
SMART-KG: Hybrid Shipping for SPARQLQuerying on the Web
Amr Azzam

Vienna University of Economics and

Business

amr.azzam@wu.ac.at

Javier D. Fernández

Vienna University of Economics and

Business

jfernand@wu.ac.at

Maribel Acosta

Karlsruhe Institute of Technology

maribel.acosta@kit.edu

Martin Beno

Vienna University of Economics and

Business

martin.beno@wu.ac.at

Axel Polleres

Vienna University of Economics and

Business, Complexity Science Hub

Vienna

axel.polleres@wu.ac.at

ABSTRACT
While Linked Data (LD) provides standards for publishing (RDF)

and (SPARQL) querying Knowledge Graphs (KGs) on the Web,

serving, accessing and processing such open, decentralized KGs is

often practically impossible, as query timeouts on publicly available

SPARQL endpoints show. Alternative solutions such as Triple Pat-

tern Fragments (TPF) attempt to tackle the problem of availability

by pushing query processing workload to the client side, but suffer

from unnecessary transfer of irrelevant data on complex queries

with large intermediate results. In this paper we present smart-KG,
a novel approach to share the load between servers and clients,

while significantly reducing data transfer volume, by combining

TPF with shipping compressed KG partitions. Our evaluations show

that smart-KG outperforms state-of-the-art client-side solutions

and increases server-side availability towards more cost-effective

and balanced hosting of open and decentralized KGs.

ACM Reference Format:
Amr Azzam, Javier D. Fernández, Maribel Acosta, Martin Beno, and Axel

Polleres. 2020. SMART-KG: Hybrid Shipping for SPARQL Querying on

the Web. In Proceedings of The Web Conference 2020 (WWW ’20), April
20–24, 2020, Taipei, Taiwan. ACM, New York, NY, USA, 11 pages. https:

//doi.org/10.1145/3366423.3380177

1 INTRODUCTION
Knowledge Graphs (KGs) have emerged as a promising data man-

agement foundation to provide scalable knowledge models that

represent facts about entities as well as relations among these [13].

The adoption of the KG concept offers the potential for building

innovative products and services that create new value in terms

of commercial applications by the likes of Google, Microsoft and

Bloomberg, to name but a few. Also, specific domains and initiatives,

for instance, in biomedicine already make extensive use of KGs for

the integration of diverse datasets in fields such as neurosciences,

cancer research and drug discovery [29].

Openly available examples of interlinked KGs include DBpe-

dia, Yago, and Wikidata, and indeed many openly available KGs

This paper is published under the Creative Commons Attribution 4.0 International

(CC-BY 4.0) license. Authors reserve their rights to disseminate the work on their

personal and corporate Web sites with the appropriate attribution.

WWW ’20, April 20–24, 2020, Taipei, Taiwan
© 2020 IW3C2 (International World Wide Web Conference Committee), published

under Creative Commons CC-BY 4.0 License.

ACM ISBN 978-1-4503-7023-3/20/04.

https://doi.org/10.1145/3366423.3380177

are published now following the Linked Data [12] principles, us-

ing the semi-structured RDF data model and supporting query

access through the SPARQL query language. However, there are

still serious barriers to consume and use open RDF KGs published

on the web. Indeed, concurrently querying highly demanded RDF

graphs [22] such as DBpedia with multiple clients still imposes a

significant bottleneck: each RDF graph is, at best, exposing its own

SPARQL endpoint, but while RDF stores offer server-side solutions

that have good performance in single queries, they are expensive to

host and hard to maintain when large KGs are served or concurrent

execution of complex queries is allowed to multiple users [15, 40].

This leads to well-known problems of Linked Data availability and

resource limits [38]. As an example, SPARQLES [42], a service mon-

itoring 565 SPARQL endpoints, shows that 64% of them are unavail-

able (as of October 2019). To mitigate the shortcoming of SPARQL

endpoints, solutions to shift the server workload to the clients have

been proposed [25, 43]. These solutions allow for cost-effective

hosting of large KGs by performing most of the query processing

at the client, however, at the cost of significant performance degra-

dation for SPARQL queries that require the evaluation of several

operators, and potentially shipping a large number of intermediate

results that do not contribute to the final query answer.

In order to address these current limitations, we propose an

approach relying on – rather than querying monolithic graphs –

serving compressed partitions for KGs in a modular fashion, re-

ducing drastically the need for redundant data transfers in shared

server- and client-side query processing. In particular, we propose a

novel client-server query paradigm, smart-KG, that aims at increas-

ing server availability while achieving competitive performance. In

our approach, smart servers maintain compressed and queryable

graph partitions, that is, KG “slices” that can be shipped, cached and

be locally queried by smart clients. We propose a graph partition-

ing technique based on Characteristic Sets [21, 37], that exploits

the structure of RDF graphs to group entities described with the

same sets of predicates. Furthermore, the smart clients implement

query optimization and execution techniques to handle combina-

tions of KG partitions and intermediate results of triple queries

issued directly to the server, to evaluate SPARQL queries.

Our main contributions are:

• A novel paradigm, smart-KG, to distribute the evaluation of

SPARQL queries among clients and servers by leveraging

the transfer of compressed KG partitions.

984

https://doi.org/10.1145/3366423.3380177
https://doi.org/10.1145/3366423.3380177
https://doi.org/10.1145/3366423.3380177

WWW ’20, April 20–24, 2020, Taipei, Taiwan Amr Azzam, Javier D. Fernández, Maribel Acosta, Martin Beno, and Axel Polleres

• A KG partition technique designed for graphs with skewed

predicate distributions to trade-off the number of partitions

to be maintained and transferred.

• Client-side query optimization and execution techniques

that combine KG partition retrieval and intermediate results

that ensure correct query evaluation.

• An empirical evaluation of smart-KG on synthetic and real-

world KGs and queries, significantly outperforming state-of-

the art on server- and client-side SPARQL query processing.

The remainder of this paper is organized as follows. In Section 2,

we analyse the related work. Section 3 introduces preliminaries

concepts used in this work. We present our smart-KG solution in

Section 4. An empirical evaluation and results are discussed in

Section 5. In Section 6, we conclude and outline future work.

2 RELATEDWORK
The execution of SPARQL queries over remote KGs typically rely on

architectures of clients (consuming SPARQL queries) and servers

(exposing RDF graphs via SPARQL). In client-server environments,

query workload distribution has been classified into three main

types of shipping strategies [20]. Query shipping consists in pro-

cessing query execution completely at the server and shipping only

results back to the client. Data shipping exploits the processing

capacity of clients (in the extreme case, meaning to simply serve

dataset dumps for download) and thereby reduce the workload

of servers. Finally, in hybrid shipping strategies, the execution of

sub-queries and operators is distributed among clients and servers

according to, e.g., the complexity of the queries and the server work-

load. In the following, we analyse existing solutions for processing

SPARQL queries based on the client-server strategy implemented.

Query Shipping: SPARQLEndpoints. RDFKGs are traditionally
exposed via SPARQL endpoints, i.e., APIs that serve SPARQL queries

over the HTTP protocol [17]. Note that SPARQL endpoints often

run on top of RDF triples stores (e.g. Virtuoso [16] or Stardog [5]).

SPARQL query processing over endpoints provides relatively

high performance under low loads. However, with concurrent

clients and query complexity, endpoints face overloads and large de-

lays that lead to well-known problems of low availability and poor

performance. Thus, most SPARQL endpoints turn into resource-

hungry services, too costly to host and maintain for many potential

data providers. Latest studies on public SPARQL endpoints [15, 38]

confirm these issues and show that at least half of the endpoints do

not answer at all, while others impose significant restrictions such

as refusing complex queries or limiting result sizes [11].

Data Shipping: Client-side SPARQL. To overcome the low avail-

ability problem of SPARQL endpoints, different client-side solutions

have been proposed [25, 26]. These approaches perform query exe-

cution by traversing the KG structure, dereferencing URI-identified

entities appearing within the query and assuming that these – fol-

lowing the Linked Data Principles – allow to retrieve RDF data

that can be processed locally. Unfortunately, for most non-trivial

queries (e.g. patterns only including textual literals) an evaluation

on the web is unfeasible [28]. Likewise, there are no established best

practices on which parts of an enclosing dataset should be down-

loadable by dereferencing URIs, ranging from non-dereferenceable

URIs in many datasets to having to download full KG dumps.

Hybrid Shipping. To overcome the deficiencies of query and data

shipping, different hybrid shipping approaches for SPARQL query

evaluation have been proposed.

