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Abstract Planctomycetes are ubiquitous bacteria

with environmental and biotechnological relevance.

Axenic cultures of planctomycetal strains are the basis

to analyse their unusual biology and largely unchar-

acterised metabolism inmore detail. Here, we describe

strain Mal4T isolated from marine sediments close to

Palma de Mallorca, Spain. Strain Mal4T displays

common planctomycetal features, such as division by

polar budding and the presence of fimbriae and

crateriform structures on the cell surface. Cell growth

was observed at ranges of 10–39 �C (optimum at 31

�C) and pH 6.5–9.0 (optimum at 7.5). The novel strain

shows as pear-shaped cells of 2.0 ± 0.2 9 1.4 ± 0.1

lm and is one of the rare examples of orange colony-

forming Planctomycetes. Its genome has a size of 7.7

Mb with a G?C content of 63.4%. Phylogenetically,

we conclude that strain Mal4T (= DSM 100296T

= LMG 29133T) is the type strain representing the

type species of a novel genus, for which we propose

the name Maioricimonas rarisocia gen. nov., sp. nov.

Keywords Marine bacteria � Planctomycetes � PVC
superphylum � Mallorca coast � Planctomicrobium
piriforme � Thalassoglobus

Introduction

Planctomycetes are bacteria that belong to the PVC

superphylum (Wagner and Horn 2006), which

includes the phyla Planctomycetes, Verrucomicrobia,

Chlamydiae, Lentisphaerae and Kirimatiellaeota as

well as some uncultured candidate phyla, such as

Candidatus Omnitrophica. The PVC superphylum has

environmental, medical and biotechnological rele-

vance (Devos and Ward 2014).

Planctomycetes have been shown to be present in

several environments, in which they play important

roles in biogeochemical cycles, such as the carbon and

nitrogen cycle (Wiegand et al. 2018). One example are
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Planctomycetes of the class Candidatus Brocadiae,

which perform unique reactions during anaerobic

ammonium oxidation (anammox) (Strous et al. 1999;

Peeters and van Niftrik 2019). Members of the phylum

Planctomycetes, in particular of the class Plancto-

mycetia, colonise a variety of environments from

terrestrial to aquatic, being able to dwell on various

marine algal surfaces (Bengtsson et al. 2012; Bondoso

et al. 2014, 2015, 2017; Lage and Bondoso 2014;

Vollmers et al. 2017). They form biofilms on biotic

surfaces (Bengtsson and Øvreås 2010), on which they

metabolise complex carbon substrates (Lachnit et al.

2013; Jeske et al. 2013). Unique pili-forming crater-

iform structures and an enlarged periplasm are prob-

ably required for uptake and also cleavage of large

polysaccharides obtained from the environment (Boe-

deker et al. 2017).

Planctomycetes possess large genomes with sizes

of up to 12.4 Mb (Ravin et al. 2018), in which the

presence of giant genes has been reported (Jeske et al.

2013; Guo et al. 2014; Kohn et al. 2016; Faria et al.

2018). These genome sizes are in line with their

assumed capacity for secondary metabolite production

(Graça et al. 2016; Jeske et al. 2016; Yadav et al.

2018). Furthermore, several members of the phylum

Planctomycetes produce carotenoids, which could be

associated with an increased tolerance against UV

radiation or oxidative stress (Kallscheuer et al. 2019b).

Planctomycetes were considered exceptional due to

several presumptively eukaryotic features, such as the

lack of a peptidoglycan (König et al. 1984), a

compartmentalised cell plan (Lindsay et al. 1997), a

nucleus-like structure (Fuerst and Webb 1991) and the

endocytosis-like uptake of macromolecules for an

intracellular degradation (Lonhienne et al. 2010).

However, with advances of microscopy techniques

and the development of genetic tools (Jogler et al.

2011; Rivas-Marı́n et al. 2016b; Boedeker et al. 2017),

many of these traits have been refuted or reinterpreted.

