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a b s t r a c t

Analyzing cryptocurrency payment flows has become a key forensic method in law enforcement and is
nowadays used to investigate a wide spectrum of criminal activities. However, despite its widespread
adoption, the evidential value of obtained findings in court is still largely unclear. In this paper, we focus
on the key ingredients of modern cryptocurrency analytics techniques, which are clustering heuristics
and attribution tags. We identify internationally accepted standards and rules for substantiating suspi-
cions and providing evidence in court and project them onto current cryptocurrency forensics practices.
By providing an empirical analysis of CoinJoin transactions, we illustrate possible sources of misinter-
pretation in algorithmic clustering heuristics. Eventually, we derive a set of legal key requirements and
translate them into a technical data sharing framework that fosters compliance with existing legal and
technical standards in the realm of cryptocurrency forensics. Integrating the proposed framework in
modern cryptocurrency analytics tools could allow more efficient and effective investigations, while
safeguarding the evidential value of the analysis and the fundamental rights of affected persons.
© 2020 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Tracking and tracing payment-flows in Cryptocurrencies by
analyzing transactions in the underlying, publicly-available Block-
chain, has become a key forensic method in law enforcement. It is
used to investigate awide spectrum of criminal activities relying on
the pseudo-anonymous nature of cryptocurrencies, ranging from
the purchase of illicit goods and services on Darknetmarkets (Soska
and Christin, 2015), over ransomware attacks (Huang et al., 2018;
Paquet-Clouston et al., 2018), to extortion and money laundering
(FATF, 2015). A typical forensic investigation starts from one or
more suspect addresses and traces monetary flows up to some
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known exit point, which is typically an exchange or a wallet pro-
vider service, where Cryptocurrencies are converted back into fiat
currencies.

Cryptocurrency investigations are nowadays supported by a
number of commercial (e.g. Chainalysis, Elliptic, etc.) and non-
commercial analysis tools (e.g. BlockSci; Kalodner, Goldfeder,
Chator, M€oser and Narayanan (2017) that exploit the openness of
the Cryptocurrency transaction ledger also known as Blockchain.
They build on a long history of research that has shown that
pseudonymous addresses do not provide sufficient anonymity,
neither in Bitcoin (Meiklejohn et al., 2013; Androulaki et al., 2013;
M€oser, 2013; Monaco, 2015) nor in post-Bitcoin currencies, with
stronger privacy-enhancing techniques, such as ZCash (Quesnelle,
2018; Kappos et al., 2018) or Monero (Miller et al., 2017; Kumar
et al., 2017), which has shown to be traceable until early 2017.

Investigation tools mainly rely on two complementary tech-
niques: Address clustering heuristics or clustering heuristics for
short, which are used to group multiple addresses into maximal
subsets (clusters) that can be likely assigned to the same real-world
actor, and attribution tags, which are any form of context
nder the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Fig. 1a. Multi-Input Clustering Heuristics: Addresses A and B are inputs of trans-
action T1 and must therefore be controlled by the owner of the corresponding private
keys. The same holds for addresses B and C of T2. Since address B occurs in the set of
inputs of T1 and T2 one can infer that addresses A, B, C, and D are controlled by the
same actor.

M. Fr€owis et al. / Forensic Science International: Digital Investigation 33 (2020) 2009022
information that can be attributed to an address, transaction or
cluster, such as the name of an exchange hosting the associated
wallet or some other personally identifiable information (PII) of the
account holder. The strength lies in the combination of these
techniques: a tag attributed to a single address belonging to a larger
cluster can easily de-anonymize hundreds of thousands Crypto-
currency addresses (c.f. Kumar et al. (2017)).

However, despite the promising benefits of before mentioned
Cryptocurrency analytics techniques in criminal investigations, the
evidential value of those techniques as well as implications for
digital forensics remain largely unclear: first, certain types of
transactions (e.g. CoinJoins, M€oser and B€ohme (2016)) could distort
clustering results, unifying entities that have no association in the
real-world and can lead to the formation of so called super-clusters
(Harrigan and Fretter, 2016). Second, false, unreliable, or inten-
tionally misplaced attribution tags could associate unrelated actors
with a given cluster and lead to suspicions against innocent people
or even to false convictions.

Law enforcement agencies (LEAs) increasingly recognize the
value of information sharing to maximize investigative resources
and avoid duplicate efforts (Interpol, 2018). This also applies to
sharing attribution tags and address clusters in cryptocurrency
forensics. Both detection methods become more effective by
sharing obtained information. In that regard, the lack of a stan-
dardized ontology and analytical approaches additionally amplifies
the aforementioned risks of forensic Cryptocurrency analysis in
particular if attribution tags are shared in a framework that does
not safeguard the evidential value of the shared content (Casey and
Back, 2015; Garfinkel, 2010).

In this paper, we propose measures for safeguarding the
evidential value of forensic Cryptocurrency investigation results.
After introducing the necessary background in Section 2, we make
two major contributions that can be summarized as follows:

� First, we systematically investigate internationally accepted
legal standards and rules for providing court-proof evidence and
derive key requirements for forensic Cryptocurrency in-
vestigations and discuss possible risks of clustering approaches
based on an exemplary empirical analysis of CoinJoin trans-
actions in the 100 largest Bitcoin clusters in Section 3.

� Second, we translate those requirements into a data sharing
framework for law enforcement agencies that provides safe-
guards to maintain the evidential value of forensic Crypto-
currency investigations by ensuring compliance with existing
regulations in Section 4.

To the best of our knowledge, this paper is the first to tackle
Cryptocurrency forensics and analytics from a combined legal and
technical perspective. We believe that it can therefore simulta-
neously serve as a blueprint for law enforcement investigators,
prosecutors, or Cryptocurrency analytics tool providers who aim to
comply with existing regulations.
1 For example: Private keys are not shared, thus nobody can create transactions
with inputs not belonging to her (multi-input); Or nobody would include unnec-
essary inputs, thus we can infer change outputs (optimal change).

2 Disjoint sets of addresses known to belong together (clusters).
2. Background and related work

In this section, we briefly introduce central notions and concepts
used throughout this paper. While we do not attempt to give a
complete introduction to the underlying technology of Crypto-
currencies, we direct the reader to existing literature, such as
Nakamoto (2008); Bonneau et al. (2015); Tschorsch and
Scheuermann (2016); Judmayer et al. (2017). In the following, we
use Bitcoin as a running example but most findings can be easily
translated to any UTXO (Unspent Transaction Output) based
Cryptocurrency.
2.1. Address clustering heuristics

There are several address clustering heuristics in use today, the
safest, most effective and most studied one being the multi-input
heuristic (MIH) (Meiklejohn et al., 2013; Nick, 2015). Its underly-
ing intuition, which is illustrated in Fig. 1a, is that if two addresses
(i.e. A and B) are used as inputs in the same transactionwhile one of
these addresses along with another address (i.e. B and C) are used
as inputs in another transaction, then the three addresses (A, B and
C) must somehow be controlled by the same actor, who conducted
both transactions and therefore possesses the private keys corre-
sponding to all three addresses.

The underlying assumption of the multiple-input heuristics
holds for most Bitcoin transactions although there are known
obfuscation mechanisms that can violate this assumption: for
example, transactions that are generated by amixing scheme called
CoinJoin (M€oser and B€ohme, 2016) where n parties produce a
special joint transaction. Fig. 1b sketches the structure of a CoinJoin
transaction. This scheme is used to conceal the relationships be-
tween inputs and outputs and in the end who of the n parties
transacted with whom. For multi-input address clustering these
transaction schemes pose a problem because the clustering algo-
rithm would combine all n input addresses and their respective
clusters into one entity. Meaning we merged n potentially inde-
pendent parties into one (c.f. Section 3.3).