Triple Pattern Fragment (TPF) [43] servers only support the

evaluation of triple patterns. Then, TPF clients [8, 43] retrieve the

intermediate results (typically paginated) of each triple pattern in

the query and join them to compute the final query results. While

experimental results [30, 43] show that TPF achieves higher server

availability than traditional server-centric SPARQL endpoints, this

typically comes at the expense of a significant increase in the net-

work traffic due to considerable overheads from HTTP requests and

data transfers. In particular, non-selective queries can be penalized

by a high number of irrelevant intermediate results transferred, and

costly client-side join operations. In contrast to TPF, our proposed

approach is able to reduce the amount of data transferred from the

server to the client which, in turn, speeds up query execution.

More recently, different approaches inspect a more balanced

client-server load distribution. Bindings-Restricted Triple Pattern

Fragments [27] (brTPF) gives a slight boost to the performance of

TPF by attaching intermediate results to triple pattern requests

along with distributing the join between the client and the server

using the bind join strategy. Thus, brTPF reduces the number of

HTTP requests and data received with respect to the original TPF

solution [27]. However, the number of requests is still relatively

high in addition to the attached intermediate results, combined

with the need to transfer these intermediate results verbatim.

Finally, SaGe [36] is a SPARQL query engine tailored to address

the undesirable starvation of simple queries waiting for long run-

ning queries to release the server resources. To this aim, SaGe pro-

poses a preemptive execution model. SaGe introduces a scheduling

mechanism that allocates a fixed time executing quantum. Once a

query is executed for that given time period, the query is suspended

and another query in processed. To resume queries, SaGe ships to

the client the state of the query execution. Experiments show that

the preemption mechanism enhanced average workload comple-

tion time per client. Yet, SaGe faces excessive number of requests,

query context switching and potential client-side overheads.

Our approach, smart-KG, proposes a novel hybrid strategy to pro-
vide a more balanced client/server distribution. As opposed to prior

solutions such as TPF, smart-KG does not rely solely on shipping in-
termediate results, but rather on shipping modular, query-relevant

partitions of a KG that can be directly queried locally by a client.

3 PRELIMINARIES
RDF and SPARQL. The Resource Description Framework (RDF)

[41] is a graph-based data model to represent information about

resources and their relationships in the form of triples (subject ,
predicate , object) ∈ (I ∪ B) × I × (I ∪ B ∪ L), where I , B, L are

infinite, mutually disjoint sets of IRIs, blank nodes, and literals,

respectively [23]. A finite set of such triples G is called an RDF
graph. RDF graphs can be queried using the SPARQL [24] query

language, which is based on graph pattern matching. The core

query atom of SPARQL is a triple pattern tp from (I ∪ B ∪V) × (I ∪
V)× (I ∪B∪L∪V)where apart from RDF terms also variables from

a setV of variables, disjoint from the aforementioned I , B and L, are
allowed. Basic Graph Patterns (BGPs), i.e. sets of triple patterns, can

985

SMART-KG: Hybrid Shipping for SPARQLQuerying on the Web WWW ’20, April 20–24, 2020, Taipei, Taiwan

Query
Results

Server Response

Client Request
Query Parser

SMART-KG Client

Query Decomposer

Query Planner & Optimizer

Query Executor

Result Serializer

Server OperatorsStorage Module

Family Catalog

SMART-KG Server

Family Generator

HDT Converter

Family Grouping
Family Pruning

Partition Generator
RDF KG 𝐺

KG Partitions

𝐺"#		 				 		𝐺%					…				# 𝐺'		#

Cache Module

Family Catalog

KG Partitions

𝐺(# 			 				 	𝐺)	#

SPARQL
Query

Figure 1: Overall architecture for the smart-KG client and server.

also be understood as conjunctive queries overG. The evaluation
of a BGP Q over an RDF graphG , denoted JQKG = Ω, is defined as

a set of solution mappings, s.t. each ω ∈ Ω denotes a substitution

from the variables in Q (var (Q)) to I ∪ B ∪ L such that ω(Q) ⊆ G.
For the purposes of this paper, we focus on BGPs and leave out

other patterns, which all build on top of BGPs as SPARQL’s core

retrieval functionality [14].

Family-Based Partitioning of RDF Graphs. RDF is a semi-

structured data model which typically does not prescribe a fixed

schema. In theory, this can lead to RDF graphs, where the set of

predicates used to describe subjects and their relationships may

vary greatly. However, in real-world RDF graphs, there typically is

an inherent structure as there exist repetitions whenever subjects

of the same kind are described in the same way. For instance, pred-

icates for songs (e.g. duration, album, etc.) are different than those

used to describe persons (e.g. birthday, nationality, etc.) in DBpedia,

and the same combinations of predicates are shared across many

subjects of the same type. Neumann and Moerkotte [21, 37] capture

these structures with the notion of characteristic sets, also called

predicate families [18] (or just families hereinafter). LetG be an RDF

graph, and SG , PG ,OG be the sets of subjects, predicates and objects

in G respectively. We define the (predicate) family, of a subject s ,
F (s) as the set of predicates related to the subject s , that is:

F (s) = {p | ∃o ∈ OG : (s,p,o) ∈ G} (1)

We denote as F (G), or just F , to the set of different predicate

families in G, as follows:

F (G) = {F (x) | x ∈ SG } (2)

For simplicity, we name the different families inG as F1, F2, ..., Fm ,

wherem = |F (G)|. In this paper, we use families as a means to define

a graph partition, i.e., we consider – as the basis for our approach –

a disjoint set of partitions that is a cover
1 G = {G1,G2, · · · ,Gm }

of G based on its families, where each partition Gi is defined as:

Gi = {(s,p,o) ∈ G | F (s) = Fi } (3)

Families provide structure-based means of partitioning an RDF

graph used for (i) join and cardinality estimation [21, 37] for SPARQL

optimization, (ii) RDF compression [31], and (iii) building indexes
2

to speed up SPARQL queries [35]. To the best of our knowledge,

this paper is the first work using families in shipping strategies.

1
i.e, G = G1 ∪G2 ∪ · · · ∪Gm , where ∀i, j Gi ∩G j = ∅

2
Meimaris et al. [35] extended the notion of characteristic sets also to object nodes

RDF HDT Compression. HDT [19] is a well-known compressed

format for RDF graphs, which permits efficient triple pattern re-

trieval over the compressed data. HDT has three main components:

(i) the dictionary maps RDF terms to IDs, such that (ii) the triples
component encodes the resulting ID-graph (i.e. a graph of ID-triples
after replacing RDF terms by their corresponding dictionary IDs)

as a set of adjacency lists, one per different subject in the graph. In

addition, (iii) the header provides descriptive metadata (publishing

information, basic statistics, etc.) about the RDF graph. Both the

HDT dictionary and triples are self-indexed to support efficient

retrieval operations. The dictionary implements prefix-based Front-

Coding compression [34], which allows for high compression ratios

and efficient string-to-id and id-to-string operations. Triples are

indexed by subject (in SPO order) using bitmaps [19].

RDF graphs compressed with HDT can be queried loaded in

memory or mapped from disk without prior decompression. HDT

exhibits competitive performance for scan queries as well as triple

pattern execution when the subject is provided. In addition, HDT

compressed graphs are typically enriched with a companion HDT

index file [33]. This additional file includes two inverted indexes on

the ID-triples (inOPS and PSO order) to achieve high performance

for resolving all SPARQL triple patterns.

4 SMART-KG: DESIGN AND OVERVIEW
smart-KG (cf. Fig. 1) defines client and server operations to combine

the shipping of partitions based on RDF families with the shipping

of the results of evaluating triple patterns to reduce query runtime.

Smart-KG servers generate families and corresponding partitions

of a given knowledge graph (KG). The resulting KG partitions are

materialized (in HDT) in the storage module along with a family

catalog that contains metadata about the structure of the partitions.

In addition, smart-KG servers also support operators to execute

triple pattern queries and to transfer partitions to smart-KG clients.
Smart-KG clients are able to execute SPARQL queries by devis-

ing query plans that combine the shipping of triple pattern results

and partitions. The query decomposition, planning, and optimiza-

tion techniques implemented by the smart-KG client exploit the

structure of KG partitions to reduce query execution time.

4.1 SMART-KG Server
The smart-KG server, upon loading an RDF graph, supports access

to graph partitions and the evaluation of triple patterns using TPF.

986

WWW ’20, April 20–24, 2020, Taipei, Taiwan Amr Azzam, Javier D. Fernández, Maribel Acosta, Martin Beno, and Axel Polleres

To this end, the server implements a partition generator taking into

consideration the families from the graph plus retrieval operations.

4.1.1 Partition Generator. The smart-KG server, upon loading a

graphG , could decompose it into partitionsG1, . . .Gm per family, as

described in Eq. (3) and convert those partitions to HDT. In practice,

however, the number of partitions can be relatively large for highly

semi-structured RDF graphs. Thus, we introduce the concept of

predicate-restricted families, where some particular predicates are

not considered for the creation of families.