In recent years, the presence of peptidoglycan has

been reported in several members of the Plancto-

mycetes (Jeske et al. 2015; van Teeseling et al. 2015)

and also in the sister phyla Verrucomicrobia (Rast

et al. 2017) and Chlamydiae (Pilhofer et al. 2013;

Liechti et al. 2014, 2016). With the exception of

anammox-performing Planctomycetes (Jogler 2014;

Neumann et al. 2014), the proposed cell plan has been

found to feature large invaginations of the cytoplasmic

membrane instead of closed compartments

(Santarella-Mellwig et al. 2013; Acehan et al. 2014;

Boedeker et al. 2017). These discoveries contributed

to the reinterpretation of Planctomycetes as bacteria

with a cell envelope architecture resembling that of

Gram-negative bacteria, but with some variations

(Devos 2014a, b; Boedeker et al. 2017). Nevertheless,

Planctomycetes remain exceptional in other ways, e.g.

they lack the protein FtsZ normally essential for

bacterial division as well as other division proteins

(Pilhofer et al. 2008; Jogler et al. 2012; Rivas-Marı́n

et al. 2016a). Beyond that, phylum members divide by

binary fission, budding or intermediate mechanisms

(Wiegand et al. 2018, 2020). Presence and essentiality

of sterols in the membranes of one of its members was

recently reported (Pearson et al. 2003; Rivas-Marin

et al. 2019).

The unusual cell biology of Planctomycetes

prompted us to explore the uncharacterised plancto-

mycetal diversity. In the present study, we describe the

novel strain Mal4T isolated from marine sediments in

Palma de Mallorca (Spain) in terms of physiological,

microscopic as well as genomic properties. Supported

by phylogenetic analyses, we conclude that strain

Mal4T represents a novel species of a novel genus

within the family Planctomycetaceae.

Materials and methods

Cultivation conditions and isolation

Strain Mal4T was isolated from marine sediments at

the coast of S’Arenal close to Palma de Mallorca

(Spain) on the 23th of September 2014 (sampling

location: 39.5126 N 2.7470 E) as previously described

(Wiegand et al. 2020). For strain isolation and

cultivation M1H NAG ASW medium was used.

Medium preparation was previously described

(Kallscheuer et al. 2019a). Cultures were incubated

in baffled flasks at 28 �C with constant agitation at 110

rpm. Plates were cultivated at 28 �C for 2–3 weeks and

isolated colonies were then streaked on fresh M1H

NAG ASW plates. Initial amplification and sequenc-

ing of the 16S rRNA gene, intended to check whether

isolated strains are members of the phylum Plancto-

mycetes, was performed as previously described (Rast

et al. 2017).
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Physiological analyses

Cultivations for physiological assays were performed

in M1H NAG ASW medium. For pH optimum

determination, 100 mM 2-(N-morpholino)ethanesul-

fonic acid (MES) was used for cultivations at pH 5.0,

5.5, 6.0 and 6.5. For cultivations at pH values ranging

from 7.0 to 8.0, MES was replaced by 100 mM 4-(2-

hydroxyethyl)-1-piperazine-ethanesulfonic acid

(HEPES), whereas 100 mM 3-(4-(2-Hydrox-

yethyl)piperazin-1-yl)-propane-1-sulfonic acid

(HEPPS) served as a buffering agent at pH 8.5 and

100 mM N-cyclohexyl-2-aminoethanesulfonic acid

(CHES) was used for pH maintenance at pH 9.0 and

9.5. Cultivations for determination of the pH optimum

were performed at 28 �C. For temperature optimum

determination, strainMal4T was cultivated at pH 8.0 at

different temperatures ranging from 10 to 39 �C. Cell
growth and maximal growth rates were inferred from

optical density measurements at 600 nm (OD600) of

triplicate cultures.

