model predict the same product E (Scheme 2). ${ }^{[13]}$ As the nucleophile becomes more complex, energetically distinguishable TSs, namely CE, anti-CE, PFA, and anti-PFA, may potentially lead to different reaction outcomes. ${ }^{[13,14]}$ This could especially be the case for allylboration reactions that traverse a six-membered ring TS of the adapted Zimmerman-Traxler model. ${ }^{[16]}$

We therefore investigated the allylboration of α, β-epoxy aldehydes experimentally and computationally for generating a mechanistic rationale, and for making this transformation accessible to synthesis planning also for more complex boronate nucleophiles. To meet the general acid sensitivity of epoxy aldehydes we explored reactive, functionalized 2-(silyloxymethyl)allylboronates, recently introduced as an effective tool for the formation of biologically important α-exo-methylene γ-butyrolactones in the total synthesis of $(-)$-parthenolide ${ }^{[7]}$

Results and Discussion

Initially, a general cis- and trans-selective synthesis of 2-(silyloxymethyl)allylboronates from commercially available 2-butyne-

entry	boronate	$\mathrm{R} \rightarrow$ (step: yield)	yield step h (method) boronate formation
1	trans-5a	(g:96\%)	56\% (M1); 50\% (M2)
2	trans-5b	PhS \quad ($\mathrm{g}: 96 \%$)	19\% (M1); 40-66\% (M2)
3	trans-5c	(2-Naph)S- (g: 97\%)	0\% (M1); 22\% (M2)
4	trans-5d	- (g: 94\%)	69\% (M1); 54\% (M2)
5	trans-5e	$\mathrm{MeO}^{\text {- }}{ }^{\text {- }}$ (i: 85%)	0\% (M1 or M2)
6	cis-5a	人0 (g)	84\% (M2, over 2 steps)
7	cis-5b	PhS $-\quad(\mathrm{g}: 76 \%)$	64\% (M2)

Scheme 3. Stereoselective synthesis of trans- and cis-2-(silyloxymethyl)allylboronates. Reagents and conditions: (a) $\left[\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}\right](1 \mathrm{~mol} \%), n \mathrm{Bu}_{3} \mathrm{SnH}$, THF, $0^{\circ} \mathrm{C}, 2 \mathrm{~h}, 98 \%$; (b) $\mathrm{Ac}_{2} \mathrm{O}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 5^{\circ} \mathrm{C}, 24 \mathrm{~h}, 68 \%$; (c) $\mathrm{I}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-78^{\circ} \mathrm{C}$, $3 \mathrm{~h}, 92 \%$; (d) TBSCl, imidazole, $0^{\circ} \mathrm{C}$ to rt, 3 h ; (e) $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{MeOH}, 0^{\circ} \mathrm{C}$ to rt, 2 h , 83% (2 steps); (f) NBS, $\mathrm{PPh}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-40^{\circ} \mathrm{C}, 3 \mathrm{~h}, 90 \%$; (g) (5 a): 4 or 6, allylMgBr, THF, $-40^{\circ} \mathrm{C}, 2 \mathrm{~h}$; ($\mathbf{5}$ b): $\mathrm{PhSH}, \mathrm{NaOMe}, \mathrm{MeOH},-20^{\circ} \mathrm{C}, 10 \mathrm{~min}$, then 4 or $6,-20$ to $0^{\circ} \mathrm{C}, 3 \mathrm{~h}$; $(5 \mathrm{c})$: ($2-\mathrm{Naph}$) $\mathrm{SH}, \mathrm{NaOMe}, \mathrm{MeOH}, 0^{\circ} \mathrm{C}, 30 \mathrm{~min}$, then 4 , $0^{\circ} \mathrm{C}, 5 \mathrm{~h}$; (5 d): methallyl MgBr , THF, $-40^{\circ} \mathrm{C}, 2 \mathrm{~h}$; (h) method M1: tBuLi [or n BuLi (5 c)], $\mathrm{Et}_{2} \mathrm{O},-78^{\circ} \mathrm{C}, 2 \mathrm{~h}$, then $\mathrm{MgBr}_{2} \cdot \mathrm{OEt}_{2},-78^{\circ} \mathrm{C}, 1 \mathrm{~h}$, then $\mathrm{ICH}_{2} \mathrm{~B}($ pin $)$, -78 to $-20^{\circ} \mathrm{C}, 15 \mathrm{~h}$; method $\mathrm{M} 2: \mathrm{IZnCH}_{2} \mathrm{~B}($ pin $),\left[\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}\right](10 \mathrm{~mol} \%)$, THF, $60^{\circ} \mathrm{C}, 2 \mathrm{~h}$; (i) (5e): $\mathrm{MeOCH}_{2} \mathrm{Cl}, i \mathrm{ir}_{2} \mathrm{NEt}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}$ to rt, 18 h ; (j) $\mathrm{Me}_{3} \mathrm{SiCl}, \mathrm{Nal}$, $\mathrm{MeCN}, \mathrm{rt}, 10 \mathrm{~min}$, then $\mathbf{1 , 1} \mathrm{h}, 88 \%$. Note: The cis-configured allylboronate has nominally (E) configuration [trans applies to (Z)].

1,4-diol (1) was developed (Scheme 3). The precursor for the trans-configured boronates, iodoallyl bromide (E)-4, was accessed in 50% yield over six steps via stannyldiol 2 and vinyliodide 3, ${ }^{[7]}$ allowing to introduce diverse side chains (Scheme 3, bottom). Allyl (Table in Scheme 3, entry 1) and methallyl groups (entry 4) were connected to bromide 4 by using Grignard reagents. Phenyl- and 2- naphthyl thioethers (entry 2, 3) were formed by substitution with thiolate, all with high reliability in excellent yield. Additionally, a methoxymethyl ether side chain (entry 5) was introduced by direct functionalization of alcohol 3.
For the transformation of the vinyl iodides into allylboronates, a cascade of (I) I $\rightarrow \mathrm{Li}$ exchange, (II) $\mathrm{Li} \rightarrow \mathrm{Mg}$ transmetalation ${ }^{[14 e]}$ and (III) trapping with $\mathrm{ICH}_{2} \mathrm{~B}$ (pin) was investigated (method M1). ${ }^{[14 e]}$ Electron poor substrates with all-carbon side chains were smoothly transformed into allylboronates in satisfying yields (entry 1, 4). Unfortunately, in case of the more elec-
tron rich thioethers ($\mathbf{5 b}$ and $\mathbf{5 c}$) only minor amounts of the allylboronate were obtained. The major product was an allene (SI-12), probably formed via a β-elimination pathway of the electron rich intermediate. ${ }^{[18]}$ Attempts to obtain the more stable vinyl magnesium reagent directly by $\mathrm{I} \rightarrow \mathrm{MgX}$ exchange utilizing different reactive organomagnesium compounds (iPrMgCl/LiCl, ${ }^{[19]} i \mathrm{Pr}_{2} \mathrm{Mg} \cdot \mathrm{LiCl},{ }^{[20]} i \operatorname{Pr}(n B u)_{2} \mathrm{MgLi} \cdot \mathrm{LiCl}{ }^{[21]}$) were unproductive even at elevated temperatures.
A more general way of stereoselective allylboronate formation was realized by coupling the vinyl iodides under Negishi conditions with Knochel's $\mathrm{IZnCH}_{2} \mathrm{~B}($ pin $)$ reagent, ${ }^{[22]}$ giving reproducible yields for boronates trans-5 including also those which contained the challenging phenyl thioether substituent (method M2, entry 1-2, 4). Unfortunately, the presence of the 2-naphthyl sulfide or an alkoxide (entry 3, 5) limited the method, probably by competing π-allyl Pd-mediated pathways or catalyst deactivation.
The corresponding reagent for the preparation of cis-configured boronates was obtained by $\mathrm{Me}_{3} \mathrm{Sil}$-mediated trans-selective hydroiodination of 1 with simultaneous $\mathrm{O} \rightarrow 1$ exchange (Scheme 3, top), giving stable diiodide (Z)-6. ${ }^{[23]}$ Carbon- and sulfur-based side chains were smoothly introduced by nucleophilic substitution. After O-silylation, allylboronates were formed by Negishi coupling, providing the boronates cis-5a and $\mathbf{- 5} \mathbf{b}$ (entry 6, 7).
Boronates with more complex side chains cannot be prepared from configurationally unstable ${ }^{[24]}$ allyl nucleophiles that show [1,3]-metallotropic shifts, ${ }^{[8]]}$ such as used for the synthesis of 5 a and 5 b . However, any ω-substituted propargyl alcohol should be a suitable substrate for allylboronate synthesis as described above (Scheme 4). As an example, the known aldehyde $\boldsymbol{7}^{[25]}$ was transformed into propargyl alcohol 8 by applying a Corey-Fuchs sequence, hydroxyl-directed hydrostannylation (9), and $\mathrm{Sn} \rightarrow \mathrm{I}$ exchange to obtain vinyl iodide 10. The latter was O -silylated, subjected to $\mathrm{I} \rightarrow \mathrm{Li}$ exchange, and trapped by $\mathrm{ICH}_{2} \mathrm{~B}(\mathrm{pin})$ to provide the complex allylboronate trans-5 \mathbf{f} in good yield, suitable for installing relay alkene metathesis handles by allylboration. ${ }^{[26]}$
$=\mathrm{R}$