Predicate-restricted families. Let us consider a restricted set of

predicates, P ′G ⊆ PG . The predicate-restricted family of a subject s
w.r.t. P ′G , denoted F ′(s), is defined as follows:

F ′(s) = {p′ ∈ P ′G | ∃o ∈ OG : (s,p′,o) ∈ G} (4)

Analogously, we denote as F ′(G) = {F ′
1
, F ′

2
, · · · , F ′m }, or just

F ′, to the set of different predicate-restricted families for G w.r.t.

PG , wherem
′ = |F ′(G)|. These families correspond to a set G′ =

{G ′
1
,G ′

2
, . . . ,G ′m } of disjoint partitions of a subgraph ofG based on

the P ′G -restricted families, with

G ′i = {(s,p,o) ∈ G | F
′(s) = F ′i } (5)

Note that, however G′ is no longer a complete cover of G, but
the graph G ′ =

⋃
G ′i only contains the “projection” of G to P ′G .

Serving predicate restricted families allows a smart-KG publisher
to select P ′G depending on (i) the cardinality of the predicates (i.e.

the number of occurrences in the graph) and (ii) the importance of

predicates (and combinations) in actual query workloads. We will

describe a concrete method to pick P ′G based on the cardinality of

predicates in Section 4.1.3.

4.1.2 Family Grouping. Although the use of restricted families

can control the number of generated families and avoid generating

rarely used families to some extent, the number and volume of par-

titions are still determined further by other distribution features of

the data. In practice, many RDF graphs are skewed in the sense that

there exist “dominant” families with large corresponding partitions,

as opposed to several small, very similar families of much smaller

sizes. This phenomenon arises due to the semi-structured nature of

RDF, where attributes may vary across entities of the same type.

Thus, besides using predicate-restricted families, our partition

shipping strategy further drastically benefits from merging (i.e.

grouping) similar families into a single partition. For instance, all dis-

joint families containing a certain set of predicates e.g. F1={foaf:name,
foaf:age, dct:title} and F2={foaf:name, foaf:age, dbp:birthdate}
can be merged into a single family F {1,2}={foaf:name, foaf:age}.
The intuition behind merging such families covering overlapping

predicates is that these overlapping predicate subsetsmay also occur

as predicate families in query patterns more commonly. Therefore,

instead of shipping the union of partitions contributing to a query,

only the partition corresponding to the smallest merged families

needs to be shipped.

Formally, for an index set I ∈ 2{1, · · · ,m
′ }
, we define the merge

F ′I of the set of families {F ′j | j ∈ I } as follows
3
:

F ′I =
⋂

i ∈I
F ′i (6)

3
Note that we consider the identity merge, i.e. F ′

{j } = F ′j

Algorithm 1: Family Grouping

Input :F ′(G) = {F ′
1
, . . . F ′m }, the set of different (restricted) families.

Output : µ(·) a partial mapping from sets of predicates to index sets I ∈ 2{1, ··· ,m}

1 Initialize µ with the original families:

2 foreach f ∈ F ′(G) do
3 µ(F ′i) ← {i }
4 repeat
5 µ′(·) ← µ(·)
6 foreach f ∈ dom(µ) do
7 foreach д ∈ dom(µ) do
8 if д ∩ f , ∅ then
9 if д ∩ f ∈ dom(µ) then
10 µ(д ∩ f) ← µ(д ∩ f) ∪ µ(д) ∪ µ(f)
11 else
12 µ(д ∩ f) ← µ(д) ∪ µ(f)
13 until µ , µ′;
14 return µ

Analogously, the corresponding merged partitionG ′I =
⋃
i ∈I G

′
i

can also be defined as:

G ′I = {(s,p,o) ∈ G | F (s) ⊆ F (I)} (7)

Following the example, if G ′
1
and G ′

2
are grouped into G ′

{1,2}
,

then for evaluating a query that requires the predicates foaf:name

and foaf:age, only G ′
{1,2}

needs to be shipped, instead of G ′
1
∪G ′

2
.

Following similar premises, Gubichev and Neumann [21] es-

tablish a hierarchy of characteristic sets, in each step removing

one element of the set and keeping only the one that minimizes

the query costs (i.e. cost can be understood as cardinality, in this

context). For instance, in the previous example, the approach by Gu-

bichev andNeumannwill inspect all combinations of two predicates,

F 1
{1,2}

={foaf:name, foaf:age}, F 2
{1,2}

={foaf:name, dct:title}, etc.,

to select the one with smallest cardinality, e.g. F 2
{1,2}

, for query

planning. We use a similar idea, but the main differences with the

previous work are that (i) we do not compute all predicate subsets

of a given family (this was used to estimate join costs [21]) but

only those subsets that represent merges, corresponding to non-

empty intersections with other families, and (ii) we keep all these

intersections in a map, irrespective of their cardinality.

To create this merged families map for all potentially non-empty

intersections of sub-families, we start from F ′(G) = {F ′
1
, . . . F ′m },

and iteratively construct a partial map µ such that, given a set of

predicates f , µ(f) returns (whenever f corresponds to a non-empty

intersection) a set of indexes of all original families that contain sub-

jects contributing to f , as shown in Alg. 1.We initialize µ with F ′(G)
(lines 2–4), and then, iteratively, until µ does not change any more

(lines 5–13), create mappings (corresponding to a merged family)

collecting all indexes, for each non-empty intersection of families

(lines 9-12). If there already is a (merged) family corresponding to

the intersection found, i.e., f ∪ д appears already in the domain

of µ (line 9), then also the corresponding index(es) are considered

(line 10) and the mapping is updated, otherwise, a new mapping

is created (line 12). Note that, as opposed to this pseudo-code, our

actual implementation is using a hashmap for the (merged) families

and avoids revisiting the same intersections repeatedly.

Then, µ(·) is used to compute the partitions served by the smart-KG
server, denoted Gserv , where G

′
is replaced with a set of partitions

obtained from the merged families:

Gserv = {G
′
µ(f) | f ∈ dom(µ)} (8)

987

SMART-KG: Hybrid Shipping for SPARQLQuerying on the Web WWW ’20, April 20–24, 2020, Taipei, Taiwan

Note that the partitions in Gserv are no longer non-overlap-

ping. However, the advantage of serving these merged partitions is

that the client can determine a unique minimal matching partition

among Gserv to answer a query using the mapping µ.

4.1.3 Family Pruning. Note that, in practice, it might be too expen-

sive to materialise partitions for all potential merges (intersections)

of all families inG . For instance, as we will show in our evaluation,

in the DBpedia graph, a naive merge would create +600k partially

very large families, which are unfeasible to serve. To this end, we

present a family pruning strategy for restricting the number of

materialised partitions, where we (i) restrict considered predicates

in P ′G based on their cardinality, (ii) avoid creation of small families

that deviate only slightly from other overlapping, “core” families,

and (iii) avoid materialisation of families over a certain size.

(i) Restrict predicates based on cardinality. The cardinality of

predicates can play a fundamental role in the number and size

of shipped partitions: firstly, infrequent predicates can be scat-

tered through many different families but, at the same time, the

overall size is limited and a TPF call for just triples with these in-

frequent predicates can easily bring all the information related to

the predicate without the need to transfer large intermediate re-

sults; secondly, frequent predicates (e.g. dbo:wikiPageExternalLink

in DBpedia) can potentially belong to most families, and unneces-

sary overload the size of each family, if not practically queried (e.g.

dbo:wikiPageLength) or selectivity/distribution of frequent predi-

cates is low/skewed (e.g. rdf:type) which could lead to the gener-

ation and transfer of large partitions. To address these issues we

use thresholds τl ,τh with 0 ≤ τl < τh ≤ 1, to delimit the minimum

and maximum percentage of triples per predicate, and define P ′G
accordingly based on these thresholds as follows:

P ′G = {p
′ ∈ PG | τl ≤

|(s,p′,o) ∈ G |

|G |
≤ τh } (9)

Note that publishers might still consider to include particular

heavy hitters (e.g. rdf:type) which can be frequent in queries.While

we allow for this possibility, we consider as future work the ap-

plication of different techniques (e.g. clustering) to select P ′G (and

thus families), e.g. by considering query logs.

(ii) Avoid the creation of small families. In order to address

issue (ii), we aim at considering only “core” families for the partition

merging process, i.e., we select predicate combinations (i.e, families)

that are used by a proportionally large number of subjects, above a

threshold αs . That is, we define these core families as

F ′core = {F
′
i ∈ F

′ |
|SG′i |

|SG |
≥ αs } (10)

with the respective index set Icore = {i | F
′
i ∈ F

′
core } and predicate

set P ′core = {p ∈ F ′i | F
′
i ∈ F ′core }. Intuitively, these core families

represent the structured parts of the graph, i.e., star-shaped sub-

graphs where entities are described with the same attributes.