Genome analysis

The genome of strain Mal4T was previously published

(Wiegand et al. 2020). The genome (accession number

CP036275) and 16S rRNA gene sequence (accession

number MK559979) are available from the GenBank

database. The primary metabolism was analysed by

examining locally computed InterProScan (Mitchell

et al. 2019) results cross-referenced with information

from the UniProt database (UniProt 2019) and BlastP

results of ‘typical’ protein sequences. Numbers of

carbohydrate-active enzymes were determined by

employing dbCAN2 (Zhang et al. 2018), which

automatically mines the CAZy database (Lombard

et al. 2014).

Light microscopy and scanning electron

microscopy

Phase contrast microscopy and scanning electron

microscopy were performed according to protocols

published earlier (Kallscheuer et al. 2019a).

Phylogenetic analyses

16S rRNA gene sequence-based phylogeny was

computed for strain Mal4T, the type strains of all

described planctomycetal species (assessed in January

2020) and all isolates recently published (Kohn et al.

2016, 2020a, b; Boersma et al. 2019; Kallscheuer et al.

2019a; Dedysh et al. 2020; Wiegand et al. 2020). An

alignment of 16S rRNA gene sequences was per-

formed with SINA (Pruesse et al. 2012). The phylo-

genetic analysis was conducted employing a

maximum likelihood approach with 1000 bootstraps,

the nucleotide substitution model GTR, gamma dis-

tribution and estimation of proportion of invariable

sites (GTRGAMMAI option) (Stamatakis 2014).

Three 16S rRNA genes of bacterial strains from the

PVC superphylum, but outside of the phylum Planc-

tomycetes, were used as outgroup. The rpoB nucleo-

tide sequences (encoding the RNA polymerase b-
subunit) were taken from publicly available genome

annotations and the sequence identities were deter-

mined as described previously (Bondoso et al. 2013)

using Clustal Omega (Sievers et al. 2011). Alignment

and matrix calculation were done after extracting only

those parts of the sequence that would have been

sequenced with the described primer set. The average

nucleotide identity (ANI) was calculated using

OrthoANI (Lee et al. 2016). The average amino acid

identity (AAI) was obtained with the aai.rb script of

the enveomics collection (Rodriguez-R and Konstan-

tinidis 2016). The percentage of conserved proteins

(POCP) was calculated as described before (Qin et al.

2014). The unique single-copy core genome of all

analysed genomes for the multi-locus sequence anal-

ysis (MLSA) was determined with proteinortho5

(Lechner et al. 2011) (‘selfblast’ option enabled).

The sequences of the obtained orthologous groups

were aligned using MUSCLE v.3.8.31 (Edgar 2004).

After clipping, partially aligned C- and N-terminal

regions and poorly aligned internal regions were

filtered using Gblocks (Castresana 2000). The final

alignment was concatenated and clustered using the

maximum likelihood method implemented by RaxML

(Stamatakis 2014) with the ‘rapid bootstrap’ method

and 500 bootstrap replicates.

Results and discussion

Phylogenetic inference

In the phylogenetic trees obtained after analysis of 16S

rRNA gene sequences, as well as MLSA (Fig. 1),
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strain Mal4T clusters stably with members of two

genera of the family Planctomycetaceae, namely

Planctomicrobium and Thalassoglobus. 16S rRNA

gene sequence identity between strain Mal4T and the

two genera is between 91.4% and 91.9% (Fig. 2).

These values are below the proposed genus threshold

of 94.5%, but above the threshold for separate families

of 86.5% (Yarza et al. 2014), indicating that strain

Mal4T represents an distinct genus in the family

Planctomycetaceae. Coherently, average nucleotide

identities (ANI) below 95% confirm that strain Mal4T

is a distinct species. Phylogenetic assumptions on the

genus level can also be obtained by analysing the rpoB

gene sequence identities, AAI and POCP. For delin-

eation of genera, the proposed threshold values for the

above-mentioned markers are 75.5–78% (Kallscheuer

Fig. 1 Phylogenetic trees highlighting the position of strain

Mal4T. The outgroup consists of three 16S rRNA genes from the

PVC superphylum outside of the phylum Planctomycetes.

