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Abstract Access to axenic cultures is crucial to

extend the knowledge of the biology, lifestyle or

metabolic capabilities of bacteria from different phyla.

The phylum Planctomycetes is an excellent example

since its members display an unusual cell biology and

complex lifestyles. As a contribution to the current

collection of axenic planctomycete cultures, here we

describe strain Mal48T isolated from phytoplankton

material sampled at the coast of S’Arenal close to

Palma de Mallorca (Spain). The isolated strain shows

optimal growth at pH 7.0–7.5 and 30 �C and exhibits

typical features of Planctomycetes. Cells of the strain

are spherical to pear-shaped, divide by polar budding

with daughter cells showing the same shape as the

mother cell, tend to aggregate, display a stalk and

produce matrix or fimbriae. Strain Mal48T showed

95.8% 16S rRNA gene sequence similarity with the

recently described Thalassoglobus neptunius

KOR42T. The genome sequence of the novel isolate

has a size of 6,357,355 bp with a G?C content of

50.3%. A total of 4874 protein-coding genes, 41 tRNA

genes and 2 copies of the 16S rRNA gene are encoded

in the genome. Based on phylogenetic, morphological

and physiological analyses, we conclude that strain

Mal48T (= DSM 100737T = LMG 29019T) should be

classified as the type strain of a new species in the

genus Thalassoglobus, for which the name Thalas-

soglobus polymorphus sp. nov. is proposed.

Keywords Marine bacteria � PVC superphylum �
Mallorca coast � Planctomicrobium piriforme �
Thalassoglobus neptunius

Introduction

The phylum Planctomycetes forms the medically,

environmentally and biotechnologically important

PVC superphylum together with Verrucomicrobia,

Lentisphaerae, Kirimatiellaeota and Chlamydiae
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(Wagner and Horn 2006; Devos and Ward 2014;

Wiegand et al. 2018). Planctomycetes are ubiquitous

bacteria, which colonise a variety of environments

from terrestrial to aquatic, marine or freshwater, in

which they act as important contributors to the activity

of the global carbon and nitrogen cycle (Wiegand et al.

2020). One example of such an activity includes

members of the class Candidatus Brocadiae capable of

performing anaerobic ammonium oxidation (anam-

mox) (Strous et al. 1999). The anammox process is

industrially exploited for removal of ammonia during

wastewater treatment (Peeters and van Niftrik 2019).

Members of the classes Phycisphaerae and Plancto-

mycetia are frequently found attached to algal surfaces.

Both, cultivation-dependent and -independent meth-

ods, have proven the frequent association of Plancto-

mycetes with macroalgae (Bengtsson and Øvreås

2010; Bondoso et al. 2014, 2017; Lage and Bondoso

2014). The ability to attach to surfaces is prerequisite

for biofilm formation on biotic and abiotic surfaces

(Bengtsson and Øvreås 2010; Kohn et al. 2020a, b).

Furthermore, the genomes of Planctomycetes code for

enzymes putatively involved in the degradation of

complex carbon substrates (Wecker et al. 2009;

Wegner et al. 2013). This might be a decisive

advantage in competitive environments since such

compounds are one of the few sources of carbon and

energy in the otherwise oligotrophic seawater (Lachnit

et al. 2013; Jeske et al. 2013; Kim et al. 2016).

Historically, Planctomycetes were thought to dis-

play a number of exceptional traits. Amongst others, a

compartmentalised cell plan, a nucleus-like structure

and the lack of peptidoglycan were proposed (König

et al. 1984; Fuerst and Webb 1991; Lindsay et al.

1997; Lonhienne et al. 2010). Due to the emergence of

more sophisticated microscopic techniques and

genetic tools allowing genetic modification of Planc-

tomycetes, these misinterpretations have been

resolved (Jogler et al. 2011; Rivas-Marı́n et al.