(iii) Avoid the creation of large families. Finally, we avoid the

materialisation of overly large (e.g. hundreds of millions of triples

in DBpedia) merged partitions GI with size GI above a threshold

αt , which limits the size of the materialised merged partitions.

In order to only take core families into account for the creation of

partitions, and limit merged families to sizes below αt , it is sufficient

to modify Equation (8) as follows:

Gserv =

G
′
µ(f)

�������
f ∈ dom(µ) ∧

µ(f) ∩ Icore , ∅ ∧∑
i∈µ (f)

|G′i | ≤ αt

 ∪ {G {i } |F
′
i ∈ F

′} (11)

In Equation (11), line 2 addresses issue (ii)
4
and line 3 addresses

issue (iii)
5
. The last part ensures that, despite pruning, the non-

merged partitions of families in F ′ remain being served.

As, due to these pruning steps, no longer all of the partitions

corresponding to families in dom(µ) will be materialised in Gserv .

In practice, we define another mapping function, µG , that allows to
directly map families from dom(µ) to “minimal” sets of matching

partitions in Gserv .
6
That is, we build a mapping µG : dom(µ) 7→

2
2
{1,,m}

that maps a family f to a set of index sets {I1, . . . Ik }
representing (lists of) materialised matching partitions, i.e. where

µG (f) = {I | G
′
I ∈ G

≺
serv (f)}.

7
In this case, G≺serv (f)} is defined

as follows: let Gserv (f) = {G
′
I ∈ Gserv | f ⊆ µ−1(I)} be all

materialised partitions matching a family f , then G≺serv (f) is the
≺-minimal subset of Gserv (f) with ≺ defined as: G ′I1

≺ G ′I2
iff

µ−1(I1) ⊂ µ−1(I2). That is, the intuition is to pick the partitions that

are “subset-minimal with respect to their corresponding families”.

4.1.4 Server Operators. The smart-KG server materialises all par-

titions in Gserv into HDT files, and provides operators to ship

partitions and their metadata based on µG , or to respond to TPF

requests. Overall, the following operations
8
are provided:

• TPF(tp) to retrieve the answer for a triple pattern tp, i.e., the
smart-KG server returns the triples from G that match tp.
• TPFcard(tp) to retrieve the result cardinality of a triple pat-

tern (this is a standard TPF API function).

• retrievePartition(id) to retrieve a partition by id (we use ids
corresponding to partitions in Gserv).

• retrieveIDs(f) to retrieve the IDs of ≺-minimal partitions
matching a given family f (i.e., µG (f)), plus metadata with

descriptive statistics per ID (e.g, number of triples).

• getPartitionMetadata() to retrieve the pruning parameters

used by the server (i.e., P ′core , τl , τh , αs , and αt).

As for the retrieveIDs(f) operation, it essentially scans dom(µG)
to determine the single (cardinality-wise) smallest f ′ ⊇ f indom(µG)
and retrieves IDs corresponding to the index-sets µG (f

′). Note

that f ′ is uniquely determined, which can be proven by contradic-

tion: i.e. assume two cardinality-wise smallest f ′
1
, f ′

2
∈ dom(µG)

with f ′
1
, f ′

2
and f ⊂ f ′

1
, f ⊂ f ′

2
; then, also f ⊂ f ′

1
∩ f ′

2
,

where (by assumption f ′
1
, f ′

2
) it holds that | f ′

1
∩ f ′

2
| < | f ′

1
| or

| f ′
1
∩ f ′

2
| < | f ′

2
|. However, by construction of µG , this also implies

that f ′
1
∩ f ′

2
∈ dom(µG), which contradicts the assumption.

4
since SG′i

∩ SG′j
= ∅ for all base families F ′i , F

′
j ∈ F

′
, by construction it holds that

|SG′I
| =

∑
i∈I |SG′I

|

5
since |G′I | =

∑
i∈I |G′i |

6
In practice, Alg. 1 computes the partitions Gserv along with µG in one go.

7
For G′µ (f) ∈ Gserv , i.e., if the resp. partition is materialised, then µG (f) = {µ(f)}.

8
We assume that a server handles a single graph. For multiple graphs, the id of the

graph can be added as a parameter.

988

WWW ’20, April 20–24, 2020, Taipei, Taiwan Amr Azzam, Javier D. Fernández, Maribel Acosta, Martin Beno, and Axel Polleres

SELECT ∗ WHERE {
? film dbo: starring ? actress . # tp1

?film foaf :name ?filmName . # tp2

? actress dbo:wikiPageExternalLink ? link . # tp3

? actress dbo: birthPlace ? city . # tp4

? actress foaf :gender "female"@en . # tp5

? city dbo:country ?country . } # tp6

(a) Select all actresses, their movies, and
birthplace information

?film

?filmName

?actress

db
o:s
tarr
ting

foaf:name

?city
?city

?country
dbo:country

?actress

“female”@en

?link

dbo
:ex
tern
alL
ink

foaf:gender

dbo:birthPlace

(b) Star-shaped query decomposition

tp5 tp4

tp3 tp1 tp2

tp6

SmartKG Server

Triple Pattern Evaluation

KG
Partition 𝐺"#

KG
Partition 𝐺$#

(c) Shipping plan based on the decomposition

Figure 2: Example of processing a SPARQL query with the smart-KG client.

4.2 SMART-KG Client
The smart-KG client (cf. Fig. 1) implements partition and triple

pattern shipping to efficiently execute SPARQL queries over the

smart-KG server. The smart-KG client maintains a catalog with

metadata about the families available at a smart-KG server obtained
with the server operation getPartitionMetadata(). The input of the
client is a SPARQL query, which the query parser translates into
the corresponding SPARQL algebra expressions. Then, the query
decomposer splits the BGPs within the query into star-shaped sub-

queries around the same subject. Based on this decomposition, the

query optimizer implements heuristics to determine the order of

stars and triple patterns within the stars, and the shipping strate-

gies to evaluate them. The query executor evaluates the plan and

combines the results locally by joining the data retrieved from the

server. The results produced by the engine are translated by the re-
sults serializer into the format specified by the user. The partitions

downloaded from the smart-KG server during query evaluation

can be stored in the family cache and reused for subsequent query

evaluations. In the following, we will describe the main smart-KG
client components: query decomposer, optimizer, and executor.

4.2.1 QueryDecomposer. First, smart-KG splits parsed Basic Graph
Patterns (BGPs) into stars as follows: given a BGP Q , with subjects

SQ , a decomposition Q = {Qs | s ∈ SQ } ofQ is a set of star-shaped

BGPs Qs such that Q =
⋃
s ∈SQ Qs and:

Qs = {tp ∈ Q | tp = (s,p,o)} (12)

Analogous to graphs, we can also associate a family to each Qs :

F (Qs) = {p | ∃o : (s,p,o) ∈ Qs ,p ∈ I } (13)

Given the SPARQL query in Fig. 2a, the BGP is decomposed

into Q = {Q?film,Q?actress,Q?city} around the three subjects (cf.

Fig. 2b). Each of the star families F (Qs) that can be mapped to ex-

isting predicate families in dom(µG) on the server has a non-empty

answer. For example, Q?film = {(?film, dbo:starring, ?actress),

(?film, foaf:name, ?filmName)} has F (Q?film) = {dbo:starring,

foaf:name}; based on the decomposition Q, the smart-KG client’s
shipping-based query optimizer next has to devise a query plan.

4.2.2 Shipping-basedQuery Planner & Optimizer. The smart-KG
client query planner devises plans where both triple pattern results

(using TPF) and partitions in Gserv are transferred from the server

to resolve the sub-queries in Q. To decide whether and for which

sub-queries to use triple pattern or partition shipping, and in which

order to execute them, the optimizer implements heuristics based

on the sub-queries in Q and the server’s partition metadata.

Partition Shipping (P-S). Shipping relevant partitions to evaluate
a star Qs ∈ Q needs to take into consideration the materialized

partitions at the server. Since graph partitions are generated based

on the core families (cf. Section 4.1), only stars with F (Qs) ⊆ P ′core
can be fully evaluated by served partitions. Therefore, the optimizer

first partitions eachQs ∈ Q into the disjoint setsQ ′s andQ
′′
s , where

Q ′s = {(s,p,o) ∈ Qs | p ∈ P
′
core }, i.e., the part of the star that can be

evaluated over the served partitions, whereas the remaining triple

patterns inQ ′′s = Qs \Q
′
s are delegated to TPF requests.

9
Then, the

optimizer implements the following additional heuristics: partition

shipping is only followed if |Q ′s | > 1, as in practice, the transfer

of graph partitions to resolve a single triple patterns usually takes

longer than delegating to a TPF request directly.

Triple Pattern Shipping (TP-S). Triple patterns tp delegated to

TPF will be evaluated using a TPF(tp) request to the server. This

involves the triples patterns in Q ′′s and Q ′s with |Q
′
s | = 1.