All clustering heuristics have in common that they rely on
certain behavioral patterns to group addresses that likely belong to
the same owner. Although different clustering heuristics depend on
different behavioral assumptions,1 they all suffer from similar
problems.

To systematically evaluate the effectiveness of those heuristics,
ground truth data2 is needed, but not available and generally hard
to obtain (Nick, 2015). Furthermore, the reliability of the heuristics
to some extend depend on user behavior which can change and
leaves room for obfuscation (nopara73, 2017). To depict the related



Fig. 1b. CoinJoin Transaction (based on M€oser and B€ohme (2016)): several individual
payments from multiple parties are combined into a single transaction.
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risks from a legal perspective we only consider the multi-input
heuristic within this paper. But out of given reasons most of the
results and general problems also apply to other clustering heu-
ristics. For a taxonomy of different clustering heuristics we refer to
(Meiklejohn et al., 2013; Androulaki et al., 2013).

A number of studies attempted to quantify the effectiveness of
clustering techniques (Nick, 2015): measured the accuracy of
different clustering algorithms using a ground-truth dataset con-
sisting of 37 585 user wallets, which was obtained via a vulnera-
bility in the BitcoinJ light client implementation. The results
showed that on average 69.34% of the addresses could be linked
using only the multi-input heuristics. Harrigan and Fretter (2016)
studied reasons for the effectiveness of multi-input address clus-
tering and came to the conclusion that address reuse and avoidable
merging are the main drivers. They also measured the growth
patterns of clusters and found that merges of two large clusters are
rare in general and could be an indicator of wrongfully merged
clusters.

The reliability of clustering results is of uttermost importance
for forensic investigations. Wrong clustering results can lead to
missed- or even false convictions.

2.2. Attribution tags

Tagging is a collaborative process in which a user adds (mostly
textual) labels or tags to shared content. It does not rely on static,
predefined taxonomic structures but on dynamic, community-
driven linguistic terms and conceptions (Golder and Huberman,
2006). Tagging became popular with the launch of sites like Deli-
cious and Flickr around 2005 and is now a standard feature that can
be found inmany social media sites. When applied in the context of
Cryptocurrencies, as shown in Fig. 2, a tag could for example
attribute a given Bitcoin address to some real-world actor (e.g.
Internet Archive).

Despite their wide-spread adoption, tagging systems still face a
number of problems: a tag can be ambiguous and have many
related meanings (polysemy), multiple tags can have the same
meaning (synonymy), or the semantics of a tag might range from
very specific to very general because people describe resources
along a continuum of specificity (Golder and Huberman, 2006). If,
Fig. 2. Attribution Tag: an attribution tag attributes contextual information to a
Cryptocurrency address.
in the context of Cryptocurrencies, a user attributes an address with
the tag “ransomware” it is not entirely clear whether this tag means
that the tagged address belongs to a victim or the originator of a
cybercrime attack or that the tag is just somehow related to this
topic (c.f. Article 6 EU-LED). Further contextual information, such as
a more detailed description, can only be determined after recon-
ciling label-based tags with their authors.

Semantic ambiguity of tags can also be exploited to find irreg-
ularities in address clustering: Ermilov et al. Ermilov et al. (2017)
devised a new clustering algorithm that uses tagging data as
additional clustering criteria. They categorize tags on addresses and
create so called negative pairs, if such a negative or conflicting pair
would be introduced in a cluster in course of merging two clusters,
cluster formation is aborted (e.g. a cluster is unlikely to be an ex-
change and a darknet market at the same time).

As for clustering the reliability of tag data is crucial for in-
vestigations. The reliability of tags mainly depends on the origin of
the tag as well as its processing history (c.f. 3.3).

2.3. Provenance and digital evidence

In large scale data sharing efforts, data is continuously added,
modified, or deleted by users having different backgrounds, tech-
nical skill, and intentions. Data integrated from several sources into
another, possibly diverging context is therefore never fully clean,
certain, and only as trustworthy as its source. In order to assess the
quality, uncertainty, and authority of data, users must therefore
know the sources and applied data generation and processing
routines.

Provenance refers to sources of information that describe the
entities and processes involved in producing, delivering, or other-
wise influencing a data artifact. It provides a critical foundation for
assessing quality and authenticity, as well as enabling trust and
allowing reproducibility. Provenance is crucial in deciding whether
information is to be trusted, how it should be integrated with other
diverse information sources and how to credit originators when
reusing it (Gil et al., 2010).

The importance of provenance has been recognized in a number
of application areas: in the field of databases and datawarehousing,
provenance information represents the lineage of data, which is a
historical record of the data and its origins. It can be used for tracing
root causes of errors in data analytics processes, data-dependency
analysis, as well as auditing or compliance analysis (c.f. Cui and
Widom (2003); Karvounarakis (2009)). Data provenance is also
discussed in the field of scientific data sharing and processing to
support data protection, data ethics (Hadziselimovic et al., 2017)
and tracking the lineage (origin and subsequent processing history)
of scientific data sets (Bose and Frew, 2005). For a more general
overview on provenance management for computational tasks in
various domains we refer to the survey by Freire et al. (2008).

In forensic investigations, provenance information is recorded
in order to provide sufficient information to evaluate the authen-
ticity, integrity and reliability of evidence and thus if it can be used
in court. Traditionally provenance information was mainly based
on filling paper- or electronic-forms with the name of the in-
vestigators, a description of the evidence under examination and
some kind of hash code (Giova, 2011). Modern forensic software
can automate much of the manual work needed to produce so
called audit trails and provide stronger guarantees by using existing
digital infrastructure and techniques such as user management,
digital signatures, or even blockchains (Stoffers, 2017) for creating
and securing provenance information. Over the last two decades a
number of studies investigated forensic procedures and process
models. A review by Pollitt has shown that there is no consistent,
generic model applicable to criminal investigations (Pollitt, 2007).



Fig. 3. #Addresses found in the 100 largest Bitcoin clusters (naïve multi-input heuristic) until April 30th, 2018. Compared to #Addresses in the cluster potentially involved in a
CoinJoin transaction, note the log scale. a)Full b) Structural.
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More recent research by Cosic and Miroslav (Cosic and Baca, 2010)
proposes a conceptual digital evidence management framework
(DEMF) to improve the chain of custody of digital evidence in all
investigation phases. They suggest using hash codes for finger-
printing of evidence (what), hash similarity to control changes
(how), biometric identification and authentication for digital sign-
ing (who), automatic and trusted time stamping (when), as well as
GPS and RFID for geo-location (where). These measures can be
implemented through a database which records activities done by
first responders, forensic investigators, court expert witness, law
enforcement personnel, and police officers.

Reliable provenance tracking of digital evidence (e.g. clustering
data, attribution tags) is of high importance in digital forensics and
cryptocurrency investigations. Especially the source of data and the
analysis methods applied to data are relevant to determine the
reliability of evidence provided in court.

3. The legal perspective

Following the technical fundamentals, we now assess the legal
conditions that govern the forensic analysis of cryptocurrencies. To
date, there are no internationally valid rules for the treatment of
digital evidence and the legal rules for substantiating suspicions
and providing evidence in court vary greatly from one country to
another. Nevertheless, a number of general rules can be developed
which should meet the evidence standards of most countries.

