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in this method and extend it by superimposing samples obtained 
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1. INTRODUCTION

Many estimation problems involve circular quanti-
ties, for example the orientation of a vehicle or the angle
of a robotic joint. Since conventional estimation algo-
rithms perform poorly in these applications, particularly
if the angular uncertainty is high, circular estimation
methods such as [31], [34], [35], [6], [54], [57], and
[43] have been proposed. These methods use circular
probability distributions stemming from the field of di-
rectional statistics [21], [42].
Circular estimation methods have been applied to

a variety of problems in different fields. For example,
many signal processing applications necessitate the con-
sideration of circular quantities. Consider for instance
phase estimation and tracking [39], [7], signal process-
ing for global navigation satellite systems (GNSS) [54],
[53], [26], and azimuthal speaker tracking [57]. In me-
teorology, estimation of the wind direction [11], [8] is
of interest and in aerospace applications, the heading
of an airplane may be estimated [35]. Through a suit-
able mapping, constrained object tracking problems on
periodic one-dimensional manifolds can also be inter-
preted as circular estimation problems [29]. Finally, cir-
cular densities arise naturally in bearings-only tracking
[12], [44].
To facilitate the development of nonlinear filters,

sample-based approaches are commonly used. The rea-
son is that samples, which we represent as Dirac delta
distributions, can easily be propagated through nonlin-
ear functions. We distinguish deterministic and nonde-
terministic approaches. In the noncircular case, typical
examples for deterministic approaches include the un-
scented Kalman filter (UKF) [24] as well as extensions
thereof [56], the cubature Kalman filter [4], [23], [22],
and the smart sampling Kalman filter (S2KF) [52]. Non-
deterministic filters for the noncircular case are the par-
ticle filter [5], the Gaussian particle filter [25], and the
randomized UKF [55].
We focus on deterministic approaches because they

have several distinct advantages. First of all, as a result
of their deterministic nature, all results are reproducible,
i.e., for the same input (e.g., measurements and initial
estimate), deterministic filters will always produce the
same output.1 Second, the samples are placed accord-
ing to certain optimality criteria (i.e., moment matching
[24], shape approximation [16], [50]), or a combina-
tion thereof [19], [17]. Consequently, a much smaller
number of samples is sufficient to achieve a good ap-
proximation. Third, nondeterministic approaches usu-
ally have a certain probability of causing the filtering
algorithm to fail due to a poor choice of samples. This
is avoided in deterministic methods.

1Randomized approaches can be made reproducible by choosing a

fixed seed for the random number generator. However, this choice is

completely arbitrary and affects the performance. Also, minor changes

to the implementation, e.g., the order in which certain random num-

bers are drawn or the choice of the underlying random number gen-

erator, will affect the result.



In our previous publication [31], we presented a de-

terministic approximation for von Mises and wrapped

normal distributions with three samples. This approx-

imation is based on matching the first trigonometric

moment. The first trigonometric moment is a complex

number and a measure of both location and dispersion.

This approximation has already been applied to con-

strained object tracking [29], sensor scheduling based

on bearing-only measurements [12], as well as stochas-

tic model predictive control [28].

The contributions of this paper can be summarized

as follows. We present an extension of our previous

approach [31] to match both the first and the second

trigonometric moment, which was first discussed in

[32]. This yields an approximation with five samples.

Even though this approximation is slightly more com-

plicated, it can still be computed in closed form and does

not require any numerical computations or approxima-

tions. We have previously applied this method to the

problem of heart phase estimation in [39].

The algorithm from [32] requires choosing a param-

eter ¸ 2 [0,1]. In this paper, we will show that the choice
¸= 0:8 ensures good approximations even when the ap-

proximated distribution converges to a uniform distribu-

tion.

Furthermore, we present a novel superposition

method that is able to combine sample sets with dif-

ferent choices of ¸ in order to obtain a larger number

of samples while still maintaining the first and second

trigonometric moment.

Finally, we also propose a new method based on the

shape of the probability distribution function rather than

its moments. This method creates a binary tree consist-

ing of intervals in [0,2¼) and distributes the samples in

proportion to the probability mass contained in the inter-

val. Unlike previous shape-based methods such as [17],

the proposed method does not require numerical opti-

mization. Thus, it is very fast, provided an efficient al-

gorithm for calculating the cumulative distribution func-

tion of the respective density is available.

2. PREREQUISITES

In this section, we define the required probability

distributions (see Fig. 1) and introduce the concept of

trigonometric moments.