The query optimizer, given Q and P ′G as input, devises a query

plan ΠQ , based on the described sub-decomposition into P-S and

TP-S patterns. It accordingly proceeds in two phases, first iterating

over each star Qs ∈ Q to perform the partitioning into Q ′s and

Q ′′s , additionally collecting the cardinality for each triple pattern

tpi ∈ Qs using TPFcard() server requests. Then, the optimizer

devises sub-plans, forQ ′s andQ
′′
s that can be efficiently executed, by

join ordering based on these cardinalities, using the construct Plan,
that comprises a pair of a left-linearly ordered query plan, along

with a shipping strategy. Join order is determined by the cardinality

of triple patterns, where smaller triple patterns are evaluated first.

For each sub-query Qs , the optimizer creates a shipping-based sub-

plan Πs which is added to the set of current subplans .
Fig. 2c shows the shipping strategies for each sub-plan from

our example. For the sub-query Q?actress, the optimizer created

Plan((tp5 Z tp4), P-S). Yet, the triple pattern tp6 in S?actress is

evaluated using triple pattern shipping as the optimizer determined

that the predicate dbo:wikiPageExternalLink is not in P ′G .
In the second phase, the optimizer combines the sub-plans that

share variables to build the final plan ΠQ . Again, the optimizer

uses a heuristic to determine join order based on selecting the

sub-plan Πi containing the overall smallest (i.e., assumed most

selective) triple pattern from subplans first, and so on, iteratively

joining subplans to ΠQ . The resulting query plan ΠQ comprises

sub-plans annotated with the corresponding shipping strategy, and

join operators to be evaluated locally by the client.

9
Note that Q ′′s also includes triple patterns with predicate variables, i.e., p ∈ V .

989

SMART-KG: Hybrid Shipping for SPARQLQuerying on the Web WWW ’20, April 20–24, 2020, Taipei, Taiwan

Algorithm 2: Query Executor: evalPlan
Input: Query plan Π
Output: Ω the result set of executing Π

1 if Π = Plan(Πs , P-S) then
2 Qs is the sub-query associated with Πs
3 G∗ = {дetPar tit ion(id) | id ∈ r etr ieveIds(F (Qs))}
4 Ω ← {ω∅ }
5 for tpi ∈ Ps do
6 Ω ← Ω Z

⋃
Gj ∈G∗ Jtpi KGj

7 else if Π = Plan(Πs , TP-S) then
8 Ω ← TPF(Πs)
9 else
10 Π is (Πl Z Πr)
11 Ω ← evalPlan(Πl) Z evalPlan(Πr)
12 return Ω

4.2.3 Query Executor. The function evalPlan evaluates the plan

ΠQ by traversing the tree of sub-plans (cf. Alg. 2). The shipping

strategies are implemented by calling the respective smart-KG
server operators (cf. Sec. 4.1.4). Depending on the structure of the

sub-plans, the query executor distinguishes the following cases.

Case: (P-S) Sub-plans. P-S sub-plans are evaluated (cf. Alg. 2,

lines 1–6) by determining relevant served partition IDs for Q ′s ,
through calling retrieveIds(F (Q ′s)), and retrieving each ID from

the server (line 3). The query executor evaluates the triple patterns

tpi against each such partition and merges the results using the

SPARQL algebra union operator (line 4). The intermediate results

of each triple pattern are joined in following the plan Πs (line 5–6).

Case: (TP-S) Sub-plans. TP-S sub-plans are composed of single

triple patterns, executable by calling the TPF(tp) smart-KG server
operator (cf. Alg. 2, lines 7–8).

General Case. Joins the results of two recursively evaluated sub-

plans Πl and Πr (cf. Alg. 2, lines 9–11).

The outcome of the query executor is the result set Ω of evaluat-

ing the query Q . In practice, the executor implements an iterator

model to push intermediate results of evaluating one subplan to

the next operator in the plan. This allows the smart-KG client for
streaming results incrementally as the data arrives from the server.

Proposition 1. The result of evaluating a BGP Q over an RDF
graphG with smart-KG, denoted smart-eval(Q,G), is correct w.r.t. the
semantics of the SPARQL language, i.e., smart-eval(Q,G) = JQKG .10

5 EXPERIMENTAL EVALUATION
We compare the performance of smart-KG with state-of-the-art

SPARQL engines. All datasets, queries, and results of our experi-

ments using different workloads are available online.
10

Knowledge Graphs.We use four RDF graphs (cf. Table 1): three

synthetic datasets from theWaterloo SPARQL Diversity Benchmark

(WatDiv) [7] [10], with sizes of 10M, 100M and 1000M triples; plus,

we use the real-world DBpedia [32] dataset (v.2015A).

Queries and Workloads. For WatDiv, we consider 80 workloads

(one per client), each of themwith 154 SPARQL queries that were se-

lected uniformly at random from the WatDiv stress test queries [1].

The queries contain up to 10 joins with varying selectivity and

shapes (star, path, and snowflake). All workloads follow nearly the

same distribution of query selectivities and shapes. For DBpedia,

we use queries from the real-world LSQ query log [39]; here, we

10
Experiments and the proof are available online https://ai.wu.ac.at/smartkg

are interested in highly-demanding queries, hence, we randomly

selected 12 BGP queries (out of 259) with runtime higher than 1s.

We report the average measures of three independent executions.

Compared Systems.We evaluate the following systems:

- smart-KG: We implement both client and server in Java
10
, ex-

tending the TPF implementations [2]. HDT indexes and data are

stored on the server’s disk, with no client-side family caching.

- Triple Pattern Fragments (TPF):Weuse the node.js TPF client,

recommended by the authors, plus the Java TPF server [2], as

the smart-KG TPF handler is also implemented in Java.

- Virtuoso:We run Virtuoso [16] (v7.2.5), without quotas or limits.

- SaGe:We use the Python SaGe server and the Java SaGe client

with recommended configurations [4].

We configured Virtuoso and SaGe to run with 4 workers [36].

We omit the comparison with brTPF [27], as existing evaluations

report that the performance lie between TPF and SaGe [36], and our

preliminary tests show scalability problems of the brTPF server im-

plementation [1] for the WatDiv-100M and Watdiv-1000M graphs.

Hardware Setup.We use the following technical infrastructure.

- Client specifications:Clients ran on 1, 20 10, 40 and 80 physical
machines, each with identical hardware specifications: Intel(R)

Core(TM) i7-7700 CPU @ 3.60GHz, 32GB of DDR4 RAM, 512GB

M.2 NVMe SSD, running Fedora 29 (Linux Kernel v 5.0.14).

- Server specifications: The servers run on a VM hosted on a

machine running QEMU+ KVM hypervisor with Intel(R) Xeon(R)

CPU E5-2650 v2 @ 2.60GHz, 384 GB of DDR3 RAM, running

Centos 7 (Linux Kernel v3.10.0). Compared server systems were

running on VMs configured with 4 CPUs and 32 GB RAM.

- Network configuration: For emulating realistic internet con-

nection bandwidth from consumer internet service providers, we

limited network speed of each client to 20 MBit, using tc [9].

Metrics. Our evaluation considers the following metrics:

- Number of Timeouts: Number of queries that time out. We set

a timeout of 5 min. for WatDiv and 30 min. for DBpedia queries.

- Execution Time: Elapsed time spent by a client executing a

workload, measured with the time command of Linux.

- Resource Consumption: We report on CPU usage per core,

RAM usage, and network traffic, all measured with psutil [3].

5.1 Creation of Family-based Partitions
For each graph G , Table 1 shows the number of restricted and core

predicates (|P ′G |, |P
′
core |), core families, |F ′core |, and the material-

ized partitions after grouping/pruning, |Gserv |, as well as the total

computation time (including family computation, pruning and par-

tition generation). These numbers are obtained fixing τl = 0.01/100

for all G, while we set τh = 0.1/100 for DBpedia, as we empirically

tested that the resultant predicate set filters out both infrequent

and heavy hitters. Likewise, we empirically set αt = 0.05 for both

datasets, αs = 0 for WatDiv, and αs = 0.01/100 for DBpedia. Fig. 3

shows an ablation study in DBpedia to determine the number of

generated families with different values of such parameters
11
.

Table 1 also shows that |F ′core |, |Gserv |, and the computation

time are sub-linearly increasing with the graph sizes. In WatDiv,

11
We omit αt as this study analyzes the size of families in the graph, while the

extremely large families pruned by αt tend to be generated when merging families.