Bootstrap values from 1000 re-samplings (500 re-samplings

for MLSA) are given at the nodes (in %)
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et al. 2019c), 45–65% (Konstantinidis et al. 2017) and

50% (Qin et al. 2014), respectively. The rpoB identity

value and the AAI between strain Mal4T and the

members of the genus Thalassoglobus, which com-

prises Thalassoglobus neptuniusKOR42T (Kohn et al.

2020a) and Thalassoglobus polymorphus Mal48T

(Rivas-Marin et al. 2020), are below the given

thresholds. POCP was found to be slightly above the

threshold (51.2%), this, however, does not signifi-

cantly influence the overall conclusion that strain

Mal4T belongs to a separate genus. Minimal compar-

ative values of strain Mal4T and the genus Rubinis-

phaera, another closely related genus; featuring

Rubinisphaera italica (Kallscheuer et al. 2019a) and

Rubinisphaera brasiliensis (Scheuner et al. 2014), are

below these thresholds for all three phylogenetic

markers (Fig. 2). Analogously, POCP between strain

Mal4T and Planctomicrobium piriforme P3T (Kuli-

chevskaya et al. 2015) was also found to fall below the

proposed threshold (Fig. 2), whilst the AAI value

(56%) was in a ‘grey zone’ (45–65%), but well below

the upper limit. Although the rpoB gene sequence

identity of 78.6% is slightly above the proposed

threshold, this sole deviance should not overrule the

distinctiveness of the other values. In summary, the

majority of analysed phylogenetic markers suggests

that strain Mal4T belongs to a novel genus.

Morphological and physiological analyses

Light microscopy and scanning electron microscopy

(Fig. 3) were applied to analyse the morphological

characteristic of Mal4T cells harvested during the

exponential growth phase. Detailed information on

morphology and cell division is summarised in

comparison to the current closest relatives (Table 1).

Mal4T cells are pear-shaped (2.0 ± 0.2 lm 9 1.4 ±

0.1 lm) (Fig. 3a–c), occur as single cells and in rare

Fig. 2 Similarity values of the novel isolate Mal4T in relation to

species P. piriforme P3T, Thalassoglobus sp. and Rubinisphaera

sp. Methods used: 16S rRNA gene sequence identity, rpoB gene

identity, percentage of conserved proteins (POCP), average

nucleotide identity (ANI) and average amino acid identity (AAI)
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cases form aggregates (Fig. 3d). The cell surface

appears rough, evenly covered with crateriform struc-

tures and short fimbriae (Fig. 3d, e). A holdfast

structure was not observed during electron micro-

scopy. As shown for all described members of the

family Planctomycetaceae, cell division takes place

by polar budding with the daughter cell displaying a

round shape. Optimal temperature and pH for growth

were shown to be 31 �C and pH 7.5, respectively,

however, Mal4T cells are able to grow over a range of

10–39 �C and pH 6.5–9.0 (Fig. 4). These values are

comparable to the two Thalassoglobus species, but

differ from P. piriforme P3T, which did not grow at

temperatures exceeding 30 �C and favours moderate

acidic conditions. The maximal observed growth rate

of strain Mal4T in M1H NAG ASW medium was

determined to be 0.041 h-1, corresponding to a

generation time of approximately 17 h. Strain Mal4T

is amongst the rare examples of planctomycetal strains

forming orange colonies and might thus be an

interesting strain for further analysis of carotenoid

production and their function in Planctomycetes.

Since most of the planctomycetal strains characterised

so far are either pink to red or lack pigmentation

(white), the pigmentation of the novel strain is an

important phenotypic feature separating it from its

current close phylogenetic neighbours. StrainMal4T is

an aerobic heterotroph.

Genomic characteristics

The genomic characteristics of strain Mal4T in com-

parison to T. polymorphus Mal48T, T. neptunius

KOR42T and P. piriforme P3T are summarised in

Table 1. Its genome is 7.7 Mb in size, which is around

1 Mb larger compared to the other three strains. The

G?C content is also the highest of the four strains.