The forensic analysis of cryptocurrencies in law enforcement is
governed by two main interests. First, the tools must produce
relevant, court-admissible evidence or at least reasonable suspicion
as a basis for further investigations. Evidence is relevant if it makes
the matter that requires proof more or less probable (c.f. UK v.
Kilbourne, 1973; AC 729). Second, the outcomes must comply with
general legal standards and in particular preserve the fair trial
rights of the accused. These rights are mainly enshrined in the law
of substantiation of evidence and suspicion. To identify the essence of
these requirements we hence analysed a) written law for evidence
in criminal procedures (e.g. US-FRE; GER-CCP; NL-CCP), b) case law
of several supreme courts of several countries (e.g. USA and Ger-
many) (Eschelbach, 2018; Miebach, 2016, overview over German
supreme court decisions) ((Frye v. US; Daubert v. Merrell Dow
Pharmaceuticals, Inc., 1993; Lorraine v. Markel, 2007), c) recom-
mendations of international groups of forensic experts (e.g. the
SWGDE), d) scientific publications on the evidential value of IT
forensic investigations (Casey, 2011; Heinson, 2015; Mohay et al.,
2003; Maras, 2015; Casey et al., 2017), e) the often overlapping
legal requirements laid down in data protection law (European
Commission, Parliament of the European Union, 2016b, Article 29
Working Party, 0000; CA State Senate, CA State Assembly, 2018).

Based on the analysis we identify seven key requirements for
the forensic processing of cryptocurrencies. Namely, Lawfulness
(Section 3.1), Authenticity (Section 3.2), Reliability (Section 3.3),
Qualification (Section 3.4), Verifiability (Section 3.5), Chain of evi-
dence (Section 3.6) and the right to inspect the records (Section
3.7).

3.1. Lawfulness of data processing

Data processing must be in compliance with the legal frame-
work it takes place in (Casey, 2011, pp. 56 et sqq.). For criminal
investigations the respective criminal procedural law and data
protection law constitute the rules for the processing and in
particular require a sufficient legal basis and compliance with data
protection principles. The required quality of the legal basis de-
pends on the respective level of protection as well as the scope of
the processing.

Clustering and attribution techniques are specifically used to
identify natural persons (i.e. suspects). The used data consequently
relates to identifiable natural persons and is hence deemed personal
data (c.f. CFR; ECHR; EU-GDPR; EU-LED) that is protected on in-
ternational (e.g. CFR; ECHR; EU-GDPR; EU-LED) and national (e.g.
IN-PDPB, 2018; UK-DPA, 2018; GER-BDSG, 2018; US-FISMA, 2014)
level as well as in subject specific laws and regulations (e.g. NIST-
800-171; US-GLBA, 1999). As the scope of protection differs, the
data protection principles in this paper are derived from the Eu-
ropean data protection framework, namely the General Data Pro-
tection Regulation (EU-GDPR) and the so called Law Enforcement
Directive (EU-LED). Although the GDPR is not directly applicable in
the area of law enforcement (EU-GDPR, Article 2 (2) lit. d), the
general concepts are transferable and reappear in the LED as well as
in national legislation. In addition, where forensic analyses are
outsourced and conducted by (private) third parties (e.g. van Baar
et al. (2014)), the GDPR can remain applicable. The European
approach arguably acts as a rolemodel internationally (c.f. IN-PDPB,
2018; US-CCPA; Albrecht, 2016) and also contains relatively high
standards which help to fulfill the evidence requirements described
in Sections 3.2 to 3.6.

Processing can be roughly split into (1) the collection of data and
(2) the subsequent processing. Transaction data is gathered from a
publicly available Blockchain, while attribution data can derive from
public and non-public sources. Legal implications of processing
publicly available data for law enforcement purposes are still subject
to ongoing discussion, however, both steps can arguably be based on
general clauses to a certain extent. In addition, data obtained
through existing law enforcement communication channels such as
SIENA, the Schengen Information System (SIS) or Interpol's I24/7 and
I-Link can usually be seen as lawful due to their legal frameworks
and the safeguards included in these systems (Interpol RPD, Art. 34,
37, 63), (Europol Regulation, Art. 17) (EU-SFD, 2016).
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The processing (collection/analysis) of data should be limited to
the extent necessary for the specific investigation (purpose limita-
tion). The data volume (data minimization) and retention dates
(storage limitation) of data have to be limited to what is necessary
for the specific purpose and the data integrity has to be ensured. The
principle of transparency requires the investigator/prosecutor to
explain the processing to a certain extent either to the data subject
or the data protection authorities (e.g. EU-LED, Recital 38). In
practice, most legislations limit the transparency requirement to
ensure effective law enforcement (c.f. 3.7). While fully automated
decision making is generally prohibited, decisions such as ordering
further investigative measures, can still be based on results of
automated analytics techniques (e.g. clustering of Cryptocurrency
addresses) if the decisions are not merely formalistic. That means
that all relevant aspects of the individual case carefully have to be
taken into account (c.f. EU-LED, Art. 11, Recital 38 (Rich, 2016, “to-
tality-of-the-circumstances analysis”),) by a natural person. In or-
der to mitigate the risk of misinterpretation of probabilistic results
as facts and enable the decision-maker to assess its significance, the
latter must be well-trained and the software they use as clear and
differentiated as possible (c.f. Section 3.4).

Moreover, the data has to be accurate (c.f. EU-LED, Art. 4 (1) lit. c;
Europol Regulation, Art. 28 (1) lit. d; Recommendation No. R (87)
15, 1987). Since only facts can be inaccurate, data protection law
does not prohibit the processing of data based on estimations
(heuristics) or probabilistic measures. However, the principle of
accuracy requires the clear distinction of facts and probabilistic or
estimated results such as address clusters (EU-LED, Art. 7; Europol
Regulation, Art. 29; Recommendation No. R (87) 15, 1987) and
inaccurate results need to be rectified. To assess the nature and
reliability of the data it is hence necessary to have sufficient meta-
information (see 4.1 and 4.4) available. In addition, the used clus-
tering heuristics have to be reviewed steadily since changes in
Cryptocurrency network protocols or user behavior can signifi-
cantly limit the reliability of results or even render a heuristic
obsolete.

The resulting risk of false positives raises the question how to
deal with the finding that an address has been erroneously attrib-
uted to a cluster or a tag contains erroneous information. Data
protection law usually requires the data controller to rectify, or in
some cases, erase false data. c. f. (EU-LED, Art. 16 (3)). In both cases,
measures to avoid automatic reproduction of erroneous data have
to be implemented (e.g. mark the address/cluster as erroneous;
exclude the address from clustering or tagging). If data has been
shared, receivers of the false or outdated data must be informed.