990

https://ai.wu.ac.at/smartkg

WWW ’20, April 20–24, 2020, Taipei, Taiwan Amr Azzam, Javier D. Fernández, Maribel Acosta, Martin Beno, and Axel Polleres

Table 1: Characteristics of the evaluated knowledge graphs

RDF GraphG # triples |G | # subjects |SG | # predicates |PG | # objects |OG | |P ′G | |P ′core | |F ′core | |Gserv | C.Time (h)

WatDiv-10M 10,916,457 521,585 86 1,005,832 59 59 10,106 21,210 1

WatDiv-100M 108,997,714 5,212,385 86 9,753,266 59 59 22,855 37,392 7

WatDiv-1000M 1,092,155,948 52,120,385 86 92,220,397 59 59 39,046 52,885 12

DBpedia 837,257,959 113,986,155 60,264 221,623,898 218 84 35 29,965 23

Figure 3: Ablation study in DBpedia to select
the parameters in partitioning algorithm

(a) Number of timeouts (b) Average execution time

Figure 4: Performance on the WatDiv-100M workload

F ′core = F ′(G), whereas in DBpedia, the initial number of P ′G -

restricted
12

families |F ′(G)| is >600K: the family pruning strategy

allows smart-KG to identify |F ′core | = 35 core families, which are

merged into ∼30K materialised partitions.

5.2 Overall Query Performance
We report on performance for the WatDiv query workload, at in-

creasing number of clients and dataset size. The performance of

smart-KG always considers the family grouping/pruning strategies

mentioned in Sec.4.1.3; we also tested smart-KG without group-

ing/merging, which however did not scale, due to requiring ship-

ping large numbers of small partitions with many redundant triples.

Increasing Number of Clients. In this part of the study, we focus
on the graph WatDiv-100M as this is in line with the size of open

KGs published in the LOD Cloud [6], with an average of 183M

RDF triples. Fig. 4 shows the results of executing the WatDiv-100M

workload on the query performance at different number of concur-

rent clients (1, 10, 20, 40 and 80) in terms of (a) number of timeouts,

and (b) average workload execution time per client.

Fig. 4a shows that smart-KG produces no timeouts at such rel-

ative modest but state-of-the-art graph sizes. That is, even with

80 concurrent clients, our approach is able to successfully finish

all queries in the workload for all concurrent clients. In contrast,

TPF was not able to answer all queries within a 5 minutes timeout,

even in the single client configuration. The percentage of timeouts

escalates with increasing number of clients, from 10% in 1-client

workload to an average of 28% with 80 concurrent clients. These

results confirm the scalability limitations of the system.

On WatDiv-100M, SaGe times out in less queries than TPF, but

timeouts increase significantly with the number of clients, reaching

a non-negligible 15% of the queries for 80 concurrent clients.

The average workload execution time per client, in Fig. 4b, shows

superior performance and scalability of our approach, where per-

formance remains constant irrespective of the number of clients,

as smart-KG limits the server load and joins are mostly performed

12
The 218 restricted DBpedia predicates cover over 40% of the predicates occurring in

highly-demanding BGPs (>1s of execution time) in the real-world LSQ query log [39].

on clients over shipped KG partitions. For less than 20 concurrent

clients, SaGe starts slightly ahead of smart-KG. From this point and

on, SaGe suffers from excessive delays, and overall performance is

degrading, e.g., smart-KG is up to 3.5 times faster with 80 clients.

This is because SaGe executes SPARQL queries using a round robin
policy to avoid the convoy effect but, with an increasing number

of clients, the increased waiting time and server usage lead to de-

grading average completion time for queries.

In turn, TPF is significantly worse – up to three times slower –

than the other systems due to the enormous number of requests

and the excessive data transfer. As we will show in the next section,

traffic is substantially higher with larger datasets because clients

need to ask for several server responses to evaluate a single query.

To complete the comparison, we also evaluate the performance

of query shipping strategies using a Virtuoso SPARQL endpoint.

As shown in Fig. 4, Virtuoso behaves very similar to SaGe with the

difference that i) it shows no timeout and similar performance for

10 clients, but ii) its execution time is slightly degrading with 80

clients. Given these results and in line with previous studies [36],

in the following sections, we focus on comparing the performance

of smart-KG with the shipping strategies of TPF and SaGe only.

Increasing KG Size. Fig. 5 shows the performance of the evaluated

systems at increasing KG sizes, fixing the scenario to 80 concurrent

clients. We execute the WatDiv workloads over 10M to 1000M

triples, which constitutes, to the best of our knowledge, the largest

experiment on client-side SPARQL query approaches to date.

Fig. 5a shows again the number of query timeouts. As expected,

timeouts of TPF and SaGe significantly increase with the size of the

graph. TPF is not able to scale for theWatDiv-1000M dataset, failing

to answer 75% of the queries. Although SaGe is slightly better than

TPF, it fails to answer 68% of the queries with 80 concurrent clients.

In contrast, smart-KG reports the best results at scale, timing out

only in the largest graph for 10% of the queries.

Fig. 5b presents the average workload execution time for all

systems and different sizes, with 80 concurrent clients. As expected,

average workload completion time increases with the larger KGs,

while smart-KG remains the fastest in all scenarios. TPF has the

991

SMART-KG: Hybrid Shipping for SPARQLQuerying on the Web WWW ’20, April 20–24, 2020, Taipei, Taiwan

(a) Number of Timeouts (b) Average Workload Execution Time

Figure 5: Performance on the workloads (80 clients) at increasing KG sizes
Figure 6: Average execution time (80 clients)
with DBpedia high-demanding queries

(a) L1 (b) L2 (c) L3 (d) L4 (e) L5 (f) Complex

Figure 7: Avg. execution time per client on the standard WatDiv-100M, for simplest L queries and complex queries

longest execution time (and significantly longer in Watdiv-1000M)

while SaGe is on average 1.5 times slower than smart-KG in Watdiv-

1000M. Note also that average execution times include timeouts:

since we have shown already that we do better in numbers of

timeouts, we may assume that full execution times with unlimited

runtimes would be even more significantly in our favor.

DBpedia Queries. We evaluate the performance on DBpedia to

consider real-wold data and high-demanding queries. Fig. 6 shows

the performance results on 80 clients for 12 representative queries

of the LSQ log, omitting Q11 and Q12 which time out (>30 minutes)

in all systems. The results are in line with our previous analysis:

TPF is the slowest (except Q1,Q2) and smart-KG is 2-3 levels of

magnitude faster than SaGe in all queries except for Q2, Q6, and

Q10. These are the cases where SmartKG depends heavily on TPF

shipping, while SaGE can delegate to the SPARQL server.

5.3 Evaluation of Simple & Complex Queries
While in the previous analysis, a workload consisted of queries with

mixed characteristics, we have performed a separate performance

analysis on two specific query categories predefined by theWatDiv
Basic Testing [10]: linear (L), which represents simple path queries,

and Complex (C), with more challenging queries including a com-

binations of low-selective star and path queries. WatDiv provides

L-query templates and we randomly generate 3 queries for each

subtype (L1-L5) per client. The benchmark has only three C queries

(not templates), hence, we extend it by selecting 50 complex queries

(based on low selectivity patterns and high execution time) from

the initial intensive workload, for each client.

Fig. 7 shows the performance in the simplest L-queries of the

different systems on WatDiv-100M. Similar to our previous results,

smart-KG reports a stable query execution time, which ranges be-

tween 5-7 seconds. SaGe has the best performance in the L3 and L4

workloads, with average execution times of less than 2 seconds per

query. However, the SaGe execution time is affected by the number

of clients for L1, L2, and L5. SaGe provides better execution time

than smart-KG with up to 20 concurrent clients, while smart-KG
is more competitive for larger number of clients. Finally, TPF is the

slowest approach in L2, L4, L5 queries, while it excels in L1 and L3

up to 40 clients. TPF could not scale to 80 clients.

Fig. 7f shows the overall execution times for the C-queries work-

load (WatDiv-100M, 80 clients, 5min timeout). TPF is again the

slowest solution, while smart-KG significantly outperforms SaGe

as our partition shipping allows clients to work locally in parallel

on their queries, without long waiting times for the server response.

In contrast, SaGe preemption model introduces additional delays

at heavy workloads, due to query swapping, long waiting queues

and limited processing time per query on the server.

5.4 Resource Consumption
Server Network Load. Fig. 8a shows the average network traffic

per client (in GB) on the intensive workload. We report the average

per client, with 80 clients running in parallel on WatDiv-100M.

TPF incurs the highest communication costs due to the number of

requests and the shipping of extensive intermediate results, which

leads to poor query execution performance, as shown before.

In contrast, SaGe produces the least data transfer among all the

systems, as it works as a SPARQL endpoint with a preemptionmodel

and no intermediate results are transferred. The only additional data

transfer overheads in SaGe are the saved plans when queries are

resumed, a relatively small cost depending on the number of calls

required to finish each query. This factor depends on the complexity

of the queries and the number of concurrent clients.