Scheme 4. Synthesis of complex boronate trans-5 fusing hydroxyl directed hydrostannylation. Reagents and conditions: (a) $\mathrm{CBr}_{4}, \mathrm{PPh}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}$, $1.5 \mathrm{~h}, 74 \%$; (b) nBuLi, THF, $-78^{\circ} \mathrm{C}, 1 \mathrm{~h}$, then $\left(\mathrm{CH}_{2} \mathrm{O}\right)_{n^{\prime}}-10^{\circ} \mathrm{C}$ to $\mathrm{rt}, 3 \mathrm{~h}, 64 \%$; (c) $\left[\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right](5 \mathrm{~mol} \%), n \mathrm{Bu}_{3} \mathrm{SnH}, \mathrm{PhMe}, \mathrm{rt}, 1.5 \mathrm{~h}, 82 \%$; (d) $\mathrm{I}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, $-78{ }^{\circ} \mathrm{C}, 3 \mathrm{~h}, 99 \%$; (e) TBSCl, imidazole, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, 30 \mathrm{~min}, 94 \%$; (f) $t \mathrm{BuLi}$, $\mathrm{Et}_{2} \mathrm{O},-78^{\circ} \mathrm{C}, 1 \mathrm{~h}$, then $\mathrm{ICH}_{2} \mathrm{~B}\left(\right.$ pin), -78 to $-20^{\circ} \mathrm{C}, 15 \mathrm{~h}, 62 \%$ (modified method M1).

(\pm)-12a: $91 \%,>99: 1 \mathrm{dr}(\mathrm{a})$

trans-5a ($\mathrm{R}=\mathrm{allyl}$) trans-5b ($\mathrm{R}=\mathrm{SPh}$)

cis allylboration

trans allylboration
cis allylboration
trans allylboration ${ }^{[7]}$

(\pm)-13a: $81 \%,>99: 1 \mathrm{dr}(\mathrm{a})$

(\pm)-13b: $84 \%,>99: 1 \mathrm{dr}(\mathrm{a})$

(\pm)-13c: $86 \%,>99: 1 \mathrm{dr}$

(\pm)-13d: 70\%, >99:1 dr (a)

(\pm)-13e: $94 \%, 19: 1 \mathrm{dr}(\mathrm{b})$

Scheme 5. 2-(Silyloxymethyl)allylboration of achiral aldehydes. Conditions: cis- or trans-5 (1.0 equiv), aldehyde (1.1-1.5 equiv), $\mathrm{Et}_{2} \mathrm{O}$ (0.2 m); (a) 0 to $25^{\circ} \mathrm{C}, 24 \mathrm{~h}$; (b) NaHCO_{3} (0.05 equiv), $0-5^{\circ} \mathrm{C}, 48 \mathrm{~h}$. Combined yields are given, major isomer depicted. d.r. determined by GC-MS, HPLC, or NMR.

The reactivity of cis- and trans-2-(silyloxymethyl)allylboronates toward simple, achiral aldehydes ($11 \mathrm{a}-\mathbf{e}$, for structures see Figure SI-1) was investigated next. Gratifyingly, smooth allylboration was already observed at $0^{\circ} \mathrm{C}$ and without external activation by acids, often needed for related allylation by other allylboronates, making those novel reagents compatible with acid-sensitive substrates (Scheme 5). ${ }^{[27]}$ The homoallyl alcohol products featuring aryl ($12 \mathrm{a}-\mathrm{b}, 13 \mathrm{a}, \mathrm{b}$), alkyl ($12 \mathrm{c}, 13 \mathrm{c}$), and alkoxy side chains ($\mathbf{1 2 d}$ d, 13 d) were efficiently formed under mild conditions ($70-92 \%$ yield, 0 to $25^{\circ} \mathrm{C}$) for both the cis and the trans series. The products were obtained as single diastereomers, indicating complete translation of the defined boronate stereochemistry into the product according to the Zim-merman-Traxler model. ${ }^{[8 b, 17]}$ The allylboration of a very sensitive α, β-unsaturated aldehyde was buffered by solid NaHCO_{3} and kept at lower temperature ($0-5^{\circ} \mathrm{C}, 48 \mathrm{~h}$) to obtain the products 12 e and 13 e in good yield ($80-94 \%$) and excellent diastereoselectivity (17-19:1 d.r.).
With optimized reaction conditions in hand, the study was extended to chiral aldehyde substrates $\mathbf{1 4 a - g}$ (for structures see Figure $\mathrm{SI}-1$) featuring an α-heteroatom substituent (Scheme 6). The trans allylboration of α-carbamato aldehydes enabled the preparation of homoallyl alcohols $13 \mathrm{f}, \mathrm{g}$ with high yields (79-94\%), excellent d.r.'s (22-30:1), and without detectable epimerization. In contrast, cis allylboration of these substrates resulted in slightly lower yields ($58-83 \%$) and low d.r. (1.3-2.3:1) of the products $\mathbf{1 2} \mathbf{f} \mathbf{g}$. Surprisingly, extension to an α, β-substituted dialkoxy aldehyde reversed the trend, leading to good yield and stereocontrol for the cis variant ($\mathbf{1 2 h}$, 15:1 d.r.) while the trans allylboration lacked diastereocontrol ($\mathbf{1 3 h}$, 2.7:1 d.r.). Related findings have been sporadically reported. Dipole effects were invoked as a possible cause for the eroding stereocontrol in these cases. ${ }^{[28]}$

The stereochemistry of the α-aminoalcohol carbamates 12 f and $\mathbf{1 3 f}$ was elucidated after cyclization to the corresponding five-membered oxazolidinones which enabled their stereochemical assignment by determining their ${ }^{3} J_{4 H, 5 H}$ coupling constants (Scheme SI-1). ${ }^{[29]}$ Homoallyl alcohol $\mathbf{1 2 f}$, obtained as a separable 1.3:1 diastereomeric mixture, allowed for the assignment of both isomers, namely the major one as the 2,3 -syn-$3,4-$ syn product (anti-PFA TS) and the minor one as the $2,3-$ anti-3,4-syn product (PFA TS). Similarly, trans allylboration product 13 f (22:1 d.r.) was assigned as the 2,3-anti-3,4-anti product (PFA TS). These findings conform to the common model of PFA-type attack on the aldehyde carbonyl (cmp. to Scheme 7). ${ }^{[86]}$ In contrast, the stereoselective cis allylboration leading to dialkoxy alcohol (+)-12 h was found to be either under PFA or CE control by analysis of its (R)- and ((S)-Mosher esters disclosing a 2,3-anti-3,4-syn configuration (Figure SI-2). ${ }^{[30]}$ Since anti-PFA control would be expected for cis-allylboration, the CE model could be relevant for the reaction of substrates with strongly electronegative α-substituents. ${ }^{[13,14]}$
Different epoxide substitution patterns were studied for their impact on the asymmetric induction, including $\alpha, \beta, \beta^{\prime}$, $\alpha, \alpha^{\prime}, \beta$, and α, β-trans substitution (Scheme 6). Gratifyingly, epoxy aldehydes featuring $\alpha, \beta, \beta^{\prime}$ trisubstitution lead to high diastereoselectivity in the cis case, enabling the synthesis of homoallyl alcohols $12 \mathbf{j}^{\alpha, \beta, \beta^{\prime}}$ and $12 j^{j, \beta, \beta, \beta^{\prime}}$ in excellent yields (91% and 83%) and d.r.'s ($7: 1$ and 27:1). The same applied to trans allylboration of these $\alpha, \beta, \beta^{\prime}$ trisubstituted substrates resulting in products $13 \mathrm{i}, \mathrm{j}^{\alpha, \beta, \beta^{\prime}}$, with d.r.'s of $\approx 18: 1$ and high yields of 92% and 94%, respectively. However, changing the epoxide's substitution pattern from $\alpha, \beta, \beta^{\prime}$ to $\alpha, \alpha^{\prime}, \beta$ tri- ($\left.12 \mathbf{k}^{\alpha, \alpha^{\prime}, \beta}, 13 \mathbf{k}^{\alpha, \alpha^{\prime}, \beta}\right)$ or α, β-trans disubstitution ($\mathbf{1 2}{ }^{\alpha^{\alpha, \beta},} 131^{\alpha, \beta}$) resulted in loss of asymmetric induction for both the cis- and trans-configured reagents, although combined yields remained high (84-98\%).