2016b). Peptidoglycan has been detected in several

members of the phylum (Jeske et al. 2015; van

Teeseling et al. 2015) and their internal compartments

were found to be invaginations of the cytoplasmic

membrane (Santarella-Mellwig et al. 2013; Acehan

et al. 2014; Boedeker et al. 2017), with the exception

of the anammoxosome of members of the class

Candidatus Brocadiae (Niftrik et al. 2006). It is now

well accepted that Planctomycetes is a peculiar

phylum of bacteria featuring a diderm bacterial cell

envelope architecture. Some strains have been shown

to have expanded cytoplasmic membranes, a different

composition of peptidoglycan or condensed DNA, but

all of these characteristics are variations rather than

exceptions to the Gram-negative cell plan (Devos

2014a, b; Boedeker et al. 2017; Rivas-Marı́n and

Devos 2018).

Although most of the controversies have been

resolved, the prospect of deciphering of the molecular

and cellular biology of Planctomycetes is still very

exciting. Several of their peculiarities need to be

studied in depth. This is e.g. the case for their unusual

mechanism of proliferation. Members of the class

Phycisphaerae typically divide by binary fission,

while species within the class Planctomycetia divide

by budding. It has been also reported that related

members of the proposed phylum ‘Saltotorellota’ are

capable of switching between both mechanisms

(Wiegand et al. 2019). Surprisingly, all Plancto-

mycetes lack the canonical divisome protein FtsZ as

well as some other ‘essential’ division proteins

(Pilhofer et al. 2008; Rivas-Marı́n et al. 2016a;

Rivas-Marin et al. 2020). Their complex endomem-

brane systems and their uncommon capacity to take up

macromolecules are also subject of current studies

(Boedeker et al. 2017). Planctomycetes appear to be

resistant to many antibiotics (Cayrou et al. 2010;

Godinho et al. 2019) and their estimated capacity to

produce secondary metabolites is quite high (Jeske

et al. 2013, 2016). This assumption is based on the

presence of secondary metabolite-related gene clus-

ters and the activity of small molecules produced and

experimentally tested (Calisto et al. 2019; Graça et al.

2016; Jeske et al. 2016; Panter et al. 2019; Wiegand

et al. 2020).

In this study, we describe a novel strain, Mal48T,

which was isolated from phytoplankton sampled in the

Mediterranean Sea close to Palma de Mallorca

(Spain). Based on the results obtained, we conclude

that strain Mal48T represents a novel species of the

recently described genus Thalassoglobus within the

family Planctomycetaceae (Kohn et al. 2020a).

Materials and methods

Cultivation conditions and isolation Strain Mal48T

was isolated on the 23th of September 2014 from

phytoplankton collected at the coast of S’Arenal close
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to Palma de Mallorca (Spain) (sampling location:

39.5126 N 2.7470 E). After centrifugation of the

sampling material, the pellet was resuspended in

100 lL sterile artificial seawater (ASW) and streaked

on a plate containing M1H medium with N-acetylglu-

cosamine (NAG) and ASW (designated M1H NAG

ASW) (Kallscheuer et al. 2019a) solidified with 15 g/

L agar and additionally supplemented with 200 mg/L

ampicillin, 500 mg/L streptomycin and 20 mg/L

cycloheximide. Plates were incubated at 28 �C for

3–4 weeks and isolated colonies were then streaked on

fresh M1H NAG ASW plates. Initial amplification and

sequencing of the 16S rRNA gene was performed as

previously described (Rast et al. 2017). This step was

included to ensure that the isolated strain is indeed a

member of the phylum Planctomycetes.

Physiological analyses For temperature and pH

optima determination M1H NAG ASW medium was

used. The strain was cultivated at pH 8 at different

temperatures ranging from 10 to 40 �C. For pH

optimum identification 100 mM 2-(N-mor-

pholino)ethanesulfonic acid (MES, pH 5.0–6.5),

HEPES (pH 7.0–8.0), HEPPS (pH 8.5) or N-cyclo-

hexyl-2-aminoethanesulfonic acid (CHES, pH

9.0–9.5) were used as buffering agents. Cultivations

for determination of the pH optimum were performed

at 28 �C. Growth was determined from optical density

measurements at 600 nm (OD600) of triplicate

cultures.