As expected, smart-KG requires more data transfer than SaGe,

but up to 10× less data than TPF. Most of the data transferred is due

to partition shipping (cf. Fig. 8a smart-KG-parts). Yet, the retrieved
partitions can be reused for queries that require the same partitions.

992

WWW ’20, April 20–24, 2020, Taipei, Taiwan Amr Azzam, Javier D. Fernández, Maribel Acosta, Martin Beno, and Axel Polleres

(a) Network traffic per client (in GB) on the
intensive workload at increasing KG sizes

(b) Avg. Server CPU Usage (in %) at increas-
ing number of clients (WatDiv-100M)

(c) Avg. Server RAM Usage (in GB) at in-
creasing number of clients (WatDiv-100M)

Figure 8: Resource consumption on the intensive workload.

Caching the partitions will execute streak queries with minimal

communication to the server. A streak is a concept defined in [14]

as sequence of queries that appear as subsequent modifications of

a seed query.

Server CPU, RAM, and Disk Usage. Fig. 8b shows that TPF and
SaGe extensively use the server CPU. In particular, SaGe and TPF

respectively consume 80% and 60% of the CPU to execute 10 clients

in parallel, and both rapidly increase to 100% for 40 and 80 clients.

In practice, this reduces query throughput as most CPU time is

allocated to query processing while new requests are queued. In

contrast, smart-KG only uses 60% of the CPU to handle the work-

load on 80 parallel clients, which still gives room for serving ad-

ditional clients in the current hardware configuration. smart-KG
server consumes limited CPU thanks to its mixed triple pattern and

partition shipping, which hardly requires server CPU usage.

Fig. 8c shows that TPF has the overall highest server memory

usage, while SaGe’s consumption remains constant and low, thanks

to its preemption model. smart-KG uses least memory consumption

up to 20 clients and then slightly increases at 40 and 80 clients to

0.5 GB more than SaGe (due to TPF triple evaluation on the server).

We additionally compare to the resource consumption of Virtuoso,

which shows relatively constant CPU (∼40%) and increasing RAM

consumption, exceeding TPF for 80 clients. These values are in line

with the significant timeouts reported previously (see Fig. 4).

Table 2 shows the raw data sizes (in N-Triples) of the graphs and

storage requirements for the evaluated systems. As expected, TPF

and SaGe require a single HDT file, which highly compacts storage

needs. In contrast, the high number of HDT partitions managed by

smart-KG results in additional costs in disk space, doubling the raw

size of the WatDiv graphs (DBpedia uses less space given its more

restricted pruning). Given that disk space is relatively affordable

for servers, smart-KG provides a reasonable tradeoff for faster and

more balanced, SPARQL query execution.

Client CPU and RAM usage. As for client-side resources, as ex-
pected, Virtuoso excels with 80 clients in the WatDiv-100M work-

load (fully in the server, hence the clients run with 8% RAM size).

SaGe also shows reasonable (average 15%) usage of the client CPUs,

as it performs only two main operations on the client side: first,

resuming query execution through received saved plans from the

server; second, a subset of SPARQL operators such as filter, order

by, aggregations, are offered. TPF performs joins of triple pattern

results all locally on the client-side which is costly, leading to higher

Table 2: Comparison of storage requirements (inMB) for sys-
tems with HDT backend vs original graph size (raw)

Dataset Raw SmartKG TPF/SaGe

WatDiv-10M 1,471 2,783 112

WatDiv-100M 14,876 29,711 1,186

WatDiv-1000M 151,862 310,574 12,793

DBpedia 158,197 122,440 17,904

Virtuoso takes ∼ 3 times the space of TPF/SaGe.

(55%) client average CPU usage. smart-KG finally also depends on

the client to execute query stars as well as TPF Join processing, so

that client average CPU usage is higher, with 70% yet visible for

most of the current client systems.

These percentages decrease with higher numbers of clients, be-

cause network waiting time dominates in the case of TPF and

smart-KG and the long waiting queues in the case of SaGe. Client

memory consumption remains fairly constant and low for both

SaGe and TPF. smart-KG consumes more client memory, however

still reasonable. For instance, smart-KG utilizes up to 3 GB RAM.

6 CONCLUSION AND FUTUREWORK
We introduced smart-KG, a hybrid approach to efficiently query

Knowledge Graphs (KGs) on the Web, balancing the load between

servers and clients. We combine the Triple Pattern Fragment (TPF)

strategy with shipping compressed graph partitions that can be lo-

cally queried. The served partitions are based on predicate families

and different pruning parameters control the sizes and numbers

of the partitions. The smart-KG client implements a query decom-

poser, planner, and executor tailored to trade off TPF and partition

shipping. Our evaluation shows that smart-KG significantly out-

performs the state of the art, especially with increasing number of

concurrent clients, and on challenging BGP queries. We also show

that, at the cost of reasonable client resources, smart-KG improves

server availability, consuming significantly less CPU and RAM than

most of the evaluated systems, and reducing TPF’s network traffic.

Future work includes the following directions. First, we argue

(and have experimentally demonstrated) that our approach using

families provides a reasonable trade-off of shipping sizes; still com-

paring to other partitioning strategies (e.g. predicate-wise or hash

partitioning) is on our agenda. Next, we plan to exploit query logs
of KGs served on the web to generate query-driven partitions. This

includes strategies to adapt to new workloads or updated KGs. Fi-

nally, we will investigate shipping-based cost models to enhance

query performance and further reduce network traffic.

993

SMART-KG: Hybrid Shipping for SPARQLQuerying on the Web WWW ’20, April 20–24, 2020, Taipei, Taiwan

ACKNOWLEDGMENTS
This work has been supported by the European Union Horizon 2020

research and innovation programme under grant 731601 (SPECIAL)

and by the Austrian Research Promotion Agency (FFG) grant no.

861213 (CitySPIN) and by the German Research Foundation (DFG)

under grant 316669855 (SoRa).

REFERENCES
[1] [n. d.]. brTPF. http://olafhartig.de/brTPF-ODBASE2016/. http://olafhartig.de/

brTPF-ODBASE2016/

[2] [n. d.]. Linked Data Fragments.http://linkeddatafragments.org/software/. https:

//github.com/sage-org/

[3] [n. d.]. psutil. https://psutil.readthedocs.io/. psutil.https://psutil.readthedocs.io/.

[4] [n. d.]. SaGe.https://github.com/sage-org/. https://github.com/sage-org/

[5] [n. d.]. Stardog. https://www.stardog.com/. https://www.stardog.com/.

[6] [n. d.]. The Linked Open Data Cloud.https://lod-cloud.net/. https://lod-cloud.

net/.

[7] [n. d.]. Waterloo SPARQL Diversity Benchmark. https://dsg.uwaterloo.ca/watdiv/.

https://dsg.uwaterloo.ca/watdiv/

[8] Maribel Acosta andMaria-Esther Vidal. 2015. Networks of LinkedData Eddies: An

Adaptive Web Query Processing Engine for RDF Data. In International Semantic
Web Conference. 111–127.

[9] Werner Almesberger et al. 1999. Linux network traffic control—implementation

overview.

[10] Güneş Aluç, Olaf Hartig, M Tamer Özsu, and Khuzaima Daudjee. 2014. Diversified

stress testing of RDF data management systems. In Proc. of ISWC. Springer, 197–
212.

[11] Carlos Buil Aranda, Axel Polleres, and Jürgen Umbrich. 2014. Strategies for

Executing Federated Queries in SPARQL1.1. In Proc. of ISWC. 390–405. https:

//doi.org/10.1007/978-3-319-11915-1_25

[12] Christian Bizer, Tom Heath, and Tim Berners-Lee. 2009. Linked Data - The Story

So Far. Int. J. Semantic Web Inf. Syst. 5, 3 (2009), 1–22.
[13] Piero Andrea Bonatti, Michael Cochez, StefanDecker, Axel Polleres, and Valentina

Presutti (Eds.). 2018. Knowledge Graphs: New Directions for Knowledge Represen-
tation on the Semantic Web (Dagstuhl Seminar 18371). Schloss Dagstuhl, Germany.

http://polleres.net/bona-etal-DagstuhlReport18371.pdf to appear.

[14] Angela Bonifati, Wim Martens, and Thomas Timm. 2017. An analytical study

of large SPARQL query logs. Proceedings of the VLDB Endowment 11, 2 (2017),
149–161.

[15] Carlos Buil-Aranda, Aidan Hogan, Jürgen Umbrich, and Pierre-Yves Vandenbuss-

che. 2013. SPARQL web-querying infrastructure: Ready for action?. In Proc. of
ISWC. Springer, 277–293.

[16] Orri Erling and Ivan Mikhailov. 2009. RDF Support in the Virtuoso DBMS. In

Networked Knowledge-Networked Media. Springer, 7–24.
[17] Lee Feigenbaum, Gregory Todd Williams, Kendall Grant Clark, and Elias Torres.