cis-5b ($\mathrm{R}=\mathrm{SPh}$)

Scheme 6. 2-(Silyloxymethyl)allylboration of chiral α-heteroatom-substituted aldehydes. Conditions: cis- or trans-5 (1.0 equiv), aldehyde (1.1-1.5 equiv), $\mathrm{Et}_{2} \mathrm{O}$ (0.2 M); (a) 0 to $25^{\circ} \mathrm{C}, 24 \mathrm{~h}$; (b) $\mathrm{NaHCO}_{3}\left(0.05\right.$ equiv), $0-5^{\circ} \mathrm{C}, 48 \mathrm{~h}$. Combined yields are given, major isomer being depicted. d.r. determined by GC-MS, HPLC, or NMR.

This strong effect of a cis- β substituent indicated 1,3- rather than 1,2 -asymmetric induction to cause the high diastereoselection. ${ }^{[31]}$
The stereochemistry of the enantiomerically-enriched epox-ide-containing products (+)- $\mathbf{1 2} \mathrm{j}^{\mathrm{j}, \beta, \beta^{\prime}}$ and $(+)-13 \mathrm{j}^{\alpha, \beta, \beta^{\prime}}$ was again assigned by analyzing their Mosher esters (Figure SI-2) ${ }^{[30]}$ The relative stereochemistry of both carbinols featured 2,3-anti configuration, even though being individually prepared from cis and trans allylboronates. Since these data would correspond to either PFA or CE control in both cases (cmp. to Scheme 7), as was also found for the dialkoxy-containing substrate, dipole effects might be involved in the allylboration of epoxy aldehydes. The stereochemistry was independently validated by NMR and X-ray crystal structure analyses of the alcohols $(\pm)-13 \mathbf{i}^{\alpha, \beta, \beta^{\prime}}$ and $(\pm)-13^{j} j^{\alpha, \beta, \beta^{\prime}}$ after derivatization. ${ }^{[7]}$ Interestingly, the presence of a second α-substituent ($\mathrm{R}^{\alpha \prime}$) decreased the directing influence of the epoxy group leading to a switch in stereochemistry from 2,3-anti to syn in case of cis allylboration product $\mathbf{1 2} \mathrm{k}^{\mathrm{a},,^{\prime},}$.

In order to convert the flexible 2-(hydroxyethyl)-allylalcohols into more rigid, ring-closed lactones, an efficient two-step procedure for the transformation of homoallylic substrates 12 and 13 into also more biologically relevant ${ }^{[32]} \alpha$-exo-methylene γ butyrolactones was established (Scheme 8). Fluoride-mediated
silyl ether cleavage released a diol which was oxidatively lactonized by $\mathrm{Phl}(\mathrm{OAc})_{2}$ and catalytic TEMPO (step b), ${ }^{[7,33]}$ or equally effective by using catalytic TPAP and NMO (step c). ${ }^{[34]}$ Thereby, aryl (15a, 16a) and alkyl substituted substrates (15 b , 16b) were converted into the corresponding lactones in high yields, as well as vinyl substituted molecules featuring an oxidation labile thioether ($\mathbf{1 5} \mathrm{c}, \mathbf{1 6} \mathrm{c}$). In addition, substrates derived from α-heteroatom substituted aldehydes were smoothly transformed, showing that secondary carbamates ($\mathbf{1 5 d}, \mathbf{1 6 d}$), an acetal ($\mathbf{1 5 e}$), and epoxides ($\mathbf{1 5 f} \mathbf{f} \mathbf{1 6} \mathrm{f}$) were well tolerated. Unfortunately, attempts to acquire more structural information from these derivatives by NMR or X-ray crystallography was met with little success.
Therefore, in order to generate further insight, theoretical modelling was pursued by using computational methods. The reaction of trans allylboronates with α-chiral aldehydes most often results in 2,3-anti stereochemistry. ${ }^{[8 b]}$ This outcome can be explained by the common (P)FA model and was found also to match the trans allylboration of α, β-epoxy aldehydes, lead-
 model suggests anti-PFA stereochemistry (2,3-syn) for cis-configured allylboron reagents. As 2,3-anti stereochemistry was found for the polar cis allylboration products $\mathbf{1 2 h}$ and $12 \mathrm{j}^{\alpha, \beta, \beta^{\prime}}$, dipole-minimized CE transition states could rather account for

A
Theoretical model for trans allylboration of α-chiral aldehydes

B Theoretical model for cis allylboration of α-chiral aldehydes

Scheme 7. The general Cornforth-Evans and the (polar) Felkin-Anh model for allylboration of α-chiral aldehydes: Stereochemical outcome of cis allylboration should depend on the electronegativity of the α-carbon substituent. (The atom count of product A corresponds to the one used in Scheme 2). ${ }^{[8 b, 13,144, d, 16 b, c]}$
stereochemical control. ${ }^{[8 b, 17]}$ In order to scrutinize this issue, DFT calculations were initiated for elucidating (1) the parameters of stereocontrol, (2) the importance of the epoxide substitution pattern, and (3) the relevance of dipole-minimized CE pathways for the allylboration of epoxy aldehydes in general.
Initially ground state (subscript GS) rotational energy profiles were calculated for α, β-epoxy aldehyde substrates, in order to gain insight into preferred and destabilized conformations. Since allylborations traverse an "early", substrate-like transition state regarding the $\mathrm{C}-\mathrm{C}$ bond to be formed, ${ }^{[35]}$ the aldehyde's conformational preferences should be reflected in the transition state structures as well. ${ }^{[13,14]}$ For the calculation, the $\mathrm{O}=\mathrm{C}$ -C-O dihedral angle $\Theta_{G S}$ of simplified substrates $17^{\alpha, \beta, \beta^{\prime}}, 18^{\alpha, \alpha^{\prime} ;}$, and $19^{\alpha, \beta}$ featuring the substitution patterns of interest (see superscript) was incrementally varied from $\Theta_{G S}=0$ to 360°, fol-
lowed by geometry optimization for each step at the disper-sion-corrected B3LYP-D3(BJ)/cc-pVDZ level of theory ${ }^{[36]}$ in the gas phase (Figure 2).
The rotational profiles found displayed a strong conformational minimum for all three epoxy aldehydes at a dihedral angle Θ_{GS} close to 160°, representing a gauche/anti conformation that almost coincides with a minimized dipole moment by antiperiplanar orientation of the carbonyl group and the epoxide's C-O bond. ${ }^{[14 a]}$ Moving the $\mathrm{R} \alpha^{\prime}$ substituent out of an eclipsed conformation as well as residual stabilizing hyperconjugative interactions with the carbonyl group probably lead to the deviation from a $\Theta_{G S}=180^{\circ}$ minimum. ${ }^{[14 a, 37]}$ Orientations of $\Theta_{\mathrm{GS}}=75 \pm 5^{\circ}$ and $285 \pm 5^{\circ}\left(-75 \pm 5^{\circ}\right)$, which would correspond to (anti-)PFA TSs, were considerably disfavored by around 6-7 and $3-4 \mathrm{kcal} \mathrm{mol}^{-1}$, respectively. Repelling interactions with the

Scheme 8. Synthesis of α-exo-methylene γ-butyrolactones from allylboration products. Reagents and conditions (isol. yields over 2 steps): (a) TBAF-3H2O, THF, $0^{\circ} \mathrm{C}, 1 \mathrm{~h}$; (b) TEMPO ($30 \mathrm{~mol} \%$), $\mathrm{Phl}(\mathrm{OAc})_{2}$, rt, 18 h ; (c) ${ }^{n} \mathrm{Pr}_{4} \mathrm{NRuO}_{4}$ (TPAP, $10 \mathrm{~mol} \%$), NMO, $4 \AA$ molecular sieves, $\mathrm{CH}_{2} \mathrm{Cl} / \mathrm{MeCN}(5: 1$), rt , 18 h . [a] Major isomer (depicted) used. [b] Decomposition during purification on silica.
residues at $\mathrm{C}-\alpha$ or $\mathrm{C}-\beta$ and unfavorable bond dipole orientations likely destabilize these conformations.