Genome analysis The genome of strain Mal48T is

available from NCBI under GenBank accession num-

ber CP036267 and the 16S rRNA gene sequence under

accession number MK625061. Sequencing of the

genome is described in a previous study (Wiegand

et al. 2020). The primary metabolism was analysed by

examining locally computed InterProScan (Mitchell

et al. 2019) results cross-referenced with information

from the UniProt database (UniProt 2019) and BlastP

results of ‘typical’ protein sequences.

Light microscopy and scanning electron micro-

scopy Phase contrast light microscopy and scanning

electron microscopy were performed as previously

described (Kallscheuer et al. 2019a).

Phylogenetic analyses The 16S rRNA gene-based

phylogenetic analysis of strain Mal48T was computed

along with sequences of all described planctomycetal

species (assessed in January 2020), including recently

published isolates (Kohn et al. 2016, 2020a, b;

Kulichevskaya et al. 2015; Boersma et al. 2019;

Kallscheuer et al. 2019a; Dedysh et al. 2020). SINA

was used to perform the 16S rRNA gene sequence

alignment (Pruesse et al. 2012). The phylogenetic

inference was performed employing a maximum

likelihood approach with 1000 bootstraps, the nucleo-

tide substitution model GTR, gamma distribution and

estimation of proportion of invariable sites

(GTRGAMMAI option) (Stamatakis 2014). Three

16S rRNA genes from members of the PVC super-

phylum, but outside of the phylum Planctomycetes,

were used as outgroup (Opitutus terrae, acc. No.

AJ229235; Kiritimatiella glycovorans, acc. no.

NR_146840 and Lentisphaera araneosa, acc. no.

NR_027571). The average nucleotide identity (ANI)

was calculated using OrthoANI (Lee et al. 2016) and

the average amino acid identity (AAI) was gained

using the aai.rb script of the enveomics collection

(Rodriguez-R and Konstantinidis 2016). The percent-

age of conserved proteins (POCP) was calculated as

described (Qin et al. 2014). The rpoB gene sequences

were extracted from the genome annotations and the

sequence identities were determined as described

(Bondoso et al. 2013) with Clustal Omega (Sievers

et al. 2011). Alignment and matrix calculation were

performed by extracting only those parts of the

sequence that would have been sequenced with the

described primer set. The unique single-copy core

genome of all analysed genomes for the multi-locus

sequence analysis (MLSA) was determined with

Proteinortho5 (Lechner et al. 2011) (‘selfblast’ option

enabled). The sequences of the obtained orthologous

groups were aligned using MUSCLE v.3.8.31 (Edgar

2004). After clipping, partially aligned C- and N-ter-

minal regions and poorly aligned internal regions were

filtered using Gblocks (Castresana 2000). The final

alignment of 709 ubiquitous genes with a combined

length of 356,576 conserved amino acid residues was

concatenated and clustered using the maximum like-

lihood method implemented by RaxML (Stamatakis

2014) (‘rapid bootstrap’ method and 500 bootstrap

replicates).

Results and discussion

Phylogenetic inference

During maximum likelihood phylogenetic analy-

sis based on 16S rRNA gene sequences and MLSA,

123

Antonie van Leeuwenhoek



strain Mal48T stably clustered with Thalassoglobus

neptunius KOR42T, the type species of the recently

described (but currently only effectively named)

genus Thalassoglobus (Kohn et al. 2020a) (Fig. 1).

The 16S rRNA gene sequence identity between

Mal48T and T. neptunius KOR42T is 95.8% (Fig. 2).