Automated gene prediction and annotation identified

5829 putative protein-encoding genes, of which 39%

(2257 genes) are annotated as hypothetical proteins.

These values correspond to 753 protein-coding genes

per Mb and a coding density of 85.9%. Although the

Fig. 3 Microscopy images and cell size plot of strain Mal4T.

Pictures from light microscopy (a, b) and scanning electron

microscopy (d, e) are shown. The scale bars are 1 lm. For

determination of the cell size (c) at least 100 representative cells
were counted manually or by using a semi-automated object

count tool
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genome size of strain Mal4T is larger, the coding

density is in the same range in the other three species.

Similar to its relatives, the strain lacks plasmids.

Numbers of 41–55 tRNA genes are similar, except for

T. neptunius KOR42T, which has a slightly higher

number of 70 tRNA genes. As for T. polymorphus

Mal48T, strain Mal4T harbours two copies of the 16S

rRNA gene, whereas the gene occurs in single copy in

the other two strains.

Table 1 Phenotypic and genotypic features of strain Mal4T in comparison to its current closest relatives

Characteristics Mal4T Thalassoglobus

polymorphus Mal48T
Thalassoglobus

neptunius KOR42T
Planctomicrobium

piriforme P3T*

Phenotypic features

Color Orange Beige Cream White

Size (lm) 2.0 9 1.4 1.6 9 0.9 1.7 (diameter) 1.7–2.8 9 0.9–1.3 lm

Shape Pear-shaped Pear-shaped Spherical Ellipsoidal to pear-

shaped

Temperature range

(optimum) (�C)
10–39 (31) 15–36 (30) 22–36 (33) 10–30 (20–28)

pH range (optimum) 6.5–9.0 (7.5) 6.5–8.0 (7.5) 5.5–8.5 (7.0–7.5) 4.2–7.1 (6.0–6.5)

Aggregates Yes Yes Yes Yes

Division Budding Budding Budding Budding

Dimorphic life cycle n.o. n.o. n.o. Yes

Flagella n.o. n.o. n.o. Yes

Crateriform structures Yes, overall n.o. Yes Yes, polar

Fimbriae Yes, overall matrix

or fibre

Yes, overall matrix or

fibre

Few fibres Yes

Capsule n.o. n.o. n.o. n.d.

Bud shape Round Like mother cell Round Like mother cell

Budding pole Polar Polar n.o. Polar

Stalk Yes Yes n.o. Yes

Holdfast structure n.o. n.o. Yes Yes

Genotypic features

Genome size (bp) 7,744,989 6,357,355 6,734,412 6,317,004

Plasmids (bp) No No n.d. n.o.

G?C content (%) 63.4 50.3 52.8 58.8

Protein-coding genes 5829 4874 5508 5050

Protein-coding genes/

Mb

753 767 818 799

Hypothetical proteins 2257 1987 2516 2814

Coding density (%) 85.9 84.9 85.7 85.8

16S rRNA genes 2 2 1 1

tRNA genes 55 41 70 53

*Genomic data from GenBank acc. no. NZ_FOQD00000000

n.o. not observed, n.d. not determined
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Genome-encoded features of the primary carbon