DEFINITION 1 (WrappedNormalDistribution). Awrap-

ped normal (WN) distribution [48] is given by the

probability density function (pdf)

f(x;¹,¾) =
1p
2¼¾

1X
k=¡1

exp

μ
¡ (x¡¹+2k¼)

2

2¾2

¶
,

where ¹ 2 [0,2¼) and ¾ > 0 are parameters for center
and dispersion, respectively.

The WN distribution is obtained by wrapping a one-

dimensional Gaussian density around the unit circle. It

is of particular interest because it appears as a limit

Fig. 1. Probability density functions of WN, WC, and VM

distributions with identical first trigonometric moment.

distribution on the circle, i.e., in a circular setting, it

is reasonable to assume that noise is WN distributed.

To see this, we consider i.i.d. random variables μi with

E(μi) = 0 and finite variance. Then the sum

Sn =
1p
n

nX
k=1

μk

converges to a normally distributed random variable if

n!1. Consequently, the wrapped sum (Sn mod 2¼)

converges to aWN-distributed random variable. Numer-

ical computation of the pdf is discussed in [33].

DEFINITION 2 (Wrapped Cauchy Distribution). The

wrapped Cauchy (WC) distribution [21], [42] has the

pdf

f(x;¹,°) =
1

¼

1X
k=¡1

°

°2 + (x¡¹+2k¼)2 ,

where ¹ 2 [0,2¼) and ° > 0.
Similar to the WN distribution, a WC distribution

is obtained by wrapping a Cauchy distribution around

the circle. Unlike the WN distribution, it is possible

to simplify the infinite sum in this case, yielding the

closed-form expression

f(x;¹,°) =
1

2¼

sinh(°)

cosh(°)¡ cos(x¡¹) :

DEFINITION 3 (Von Mises Distribution). A von Mises

(VM) distribution [58] is defined by the pdf

f(x;¹,·) =
1

2¼I0(·)
exp(·cos(x¡¹)),

where ¹ 2 [0,2¼) and · > 0 are parameters for location
and concentration, respectively, and I0(¢) is the modified
Bessel function of order 0.

According to [1, eq. 9.6.19], the modified Bessel

function of integer order n is given by

In(z) =
1

¼

Z ¼

0

exp(z cosμ)cos(nμ)dμ:

The von Mises distribution has a similar shape as a WN

distribution and is frequently used in circular statistics.



DEFINITION 4 (Wrapped Dirac Distribution). A wrap-

ped Dirac mixture (WD) distribution has the pdf

f(x;w1, : : : ,wL,¯1, : : : ,¯L) =

LX
j=1

wj±(x¡¯j),

where L is the number of components, ¯1, : : : ,¯L 2
[0,2¼) are the Dirac positions, w1, : : : ,wL > 0 are the

weighting coefficients and ± is the Dirac delta distribu-

tion [31]. Additionally, we require
PL
j=1wj = 1 to en-

sure that the WD distribution is normalized.

Unlike the continuous WN, WC and VM distribu-

tions, the WD distribution is a discrete distribution con-

sisting of a certain number of Dirac delta components.

These components can be seen as a set of samples and

can be used to approximate a certain original density.

WD distributions are useful for nonlinear estimation be-

cause they can easily be propagated through nonlinear

functions [31], just as Dirac mixture densities in Rn

[52]. The WD distribution as defined above does not

contain an infinite sum for wrapping, because wrap-

ping a Dirac distribution results in a single component

according to

1X
k=¡1

±(x+2¼k¡¯) = ±((x¡¯) mod 2¼),

where x 2 [0,2¼). For consistency with the WN and

WC distributions, we still refer to the WD distribution

as wrapped, because it can be obtained by wrapping a
Dirac mixture on R, which results in taking all Dirac
positions modulo 2¼ (see [27, Remark 3]). Thus, all

properties of wrapped distributions apply to the WD

distribution as well.

DEFINITION 5 (Trigonometric Moments). The nth trig-

onometric (or circular) moment of a random variable x

with pdf f(¢) is given by

mn = E(exp(ix)
n) =

Z 2¼

0

exp(inx)f(x)dx,

where i is the imaginary unit [21], [42].

Trigonometric moments are the circular analogon

to the conventional real-valued power moments E(xn).
Note, however, that mn 2C is a complex number. For

this reason, the first trigonometric moment already de-

scribes both location and dispersion of the distribution,

similar to the first two conventional real-valued mo-

ments. The argument of the complex number is anal-

ogous to the mean whereas the absolute value describes

the concentration.

Fig. 2. First trigonometric moment of wrapped normal, wrapped

Cauchy, and von Mises distributions with zero mean plotted against

their second trigonometric moment. The moments are real-valued in

this case because ¹= 0.