3.2. Authenticity and integrity (chain of custody)

The authenticity and integrity of data correlates with the pro-
bative value of information in criminal proceedings (Casey, 2011, p.
59 et sqq.) but is also a data protection requirement (e.g. Art. 29 EU-
LED; c. f. 3.1). Authenticity must be ensured in all forensic steps and
procedures that involve the processing of electronically stored in-
formation (Lorraine v. Markel, 2007; Colorado v. Huehn, 2002; US-
FRE). This makes comprehensive and precise documentation of
data sources, tools, and applied techniques necessary (see Section
3.5). The preferable way of presentation is subject to an ongoing
discussion (e.g. Neumann et al., 2016), however, the analysis pro-
cedure, outcomes and limitations have to be explainable in a
comprehensible manner that allows an assessment of the eviden-
tial value in trials (Neumann et al., 2016; Sjerps and Berger, 2012;
Lund and Iyer, 2017, p. 22). It must be ensured that data has not
been altered, which can be achieved by technical means e.g.
through the use of digital signatures. If data is changed, it must be
clear how the alteration exactly changed the data.
Verifying authenticity of data requires that the original data/
source is known and that all changes were tracked (Lorraine v.
Markel, 2007; at 546). In this regard, it might be helpful to attach
‘certainty-values’ to data as proposed by Casey (2011, p. 70). Simi-
larly, data protection law particularly requires the data processor to
be able to demonstrate compliance with data protection law to
ensure accountability ((c.f. EU-LED, Art. 4, 19, 25, Recital 57, WP29 -
LED, 2017, p. 25; WP29 - Accountability, 2010; US-FISMA, 2014;
NIST-800-53). The same requirements apply for data from external
sources. A simple strategy for proving authenticity and integrity of
data is to guarantee reproducibility of results by applying the same
technique on the same data source. This means at least the name of
the source, time of access and liability of the source must be
recorded as provenance information. Since availability of online
data often is not guaranteed, additional measures should be
implemented to enable the user to prove authenticity of the data
(Heinson, 2015, p. 147) (e.g. by archiving content in the WARC File
Format (ISO 28500); archive.org (Kelly and Weigle, 2012).

Cryptocurrency forensic tools that operate on-top of a specific
Cryptocurrency benefit from the underlying concepts of Blockchain
technology which already provide strong authenticity and integrity
guarantees (e.g. signed transactions) and integrity proofs (proof of
work, hash linked list). Outcomes of the analysis are hence easily
reproducible, given the currency code (e.g. BTC, ETH), the most
recent block hash as well as the analysis method are recorded
(including software version, git commit or other identifiers) within
the chain of custody, given the analysis method is deterministic.

Ensuring the authenticity and integrity of clustering results is
more challenging: tools implementing such techniques create new
tool-specific data points that group known Cryptocurrency ad-
dresses into a set of clusters, which are usually identified by some
tool-specific identifier. Since clustering algorithms run periodically
over an evolving transaction ledger, generated clusters are volatile
meaning that a cluster generated at a certain Cryptocurrency state
is not necessarily equal to a cluster generated at a later Crypto-
currency state. In order to provide authenticity and integrity of
clustering results, tools must implement deterministic cluster
identifiers that remain stable when a cluster refers to the same set
of addresses over several runs and change when the underlying set
of addresses changes. This could be achieved by computing a hash
(cluster hash) over the lexically sorted set of addresses within each
cluster and also allow interoperability and comparability of clus-
tering results across tools.

Attribution tag authenticity and integrity can be strengthened
by relating a tag to its source, its creator (e.g. using digital signa-
tures) and generation procedures.

3.3. Reliability

Reliability correlates with the weight of evidence in a criminal
procedure (Neumann et al., 2016; Good and Irving, 1950) and is
hence of relevance for the (free) consideration of evidence in trials
and in pre-trial stages to establish necessary degrees of suspicion
(e.g. US: ‘reasonable suspicion’ (Terry v. Ohio, 1968), GER: ‘sufficient
factual indication’ (GER-CCP,x 152 (2)), UK: ‘belief that a crime may
have been committed’ (UK-CCP - Code of Practice, Section 2.1), NL:
‘reasonable suspicion’ (Section 27 x 1; Singelnstein, 2018). Conse-
quently, digital/electronic evidence should be based on precise and
scientifically verified methods irrespective of whether the digital
investigation is conducted “in-house” or if it is outsourced (e.g.
DFaaS: van Baar et al., 2014).

In addition, the methods must be applied properly when col-
lecting and processing data (UK Code for Crown Prosecutors; US-
FRE). Reliability hence has to be evaluated for the scientific
methods as well as the correct use of them. A lack of scientific

http://archive.org
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verifiability reduces the evidential value of the found evidence or,
in the worst case results in the complete loss of it. Proof can be
brought forward by describing results of testing the process, the
logic of the process, or by having an expert testimony (US-FRE;
Daubert v. Merrell Dow Pharmaceuticals, Inc., 1993; Kumho Tire Co.
v. Carmichael, 1999) (Heinson, 2015). A combination of these ap-
proaches generally increases the reliability of evidence in court and
the unavailability of a specific approach increases the importance of
the other. In the given context, the reliability of information can be
influenced on three levels: (i) the implementation of clustering
heuristics, (ii) annotations, and (iii) the correct use of the tools.

Clustering Reliability: Although proving the reliability of al-
gorithms is subject to an ongoing discussion (Kehl et al., 2017), we
can assume that a reliability assessment of clustering processes
must consider the underlying (usually formalized) heuristics, its
implementation (algorithm), and its functioning when being
applied on a particular Cryptocurrency (logic of the process).

For example, so called CoinJoin transactions can undermine the
logic of naïve3 multi-input heuristics (see 2.1) and cause false
cluster merges. CoinJoins violate the assumption that all inputs of
the transaction are controlled by the same entity. The logic of the
process must hence acknowledge this special case. Goldfeder et al.
(2018) developed and evaluated a heuristic to identify potential
CoinJoin transactions. They find the heuristic to be reliable and
claim that at current state of research there is no known way to
create a CoinJoin transactionwithout the indicators that would lead
to a detection by the heuristic. To show the relevance of evaluation
of the underlying logic, we searched for CoinJoin transactions using
BlockSci (Kalodner et al., 2017) from Bitcoins inception until April
30th, 2018 and tested them against a naïve MIH (Meiklejohn et al.,
2013) cluster-dataset of 40 049 947 clusters. In the whole dataset
723 247 of the clusters or around 2% contain at least one CoinJoin
with a mean of around 17 addresses involved, produced by roughly
2.4 CoinJoin transactions. This example shows that naïve multi-
input address clustering can be significantly biased by CoinJoin
transactions (c.f. Fig. 3), especially if we look at larger clusters.
Furthermore, new privacy focused bitcoin wallets such as Wasabi4

include CoinJoins as easy to use privacy enhancing feature
(Coindesk - Alyssa Hertig, 2019). This could ultimately lead to an
increased usage of CoinJoins because of the reduced technical
barrier and thus more false cluster merges. Clustering for law
enforcement purposes thus must consider CoinJoins as a special
case by employing heuristics described in Goldfeder et al. (2018) to
proactively exclude or mark potential CoinJoin transactions in
clusters to ensure the correctness of the process. The underlying
problem holds true for other heuristics e.g. based on other logic
assumptions such a change (Meiklejohn et al., 2013) or behavior
patterns (nopara73, 2017). It is hence necessary to continuously
reassess the underlying assumptions and address the identified
shortcomings. Failure to do the one or the other easily results in a
substantially lowered reliability of the analysis and can even render
it useless.

Beyond the logic of the process, the overall effectiveness of a
formalized heuristic could be achieved by testing it against some
collected and verified ground truth (e.g. black-box testing). In the
case of clustering heuristics, ground truth could be a set of known
and verified Cryptocurrency wallets, each carrying a set of ad-
dresses belonging to the same real-world user. However, as dis-
cussed in Section 2, ground-truth wallet data is hard to obtain,
often constructed ad-hoc, for scientific purposes only. Creation of a
3 With naïve we mean multi-input clustering that does not have special handling
for CoinJoins e.g. remove potential CoinJoin before clustering.