metabolism

Based on the genome sequences, we analysed key

metabolic capabilities in the primary metabolism of

strain Mal4T in comparison to the two Thalassoglobus

species and P. piriforme P3T (Table 2). Genes coding

for enzymes participating in glycolytic pathways,

gluconeogenesis, the tricarboxylic acid (TCA) cycle

and anaplerotic reactions, such as pyruvate or phos-

phoenolpyruvate carboxylation and the glyoxylate

shunt, were included. The resulting data suggest that

strain Mal4T is able to metabolise carbohydrates using

at least two glycolytic pathways, the Embden-Meyer-

hof-Parnas pathway (the most common glycolytic

pathway) and the pentose phosphate pathway. Addi-

tionally, its genome bears genes coding for putative

2-dehydro-3-deoxyphosphogluconate aldolase and

phosphogluconate dehydratase, both involved in the

alternative Entner-Doudoroff pathway. All four

strains harbour a complete gene set required for a

functional TCA cycle, which suggests that the central

carbon metabolism of the strains is similar to canon-

ical heterotrophic bacteria. With regard to gluconeo-

genesis, a minimal gene set required for this pathway

has been identified, suggesting that the three strains

are capable of de novo sugar biosynthesis. All four

strains lack the glyoxylate shunt, which is typically

required during growth either with acetate or with

compounds that are degraded to acetate or acetyl-CoA

units. The lack of the glyoxylate shunt suggests that

the strains are not able to use such compounds as the

exclusive energy and carbon source. Alternatively,

they may follow a different pathway with a similar

function.

Based on the physiological, morphological and

phylogenetic analyses of strain Mal4T, we conclude

that the characterised strain represents a novel species

within the novel genus Maioricimonas. Thus, we

propose the name Maioricimonas rarisocia gen. nov.,

sp. nov., represented by the type strain Mal4T.

Maioricimonas gen. nov.

Maioricimonas (Ma.io.ri.ci’mo.nas. M.L. fem. n.

Maiorica of Mallorca; L. fem. n.monas a unit, monad;

N.L. fem. n. Maioricimonas a monad from Mallorca,

Spain).

Cells have a Gram-negative cell envelope archi-

tecture and divide by polar budding. Cells are

mesophilic, neutrophilic, aerobic and heterotrophic

and present crateriform structures and matrix or

fimbriae. The genus is part of the family Planctomyc-

etaceae, order Planctomycetales, class Planctomyce-

tia, phylum Planctomycetes. The type species of the

genus is Maioricimonas rarisocia.

Maioricimonas rarisocia sp. nov.

Maioricimonas rarisocia (ra.ri.so’ci.a. L. masc. adj.

rarus few, infrequent; L. masc. adj. socius allied,

united; N.L. fem. adj. rarisocia; corresponding to the

characteristic of the cells to seldom form aggregates).

In addition to the features described for the genus,

cells are pear-shaped (2.0 9 1.4 lm), form orange

colonies and mostly occur as single cells. Temperature

and pH optimum of the type strain are 31 �C and 7.5,

respectively, however growth is observed over a range

Fig. 4 Temperature and pH optima of strain Mal4T. Data points

show average growth rates obtained after cultivation in M1H

NAG ASW medium in biological triplicates. Cultivations at

different temperatures (a) were performed at pH 8. Cultivations

at different pH values (b) were conducted at 28 �C
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Table 2 Genome-based primary metabolism of strain Mal4T compared to the close relatives Thalassoglobus polymorphus Mal48T,

Thalassoglobus neptunius KOR42T and Planctomicrobium piriforme P3T

Enzyme EC

number

Gene Mal4T Mal48T KOR42T P3T*

Glycolysis (Embden–Meyerhof–Parnas pathway)

Glucose-6-phosphate isomerase 5.3.1.9 pgi Mal4_41440 Y Y Y

ATP-dependent 6-phosphofructokinase

isozyme 1

2.7.1.11 pfkA Mal4_28800 Y Y Y

Fructose-bisphosphate aldolase class 2 4.1.2.13 fbaA Mal4_06980 Y Y Y

Triosephosphate isomerase 5.3.1.1 tpiA Mal4_33520 Y Y Y

Glyceraldehyde-3-phosphate dehydrogenase 1.2.1.12 gapA Mal4_10410 Y Y Y

Phosphoglycerate kinase 2.7.2.3 pgk Mal4_43170 Y Y Y

2,3-Bisphosphoglycerate-independent

phosphoglycerate mutase

5.4.2.12 gpmI Mal4_57980 Y Y n.a.