This value is above the proposed threshold for genera

of 94.5% (Yarza et al. 2014) and thus strain Mal48T

likely represents a novel species within the genus

Thalassoglobus. Accordingly, the 16S rRNA gene

identity between Mal48T and the next closest relative

apart from KOR42T, Planctomicrobium piriforme

P3T, is notably below this threshold, thereby confirm-

ing that strain Mal48T is not a member of the genus

Planctomicrobium (Fig. 2). For Planctomycetes, it has

been found that 16S rRNA gene sequence similarity

alone is not necessarily sufficient for delineation of

species (Kohn et al. 2020b). Thus, phylogenetic

assumptions on the genus level were further substan-

tiated by reviewing the RNA polymerase b-subunit

gene (rpoB) sequence identities (Bondoso et al. 2013),

AAI (Konstantinidis and Tiedje 2005), POCP (Qin

et al. 2014) or ANI (Lee et al. 2016). For rpoB gene

identity, the threshold value for delineation of genera

is defined by a range from 75.5 to 78% (Kallscheuer

et al. 2019b). The rpoB identity of 75.5% between

Mal48T and T. neptunius KOR42T reinforces placing

both taxa in the same genus, but as separate species

(species threshold: 96.3%). Comparison of the POCP

between strain Mal48T and KOR42T yielded a value of

61.0%, which is above the proposed genus threshold of

50% (Qin et al. 2014). For AAI, the genus classifica-

tion is defined to be between 60 and 80% (Luo et al.

2014). With an AAI of 63.9% placement of both

strains in the same genus is not required, but can be

justified. Finally, an ANI value of 69.9% for compar-

ison of T. neptunius KOR42T and strain Mal48T

confirms that both strains belong to separate species as

the value is significantly below the species threshold

of 95% (Kim et al. 2014).

Taken together, all the analysed phylogenetic

markers (Fig. 2), as well as the phylogenetic trees

(Fig. 1), support the conclusion that strain Mal48T

belongs to a novel species within the genus

Thalassoglobus.

Morphological and physiological analyses

The morphology of strain Mal48T was characterised

using phase contrast and scanning electron micro-

scopy. Prior to the analysis, cells were harvested

during the exponential growth phase from M1H NAG

ASW medium. Detailed information about morphol-

ogy and cell division is summarised in Table 1 in

Fig. 1 Maximum likelihood phylogenetic analysis showing the

position of the novel strain Mal48T. 16S rRNA gene

sequence (a)- and MLSA-based phylogeny (b) were computed

as described in the ‘‘Materials and methods’’ section. Bootstrap

values from 1000 re-samplings (500 re-samplings for MLSA)

are given at the nodes (in %)
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comparison to the current closest neighbours T.

neptunius KOR42T and P. piriforme P3T. Cells of

strain Mal48T are quite heterogeneous in shape;

ranging from spherical to pear-shaped with different

intermediate forms (Fig. 3b, d). The average cell size

was determined to be 1.6 ± 0.3 lm 9 0.9 ± 0.2 lm

(Fig. 3c). Beige-coloured colonies were observed on

solid medium, indicating a lack of carotenoid produc-

tion. Mal48T cells usually form aggregates (Fig. 3d)

and divide by polar budding (Fig. 3a) with the

daughter cells showing the same shape as the mother

cell, as was also observed for P. piriforme P3T. The

surface of the cells of strain Mal48T is covered with

matrix or fibre (Fig. 3d, e). Cells have a stalk;

however, a holdfast structure was not observed during

electron microscopic analysis. In contrast to the two

strains used for comparison, crateriform structures

could not be observed on the cell surface of strain

Mal48T.

In physiological analyses, strain Mal48T was found

to preferentially grow at 30 �C and pH 7.5, however,

cells were able to proliferate over a range of 15–36 �C
and pH 6.5–8.0 (Fig. 4). The maximal growth rate in

M1H NAG ASW medium was found to be 0.024 h-1,

which corresponds to a generation time of approxi-

mately 29 h. Optimal conditions regarding tempera-

ture and pH are only slightly different between Mal48T

and T. neptunius KOR42T. In contrast, P. piriforme

P3T prefers considerably lower temperatures and

moderate acidic conditions. These conditions likely

reflect the natural conditions in which the strain was

isolated (littoral wetland of a boreal lake).

Genomic characteristics

A comparison of the genomic characteristics of strain

Mal48T, T. neptunius KOR42T and P. piriforme P3T is

outlined in Table 1. The genome of strain Mal48T has a

Fig. 2 Comparison of phylogenetic markers for delineation of

the novel isolate Mal48T. Methods used: 16S rRNA gene

sequence identity (16S), rpoB gene identity (1200 bp fragment),

average nucleotide identity (ANI), average amino acid identity

(AAI) and percentage of conserved proteins (POCP)

123

Antonie van Leeuwenhoek



size of 6.4 Mb, which is in the same range as in T.

neptunius KOR42T (6.7 Mb) and P. piriforme P3T

(6.3 Mb), however, the G?C content is slightly lower

(50.3% for Mal48T, 52.8% for KOR42T, 58.8% for

P3T). 4874 putative protein-encoding genes were iden-

tified by automated gene prediction and annotation, of

which 40.8% (1987 genes) encode hypothetical pro-

teins. These values correspond to 767 protein-coding

genes per Mb, yielding a coding density of 84.9%. This

parameter is in the same range also in the other species.