4 https://wasabiwallet.io/.
general, authoritative standard ground-truth dataset would ease
the quantification of clustering effectiveness and provide specific
reliability measures and probabilities, as in other forensic methods
(e.g. DNA testing). At EU level, the 5th Anti-Money Laundering
Directive (AMLD) stipulates the creation of a central user database.
In future, LEA databases may provide ground-truth data and allow
better reliability evaluation of forensic tools and could also be used
to generate cyber-threat intelligence (CTI) (Ribaux and Wright,
2014, p. 498, p. 498).

Furthermore, clustering algorithms usually rely on user
behavior assumptions and the respective Cryptocurrency protocol.
Both are subject to change, so the underlying assumption of a
clustering algorithm may lose validity over time. Assumptions and
algorithms hence have to be reviewed and revised regularly. In
addition, if the assumptions are known, the user behavior can
deliberately be changed to influence the analysis outcomes. For
example, users could create crafted CoinJoin transactions to
mislead the multiple-input heuristic (see 2.1) or trick the change
heuristic (Meiklejohn et al., 2013) into miss-classifying the change
output, effectively merging clusters of senders and receivers. As
long as the effectiveness of clustering remains difficult to evaluate,
the evidential value of clustering techniques is limited and the
description of the logic of the process (e.g. heuristics, user behavior,
protocols) and expert testimonies become more important for
clustering techniques to maintain a certain evidential value.

Attribution Tag Reliability: The reliability of an annotation tag
largely depends on its origin, its generation procedure, and how it is
processed and assigned to a certain address or cluster by a forensic
tool. If, for instance, an investigator identifies a Cryptocurrency
donation address on a known website and assigns a tag to that
address (e.g. “Internet Archive”) after thorough consideration then
we can consider this as being a highly reliable attribution tag. If a
tag is extracted from a dataset that has been crawled by an un-
known entity and unknown technical procedures at an unknown
point in time and is then assigned to a large number of Crypto-
currency addresses via a tool's clustering algorithm, then we can
consider this tag as being on the other side of the reliability spec-
trum. Since it is hard to quantify attribution tag reliability in a
universal and interoperable manner, each attribution tag should
provide details about its origin (source) and its generation process
(e.g. manual extraction vs. automated crawl).

Correct Use of Tools: To prove the correct use of tools the
interaction with the software has to be logged extensively. Logging
also helps to explain investigation steps and should include infor-
mation on the technical configuration to help assessing the overall
reliability. Extensive logging can also help proving compliance with
other general evidence rules and data protection rules (3.2 and 3.1).
Where analysis results are shared between LEAs they should
contain information on the points stated above to allow an
assessment of reliability of the information at all times (Europol
Regulation, 2016; Recommendation No. R (87) 15, 1987).

3.4. Qualification

Investigators and experts who use cryptocurrency analytics
methods to obtain and analyze electronic and digital evidence in
criminal proceedings must be qualified to use those methods
(Mohay et al., 2003; Heinson, 2015; Casey, 2011). Lack of qualifi-
cation in dealing with IT forensic methods can have considerable
influence on investigations and the resulting evidence. On the one
hand, the lack of qualification of the investigators involved lowers
the evidential value of the investigation results. On the other hand,
the lack of or inadequate qualification of investigators and court-
appointed experts increases the probability that wrong conclu-
sions will be drawn from the available evidence and, in the worst

https://wasabiwallet.io/
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case, that the public prosecutor's office and/or the court will make
their decisions on the basis of false facts or assumptions (US Na-
tional Research Council, 2009; Heinson, 2015). Unfortunately, there
are no international standards yet on what qualifications in-
vestigators and experts must have in handling electronic and digital
evidence. To ensure acceptable minimum standards, investigators
should at least have completed a certification course for the
forensic software used and have basic training in IT forensics. Su-
pervising investigators and court-appointed experts should have a
university degree in IT forensics (Heinson, 2015).

Investigators who are involved in cryptocurrency investigations
and use available tools should have demonstrated knowledge (e.g.
certified training) on the basic architecture of cryptocurrencies,
which includes the P2P communication layer as well as the block-
chain that holds the transaction ledger. Specialized trainings should
also cover the functionality of clustering heuristics, possible effects
of adding an attribution tag to a certain address, and an under-
standing of attached provenance information in order to correctly
assess and present (US National Research Council, 2009, p. 47) their
authenticity and reliability.

3.5. Verifiability

The method of collecting data and gaining information must be
repeatable and reproducible (Maras, 2015; Heinson, 2015; Casey,
2011). This ensures that involved lawyers can follow up the
acquisition of information in subsequent legal proceedings
(Heinson, 2015). With regard to limitations to disclosure and right
to inspect the records (see 3.7), verifiability becomes even more
important and must be ensured for the individual case. If, due to
technical circumstances, repeatability or reproducibility cannot be
achieved, the evidential value of the results obtained decreases
considerably.

Following the recommendations of the US National Institute of
Standards and Technology (NIST), repeatability means precision
under repeatability conditions. Repeatability conditions are
conditions where independent test results are obtained with the
same method on identical test items in the same laboratory by the
same operator using the same equipment within short intervals of
time. Reproducibility describes precision under reproducibility
conditions, which are defined as conditions where test results are
obtained with the same method on identical test items in different
laboratories with different operators using different equipment
(NIST, 2001; Maras, 2015). To account for individual errors of the
investigators, the formal reviewof a process can be accompanied by
peer-review with different tools (Casey, 2011, p.74).

Verifiability of Cryptocurrency analysis results obtained from
forensic tools can be achieved by applying the same method that
already provides authenticity and integrity of data: if identifiers of
Cryptocurrency clusters are computed over a given Blockchain state
(identified by block hash) by applying a specified hash function
over the sorted set of addresses contained in a cluster, then the
method becomes repeatable and reproducible when being applied
on the same state of the underlying Blockchain.

3.6. Chain of evidence

In order to be used in rule of law criminal proceedings, the
linking of circumstantial evidence and the conclusions drawn from
it must be logical, consistent and compelling (Heinson, 2015, p. 136
et sqq.). Therefore, convictions and the establishment of a suspicion
presuppose that the facts on which they are based have a certain
quality, and that it can be concluded with a certain probability from
the facts that the suspect/accused is indeed the offender (Schulz,
2001, p.593 et sqq.; Rich, 2016, p. 887). The degree of suspicion
required for investigative measures and the standard of the court's
persuasion for a conviction vary widely between the different na-
tional criminal procedural systems. However, they have in common
that the various stages of suspicion are described with normative
terms. The descriptions of the suspicion reflect a certain required
quality of the facts and a required level of probability of a
committed offense that can be derived from the facts (Schulz, 2001,



M. Fr€owis et al. / Forensic Science International: Digital Investigation 33 (2020) 2009028
p. 593 et sqq.). Examples (US, UK, GER) include the “simple” - in
German law sometimes also referred to as “reasonable” (Stehle,
2016) - suspicion to start an investigation (GERCCP, x 152 (2)), the
“reasonable suspicion” for special investigation measures (UK PACE
Code A; Terry v. Ohio, 1968; GER-CCP, x 100a), “probable cause”/
“urgent suspicion” for arrests and warrants (US Constitution, 4th
Amdt.) (Illinois v. Gates, 1983; Stehle, 2016), and, last but not least,
the “beyond a reasonable doubt” standard to convict the suspect
(Victor v. Nebraska, 1993; Miles v. US, 1880; Woolmington v. DPP,
1935; BGH NJW, 1990, 1549) (GER-CCP, x 261) (Casey, 2011, p. 55).
The necessary quality of the facts and the necessary probability of
someone having committed the offense increases with the in-
tensity of the investigation measures applied on the basis of the
suspicion (e.g. search and seizure) (Schulz, 2001, p. 567 et sqq.)., For
a conviction, the factual basis must be of the highest quality and the
probability of the accused being the perpetrator must be suffi-
ciently high to convince the court beyond reasonable doubt (Miles
v. US, 1880).