2,3-Bisphosphoglycerate-dependent

phosphoglycerate mutase

5.4.2.11 gpmA N N N Y

Enolase 4.2.1.11 eno Mal4_26950 Y Y Y

Pyruvate kinase I 2.7.1.40 pykF Mal4_16440 N N Y

Pyruvate dehydrogenase complex 1.2.4.1/

2.3.1.12

aceEF Mal4_36650/ Mal4_31770 Y Y Y

Gluconeogenesis

Phosphoenolpyruvate synthase 2.7.9.2 ppsA N N N n.a.

Pyruvate, phosphate dikinase 2.7.9.1 ppdK Mal4_37310 Y Y Y

Pyruvate carboxylase 6.4.1.1 pyc Mal4_02890 Y Y Y

Phosphoenolpyruvate carboxykinase (ATP) 4.1.1.49 pckA Mal4_29720 N N Y

Phosphoenolpyruvate carboxykinase (GTP) 4.1.1.32 pckG N N N N

Phosphoenolpyruvate carboxykinase

(diphosphate)

4.1.1.38 PEPCK Mal4_57980 Y Y n.a.

Fructose-1,6-bisphosphatase class 2 3.1.3.11 glpX N N N n.a.

Fructose-1,6-bisphosphatase class 1 3.1.3.11 fbp Mal4_30740 N N n.a.

Pyrophosphate–fructose 6-phosphate

1-phosphotransferase

2.7.1.90 pfp Mal4_26620 Y Y Y

Pentose phosphate pathway

Glucose-6-phosphate 1-dehydrogenase 1.1.1.49 zwf Mal4_45260 Y Y Y

6-Phosphogluconolactonase 3.1.1.31 pgl Mal4_13550, Mal4_58700,

Mal4_20230

Y Y Y

6-Phosphogluconate dehydrogenase,

decarboxylating

1.1.1.44 gndA Mal4_26580 Y Y Y

Transketolase 2 2.2.1.1 tktB Mal4_57590/Mal4_57600 Y Y Y

Transaldolase B 2.2.1.2 talB Mal4_01090 Y Y Y

KDPG (Entner–Doudoroff pathway)

KDPG aldolase 4.1.2.14 eda Mal4_43780 Y Y Y

Phosphogluconate dehydratase 4.2.1.12 edd Mal4_05000 Y Y Y

TCA cycle

Citrate synthase 2.3.3.16 gltA Mal4_25960 Y Y Y

Aconitate hydratase A 4.2.1.3 acnA Mal4_15300 Y Y Y

Isocitrate dehydrogenase [NADP] 1.1.1.42 icd Mal4_26830 Y Y Y
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of 10–39 �C and pH 6.5–9.0. The type strain genome

(accession number CP036275) and 16S rRNA gene

(accession number MK559979) are available from

GenBank. The genome of the type strain has a G?C

content of 63.4% and a size of 7.7 Mb.

The type strain is Mal4T (= DSM 100296T = LMG

29133T, deposited as strain Malle4), isolated from

marine sediments near the coast of S’Arenal in Palma

de Mallorca, Mallorca Island, Spain.
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Boedeker C, Schüler M, Reintjes G et al (2017) Determining the

bacterial cell biology of Planctomycetes. Nat Commun

8:14853. https://doi.org/10.1038/ncomms14853

Boersma AS, Kallscheuer N, Wiegand S et al (2019) Alieni-

monas californiensis gen. nov. sp. nov., a novel Plancto-

mycete isolated from the kelp forest in Monterey Bay.

Antonie Van Leeuwenhoek. https://doi.org/10.1007/

s10482-019-01367-4

Bondoso J, Albuquerque L, Nobre MF et al (2015) Roseimar-

itima ulvae gen. nov., sp. nov. and Rubripirellula obstinata

gen. nov., sp. nov. two novel planctomycetes isolated from

the epiphytic community of macroalgae. Syst Appl

Microbiol 38:8–15. https://doi.org/10.1016/j.syapm.2014.

10.004
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