Similar to the close relatives chosen for comparison,

strain Mal48T lacks plasmids. The number of tRNA

genes is lower compared toT. neptuniusKOR42T andP.

piriforme P3T. Strain Mal48T harbours two copies of the

16S rRNA gene, whereas a single gene was found in T.

neptunius KOR42T and P. piriforme P3T.

Genome-encoded features of the primary carbon

metabolism

In order to check for the presence of key metabolic

enzymes participating in the central carbon

Table 1 Phenotypic and genotypic features of strain Mal48T in comparison to T. neptunius KOR42T and P. piriforme P3T

Characteristics Mal48T KOR42T* P3T**

Phenotypic features

Color Beige Cream White

Size 1.6 9 0.9 lm 1.7 lm (diameter) 1.7–2.8 9 0.9–1.3 lm

Shape Pear-shaped or spherical Spherical Ellipsoidal to pear-shaped

Motility No No Yes

Temperature range (optimum) (� C) 15–36 (30) 22–36 (33) 10–30 (20–28)

pH range (optimum) 6.5–8.0 (7.5) 5.5–8.5 (7.0–7.5) 4.2–7.1 (6.0–6.5)

Aggregates Yes Yes Yes

Division Budding Budding Budding

Dimorphic life cycle n.o. n.o. Yes

Flagella n.o. n.o. Yes

Crateriform structures n.o. Yes Yes, polar

Fimbriae Yes, overall matrix or fiber Few fibers Yes

Capsule n.o. n.o. n.d.

Bud shape Like mother cell Round Like mother cell

Budding pole Polar n.o. Polar

Stalk Yes n.o. Yes

Holdfast structure n.o. Yes Yes

Genomic features

Genome size (bp) 6,357,355 6,734,412 6,317,004

Plasmids (bp) n.o. n.o. n.d.

G?C content (%) 50.3 52.8 58.8

Completeness (%) 97.41 96.55 95.69

Contamination (%) 0 0 1.72

Protein-coding genes 4874 5508 5050

Protein-coding genes/Mb 767 818 799

Hypothetical proteins 1987 2516 2814

Coding density (%) 84.9 85.7 85.8

16S rRNA genes 2 1 1

tRNA genes 41 70 53

*Genomic data from GenBank Acc. No. SIHI00000000

**Genomic data from GenBank Acc. No. NZ_FOQD00000000

n.o. not observed, n.d. not determined
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metabolism, we performed a genome-based analysis

of strain Mal48T in comparison to T. neptunius

KOR42T and P. piriforme P3T (Table 2). Glycolysis,

pentose phosphate pathway, gluconeogenesis and the

tricarboxylic acid (TCA) cycle, including anaplerotic

reactions, were included in the analysis. All three

strains harbour genes coding for enzymes of the

Embden-Meyerhof-Parnas (EMP) pathway (the most

common glycolytic pathway) with a noticeable lack of

the gene pykF encoding the pyruvate kinase I in the

genome of strain Mal48T. This enzyme catalyses the

conversion of phosphoenolpyruvate to pyruvate in a

substrate-level phosphorylation reaction. A potential

lack of this enzyme is likely compensated by the

phosphotransferase system-dependent uptake of glu-

cose, which uses phosphoenolpyruvate as phosphate

donor to yield pyruvate and glucose-6-phosphate. This

said, we assume that the glycolytic route is functional

Fig. 3 Morphology of strain Mal48T. The cell morphology was

analysed by phase contrast (a, b) and scanning electron

microscopy (d, e). Cells divide by budding (a) and produce

dense aggregates (d). The scale bars are 1 lm. For determina-

tion of the cell size (c) at least 100 representative cells were

counted manually or by using a semi-automated object count

Fig. 4 Temperature and pH optimum of strain Mal48T.