The obtained rotational energy profiles resemble those reported for aldehydes bearing an α substituent based on a $s p^{3}$ -

Figure 2. Computed rotational energy profile of simplified α, β-epoxy aldehydes. Level of theory: B3LYP-D3(BJ)/cc-pVDZ (vacuum). Grey areas show the possible range of conformations associated with the respective stereoinduction model for nucleophile addition to the carbonyl (PFA: $285 \pm 5^{\circ}$, antiPFA: $75 \pm 5^{\circ}$, CE: $165 \pm 15^{\circ}$, anti-CE: $195 \pm 15^{\circ}$).
bound, strongly electronegative heteroatom, like halogens and oxygen. ${ }^{[13,37,38]}$ NMR-based conformational analysis of the simple oxirane-2-carbaldehyde $\left(R^{\alpha^{\prime}}=R^{\beta}=R^{\beta^{\prime}}=H\right)$ showed such a gauche/anti orientation to be favored in solution as a result of dipole-dipole interactions with the carbonyl group. ${ }^{[39]}$ In this early study the electron-withdrawing effect of epoxides was reported to be lower than for 2-alkoxy substituents. On the other hand, epoxides carry a considerable dipole moment of μ $\approx 1.9 \mathrm{D}$ (for oxirane), ${ }^{[37]}$ comparable to fluoroethane ($\mu=$ $1.94 \mathrm{D})^{[40]}$ and surpassing regular ethers ($\mu=1.3 \mathrm{D}$ for dimethyl ether, 1.63 D for THF). Hence, it was necessary to investigate whether the epoxide would primarily govern asymmetric induction according to the CE model or whether PFA-type stereoelectronics would significantly contribute to TS geometry.
Furthermore, ground state conformations alone cannot explain the variations in diastereoselectivity for the allylboration of differently substituted epoxy aldehydes (Scheme 6), as the rotational energy profiles were almost invariant to changes of the substitution pattern. To approach this issue, we initially applied the commonly used TS structural analysis to trans allylboration of general α-heteroatom-substituted aldehydes which predicts a 2,3- anti-3,4-anti configuration in the product A for both stereoinduction models (Scheme 7A). ${ }^{[8,13]}$ Preference for either the PFA or the CE variant of TS-A trans would drastically depend on the size and electronegativity of the substituent X , also in comparison to the size and electronegativity of the second substituent R^{\prime}, calling for a computational in-depth analysis of the transition states.
For cis allylboration, the CE and PFA model each predict different product stereochemistry. ${ }^{[146]}$ In detail, a strongly electronegative α substituent X should enforce a CE pathway [TS-
$\mathrm{B}_{\text {cis }}(\mathrm{CE})$], resulting in a 2,3-anti-3,4-syn configured product \mathbf{A} (Scheme 7B). For less electronegative groups X a similar minimization of 1,3 syn-pentane interactions should be realized in the anti-PFA TS [TS-B cis $(a-P F A)]$ leading to a $2,3-$ syn-3,4-syn stereochemistry. ${ }^{[13,14 b, 17]}$ This divergent interplay between electrostatic, steric and hyperconjugative contributions could account for the poor stereocontrol sometimes found for allylboration of polar aldehydes. ${ }^{[14 c, 16 a, 28 b, 29]}$

To identify the factors influencing the stereoselectivity in the cis and trans allylboration of the epoxide-containing products $12 / 13 \mathrm{i}^{\alpha, \beta, \beta^{\prime}}, 12 / 13 \mathrm{j}^{\alpha, \beta, \beta^{\prime}}, 12 / 13 \mathrm{k}^{a, a^{\prime}, \beta}$, and $12 / 13 \mathrm{I}^{\alpha, \beta}$, a computational TS analysis of the allylboration of simplified versions of the experimentally used, differently substituted α, β-epoxy aldehydes $14 \mathrm{~d}^{\alpha, \beta, \beta^{\prime}}, 14 \mathrm{e}^{\alpha, \beta, \beta^{\prime}}, 14 \mathrm{f}^{a,,^{\prime}, \beta}$, and $14 \mathrm{~g}^{\alpha, \beta}$ was conducted (for structural formulae see Figure SI-1). These model substrates $17^{\alpha, \beta, \beta^{\prime}}, 18^{a, a^{\prime}, \beta}$, and $19^{\alpha, \beta}$ display the three epoxy substitution patterns of interest as indicated by the respective superscript (for structural formulae see Figure 2) and should allow to deduce transferable trends about asymmetric induction mechanisms that led to the different diastereoselectivities.
The reaction partners, 2-(silyloxymethyl)allylboronates cisand trans-5, were simplified to the 2-(methoxymethyl)allylboronates trans-20 [Scheme 2. $\mathrm{D}, \mathrm{R}^{\text {trans }}=\mathrm{R}^{2}=\mathrm{Me}, \mathrm{BX}_{2}=\mathrm{B}(\mathrm{pin})$] and cis-20 $\left[\mathrm{R}^{\text {cs }}=\mathrm{R}^{2}=\mathrm{Me}, \mathrm{BX}_{2}=\mathrm{B}(\mathrm{pin})\right]$, allowing for a reasonable computational model. Four cyclic, chair-like TS structures were generated as input for each of the three substrates, ${ }^{[14 d, 41]}$ featuring an epoxide orientation associated with the respective model, being anti to the incoming nucleophile (PFA-type) or anti to the carbonyl group (CE-type). The resulting 24 possible structures were found to give stable TSs with activation energies in between $\Delta G^{\ddagger}=12-17 \mathrm{kcalmol}^{-1}$ for trans and $10-$ $17 \mathrm{kcal}_{\mathrm{mol}}{ }^{-1}$ for cis allylboration. CE-type TSs proved to be energetically favored over PFA-type ones by $0.9-4.4 \mathrm{kcal} \mathrm{mol}^{-1}$ for trans and $0.72-2.99 \mathrm{kcal} \mathrm{mol}^{-1}$ for the cis allylboration, with the exception of aldehyde $\mathbf{1 8}^{\alpha, \alpha^{\prime}, \beta}$ where the additional α^{\prime} substituent induced steric restrictions that render an anti-CE structure most stable with an energy gap of only $0.28 \mathrm{kcal} \mathrm{mol}^{-1}$ to the corresponding anti-PFA TS.
The most stable TS for each cis- and trans-2-(methoxymethyl)allylboration of the three aldehydes is depicted in Figure 3. To rule out the relevance of other TS geometries, additional boatlike variants of the TSs were generated as input structures. ${ }^{[42]}$ These proved to be unstable during the calculation and transformed into the corresponding chair-like structures. Indeed, previous computational studies on carbonyl allylborations found boat and twist-boat conformations to be $4-8 \mathrm{kcalmol}^{-1}$ higher in energy than their chair analogs, rendering them rather unimportant for this kind of reactions. ${ }^{[41]}$
In line with previous computational studies, all of the calculated structures represent an "early" TS regarding the C-C bond to be formed ($d_{\mathrm{c}-\mathrm{c}}=2.2-2.4 \AA$), ${ }^{[14 d, 35]}$ show an attack trajectory angle within the Bürgi-Dunitz range of $\alpha_{\text {c-c-0 }}=102-$ $104^{\circ},{ }^{[12,14 d]}$ and don't show a short distance between the methoxy oxygen atom and the aldehyde's hydrogen atom, previously reported as a strong TS geometry-defining interaction. ${ }^{[4]}$ The relative energies ($\Delta \Delta G^{+}$) of all calculated TSs are given in Table 1. A compilation of all TS structures including detailed

Structure	Allylboronate	Substrate	$\Delta \Delta G^{+}\left[\mathrm{kcalmol}^{-1}\right]$			
			PFA	CE	a-PFA	$a-C E$
TS-1 $t_{\text {rans }}$	trans-20	$17^{\text {a,p, }, \beta^{\prime}}$	2.80	0	1.27	1.98
TS-2 $t_{\text {rans }}$	trans-20	$18^{\alpha, \alpha^{\prime}, \beta}$	4.41	0	0.88	3.26
TS-3 $t_{\text {rans }}$	trans-20	$19^{\alpha, \beta}$	2.12	0	2.35	1.06
TS-4 $c_{\text {is }}$	cis-20	$17^{4, \beta, \beta^{\prime}}$	2.99	0	0.72	0.80
TS-5 $c_{\text {is }}$	cis-20	$18^{\alpha, \alpha^{\prime}, \beta}$	3.87	2.66	0.28	0
TS-6 $c_{\text {is }}$	cis-20	$19^{\alpha, \beta}$	1.66	0	0.77	2.96

geometrical factors, bond dipole orientations, and critical steric interactions is given in Figures $\mathrm{SI}-3$ and $\mathrm{SI}-4$.