2013. SPARQL 1.1 Protocol. Recommendation, W3C, March (2013).

[18] J. D. Fernández, M. A. Martínez-Prieto, P. de la Fuente Redondo, and C. Gutiérrez.

2018. Characterizing RDF Datasets. Journal of Information Science 44, 2 (2018),
203–229. https://doi.org/10.1177/0165551516677945

[19] Javier D. Fernández, Miguel A. Martınez-Prieto, Claudio Gutiérrez, Axel Polleres,

and Mario Arias. 2013. Binary RDF Representation for Publication and Exchange

(HDT). J. Web Sem. 19, 2 (2013). http://www.websemanticsjournal.org/index.

php/ps/article/view/328

[20] Michael J. Franklin, Björn Thór Jónsson, and Donald Kossmann. 1996. Perfor-

mance Tradeoffs for Client-Server Query Processing. In Proc. of SIGMOD. 149–160.
https://doi.org/10.1145/233269.233328

[21] Andrey Gubichev and Thomas Neumann. 2014. Exploiting the query structure

for efficient join ordering in SPARQL queries. In EDBT, Vol. 14. 439–450.

[22] Christophe Guéret, Paul T. Groth, Frank van Harmelen, and Stefan Schlobach.

2010. Finding the Achilles Heel of the Web of Data: Using Network Analysis for

Link-Recommendation. In Proc. of ISWC. 289–304. https://doi.org/10.1007/978-3-

642-17746-0_19

[23] C. Gutiérrez, C. Hurtado, A. O. Mendelzon, and J. Perez. 2011. Foundations of

Semantic Web Databases. JCSS 77 (2011), 520–541.
[24] Steve Harris and Andy Seaborne. 2013. SPARQL 1.1 Query Language.

[25] Olaf Hartig. 2013. SQUIN: a traversal based query execution system for the web

of linked data. In Proc. of SIGMOD. ACM, 1081–1084.

[26] Olaf Hartig, Christian Bizer, and Johann Christoph Freytag. 2009. Executing

SPARQL Queries over the Web of Linked Data. In Proc. of ISWC. 293–309. https:

//doi.org/10.1007/978-3-642-04930-9_19

[27] Olaf Hartig and Carlos Buil-Aranda. 2016. Bindings-Restricted Triple Pattern

Fragments. In Proc. of ODBASE (LNCS), Vol. 10033. 762–779. https://doi.org/10.

1007/978-3-319-48472-3_48

[28] Olaf Hartig and Giuseppe Pirrò. 2015. A context-based semantics for SPARQL

property paths over the web. In Proc. of ESWC. Springer, 71–87.
[29] Ali Hasnain, Maulik R Kamdar, Panagiotis Hasapis, Dimitris Zeginis, Claude N

Warren, Helena F Deus, Dimitrios Ntalaperas, Konstantinos Tarabanis, Muntazir

Mehdi, and Stefan Decker. 2014. Linked biomedical dataspace: lessons learned

integrating data for drug discovery. In Proc. of ISWC. Springer, 114–130.
[30] Lars Heling, Maribel Acosta, Maria Maleshkova, and York Sure-Vetter. 2018.

Querying Large Knowledge Graphs over Triple Pattern Fragments: An Empirical

Study. In Proc. of ISWC. Springer, 86–102.
[31] A. Hernández-Illera, M.A. Martínez-Prieto, and J.D. Fernández. 2015. Serializing

RDF in Compressed Space. In Proc. of DCC. 363–372.
[32] Jens Lehmann, Robert Isele, Max Jakob, Anja Jentzsch, Dimitris Kontokostas,

Pablo N. Mendes, Sebastian Hellmann, Mohamed Morsey, Patrick van Kleef,

Sören Auer, and Christian Bizer. 2015. DBpedia - A large-scale, multilingual

knowledge base extracted from Wikipedia. Semantic Web 6, 2 (2015), 167–195.
https://doi.org/10.3233/SW-140134

[33] M.A. Martínez-Prieto, M. Arias, and J.D. Fernández. 2012. Exchange and Con-

sumption of Huge RDF Data. In Proc. of ESWC. 437–452.
[34] M.A. Martínez-Prieto, N. Brisaboa, R. Cánovas, F. Claude, and G. Navarro. 2016.

Practical Compressed String Dictionaries. Information Systems 56 (2016), 73–108.
[35] M. Meimaris, G. Papastefanatos, N. Mamoulis, and I. Anagnostopoulos. 2017.

Extended Characteristic Sets: Graph Indexing for SPARQL Query Optimization.

In Proc. of ICDE. 497–508. https://doi.org/10.1109/ICDE.2017.106

[36] Thomas Minier, Hala Skaf-Molli, and Pascal Molli. 2019. SaGe: Web Preemption

for Public SPARQL Query Services. (2019), 1268–1278.

[37] Thomas Neumann and Guido Moerkotte. 2011. Characteristic sets: Accurate

cardinality estimation for RDF queries with multiple joins. In Proc. of ICDE. IEEE,
984–994.

[38] Axel Polleres, Maulik R. Kamdar, Javier D. Fernández, Tania Tudorache, and

Mark A. Musen. 2018. A More Decentralized Vision for Linked Data. In Proc. of
DeSemWeb@ISWC. http://ceur-ws.org/Vol-2165/paper1.pdf

[39] Muhammad Saleem, Muhammad Intizar Ali, Aidan Hogan, Qaiser Mehmood,

and Axel-Cyrille Ngonga Ngomo. 2015. LSQ: the linked SPARQL queries dataset.

In Proc. of ISWC. Springer, 261–269.
[40] Manuel Salvadores, Matthew Horridge, Paul Alexander, Ray Fergerson, Mark

Musen, and Natasha Noy. 2012. Using SPARQL to query bioportal ontologies

and metadata, Vol. 7650. 180–195. https://doi.org/10.1007/978-3-642-35173-0_12

[41] G. Schreiber and Y. Raimond. 2014. RDF 1.1 Primer. W3C Working Group Note.

https://www.w3.org/TR/rdf11-primer/.

[42] Pierre-Yves Vandenbussche, Jürgen Umbrich, Luca Matteis, Aidan Hogan, and

Carlos Buil-Aranda. 2017. SPARQLES: Monitoring public SPARQL endpoints.

Semantic Web 8, 6 (2017), 1049–1065.
[43] Ruben Verborgh, Miel Vander Sande, Olaf Hartig, Joachim Van Herwegen, Lau-

rens De Vocht, Ben De Meester, Gerald Haesendonck, and Pieter Colpaert. 2016.

Triple Pattern Fragments: a Low-cost Knowledge Graph Interface for the Web.

Journal of Web Semantics 37–38 (March 2016), 184–206. https://doi.org/doi:

10.1016/j.websem.2016.03.003

994

http://olafhartig.de/brTPF-ODBASE2016/
http://olafhartig.de/brTPF-ODBASE2016/
https://github.com/sage-org/
https://github.com/sage-org/
https://psutil.readthedocs.io/
psutil.https://psutil.readthedocs.io/.
https://github.com/sage-org/
https://www.stardog.com/.
https://lod-cloud.net/.
https://lod-cloud.net/.
https://dsg.uwaterloo.ca/watdiv/
https://doi.org/10.1007/978-3-319-11915-1_25
https://doi.org/10.1007/978-3-319-11915-1_25
http://polleres.net/bona-etal-DagstuhlReport18371.pdf
https://doi.org/10.1177/0165551516677945
http://www.websemanticsjournal.org/index.php/ps/article/view/328
http://www.websemanticsjournal.org/index.php/ps/article/view/328
https://doi.org/10.1145/233269.233328
https://doi.org/10.1007/978-3-642-17746-0_19
https://doi.org/10.1007/978-3-642-17746-0_19
https://doi.org/10.1007/978-3-642-04930-9_19
https://doi.org/10.1007/978-3-642-04930-9_19
https://doi.org/10.1007/978-3-319-48472-3_48
https://doi.org/10.1007/978-3-319-48472-3_48
https://doi.org/10.3233/SW-140134
https://doi.org/10.1109/ICDE.2017.106
http://ceur-ws.org/Vol-2165/paper1.pdf
https://doi.org/10.1007/978-3-642-35173-0_12
https://doi.org/doi:10.1016/j.websem.2016.03.003
https://doi.org/doi:10.1016/j.websem.2016.03.003

	Abstract
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 SMART-KG: Design and Overview
	4.1 SMART-KG Server
	4.2 SMART-KG Client

	5 Experimental Evaluation
	5.1 Creation of Family-based Partitions
	5.2 Overall Query Performance
	5.3 Evaluation of Simple & Complex Queries
	5.4 Resource Consumption

	6 Conclusion and Future work
	Acknowledgments
	References