Cultivations at different temperatures (a) were performed at

pH 8.0. Cultivations at different pH values (b) were conducted at

28 �C. The growth rates were obtained from the slope of the plot

of ln(OD600) against the cultivation time for each tested

condition. Data from triplicate cultivations was used
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Table 2 Genome-based primary metabolism of strain Mal48T compared to the closest related species T. neptunius KOR42T and P.

piriforme P3T

Enzyme EC

number

Gene Mal48T KOR42T* P3T**

Glycolysis (Embden–Meyerhof–Parnas pathway)

Glucose-6-phosphate isomerase 5.3.1.9 pgi Mal48_03960 Y Y

ATP-dependent 6-phosphofructokinase isozyme 1 2.7.1.11 pfkA Mal48_01100 Y Y

Fructose-bisphosphate aldolase class 2 4.1.2.13 fbaA Mal48_20830 Y Y

Triosephosphate isomerase 5.3.1.1 tpiA Mal48_48530 Y Y

Glyceraldehyde-3-phosphate dehydrogenase 1.2.1.12 gapA Mal48_05570 Y Y

Phosphoglycerate kinase 2.7.2.3 pgk Mal48_37300 Y Y

2,3-bisphosphoglycerate-independent phosphoglycerate

mutase

5.4.2.12 gpmI Mal48_16500 Y n.a.

2,3-bisphosphoglycerate-dependent phosphoglycerate

mutase

5.4.2.11 gpmA N N Y

Enolase 4.2.1.11 eno Mal48_22830 Y Y

Pyruvate kinase I 2.7.1.40 pykF N Y Y

Pyruvate dehydrogenase complex 1.2.4.1/ aceEF Mal48_00570/

Mal48_18480

Y Y

2.3.1.12

Gluconeogenesis

Phosphoenolpyruvate synthase 2.7.9.2 ppsA N N n.a.

Pyruvate, phosphate dikinase 2.7.9.1 ppdK Mal48_37150 Y Y

Pyruvate carboxylase. 6.4.1.1 pyc Mal48_22860 Y Y

Phosphoenolpyruvate carboxykinase (ATP) 4.1.1.49 pckA N N Y

Phosphoenolpyruvate carboxykinase (GTP) 4.1.1.32 pckG N N N

Phosphoenolpyruvate carboxykinase (diphosphate) 4.1.1.38 PEPCK Mal48_16500 Y n.a.

Fructose-1,6-bisphosphatase class 2 3.1.3.11 glpX N N n.a.

Fructose-1,6-bisphosphatase class 1 3.1.3.11 fbp N Y n.a.

Pyrophosphate–fructose 6-phosphate

1-phosphotransferase

2.7.1.90 pfp Mal48_08170 Y Y

Pentose phosphate pathway

Glucose-6-phosphate 1-dehydrogenase 1.1.1.49 zwf Mal48_19300 Y Y

6-phosphogluconolactonase 3.1.1.31 pgl Mal48_19400 Y Y

Mal48_19410

Mal48_41520

Mal48_38280

6-phosphogluconate dehydrogenase, decarboxylating 1.1.1.44 gndA Mal48_13910 Y Y

Transketolase 2 2.2.1.1 tktB Mal48_26790 Y Y

Transaldolase B 2.2.1.2 talB Mal48_06240 Y Y

KDPG (Entner–Doudoroff pathway)

KDPG aldolase 4.1.2.14 eda Mal48_44770 Y Y

Phosphogluconate dehydratase 4.2.1.12 edd Mal48_25960 Y

(candidate)

Y

(candidate)

TCA cycle

Citrate synthase 2.3.3.16 gltA Mal48_29080 Y Y

Aconitate hydratase A 4.2.1.3 acnA Mal48_48270 Y Y

Isocitrate dehydrogenase [NADP] 1.1.1.42 icd Mal48_24210 Y Y
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in strain Mal48T. All genes required for a functional

TCA cycle were identified in all three strains. In

addition to the EMP, two other sugar catabolic

pathways are present in bacteria: the pentose phos-

phate pathway and the Entner-Doudoroff pathway.