LEMMA 1. The trigonometric moments of WN, WC, VM,
and WD distributions are given by

mWNn = exp(in¹¡ n2¾2=2), (1)

mWCn = exp(in¹¡ jnj°), (2)

mVMn =
Ijnj(·)
I0(·)

exp(in¹), (3)

mWDn =

LX
j=1

wj exp(in¯j): (4)

Derivations can be found in [27, Lemma 2]. The

quotient of Bessel functions can be calculated numer-

ically with the algorithm by [3]. Pseudocode for this

algorithm can be found in [31, Fig. 4].

The parameters of WN, WC, and VM distributions

are uniquely defined by the first trigonometric moment.

However, WN, WC, and VM distributions with equal

first moments significantly differ in their higher mo-

ments. This is illustrated in Fig. 1 and Fig. 2. This differ-

ence motivates the use of the second trigonometric mo-

ments in deterministic Dirac mixture approximations.

3. MOMENT-BASED DETERMINISTIC
APPROXIMATION

In this section, we derive deterministic methods

for computing Dirac approximation of WN, WC,

and VM distributions. Without loss of generality,

we only consider the case ¹= 0 in order to sim-

plify the calculations. In the case of a location ¹ 6= 0,
the samples are computed for ¹= 0 and subsequently

shifted by ¹. The moment formulas (1)—(3) simplify

to mWNn = exp(¡n2¾2=2), mWCn = exp(jnj°), and mVMn =

Ijnj(·)=I0(·). In particular, we find Im(mWNn ) =

Im(mWCn ) = Im(mVMn ) = 0, so there is no imaginary part

and our calculations only involve real numbers. More



Fig. 3. WD approximations for WN distributions with different values for ¾. In all cases, we use ¸= 0:5.

Fig. 4. WD approximations for VM distributions with different values for ·. In all cases, we use ¸= 0:5.

generally, for any circular distribution symmetric around

¹= 0, it holds that

Immn =

Z 2¼

0

sin(nx)f(x)dx

=

Z ¼

¡¼
sin(nx)f(x)| {z }
odd function

dx= 0:

Note that this property only holds for symmetric circular

distributions. In general, even for ¹= 0, only the first

trigonometric moment is guaranteed to have no imagi-

nary part, whereas higher moments are not necessarily

real-valued.

3.1. First Circular Moment

First, we derive the approximation based on the first

moment.

3.1.1. Two Components:
Obviously, one WD component is not sufficient to

match a given first moment, because a single compo-

nent only has a single degree of freedom, whereas the

first moment has two degrees of freedom. For this rea-

son, we propose a solution with L= 2 components, the

minimum number possible. We use symmetric WD po-

sitions ¯1 =¡Á, ¯2 = Á, and equal weights w1 = w2 = 1
2
.

For the first moment, we have

mWD1 =

LX
j=1

wj exp(i¯j) = cos(Á):

Solving for Á results in Á= arccos(m1).

3.1.2. Three Components:
Now we extend the mixture with two components

by adding a component at the circular mean. Con-

sider the WD distribution with L= 3 components, Dirac

positions ¯1 =¡Á, ¯2 = Á, ¯3 = 0, and equal weights2
w1 = w2 = w3 =

1
3
. For the first moment, we have

mWD1 =

LX
j=1

wj exp(i¯j) =
1
3
(2cos(Á) +1):

Now, we match with the first moment m1 of a WN or

VM distribution and obtain

1
2
(3m1¡ 1)| {z }
=:c1

= cos(Á):

Thus, we use Á= arccos(c1) to obtain a solution for the

WD distribution.

This approximation method is closely related to the

approach presented in [15], where a moment-based de-

terministic sampling scheme for the Bingham distribu-

tion on the unit hypersphere is proposed. In the circular

case, the Bingham distribution can be seen as a rescaled

von Mises distribution (see [38, Appendix B]), and the

rescaled samples of the von Mises distribution proposed

here can be shown to exactly match the samples of the

Bingham distribution obtained by the method from [15].

Also, the samples are identical to those produced by

the von Mises—Fisher sampling method [36] when it is

applied to the circular case.

3.2. First Two Circular Moments

An approximation based on the first two trigonomet-

ric moments m1 and m2 is somewhat more involved. We

consider a WD distribution with L= 5 components and

2A generalization of this method to nonequal weights is given in

[27, Sec. 2.5.1-A].



Fig. 5. Feasible values for w5 depending on a given concentration of the distribution. (a) WN distribution with parameter ¾, (b) WC

distribution with parameter °, (c) VM distribution with parameter ·.