Overall, the DFT-computational TS analysis of epoxy aldehyde's cis and trans allylboration disclosed a similar preference for dipole moment minimization as already indicated by the rotational energy profiles in the ground state. Hence, electrostatics favored CE TS conformations with an anti-orientation of the former carbonyl group and the epoxide's $\mathrm{C}-\mathrm{O}$ bond and thus O-C-C-O dihedral angles of $153^{\circ} \leq \Theta_{\mathrm{TS}} \leq 179^{\circ}$ (Figures 2, $\mathrm{SI}-3$, and $\mathrm{SI}-4$). Besides missing dipole minimization, PFA-type TSs were additionally destabilized by syn-pentane and gauche interactions of the epoxide's substituents with the allylboronate's residue in position $3, \mathrm{R}^{\text {trans }}$ or $\mathrm{R}^{\text {cis }}$.
Regarding the stereochemical outcome of the allylborations, the most stable CE TS geometry would indeed lead to 2,3-anti-3,4-anti configuration in the product of trans allylboration and 2,3-anti-3,4-syn for the general cis allylboration, as well as 2,3-syn- 3,4 -syn for the special cis allylboration case toward α-disubstituted product $\mathbf{1 2} \mathbf{k}^{\alpha, \alpha^{\prime}, \beta}$. These match the experimental findings shown in Scheme 6 and the theoretical analysis depicted in Scheme 7, again showing the strongly electronegative character of the epoxide group and the competitive effect of two α-substituents with a similar level of asymmetric induction. Although structural simplifications had to be adopted for computational reasons, the calculated relative energies parallel the experimentally observed trend of diastereoselectivity being dependent on the epoxide's substitution pattern (Table 1). Hence, the $\alpha, \beta, \beta^{\prime}$ trisubstitution which showed a high level of stereoinduction in the experiments also features the biggest TS energy separation to the next opposite pathway in case of trans allylboration [TS-1 $t_{\text {rans }}(C E)$ vs. (a-PFA)]. The differences were lower in energy for $\alpha, \alpha^{\prime}, \beta$ (TS-2 $t_{\text {rans }}$) and α, β-trans substitution (TS-3 $t_{\text {rans }}$; Figure 3, Scheme 6), in line with the experimental data. While a preference for CE-associated pathways was also found for cis allylboration, the computational model cannot fully explain the high diastereoselectivity just found for $\alpha, \beta, \beta^{\prime}$ trisubstitution. This is probably due to the truncation of the side chains and the substitution of the bulky $\mathrm{OSiMe}_{2} t \mathrm{Bu}$ for the small OCH_{3} group in the computational model, known to drastically influence TS geometries in related boron-enolate aldol reactions, ${ }^{[42]}$ as well as the neglected solvent influence.
A comparison of the in silico generated TS structures disclosed three factors determining the energy differences in the TSs, correlating with the experimentally observed stereocontrol: (1) minimization of the dipole moment, (2) destabilizing syn-pentane and gauche interactions in PFA-type structures,

TS-1 $\mathbf{t r a n s}^{(C E)}$ ($-1.27 \mathrm{kcal} \mathrm{mol}^{-1}$ vs. a-PFA)

TS-4 cis $(C E)\left(-0.72 \mathrm{kcal} \mathrm{mol}^{-1}\right.$ vs. a-PFA)

TS-2 trans $(\mathrm{CE})\left(-0.88 \mathrm{kcal} \mathrm{mol}^{-1}\right.$ vs. a-PFA)

TS-5 cis $($ a-CE) $)\left(-2.66 \mathrm{kcal} \mathrm{mol}^{-1}\right.$ vs. CE)

TS- $3_{\text {trans }}(C E)\left(-1.06 \mathrm{kcal} \mathrm{mol}^{-1}\right.$ vs. $\left.a-C E\right)$

TS-6 cis $^{(C E)}$ ($-0.77 \mathrm{kcal} \mathrm{mol}^{-1}$ vs. a-PFA)

Figure 3. Transition state analysis by DFT calculation: Global minima for cis and trans allylboration α, β-epoxy aldehydes $17^{\alpha, \beta, \beta^{\prime}}, \mathbf{1 8} \mathbf{1 8}^{\alpha, \alpha^{\prime}, \beta}$, and $19^{\alpha, \beta}$. Calculated at the B3LYP-D3(BJ)/cc-pVDZ level of theory (vacuum). The subscript trans or cis corresponds to the allylboronate geometry. The assignment to the respective stereoinduction model is shown in bold parentheses. The energy difference ($\Delta \Delta G^{\ddagger}$) to the next higher opposite TS (pro vs. anti, abbreviated as a) is given in light parentheses. The epoxy aldehyde's methyl group probe is highlighted in blue.
and (3) strong 1,3-asymmetric induction caused by steric repulsion with the substituent $R^{\beta^{\prime}}$, if present (Figure 4).

As clearly shown by the calculations, electrostatics enforced a stabilizing anti orientation of the carbonyl group and the epoxide's $\mathrm{C}-\mathrm{O}$ bond in the allylboration of α, β-epoxy aldehydes. The level of this effect can be qualitatively deduced from the trans and cis allylboration of α, β-disubstituted aldehyde substrate $19^{\alpha, \beta}$ which shows a comparable level of rather weak repulsive steric interactions in all four TSs (CE, anti-CE, PFA, antiPFA). For both allylboration cases, being TS-3 $t_{\text {rans }}$ and TS- $6 c_{\text {is }}$, non-dipole minimized PFA-type states are disfavored by 0.8 $2.4 \mathrm{kcal} \mathrm{mol}^{-1}$.

A comparison of all resulting TSs suggests that a high level of dipole moment-minimization can be realized in the CE cases $\left(153^{\circ} \leq \Theta_{\text {TS }} \leq 179^{\circ}\right)$, but is significantly lowered in the anti-CE cases due to repelling interactions of the epoxide with the allylboronate substituent in position $3, \mathrm{R}^{\text {trans }}$ or $\mathrm{R}^{\text {cis }}$. This resulted in destabilization of anti-CE states with dihedral angles drastically differing from a (-) 180° maximum, being $-42^{\circ} \geq \Theta_{\mathrm{TS}} \geq$ -60° for trans and only $-30^{\circ} \geq \Theta_{\text {TS }} \geq-32^{\circ}$ for cis allylboration (Figures 4, SI-3, and SI-4). The reduced stabilization of anti-CE TSs could account for the energetic similarity with anti-PFA TSs in some cases, which showed more favorable dihedral angles in the range of $94^{\circ} \leq \Theta_{\mathrm{TS}} \leq 118^{\circ}\left(\mathrm{TS}-4 c_{\text {is }} \mathrm{TS}-5 c_{\text {is }}\right)$.

Figure 4. Rationale for stereocontrolled allylboration of α, β-epoxy aldehydes according to the Cornforth-Evans model.