It is difficult to harmonize the normative standard of evidence in
criminal proceedings with statistical results of data analysis pro-
cedures (Rich, 2016;Meinicke, 2015). The criminal lawyers involved
in the proceedings must be enabled to subsume the results of
technical investigations under the normative concepts (Rich, 2016;
Meinicke, 2015). Therefore, the relevant information must be pre-
sented to the criminal lawyers in a form and language that they can
understand (Heinson, 2015, p. 130; Mohay et al., 2003, p. 132, 133;
Casey, 2011, p. 78) When using data analysis techniques such as
address clustering, both the software tools used and the investi-
gating IT experts must therefore be able to provide exact infor-
mation about which evidence is to be derived from the analysis and
what conclusions can be drawn from it with what probability. In
addition, possible sources of error must be identified (Rich, 2016),
alternative hypotheses must be presented and, if necessary,
comprehensibly excluded. This requires a thorough understanding
of the data analysis method used (Rich, 2016) (see 3.4).

Finally, it is very important that the sources of information and
data are reliable and traceable, when using address clustering and
annotation tagging (see 3.3). If information that is not absolutely
certain is used in the analysis, this circumstance and the resulting
consequences for the result of the analysis and the suspicion or
proof of the crime must be communicated to the criminal lawyers
involved. A proposal for a linguistic categorization of the reliability
of digital evidence can be found at (Casey, 2011, p. 69 et sqq.).

3.7. Right to inspect the records/disclosure of evidence

The right of the accused or her defence counsel to inspect the
evidence gathered by the police and the public prosecutor's office is
a key element of constitutional criminal proceedings Wessing
(2018). In inquisitorial criminal procedure systems such as the
German criminal procedure, this right is designed as the right to
inspect records (GERCCP, x 147). Similarly, contradictory criminal
procedure systems, such as the US-American one, constitute the
right to disclosure of case-relevant evidence by the public prose-
cutor's office (e.g. UK (UK-CCP, Section 3) (UK Guidelines.

On Disclosure; UK Disclosure Manual), US: (US-FRE, Rule 705)
(US-CCP, Rule 16), (Brady v. Mary, 1963; US v. Bagley, 1985) (Brown,
2017, p.148).). Additionally, similar rights can also arise from data
protection (e.g. EULED, Recital 38, c. f. 3.1). When applying data
analysis methods in either system, the question arises what infor-
mation about the software tools used and the data and information
processed must be disclosed to the defendant and his defenders.
When answering this question, different interests have to be
weighed. The defendant has a legitimate interest in ensuring that
the method of gathering the evidence presented against her is
made transparent in order to verify that the requirements laid
down in Sections 3.1 to 3.6 are met (Wessing, 2018; Chessman,
2017; Singelnstein, 2018). One approach could be the disclosure
of source code of the used software (Chessman, 2017; Meinicke,
2015). Having said that, law enforcement agencies have an inter-
est in ensuring that the precise functioning of data analysis tools
does not become widely known in criminal communities, which
could make their use more problematic or impossible (Wilson,
2011, p.127; Short, 2010). (US v. Johnson, 2015). Additionally, the
proprietary rights of the companies that produce and distribute the
software tools used must be taken into account (Casey, 2011;
Edwards and Veale, 2017; Chessman, 2017) (Minnesota v.
Underdahl, 2008; NY v. Cialino, 2007; Wisconsin v. Loomis, 2016)
Moreover, the validation of the source code alone does not account
for individual errors of the investigator (Casey, 2011, p. 74). The
highly complex question of balancing arises in both systems and
cannot yet be conclusively answered. What is certain, however, is
that the right to inspect the records/disclosure of evidence must be
given high priority because of its enormous importance for
constitutional criminal proceedings (Chessman, 2017). A first idea
could be not to include the source code of the software, but a
function and usage description (e.g. with regard to different
description approaches (Wessing, 2018; Wachter et al., 2018).

With regard to address clustering, the right to inspect the re-
cords and disclosure of evidence mainly concerns the heuristics,
their accuracy and also the usage of the tools in the specific case
(e.g. searches in the database). In any case, the sources of the an-
notated information (e.g. other law enforcement agencies, private
companies, publicly available sources) and the degree of reliability
of the sources must be disclosed (UK Disclosure Manual, p.87 et
sqq.) (Daubert v. Merrell Dow Pharmaceuticals, Inc., 1993; Sjerps
and Berger, 2012).
3.8. Summary of key requirements

Lawfulness: Address clustering and annotation tags have to
comply with the requirement for a legal basis and with data pro-
tection principles. Decisions, such as ordering further investigative
measures may only be based on the results of automated clustering
of Cryptocurrency addresses if the final decision is made by a hu-
man investigator and is not merely formalistic. Where relevant
results are shown to be inaccurate, rectification is necessary.

Authenticity and Integrity: To ensure authenticity and integrity
of the used address data, it is sufficient to record the currency code
(e.g BTC, ETH) and the most recent block hash as identifiers within
the chain of custody. Regarding clustering techniques, it is neces-
sary to implement cluster identifiers that remain stable when a
cluster refers to the same set of addresses over several runs and
change when the underlying set of addresses changes. This can be
achieved by computing a “cluster hash”. The authenticity of attri-
bution tags should be assured by relating a tag to its source, its
creator and generation procedures and computing a digital signa-
ture over the tag and all contextual information. This also increases
the reliability of the tags.

Reliability: In order to achieve the highest possible level of
reliability, the following measures should be taken:

� Testing the formalized heuristic against some collected and
verified ground truth, ideally against a general, authoritative
standard ground-truth data set (e.g. (shared) sets of addresses
from known (seized) Cryptocurrency wallets).

� Testing the reliability of the clustering algorithm within the
scope of particular Cryptocurrencies by using standard func-
tional testing procedures and testing the function implementing
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the clustering heuristic by feeding them a set of example
transactions in a black-box test.

� Continuous review and rectification of the underlying clustering
assumptions (e.g. MIH).

� Logging intensively the use of the software by investigators.
When sharing analysis results: Sharing also any information
that is necessary to assess the reliability of the information at all
times.

Qualification: There are no international standards for the
required qualification of IT-forensic investigators. The investigators
involved in using address clustering and annotation tagging should
at least have completed a certified training on the basic architecture
of Cryptocurrencies, on the functionality of clustering heuristics,
and on the possible effects of adding an attribution tag to a certain
address and have developed a understanding of the attached
provenance information.

Verifiability: Repeatability and Reproducibility of address
clustering and annotation tagging can be achieved by the same
measures that guarantee the authenticity and integrity of data. If
the source of the tags is online data, it must be stored locally and
permanently to guarantee the availability of the source.

Chain of Evidence:When using the results of address clustering
techniques and annotation tagging in criminal proceedings, the
criminal lawyers involved must be enabled to subsume the results of
the technical investigations under the normative concepts of the
respective criminal procedure code. Both the software tools used
and the investigating IT experts have to provide exact information
about which evidence is to be derived from the analysis and what
conclusions can be drawn from it with what probability. The in-
formation must be presented in a language and form that is
comprehensible to lawyers.