Dirac positions

¯1 =¡Á1, ¯2 = Á1, ¯3 =¡Á2, ¯4 = Á2, ¯5 = 0
that is symmetric around 0. As we will show later,

moment matching does not allow a solution with an

equally weighted Dirac mixture in general. Thus, we

choose equal weights for the first four components

w1 = w2 = w3 = w4 =
1¡w5
4

and leave the weight w5 of the component at ¯5 = 0

to be determined. We will later derive constraints on

the value of w5 and see that w5 =
1
5
, i.e., using equal

weights for all components, does not always guarantee

the existence of a solution.

For the first moment, we have

mWD1 = 2
1¡w5
4

cos(Á1)+2
1¡w5
4

cos(Á2)+w5,

and obtain

2

1¡w5
(m1¡w5)| {z }
=:c1

= cos(Á1)+ cos(Á2): (5)

Similarly, for the second moment, we have

mWD2 = 2
1¡w5
4

cos(2 ¢Á1)+2
1¡w5
4

cos(2 ¢Á2)+w5:

At this point, we apply the trigonometric identity

cos(2 ¢ x) = 2cos2(x)¡ 1. After a short calculation, we
obtain

1

1¡w5
(m2¡w5)+1| {z }
=:c2

= cos2(Á1)+ cos
2(Á2): (6)

By substituting x1 = cos(Á1), x2 = cos(Á2), we obtain a

system of two equations

c1 = x1 + x2,

c2 = x
2
1 + x

2
2:

We solve for x1 and x2, which yields

x1 = c1¡ x2, x2 =
2c1§

q
4c21¡ 8(c21¡ c2)
4

:

Obviously, there are two different solutions. Without

loss of generality, we only consider the solution

x1 = c1¡ x2, x2 =
2c1 +

q
4c21¡ 8(c21¡ c2)
4

(7)

because the other solution just swaps x1 and x2, which is

equivalent for our purposes. Finally, we obtain

Á1 = arccos(x1) and Á2 = arccos(x2).

This leaves the question of choosing the weighting

coefficient w5. The previous equations can only be

evaluated if the conditions

¡1· xi · 1, i= 1,2 and 4c21¡ 8(c21¡ c2)¸ 0
hold. These conditions can be used to find a lower and

an upper bound on w5. These bounds are

wmin5 =
4m21¡ 4m1¡m2 +1
4m1¡m2¡ 3

, (8)

wmax5 =
2m21¡m2¡ 1
4m1¡m2¡ 3

: (9)

In the following, we show that wmin5 · wmax5 holds in all

relevant cases.

LEMMA 2. (Existence of a Solution). If m2 >¡3+4m1,
it holds that wmin5 · wmax5 , i.e., there exists a solution in
[wmin5 ,wmax5 ].

PROOF Using m2 >¡3+4m1, we know that the de-

nominator in (8) and (9) is negative. Thus, we have

wmin5 · wmax5

, 4m21¡ 4m1¡m2 +1¸ 2m21¡m2¡ 1
, 2m21¡ 4m1 +2¸ 0

, (m1¡ 1)2 ¸ 0,
which is always fulfilled.

It can be shown that the inequality m2 >¡3+4m1
holds for WN, WC, and VM distributions [27, Lemma

18]. Consequently, for any 0· ¸· 1,
w5(¸) = w

min
5 +¸(wmax5 ¡wmin5 ) (10)



Fig. 6. WD approximations for WN distributions with different values for ¸. In all cases, we use ¾ = 1. The periodic boundary is marked

by a dashed line. Note that for ¸¼ 0 and ¸¼ 1 the mixture degenerates to three components.

is a feasible solution. Furthermore, weights w5(¸)< 0

are invalid because negative weights violate Kol-

mogorov’s axioms, i.e., the probability of any event has

to be larger or equal to zero.3 The parameter ¸ has to

be chosen accordingly. The range of admissible values

is illustrated in Fig. 5. It is obvious from the figure

that w5 =
1
5
, i.e., equal weights for all WD components,

is not necessarily contained in the region of feasible

values. A good choice of the parameter ¸ is discussed

below. The entire method is summarized in Algorithm 1

(see also [27, Sec. 2.5, Algorithm 3], [35, Algorithm 2]).

ALGORITHM 1 Deterministic approximation with L= 5
components.