The distinct energetic differentiation between the four TSs in the reaction with $\alpha, \beta, \beta^{\prime}$-trisubstituted epoxy aldehyde $17^{\alpha, \beta, \beta^{\prime}}$ resulted from a highly destabilizing allylic 1,3-strain between the substituent $R^{\beta^{\prime}}$ and the carbonyl oxygen in case of the anti-CE, or syn-pentane/gauche strain with the allylboronate's residue $\mathrm{R}^{\text {trans }}$ in the anti-PFA or $\mathrm{R}^{\text {cis }}$ in the PFA case (Figures 4 and $\mathrm{SI}-3$). This combination of dipole minimization and 1,3asymmetric induction by the residue $R^{\beta^{\prime}}$ is missing for the allylboration of epoxy aldehydes $18^{\alpha, \alpha^{\prime}, \beta}$ and $19^{\alpha, \beta}$, likely compromising stereoselectivity. For aldehyde $18^{\alpha, \alpha^{\prime}, \beta}$ it is even counteracted by a non-productive syn-pentane strain in both CE-type TSs, caused by the substituent $\mathrm{R}^{\alpha^{\prime}}$. In this particular case the steric influence on the discrimination of "pro" and anti-pathways seems to be slightly higher than the electrostatic effect of the sterically unimposing epoxy group. This led to a switch in stereochemistry as also found by experiment. The competition between similarly bulky or electronegative geminal α-substituents on asymmetric induction has been described as a limiting factor of these stereochemical models (see Scheme 7B, X vs. $\left.R^{\prime}\right) .{ }^{[8 b, 13,14 b, d, 16 b, c]}$ In this case, it is the formal interplay between an electronegative oxygen atom and a considerably more bulky CH_{3} group. The computational overestimation of this effect for cis allylboration transition states is likely caused by simplifications adopted for the calculations regarding the chemical structures and computational methods.

Conclusions

Functionalized 2-(silyloxymethyl)allylboronates were designed that combine chemical stability and predictable transfer of stereochemistry into allylboration products. They smoothly react with aldehydes without (Lewis) acid activation. ${ }^{[27]}$ The general
trans- and cis-selective synthesis to this reagent class featured a late-stage construction of the allylboronate by using either a Negishi coupling or organomagnesium chemistry.

While the reaction of these reagents with α-carbamato aldehydes proceeded according to the polar Felkin-Anh (PFA) model, more electronegative α-alkoxy, especially α, β-epoxy aldehydes, conformed to Cornforth-Evans (CE) stereoinduction. Hence, dipole moment-minimization in the transition state (TS) of allylborations is a strong directing force, as seen for aldol ${ }^{[14 b, 43]}$ and Wittig reactions. ${ }^{[44]}$ For simple nucleophiles both the PFA and the CE model predict the same product stereochemistry. This degeneracy was resolved by cis allylboration that led to a distinct product fitting to the CE model. The level of stereocontrol for the allylboration of α, β-epoxy aldehydes was found to be strongly dependent on epoxide substitution, with a β-cis substitution leading to constantly high diastereoselectivity by the combination of dipole minimization and 1,3 asymmetric induction. α, α-Di-substitution was found to impede viable asymmetric induction by contributing additional steric interactions that compete with dipole minimization.

DFT analysis of the ground state conformations of differently substituted α, β-epoxy aldehydes and the possible allylboration TSs verified the preference of dipole-minimizing conformations. Hyperconjugative stabilization according to the PFA model clearly seemed overridden by electrostatics in case of α, β-epoxy aldehydes, classifying epoxides as „strongly electronegative" α-substituents. ${ }^{[13]}$ Additionally, the experimentally observed dependence of stereocontrol on an epoxide's β-cis substituent was identified by computation as a selector for the CE transition state. This substitution reinforces the otherwise weak facial discrimination of the carbonyl group in the CE transition state by the apparently well ordered, but spatially unimposing epoxide group.

By applying this rationale in a forward sense, α, β-epoxy aldehydes and allylboronates can now be readily applied for the stereocontrolled synthesis of complex polyhydroxylated target molecules. Further investigations notwithstanding, it is expected that the consistent results obtained herein will apply to most addition reactions to epoxy aldehydes. Overall, Corn-forth-Evans transition states and the impact of dipole minimization should always be considered for addition reactions to carbonyl compounds.

Experimental Section

Detailed descriptions of instrumentation, materials, experimental procedures, product characterization (1D and 2D NMR including copies of spectra, HRMS, IR, optical rotation), computational details and primary data, as well as a list of abbreviations is given in the Supporting Information.

General procedure M1 for 2-(silyloxymethyl)allylboronate synthesis by using Grignard chemistry

A solution of a substituted vinyl iodide (1.0 equiv) in anhydrous $\mathrm{Et}_{2} \mathrm{O}$ (0.3 m in substrate) was added dropwise to a stirred solution of (alkoxide- and hydroxide-free) tBuLi (2.0 equiv, 1.9 m in pentane) in anhydrous $\mathrm{Et}_{2} \mathrm{O}(0.3 \mathrm{~m}$ in $t \mathrm{BuLi})$ at $-78^{\circ} \mathrm{C}$. A freshly prepared an-
hydrous $\mathrm{MgBr}_{2} \cdot \mathrm{OEt}_{2}$ solution (1.0 equiv, 0.8 m in $4: 1 \mathrm{Et}_{2} \mathrm{O} / \mathrm{C}_{6} \mathrm{H}_{6}$) was added after 2 h at this temperature (TLC control). After an additional hour at $-78^{\circ} \mathrm{C}$ a solution of anhydrous $\mathrm{ICH}_{2} \mathrm{~B}$ (pin) (1.1 equiv, dehydrated by passing through a plug of activated neutral $\mathrm{Al}_{2} \mathrm{O}_{3}$ directly before use) in anhydrous $\mathrm{Et}_{2} \mathrm{O}(0.7 \mathrm{~m}$ in reagent) was slowly added via the cooled inner wall of the reaction vessel. The resulting suspension was allowed to slowly warm to $-20^{\circ} \mathrm{C}$ and kept at this temperature for 15 h . The cooling bath was removed and the mixture was added to stirred phosphate buffer ($\mathrm{pH} 6,0.5 \mathrm{~m}$, ca. 10 mL per mmol of substrate) at $0^{\circ} \mathrm{C}$. The mixture was extracted with MTBE (ca. 20 mL per mmol substrate) and the extract was washed with brine (ca. 10 mL per mmol substrate). The organic extract was dried with MgSO_{4}, filtered, and the solvent was removed in vacuo at $25^{\circ} \mathrm{C}$. Rapid ($5-10 \mathrm{~min}$) silica gel column chromatography of the residue ($3 \times 10 \mathrm{~cm}$ for 0.6 mmol substrate) provided allylboronate 5.

General procedure M2 for 2-(silyloxymethyl)allylboronate synthesis by using Negishi couplings

To a stirred solution of $\left[\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}\right]$ (0.1 equiv) in anhydrous, deoxygenated THF (ca. 0.02 m in Pd catalyst) at $20^{\circ} \mathrm{C}$ was added a solution of $\mathrm{IZnCH}_{2} \mathrm{~B}$ (pin) (2.0 equiv, 0.6 M in anhydrous THF), followed by a solution of a substituted vinyl iodide (1.0 equiv) in anhydrous THF (ca. 0.25 м in substrate). The flask was immersed in a preheated $60^{\circ} \mathrm{C}$ oil bath and the mixture was stirred for 3 h (GC-MS control). The oil bath was removed and the mixture was cooled to $0^{\circ} \mathrm{C}$ whereupon it was added to stirred phosphate buffer (pH 6, 0.5 m , ca. 30 mL per mmol of substrate) at $0^{\circ} \mathrm{C}$. After complete addition, the mixture was extracted with MTBE ($\approx 30 \mathrm{~mL}$ per mmol of substrate) and the extract was washed with brine (ca. 30 mL per mmol substrate). The organic extract was dried with MgSO_{4}, filtered, and the solvent was removed in vacuo at $25^{\circ} \mathrm{C}$. Rapid (10 min) silica gel column chromatography of the residue ($4 \times 10 \mathrm{~cm}$ for 2.4 mmol substrate) provided allylboronate 5.

General procedure (a) for 2-(silyloxymethyl)allylboration of aldehydes

Allylboronate 5 (1.0 equiv) was added to a stirred solution of aldehyde $11 / 14$ (1.1 equiv) in anhydrous $\mathrm{Et}_{2} \mathrm{O}(0.15 \mathrm{~m}$ in boronate) at $0^{\circ} \mathrm{C}$. The solution was allowed to reach $20^{\circ} \mathrm{C}$ over 4 h . After 24 h at this temperature (TLC control) the solution was directly subjected to silica gel column chromatography $(1.5 \times 25 \mathrm{~cm}$ for $\approx 0.05 \mathrm{mmol}$ of substrate) to obtain the homoallylic alcohol product 12/13.