Right to Inspect the Records/Disclosure of Evidence: It is
necessary to disclose a function and usage description of the used
techniques as exact as possible. This means to disclose at least the
heuristics used, the degree of probability of the results and the
usage of the software tools in the specific case. Also, the sources, the
process of generation of annotated information and the degree of
reliability of both, the sources and the generation process must be
disclosed.

4. Data sharing framework

After having analyzed the technical and legal factors influencing
the evidential value of Cryptocurrency analytics techniques, we
now proceed and propose a framework for data sharing and
provenance tracking that, on the one hand, considers the efficiency
of law enforcement agencies and, on the other hand, preserves
evidential value of forensic investigations by adhering to legal key
requirements (Section 3.8) in the context of law enforcement. In the
following, we focus on sharing of attribution tags among law
enforcement agencies, in a way that helps to ensure compliance
with the key requirements such as authenticity, reliability or chain
of evidence and helps to simplify the disclosure of evidence.

Previously, we emphasized the key role of clustering heuristics
and attribution tags in Cryptocurrency investigations: a single tag
can deanonymize a Cryptocurrency address and, when being
combined with clustering techniques, also an entire address cluster
that possibly represents some real-world actor or Cryptocurrency
services like exchanges or wallet providers. Therefore, sharing
attribution tags and cluster information among law enforcement
agencies would certainly improve the effectiveness of forensic
Cryptocurrency investigations.

The challenge in attribution tag sharing lies in finding the right
trade-off between law enforcement needs, existing legal and
ethical standards, as well as technical effort and practical feasibility.
In the following, in Section 4.1, we first propose a lightweight data
model for sharing attribution tags that should effectively balance
those goals. Then, in Section 4.4, we suggest a model for sharing
address clusters.

4.1. Attribution tag sharing

Our proposed attribution tag sharing model builds on the Cyber-
investigation Analysis Standard Expression (CASE)5 specification in
order tomaximize interoperability between tools and organization.
Applying that model is somehow natural fit, since CASE is
increasingly adopted as a standard for cyber-investigations and
cryptocurrency forensics has become a standard digital forensics
format. It also turned out that CASE already provides most of the
semantic constructs for describing attribution tags.

Attribution tag collection and sharing can be considered as be-
ing a cyber-investigation and represented using a CASE Inves-

tigation object. More specifically, tag collection forms the
beginning of a chain of custody and thereby an Investigative

Action. Attribution tag collection can either be performed
manually or by utilizing some associated Tool, such as a crawler.
This can be expressed by utilizing the CASE Action Reference class.
For representing an attribution tag, which is a specific type of
Trace, we propose to extend CASE by a specific property bundle
(Tag) that provides descriptive elements for attribution tags. Thus,
already defined CASE concepts can easily be refined for attribution
tag sharing as follows:

InvestigativeAction: each tag is the result of some Inves-

tigativeAction that started and ended at some point in time
and is carried out using some instrument (e.g., Web Browser) by
some real-world actor. Technical details of the used instrument can
be specified and named (e.g., Web browser) in an associated
property bundle.

Investigator: represents a person who is responsible for an ac-
tivity which is, in this case, creation or modification of tags. An
agent carries a human-readable name (e.g. “John Doe”).

Tag: is a specific form of Trace and represents an attribution tag
that attributes contextual information to some cryptocurrency
identifier (e.g. an address). A tag can refer to some digital, physical,
or purely conceptual thing and carries a unique identifier (e.g.
http://exampletool.com/tag/1) in order to bind its meaning to a
certain application context and to avoid naming collisions across
contexts. A tag usually carries a human readable label (e.g.
“Internet Archive”) and can be categorized (category) along
several dimensions (see below).

Second, the data model also considers the authenticity and
integrity requirements summarized in Section 3.8 by translating
them into corresponding data model fields:

Hash: is a fingerprint of the tag description and provides
integrity. It can be computed over the sorted set of attribute value
pairs following an agreed-upon, standard hash function (what?).

Signature: an optional attribute to present the authenticity of
an Agent (who?). It can either follow an agreed upon signature
scheme or an signature abstraction such as described in RFC5126
(Pinkas, 2008).

Timestamps: automated and trusted time stamping (e.g. based
on RFC3161 (Adams, 2001) or extensions) routines should record
when an Investigative Action was performed. CASE create
Time and endTime can be used for that purpose.

Source: each tag has been extracted from some digital or non-
digital source. Each source carries a human-readable label (e.g.

http://exampletool.com/tag/1
https://caseontology.org/ontology/start.html
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“Internet ArchiveWebsite”) and possible some URI referring to that
source (e.g. https://archive.org). To preserve the availability of the
referenced document even if the original provider is not available
anymore the WARC File Format (ISO 28500; ISO (2017)) could be
used.

In order to avoid naming collisions, all concepts and relations, as
well as their instances should carry qualified names. This can be
achieved by assigning name spaces expressed as Internationalized
Resource Identifiers (IRI). All previously introduced concepts, at-
tributes and relations could, for instance, carry the namespace
(http://case.example.org/core#), which, for convenience reasons,
can be mapped to a prefix such as case. Specific examples are
http://case.example.org/core# and case:Tag,6 which both refer
to the same concept definition expressed above. Fig. 4 shows the
conceptual entities and relations of the proposed attribution tag
data sharing model. Listing 1 shows an example attribution tag
expressed in JSON-LD (Sporny et al., 2014) a JSON based linked data
format specified by W3C.
6 CASE does not yet define a concept Tag. However, this could be introduced in
future releases.
4.2. Categorization schemes

Assigning uniquely identifiable categories to the main concep-
tual entities of the tag sharing model is key for automated data
processing. Some cryptocurrency analytics tools might, for
instance, reject attribution tags that were automatically crawled
from some (darknet) websites. Since making such decisions auto-
matically based on manually entered descriptions is often error-
prone (e.g. “Web Crawl” vs. “webcrawl”), data models should
draw categories from pre-defined, agreed-upon vocabularies,
which could be shared among stakeholders within a specific
domain or application context. Such vocabularies should define
categorization terms for each type of entity in the data sharing
model (Tag, Agent, Activity, Source).

The definition of a full categorization schemes encompassing all
relevant use cases is out of scope of this paper, but could be subject
to a larger standardization effort. However, as a starting point, we
suggest to consider at least the following categories for above
entities:

Tag Categories: besides carrying a human-readable name (e.g.
“Internet Archive”) it could also be categorized by the type of real-
world actor it represents. A real-world actor could be an Orga-

nization, an Individual, or an entity providing some service
function in a Cryptocurrency ecosystem. For example a service
might be: an Exchange, a Wallet Provider, a Miner, a
Marketplace, etc.

Agent Categories: distinguishing between Person and Orga-

nization is a common refinement (c.f. FOAF vocabulary) for an
Agent concept. Another possible use of categorization schemes
could be the definition of reliability attributes (low, medium, high),
which can be assigned to agents.

Source Categories: should denote the type of source tags were
extracted from. A tag could be extracted from a Website, a Data

Dump (e.g. from seized devices), a Device, a Tor Hidden Service,
etc.

Action Categories: provide information on the type of action a
tag was generated by. Common action types are ManualEntry,
Crawl, etc. Action categories could be extended to provide addi-
tional details about the activity itself such as the tool and version
used to create this tag. This enables better reproducibility.

4.3. Implementation considerations

Vocabularies and categorization schemes could be published on
the Web by making sure that all terms (e.g. http://case.example.
org/core#label) and concepts (e.g. http://example.com/
category#ManualEntry) carry dereferencable IRIs. This allows
searching and browsing available terms and categories online and
to automatically verify attribution tag categories before exchanging
them with others. Furthermore, it also provides a definition and
documentation of terminology used in forensic investigations. A
simple, straightforward way is to follow the implementation of
schema. org, which is a generic schema for structured data on the
Internet.