Input: First circular moment m1, second circular mo-
ment m2,

parameter ¸ 2 [0,1] with default ¸= 0:5
Output: WD(x;w1, : : : ,w5,¯1, : : : ,¯5)
/* extract ¹ */

¹Ã atan2(Imm1,Rem1);

m1Ã jm1j;
m2Ã jm2j;
/* compute weights */

wmin5 Ã (4m21¡ 4m1¡m2 +1)=(4m1¡m2¡ 3);
wmax5 Ã (2m21¡m2¡ 1)=(4m1¡m2¡3);
w5Ã wmin5 +¸(wmax5 ¡wmin5 );

w1,w2,w3,w4Ã (1¡w5)=4;
/* obtain Dirac positions */

c1Ã
2

1¡w5
(m1¡w5);

c2Ã
1

1¡w5
(m2¡w5)+1;

x2Ã (2c1 +
q
4c21¡ 8(c21¡ c2))=4;

x1Ã c1¡ x2;
Á1Ã arccos(x1);

Á2Ã arccos(x2);

/* shift Dirac positions by ¹ */

(¯1, : : : ,¯5)Ã ¹+(¡Á1,+Á1,¡Á2,+Á2,0) mod 2¼;
return WD(x;w1, : : : ,w5,¯1, : : : ,¯5);

3In practice, other filters such as the UKF [24] and the randomized

UKF [55] are sometimes used with negative weights, which can give

decent results, but does not have a proper probabilistic interpretation.

3.3. Properties of the Moment-based Approximation

There are several noteworthy properties of the pre-
sented approximation method. Obviously, it maintains

the first and second trigonometric moment of the origi-
nal density. Maintaining the first trigonometric moment
guarantees that the conversion is reversible. If we take
a WN, WC, or VM distribution and approximate it with
a WD distribution, we can recover the original distri-

bution by means of moment matching. In the case of a
VM distribution, we can also obtain the original distri-
bution by maximum likelihood estimation, which coin-
cides with the result from moment matching [21, Re-
mark 4.1].

Approximating not just the first, but also the second
moment has the advantage of more accurately approx-
imating the original distribution and producing a mix-
ture with more components. As shown before, differ-
ent types of distributions differ in their second moment,

even if they are uniquely determined by their first mo-
ment (see Fig. 2). If we use a wrapped Dirac mixture
to propagate a density through a nonlinear function, a
larger number of mixture components captures the ef-
fect of the function more accurately.

One of the main advantages of the presented method
is the fact that for WN and WC distributions, all re-
quired operations can be evaluated in closed form. The
necessary formulas (1), (2), and (5)—(10) can be evalu-

ated in constant time and are easily implemented even
on embedded hardware with limited computational ca-
pabilities. In the case of a VM distribution, the calcu-
lation of the first and second trigonometric moment re-
quires the evaluation of Bessel functions as given in (3),

but all other steps (5)—(10) are still possible in closed
form.
Examples for the approximation of both WN and

VM densities with different concentrations are depicted
in Fig. 3 and Fig. 4. These examples illustrate how the

concentration of the density affects the placement and
weighting of the samples. It can be seen that the weight
of the middle samples increases as the density gets more
concentrated. These figures also illustrate that the shape
of the two densities is slightly different.

The influence of the parameter ¸ is illustrated in
Fig. 6. If ¸ approaches 1, more and more weight is
assigned to the Dirac component at zero whereas the
other Dirac components have less influence. If, on



Fig. 7. Locations of the Dirac delta components ¯1, : : : ,¯5 depending on ¸ for a WN Distribution with parameters ¹= ¼ and different

values of ¾. Note that in the case of ¾ = 2:5, small values of ¸ are not valid because they yield a negative w5.

the other hand, ¸ approaches zero, two of the other
components move towards the center Dirac component,
effectively reducing the number of Dirac components to
three. As both of these effects are undesirable, ¸ should
not be chosen too close to either zero or one. It can be
shown that for WN, WC as well as VM distribution,
w5 is positive for arbitrary concentrations if and only if
¸¸ 0:5, which motivates a choice of ¸ 2 [0:5,1].
LEMMA 3. (Condition for Positive Weights). For WN,
VM, and WC distributions, w5 is positive for arbitrary
concentrations if and only if ¸¸ 0:5.
PROOF We calculate

w5(¸) = w
min
5 +¸(wmax5 ¡wmin5 )

=
4m21¡ 4m1¡m2 +1
4m1¡m2¡ 3

+¸

μ
2m21¡m2¡1
4m1¡m2¡ 3

¡ 4m
2
1¡ 4m1¡m2 +1
4m1¡m2¡ 3

¶
=
4m21¡ 4m1¡m2 +1
4m1¡m2¡ 3

+¸

μ¡2m21 +4m1¡ 2
4m1¡m2¡ 3

¶
=
4m21¡ 4m1¡m2 +1+¸(¡2m21 +4m1¡2)