Strain Mal48T possess all the genes required for the

reactions of the pentose phosphate pathway. With

regard to the Entner-Doudoroff pathway, candi-

date genes coding for a putative 2-dehydro-3-

deoxyphosphogluconate aldolase and a phosphoglu-

conate dehydratase were found.

For de novo sugar biosynthesis (gluconeogenesis),

the three strains only possess a few of the enzyme

classes reported to participate in this anabolic path-

way, however, this minimal set appears sufficient for a

functional anabolic route.

All three strains lack the glyoxylate shunt, which is

a shortened TCA cycle typically required for anaplero-

sis during growth on acetate. This route is typically

found in bacteria capable of using acetate or fatty acids

as sole carbon and energy source. Absence of the

glyoxylate shunt suggests that the strains are either not

capable of using such compounds as sole source of

energy and carbon source or that they harbour

alternative pathways for this purpose. Except for the

lack of the glyoxlate shunt, all three species probably

have a canonical primary carbon metabolism as found

in most aerobic heterotrophic bacteria.

Taken together, our physiological, morphological,

genomic and phylogenetic analyses led to the conclu-

sion that strain Mal48T (= DSM 100737T = LMG

29019T) represents a novel species within the recently

described genus Thalassoglobus, for which we pro-

pose the name Thalassoglobus polymorphus sp. nov.,

with strain Mal48T as the type strain.

Thalassoglobus polymorphus sp. nov.

Thalassoglobus polymorphus (po.ly.mor’phus. N.L.

masc. adj. polymorphus (from Gr. masc. adj. poly-

morphos) multiform, polymorphic; corresponding to

the varied shapes of the cells).

Cells are typically pear-shaped (1.6 9 0.9 lm), but

can also have a roundish or ovoid shape. Cells produce

matrix or fibre and tend to aggregate. Cells form beige

colonies. Optimal temperature and pH for growth of

the type strain are 30 �C and pH 7.5, respectively.

Grows at 15–36 �C. The pH range for growth is

narrow (pH 6.5–8.0); no growth is observed at pH 6.0

Table 2 continued

Enzyme EC

number

Gene Mal48T KOR42T* P3T**

2-oxoglutarate dehydrogenase complex 1.2.4.2/ sucAB Mal48_06600 Y Y

2.3.1.61 Mal48_24080

Succinate-CoA ligase complex 6.2.1.5 sucCD Mal48_27760/ Y Y

Mal48_48200

Succinate dehydrogenase complex 1.3.5.1 sdhABC Mal48_12710/

Mal48_12720/

Y Y

Mal48_12700

Fumarate hydratase class I, an/aerobic 4.2.1.2 fumAB N N n.a.

Fumarate hydratase class II 4.2.1.2 fumC Mal48_04830 Y Y

Malate dehydrogenase 1.1.1.37 mdh Mal48_29220 Y Y

Glyoxylate shunt

Isocitrate lyase 4.1.3.1 aceA N N n.a.

Malate synthase G 2.3.3.9 glcB N N n.a.

*Genomic data from GenBank Acc. No. SIHI00000000

**Genomic data from GenBank Acc. No. NZ_FOQD00000000. Presence of a gene in T. neptunius KOR42T and P. piriforme P3T is

indicated by ‘Y’ and absence is indicated by ‘N’

n.a. not available
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(or lower) and pH 8.5 (or higher). The genome of the

type strain has a G?C content of 50.3%.

The type strain Mal48T (= DSM 100737T = LMG

29019T, deposited as Malle48) was isolated from

phytoplankton collected in the Mediterranean Sea

close to S’Arenal, Palma de Mallorca in September

2014. The genome sequence (accession number

CP036267) and 16S rRNA gene sequence (accession

number MK625061) of strain Mal48T are available

from GenBank.
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Jeske O, Schüler M, Schumann P et al (2015) Planctomycetes do

possess a peptidoglycan cell wall. Nat Commun 6:7116

Jeske O, Surup F, Ketteniß M et al (2016) Developing tech-

niques for the utilization of planctomycetes as producers of

bioactive molecules. Front Microbiol 7:1242. https://doi.

org/10.3389/fmicb.2016.01242
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