Previously we suggested that hashes and digital signatures can
provide authenticity and integrity of attribution tags. However, for
a data exchange purpose, this would require a precise and agreed-
upon definition of the hash computation and digital signature
procedures. Alternatively, one could use existing Git infrastructures
for storing and publishing attribution tags. Git has its origin in
distributed software development and is now the de-facto standard
for publishing and tracking changes in source code files. It auto-
matically creates hashes over each file and allows users to digitally
sign their contents after each commit. Git is increasingly used for
sharing smaller and even large datasets (Git LFS). Therefore, we

https://archive.org
http://case.example.org/core#
http://case.example.org/core#
http://case.example.org/core#label
http://case.example.org/core#label
http://example.com/category#ManualEntry
http://example.com/category#ManualEntry
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believe that it could also be used for sharing JSON-LD serializations
of attribution tags. Although Git has good support for change
tracking, Git has shortcomings when it comes to specifying fine
grained access control policies. If tags are very sensitive and specific
tags should not be shared with every participant other approaches
need to be considered. Centralized services such as Europol's SIENA
provide a data sharing solution with law enforcement ready data
access controls.

4.4. Address cluster sharing

Sharing cluster information is a key ingredient to increase the
reliability of clustering algorithms by allowing law enforcement
agencies to share ground truth data (e.g. from seized wallet) to
evaluate the accuracy of the clustering heuristics. Better reliability
evaluations strengthen the evidential value of the findings pro-
duced using clustering algorithms (see Section 3.3). Furthermore,
shared clusters combined with constant cluster identifiers, can be
used to rectify (see Section 3.1) false clustering results by incor-
porating the shared (and rectified) clusters in the clustering pro-
cess. Our proposed model for sharing address clusters, which is
shown in Fig. 5, builds on the previously introduced attribution tag
sharing model and introduces the following conceptual entities,
attributes, and relationships:

Action: describes the process that produced a cluster. When
clusters were created algorithmically the underlying procedure or
heuristics must be named and, in the ideal case, be drawn from
some controlled vocabulary that provides an exact definition of
that procedure.

Cluster: a cluster is a specific type of Trace and represents a set
of Cryptocurrency addresses and is a key entity to be exchanged
within Cryptocurrency investigations. A cluster can carry a number
of tags, which can be referenced by their unique (possibly der-
eferencable) IRIs. Authenticity can be shown by digitally signing the
cluster with all its contextually relevant attributes.

Investigator: denotes the persons who controls the clustering
method. Typically, clusters are created by forensic tools that
implement certain heuristics or by manually identifying a set of
addresses belonging to the same real-world actor.
Just as in attribution tag sharingmodel, all vocabulary terms and
used categories should carry qualified names, which could be
implemented as dereferencable IRIs. Listing 2 shows a JSON-LD
serialization of the above cluster model example.
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5. Discussion

We systematically analyzed the possibilities and shortcomings
of known cryptocurrency forensics techniques from a combined
legal and technical perspective. Our legal analysis has shown that
so far there are no internationally binding standards for measuring,
securing, or increasing the evidential value of the results of Address
clustering and Annotation tagging. However, by synthesizing
different criminal procedural codes and data protection regula-
tions, minimum standards can be obtained which can claim a
certain validity in any constitutional criminal procedure.

Address clustering and Annotation tagging have to comply with
the requirement of having a legal basis and with data protection
principles. To ensure a high evidential value, Address clustering and
Annotation tagging have to meet the requirements of the chain of
custody (authenticity and integrity) and reliability. Based on an
analysis of CoinJoin appearances in MIH-clusters we show the ne-
cessity of continuous reassessment of underlying assumptions for
clustering heuristics and the importance of proactive measures to
maintain the reliability of the approach. Investigators using these
techniques must be sufficiently qualified to do so (e.g. by certified
courses). The results of Address clustering and Annotation tagging
must be repeatable and reproducible (if possible). Moreover, the
criminal lawyers involved must be enabled to subsume the results
under the normative concepts of the applicable criminal procedure
code by presenting the results in an language and form that is
comprehensible for lawyers. To meet the requirement to inspect
the records/the principle of disclosure of evidence it is necessary to
disclose a exact function and usage description of the used heu-
ristics, the used software tools and the source and generation
process of annotated information. Decisions on further investiga-
tive measures (e.g. a property search) and a conviction may only be
based on automated findings if the final decision is made by a
person and her decision is not merely formalistic.

Our analysis showed the need for reliable ground truth data.
This could be achieved by sharing seized wallets or at least the
addresses belonging to a wallet to build a comprehensive ground
truth dataset, possibly via a central database. Furthermore, the
effectiveness of clustering heuristics often relies on assumptions
about user behavior. User behavior can obviously change and thus
potentially invalidate the underlying assumptions, therefore con-
stant monitoring and reevaluation is needed.

We have used the insights into technical challenges and the
legal requirements of Cryptocurrency investigations to develop a
data sharing model that helps to preserve the evidential value of
the gathered evidence. It has been shown that it is possible to meet
(most) legal requirements for securing the evidential value and
complying with the principles of data protection through easy-to-
implement and practically applicable measures. Furthermore, we
laid a stepping stone for future data sharing and standardization
efforts in the field of Cryptocurrency investigations.

A clear technical limitation of this paper is that we only investi-
gated the multi-input clustering heuristic and the Bitcoin system.
Moreover, we did not take every existing or imaginable mixing
technique into account. Nevertheless, many of the findings can be
transferred to other Cryptocurrency systems, heuristics and mixing
techniques or at least serve as a basis for further research in those
areas. In the legal part, we tried to cover a broad spectrum of legal
systems by using both sources from the Anglo-American legal sys-
tems (Common Law) and those from the continental legal systems
(mostly Civil Law). Of course, the findings of the legal analysis still
need to be adapted for practical application in particular countries
for the criminal procedure codes applicable there. However, our
model can serve as a blueprint for doing so since it establishes
minimum standards for constitutional criminal procedures.
6. Conclusions

In this paper, we discussed clustering heuristics and attribution
tags, which are the two key techniques implemented in forensic
tools used in Cryptocurrency investigations. By empirically quan-
tifying the effect of CoinJoin transactions we illustrated that the
reliability of clustering heuristics can only be upheld if the logic of
the underlying process is verified and the outcomes are correctly
interpreted. We discussed those techniques in the light of inter-
nationally accepted legal standards and rules for substantiating
suspicions and providing evidence in court. From that, we derived a
set of legal key requirements and translated them into a data
sharing framework that builds on existing legal and technical
standards. We propose the implementation of this framework in
tools used for Cryptocurrency investigations to safeguard the value
of produced evidence.

Future research on the technical side should focus on additional
metrics that can help in quantifying the reliability of clustering
results. On the legal side, the possibilities and limitations of
merging the results of (automated) Address clustering techniques
with the normative concept of suspicion as well as the necessary
persuasion of the court for a conviction need to be further exam-
ined. It is alsoworthwhile to consider possibilities for standardizing
attribution tags and cluster sharing in the field of international law
enforcement. Finally, our paper can be an anchor point for future
research on other heuristics, mixing techniques, and the applica-
bility of Address clustering and Annotation tagging in other Cryp-
tocurrency systems to foster the evidential value of Cryptocurrency
analyses.
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