4m1¡m2¡ 3

=
(4¡ 2¸)m21 + (¡4+4¸)m1¡m2 +1¡ 2¸

4m1¡m2¡3
:

a) WN: From (1), we obtain the relation m2 =m
4
1 and

substitute accordingly.

w5(¸) =
(4¡ 2¸)m21 + (¡4+4¸)m1¡m41 +1¡ 2¸

4m1¡m41¡ 3

=
m21 +2¸+2m1¡ 1
m21 +2m1 +3

Because m21 +2m1 +3> 0, we have

w5(¸)¸ 0
,m21 +2¸+2m1¡ 1¸ 0

,¸¸ 1
2
¡2m1¡m21

m1!0¡! 1
2

and m1 2 (0,1) shows the claim.

b) VM: The property holds for VM distributions

as well, but the proof is more tedious because of the

involved Bessel functions. For this reason, we do not

give a formal proof here.

c) WC: From (2), we obtain the relation m2 =m
2
1

w5(¸) =
(3¡ 2¸)m21 + (¡4+4¸)m1 +1¡ 2¸

4m1¡m21¡ 3

=
2¸m1¡ 2¸¡3m1 +1

m1¡ 3
:

Because m1¡ 3< 0, we have
w5(¸)¸ 0

,2¸m1¡ 2¸¡ 3m1 +1· 0
,¸(2m1¡ 2)·¡1+3m1
,¸¸ 1

2
¢ 1¡3m1
1¡m1

m1!0¡! 1

2

and m1 2 (0,1) shows the claim.
Based on these results, we suggested to use ¸= 0:5

in [32]. The value ¸= 0:5 is a reasonable choice for both

high and low concentrations and it guarantees w5 ¸ 0 in
all cases.

However, the choice of ¸= 0:5 has the disadvantage

that the discrete approximation degenerates to four com-

ponents as the distribution approaches a circular uni-

form distribution because the weight of the sample at

the circular mean approaches zero. It would be prefer-

able to obtain five equally weighted components in this

case. For this purpose, we consider the limits

lim
m1,m2!0

wmin5 =¡ 1
3

and
lim

m1,m2!0
wmax5 = 1

3

of the minimum and maximum weights as the distri-

bution approaches a circular uniform distribution (i.e.,

the moments approach zero). Then, we can solve for ¸

according to

w5(¸) =¡ 1
3
+¸2

3

!
= 1
5

) ¸= 0:8:



Thus, ¸= 0:8 ensures convergence to a distribution with

equally weighted components. According to Lemma 3,

this choice also guarantees positive weights in all cases.

Even though we only presented an approximation

for WN, WC, and VM distributions so far, the presented

approach can easily be generalized to other symmetric

circular probability distribution whose first and second

trigonometric moments can be calculated and satisfy the

condition given in Lemma 2.

4. SUPERPOSITION METHOD

In this section, we present an extension of the pro-

posed method. For problems with strong nonlinearities,

it may be desirable to obtain a deterministic approxima-

tion with a larger number of samples. However, gener-

alizing the proposed method to more samples and/or

higher trigonometric moments is not straightforward.

For this reason, we propose the use of a superposition

approach that combines several sample sets with differ-

ent scaling parameters into one larger sample set, which

also retains the first and second trigonometric moment.

This approach is similar to the randomized UKF [55],

where multiple UKF sample sets with different rotations

and scalings are combined.

4.1. Proposed Method

To be specific, we consider the superposition of

q 2N,q¸ 2 approximations obtained using Algorithm 1
with different parameters ¸1 < ¢ ¢ ¢< ¸q 2 (0,1). The re-
sulting density is given by

qX
k=1

pq

LX
j=1

w(¸k)j ±(x¡¯(¸k)j ) (11)

with weights p1, : : : ,pq > 0 and
Pq
k=1pq = 1, where

w(¸k)1 , : : : ,w(¸k)L and ¯(¸k)1 , : : : ,¯(¸k)L are obtained using Al-

gorithm 1 by choosing the parameter ¸k.

LEMMA 4. For n= 0,1,2, the nth trigonometric moment
of (11) is identical to the nth trigonometric moment of the
original density.