General procedure (b) for 2-(silyloxymethyl)allylboration of aldehydes

Allylboronate 5 (1.0 equiv) was added to a stirred suspension of aldehyde 11/14 (1.1 equiv) and $\mathrm{NaHCO}_{3}(0.30 \mathrm{mg}, 3.55 \mu \mathrm{~mol}$, 0.05 equiv) in anhydrous $\mathrm{Et}_{2} \mathrm{O}(0.5 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The mixture was kept at this temperature for 48 h (TLC control) whereupon it was directly subjected to silica gel column chromatography $(1.5 \times 25 \mathrm{~cm}$ for ca. 0.05 mmol of substrate) to obtain the homoallylic alcohol product $12 / 13$. Alternative workup for larger scale: Sat. NaHCO_{3} solution ($\approx 9 \mathrm{~mL}$ per mmol of substrate) was added and the biphasic mixture was stirred for 5 min . The organic layer was separated and washed with brine ($\approx 9 \mathrm{~mL}$ per mmol substrate). The organic extract was dried with MgSO_{4}, filtered, and the solvent was removed in vacuo at $25^{\circ} \mathrm{C}$. The homoallylic alcohol $12 / 13$ was obtained after silica gel column chromatography $(3 \times 20 \mathrm{~cm}$ for 2.2 mmol boronate) of the residue.

General procedure for the preparation of oxazolidinones SI-1/SI-2/SI-3 from N-Boc α-amino alcohols

To a stirred solution of N-Boc α-amino alcohol $12 \mathrm{f} / 13 \mathrm{f}$ (1.0 equiv) in anhydrous THF (0.07 m in substrate) at $0^{\circ} \mathrm{C}$ was added NaH (2.0 equiv, 60 weight $\%$ in mineral oil) in one portion. The suspension was allowed to warm to $20^{\circ} \mathrm{C}$ during 2 h and stirred at this temperature for 14 h (TLC control). The mixture was diluted with MTBE ($\approx 3.8 \mathrm{~mL}$ per $10 \mu \mathrm{~mol}$ of substrate) and sat. $\mathrm{NH}_{4} \mathrm{Cl}$ solution (ca. 3.8 mL per $10 \mu \mathrm{~mol}$ of substrate). The organic layer was then separated and washed with brine (ca. 3.8 mL per $10 \mu \mathrm{~mol}$ substrate). The organic extract was dried with MgSO_{4}, filtered, and the solvent was removed in vacuo. Silica gel column chromatography ($2 \times 15 \mathrm{~cm}$ for 0.04 mmol of substrate) of the residue delivered the oxazolidinone SI-1/SI-2/SI-3.

General procedure for the preparation of Mosher esters SI-6/SI-7/SI-8 from secondary alcohols

To a solution of a secondary alcohol (1.0 equiv) and DMAP (4.0 equiv) in anhydrous THF (0.04 m in substrate) was added (R)-(-)-MTPA-CI (1.0-1.6 equiv) at $0^{\circ} \mathrm{C}$ with stirring. The cooling bath was removed after 10 min and the suspension was allowed to warm to $20^{\circ} \mathrm{C}$. After 16 h at this temperature (TLC control) MTBE ($\approx 1.8 \mathrm{~mL}$ per $10 \mu \mathrm{~mol}$ of substrate) and sat. NaHCO_{3} solution (ca. 0.6 mL per $10 \mu \mathrm{~mol}$ of substrate) were added to the suspension. After additional 10 min of stirring, the mixture was added to MTBE (ca. 6 mL per $10 \mu \mathrm{~mol}$ of substrate) and sat. NaHCO_{3} solution (ca. 6 mL per $10 \mu \mathrm{~mol}$ of substrate). The organic layer was separated, washed with sat. NaHCO_{3} solution (ca. 6 mL per $10 \mu \mathrm{~mol}$ of substrate), and brine (ca. 6 mL per $10 \mu \mathrm{~mol}$ of substrate), dried with MgSO_{4}, filtered, and concentrated in vacuo at $25^{\circ} \mathrm{C}$. Silica gel column chromatography of the residue $\left(\mathrm{SiO}_{2} 15-40 \mu \mathrm{~m}, 1.5 \times\right.$ 15 cm for ca. $16 \mu \mathrm{~mol}$ of substrate) provided the (S)-MTPA ester (S)-SI-6/SI-7/SI-8. The (R)-MTPA ester (R)-SI-6/SI-7/SI-8 were analogously prepared from the epoxy alcohol using (S)-(+)-MTPA-CI.

Computational details

All spin polarized density functional theory (DFT) calculations were performed within the Orca program package version 4.0.1, ${ }^{[45]}$ whereas input structures for transition state geometry optimization were generated with the Spartan 14 v 114 software by the semi-empirical parameterized model 6 (PM6) method. ${ }^{[46]}$ For all DFT calculations the correlation consistent cc-pVDZ basis set according to Dunning was used. ${ }^{[36 d]}$ The exchange and correlation effects were taken into account with the hybrid functional by Becke and Lee-Yang-Parr (B3LYP) ${ }^{[36 c, e]}$ and dispersion interactions were considered via the Becke-Johnson damping Scheme $[D 3(B J)] .{ }^{[36 a, b]}$ For the energy rotation profiles, constrained geometry optimizations were performed at fixed dihedral angles, which were spanned by the oxygen atom of the respective epoxide and aldehyde groups. The transition states were located by calculating the Hesse matrix and fully optimizing their geometries in the gas phase. By calculating the vibrational frequencies within the harmonic approximation, the optimized structures were confirmed as transition states through the presence of only one imaginary frequency.

Acknowledgements

Partial support by the TMWWDG (grant no. 43-5572-321-12040-12, to H.-D. A) and the DFG (SFB 1127, to H.-D. A.) is acknowledged. R. R. A. F. was a recipient of a doctoral fellowship
from the Fonds der Chemischen Industrie (FCI). Computational resources were provided by the state of Baden-Württemberg through bwHPC and the DFG (INST 40/467-1 FUGG, to T. J.).

Conflict of interest

The authors declare no conflict of interest.