PROOF We use the linearity of integration and the fact

that Algorithm 1 maintains the first and second moment

as well as the normalization property, which allows us

to obtainZ 2¼

0

exp(inx)

qX
k=1

pq

LX
j=1

w(¸k)j ±(x¡¯(¸k)j )dx

=

qX
k=1

pq

Z 2¼

0

exp(inx)

LX
j=1

w(¸k)j ±(x¡¯(¸k)j )dx

=

qX
k=1

pqmn

=mn:

Because one sample is placed at the circular mean

of the distribution regardless of ¸, this method results

in multiple samples at this location. In a practical im-

plementation, these samples can be joined into a single

sample with weight
Pq
k=1pkw

(¸k)
5 . If no other samples

coincide, the approximation results in 4q+1 Dirac delta

components. It should be noted that the weights w(¸k)5 of

individual samples at the center may be negative as long

as the sum of the weights of all Dirac delta components

at this location remains positive. This leads to the con-

dition

qX
k=1

pkw
(¸k)
5 ¸ 0

,
qX
k=1

pk(w
min
5 +¸k(w

max
5 ¡wmin5 ))> 0

,wmin5 + (wmax5 ¡wmin5 )

qX
k=1

pk¸k ¸ 0

,
qX
k=1

pk¸k ¸
wmin5

wmin5 ¡wmax5

: (12)

We will later make sure to that this condition always

holds.

4.2. Choice of Parameters

While the approach discussed above is fairly

straightforward, it is not obvious how to choose the pa-

rameters p1, : : : ,pq and ¸1, : : :¸q. In principle, any choice

fulfilling condition (12) would be valid, and the first and

second trigonometric moments are maintained as shown

in Lemma 4. However, for good performance in a circu-

lar filter, it is desirable that a large range is covered and

that the Dirac delta components are as evenly spread as

possible. It is possible to achieve this by defining a suit-

able cost function and using a numerical optimization

procedure to obtain the parameters. Because this would

incur a significant runtime cost, we instead suggest an

intelligent heuristic that ensures good results in all cases

and that can be calculated very efficiently.

For the heuristic, we choose uniform weights pk =

1=q. When we consider the choice of the parameters

¸1, : : : ,¸k, we observe the influence of ¸k on the Dirac

delta positions ¯(¸k)1 , : : : ,¯(¸k)4 (see Fig. 7). It can be seen

in the depicted examples that the outermost components

at ¯(¸k)1 and ¯(¸k)2 move further away from the circular

mean at first when ¸k increases, but start moving inward

again as ¸k approaches 1. This behavior can formally be

shown by the following Lemma.

LEMMA 5. The angular distance between ¯1 and the
circular mean (as well as ¯2 and the circular mean) is
maximized for ¸max = 2

p
2¡ 2¼ 0:828.



Fig. 8. WD approximations for WN distributions using superposition method with different values for ¾. In all cases, we use q= 5.

PROOF We consider the partial derivative of x1 with

respect to ¸, which yields

@

@¸
x1 =

@

@¸
(c1¡ x2)

=
@

@¸

μ
c1¡

μ
2c1 +

q
4c21¡8(c21¡ c2)

¶
=4

¶
=¡ @

@¸

μ
c1 +

q
c21¡ 2(c21¡ c2)=2

¶
=¡ @

@¸

μ
c1 +

q
¡c21 +2c2=2

¶
=¡ @

@¸

μ
2(m1¡w5)
1¡w5

+

s
¡
μ
2
m1¡w5
1¡w5

¶2
+2

μ
m2¡w5
1¡w5

+1

¶
=2

1A :
Furthermore, we obtain

w5 = w
min
5 +¸(wmax5 ¡wmin5 )

=
4m21¡ 4m1¡m2 +1+¸(¡2m21¡ 2+4m1)

4m1¡m2¡ 3
:

Substituting this term for w5 in the partial derivative

x1, setting the result to zero, and solving for ¸ yields

2
p
2¡ 2.
Note that this result does not depend on the moments

m1 and m2. To cover the maximum area, it is desirable to

choose ¸q = ¸
max and ¸1, : : : ,¸q¡1 < ¸

max. Because the

Dirac delta components should be evenly distributed,

we propose to define

¸k = ¸
min +

k

q
(¸max¡¸min), k = 1, : : : ,q,

i.e., the ¸s are spread evenly between ¸min and ¸max,

where ¸min is yet to be determined.4 Obviously, it holds

that ¸min ¸ 0, but for ¸min = 0, condition (12) is not
always guaranteed to hold. Thus, we determine ¸min

from the positivity condition (12).

4According to this definition, ¸max is included in ¸1, : : : ,¸k , but ¸
min

is not. This choice is motivated by the fact that the value of ¸min that

we derive in the following leads to a degenerate solution.