Keywords: allylation • allylboronates • Cornforth-Evans stereoinduction models • synthetic methods
[1] a) P. A. Frey, A. D. Hegeman, Enzymatic reaction mechanisms, Oxford University Press, 2007; b) M. E. Glasner, J. A. Gerlt, P. C. Babbitt, Curr. Opin. Chem. Biol. 2006, 10, 492-497.
[2] a) R. B. Woodward, E. Logusch, K. P. Nambiar, K. Sakan, D. E. Ward, B. W. Au-Yeung, P. Balaram, L. J. Browne, P. J. Card, C. H. Chen, J. Am. Chem. Soc. 1981, 103, 3210-3213; b) H. Nagaoka, Y. Kishi, Tetrahedron 1981 37, 3873-3888.
[3] J.-D. Zhai, D. Li, J. Long, H.-L. Zhang, J.-P. Lin, C.-J. Qiu, Q. Zhang, Y. Chen, J. Org. Chem. 2012, 77, 7103-7107.
[4] S. Roscales, J. Plumet, Int. J. Carbohydr. Chem. 2016, Article ID 4760548.
[5] W.-J. Chung, J. S. Carlson, D. K. Bedke, C. D. Vanderwal, Angew. Chem. Int. Ed. 2013, 52, 10052-10055; Angew. Chem. 2013, 125, 10236-10239.
[6] a) T. Sawano, H. Yamamoto, J. Org. Chem. 2018, 83, 4889-4904; b) A. M. Bailey, S. Wolfrum, E. M. Carreira, Angew. Chem. Int. Ed. 2016, 55, $639-$ 643; Angew. Chem. 2016, 128, 649-653; c) Q. Wu, C. Wu, H. Long, R. Chen, D. Liu, P. Proksch, P. Guo, W. Lin, J. Nat. Prod. 2015, 78, $2461-$ 2470; d) M. Sasaki, K. Tanino, A. Hirai, M. Miyashita, Org. Lett. 2003, 5, 1789-1791; e) R. M. Hanson, Chem. Rev. 1991, 91, 437-475.
[7] R. R. A. Freund, P. Gobrecht, Z. Rao, J. Gerstmeier, R. Schlosser, H. Görls, O. Werz, D. Fischer, H.-D. Arndt, Chem. Sci. 2019, 10, 7358-7364.
[8] a) T.-P. Loh, Z. Yin, H.-Y. Song, K.-L. Tan, Tetrahedron Lett. 2003, 44, 911 914; b) A. Mengel, O. Reiser, Chem. Rev. 1999, 99, 1191-1223; c) M. J. Wanner, N. P. Willard, G. J. Koomen, U. K. Pandit, Tetrahedron 1987, 43, 2549-2556; d) R. H. Schlessinger, J. L. Wood, J. Org. Chem. 1986, 51, 2621-2623; e) D. A. Hutchison, K. R. Beck, R. A. Benkeser, J. B. Grutzner, J. Am. Chem. Soc. 1973, 95, 7075-7082.
[9] A. D. Walsh, Trans. Faraday Soc. 1949, 45, 179-190.
[10] a) N. Bartlett, L. Gross, F. Péron, D. J. Asby, M. D. Selby, A. Tavassoli, B. Linclau, Chem. Eur. J. 2014, 20, 3306-3310; b) F. Zhang, Y. Liu, L. Xie, X. Xu, RSC Adv. 2014, 4, 17218-17221; c) Y. Takeda, T. Matsumoto, F. Sato, J. Org. Chem. 1986, 51, 4728-4731; d) L. A. Paquette, T. M. Mitzel, J. Am. Chem. Soc. 1996, 118, 1931-1937.
[11] a) N. T. Anh, O. Eisenstein, Nouv. J. Chim. 1977, 1, 61-70; b) M. Chérest, H. Felkin, N. Prudent, Tetrahedron Lett. 1968, 9, 2199-2204.
[12] a) H. B. Bürgi, J. D. Dunitz, J. M. Lehn, G. Wipff, Tetrahedron 1974, 30, 1563-1572; b) H. B. Bürgi, J. D. Dunitz, E. Shefter, J. Am. Chem. Soc. 1973, 95, 5065-5067.
[13] V. J. Cee, C. J. Cramer, D. A. Evans, J. Am. Chem. Soc. 2006, 128, 2920 2930.
[14] a) R. E. Rosenberg, W. J. Kelly, J. Phys. Org. Chem. 2015, 28, 47-56; b) D. A. Evans, S. J. Siska, V. J. Cee, Angew. Chem. Int. Ed. 2003, 42, 1761-1765; Angew. Chem. 2003, 115, 1803-1807; c) J. A. Marco, M. Carda, S. Díaz-Oltra, J. Murga, E. Falomir, H. Roeper, J. Org. Chem. 2003, 68, 8577 - 8582 ; d) B. W. Gung, X. Xue, Tetrahedron: Asymmetry 2001, 12, 2955-2959; e) W. R. Roush, M. A. Adam, A. E. Walts, D. J. Harris, J. Am. Chem. Soc. 1986, 108, 3422-3434.
[15] J. W. Cornforth, R. H. Cornforth, K. K. J. Mathew, J. Chem. Soc. 1959, 112-127.
[16] a) C. Gennari, E. Fioravanzo, A. Bernardi, A. Vulpetti, Tetrahedron 1994, 50, 8815-8826; b) C. Gennari, S. Vieth, A. Comotti, A. Vulpetti, J. M Goodman, I. Paterson, Tetrahedron 1992, 48, 4439-4458; c) W. R. Roush, J. Org. Chem. 1991, 56, 4151-4157.
[17] I. Fleming, Molecular Orbitals and Organic Chemical Reactions: Reference Edition, John Wiley \& Sons, 2010, 226-229.
[18] a) Y. Zhang, Y. Wu, Org. Biomol. Chem. 2010, 8, 4744-4752; b) A. Alexakis, P. Mangeney, J. F. Normant, Tetrahedron Lett. 1985, 26, 4197-4200.
[19] H. Ren, A. Krasovskiy, P. Knochel, Chem. Commun. 2005, 543-545.
[20] A. Krasovskiy, B. F. Straub, P. Knochel, Angew. Chem. Int. Ed. 2006, 45, 159-162; Angew. Chem. 2006, 118, 165-169.
[21] K. Kitagawa, A. Inoue, H. Shinokubo, K. Oshima, Angew. Chem. Int. Ed. 2000, 39, 2481-2483; Angew. Chem. 2000, 112, 2594-2596.
[22] a) R. W. Hoffmann, T. Sander, A. Hense, Liebigs Ann. Chem. 1993, 771 775; b) T. Watanabe, N. Miyaura, A. Suzuki, J. Organomet. Chem. 1993, 444, C1-C3; c) P. Knochel, J. Am. Chem. Soc. 1990, 112, 7431-7433.
[23] D. F. Taber, M. I. Sikkander, J. F. Berry, K. J. Frankowski, J. Org. Chem. 2008, 73, 1605-1607.
[24] A. Yanagisawa, S. Habaue, H. Yamamoto, J. Am. Chem. Soc. 1991, 113, 5893-5895.
[25] I. W. Ashworth, J. A. L. Miles, D. J. Nelson, J. M. Percy, K. Singh, Tetrahedron 2009, 65, 9637-9646.
[26] R. R. A. Freund, P. Gobrecht, P. Moser, D. Fischer, H.-D. Arndt, Org. Biomol. Chem. 2019, 17, 9703-9707.
[27] T. G. Elford, D. G. Hall, Synthesis 2010, 893-907.
[28] a) P. G. M. Wuts, S. S. Bigelow, J. Org. Chem. 1988, 53, 5023-5034; b) W. R. Roush, M. A. Adam, D. J. Harris, J. Org. Chem. 1985, 50, 2000 2003.
[29] G. Niel, F. Roux, Y. Maisonnasse, I. Maugras, J. Poncet, P. Jouin, J. Chem. Soc. Perkin Trans. 1 1994, 1275-1280.
[30] T. R. Hoye, C. S. Jeffrey, F. Shao, Nat. Protoc. 2007, 2, 2451-2458.
[31] M. Chen, W. R. Roush, J. Am. Chem. Soc. 2012, 134, 3925-3931.
[32] A. Ghantous, H. Gali-Muhtasib, H. Vuorela, N. A. Saliba, N. Darwiche, Drug Discovery Today 2010, 15, 668-678.
[33] T. M. Hansen, G. F. Florence, P. Lugo-Mas, J. Chen, J. N. Abrams, C. J. Forsyth, Tetrahedron Lett. 2003, 44, 57-59.
[34] a) R. Bloch, C. Brillet, Synlett 1991, 829-830; b) R. R. A. Freund, H.-D. Arndt, J. Org. Chem. 2016, 81, 11009-11016.
[35] J. J. Gajewski, W. Bocian, N. L. Brichford, J. L. Henderson, J. Org. Chem. 2002, 67, 4236-4240.
[36] a) S. Grimme, S. Ehrlich, L. Goerigk, J. Comput. Chem. 2011, 32, 1456 1465; b) S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 2010, 132, 154104; c) A. D. Becke, J. Chem. Phys. 1993, 98, 5648-5652; d) T. H. Dunning, Jr., J. Chem. Phys. 1989, 90, 1007-1023; e) C. Lee, W. Yang, R. G. Parr, Phys. Rev. B 1988, 37, 785-789.
[37] R. M. Pontes, B. C. Fiorin, E. A. Basso, Chem. Phys. Lett. 2004, 395, 205 209.
[38] G. Frenking, K. F. Köhler, M. T. Reetz, Tetrahedron 1993, 49, 3971-3982.
[39] G. J. Karabatsos, D. J. Fenoglio, J. Am. Chem. Soc. 1969, 91, 3577-3582.
[40] W. M. Haynes, CRC Handbook of Chemistry and Physics, 97 ed., CRC press, 2017, 9-59-59-67.
[41] a) A. Vulpetti, M. Gardner, C. Gennari, A. Bernardi, J. M. Goodman, I. Paterson, J. Org. Chem. 1993, 58, 1711-1718; b) Y. Li, K. N. Houk, J. Am. Chem. Soc. 1989, 111, 1236-1240.
[42] R. S. Paton, J. M. Goodman, J. Org. Chem. 2008, 73, 1253-1263.
[43] S. E. Denmark, G. L. Beutner, T. Wynn, M. D. Eastgate, J. Am. Chem. Soc. 2005, 127, 3774-3789.
[44] R. Robiette, J. Richardson, V. K. Aggarwal, J. N. Harvey, J. Am. Chem. Soc. 2005, 127, 13468-13469.
[45] F. Neese, Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2012, 2, 73-78.
[46] a) J. J. P. Stewart, J. Mol. Model. 2007, 13, 1173-1213; b) Spartan "14, Irvine, 2014.

Manuscript received: March 27, 2020
Revised manuscript received: April 1, 2020
Accepted manuscript online: April 2, 2020
Version of record online: June 22, 2020