LEMMA 6. Condition (12) is satisfied if and only if

¸min ¸ 2 ¢ q

q¡1 ¢
wmin5

wmin5 ¡wmax5

¡¸max ¢ q+1
q¡ 1 :

PROOF First, we calculate a closed form solution for

the sum of all ¸s according to

qX
k=1

¸k =

qX
k=1

¸min +
k

q
(¸max¡¸min)

= q ¢¸min + ¸
max¡¸min

q

qX
k=1

k

= q ¢¸min + ¸
max¡¸min

q
¢ q ¢ (q+1)=2

= q ¢¸min + (¸max¡¸min) ¢ (q+1)=2
= ¸min ¢ (q¡1)=2+¸max ¢ (q+1)=2:

Now, we use p1, : : : ,pq = 1=q and solve equation (12)

for ¸min, which leads to

¸min ¢ (q¡ 1)=2+¸max ¢ (q+1)=2¸ q ¢wmin5

wmin5 ¡wmax5

, ¸min ¢ (q¡ 1)=2¸ q ¢wmin5

wmin5 ¡wmax5

¡¸max ¢ (q+1)=2

, ¸min ¸ 2 ¢ q

q¡ 1 ¢
wmin5

wmin5 ¡wmax5

¡¸max ¢ q+1
q¡ 1 :

Based on this result, we choose

¸min = max

μ
0,2 ¢ q

q¡ 1 ¢
wmin5

wmin5 ¡wmax5

¡¸max ¢ q+1
q¡ 1

¶
:

Examples of the proposed superposition approximation

are depicted in Fig. 8. It can be seen that even though

the ¸s were chosen to cover the largest possible area

and designed to be distributed as uniformly as possible,

the Dirac delta components form four clusters within

the possible ranges of ¯1, : : : ,¯4. Also, there is a single

central component located at ¯5, i.e., the circular mean,

and that has a fairly large weight when the uncertainty

is low. As a result, the superposition approximation is

not very evenly spread and does not approximate the

shape of the true density all that well. However, it is



very easy and fast to compute and is always guaranteed

to maintain the first two trigonometric moments.

5. BINARY TREE APPROACH

In this section, we will introduce an approach for

deterministic sampling of circular densities that is not

based on trigonometric moment matching, but rather on

approximation of the entire probability density function

(as it is done in, e.g., [17]). The basic idea of the pro-

posed approach is to construct a binary tree by recur-

sively dividing the interval [0,2¼) into smaller intervals

while choosing the number of Dirac delta components

in each interval proportionally to the contained proba-

bility mass.

5.0.1. Proposed Method:
Formally, the proposed algorithm (see Algorithm 2)

works as follows. It considers the pdf f(¢) on the inter-
val [l,r) that is to be approximated with a predefined

number of L 2N+ samples. If L= 1, the algorithm sim-
ply returns the center of the interval.5 Otherwise, for

L > 1, the interval is divided into two halves [l,m) and

[m,r), where m= (l+ r)=2 is the center of the interval.

Thereby, two leaves are added to the binary tree, which

can be processed recursively. The probability mass

pleft =

Z m

l

f(x)dx, pright =

Z r

m

f(x)dx

in each half is computed and the number of Dirac com-

ponents in each half is chosen proportionally. Because

the number of components in each half has to been an

integer, we need to round the result. However, because

of rounding errors, we may have corner cases where

the number of Dirac components in both halves does

not sum to L. For this reason, we round down first and

then check if there is a remaining component. If that

is the case, we assign it to the half where the rounding

error is larger. In order to evaluate the probability mass

within an interval, the cumulative distribution function

(cdf) of the density f(¢) is required. In the case of the
WN, VM, and WC distributions, efficient methods for

computing this function are available. For other distri-

butions it may be necessary to fall back to numerical

integration, which would typically be slower.

REMARK 1 (Cumulative Distribution Functions).

1) WN distribution: The cdf can be obtained by compo-

nentwise integration, which reduces the problem to

the calculation of an infinite sum of Gaussian cdfs.

The Gaussian cdfs are not available analytically but

can be efficiently evaluated using the erf-function

[1, Sec. 7.1]. Similar to the infinite sum in the pdf,

5A better alternative is to put the sample at the center of mass of

the interval, i.e, at
R r
l
x ¢f(x)dx. However, this typically necessitates

numerical integration, and would thus significantly increase the com-

putation time. If the integral can be computed analytically, this choice

should be preferred, though.

the infinite sum in the cdf can be truncated to just a

few terms.

2) VM distribution: No analytic solution for the cdf of

a VM distribution is known. However, Hill proposed

an efficient approximation [18] with an accuracy of

12 decimal digits.

3) WC distribution: The cdf of a WC distribution can

be computed analytically using the indefinite integralZ
sinh(°)

2¼(cosh(°)¡ cos(x¡¹)dx

=
1

¼
arctan(coth(°=2)tan((x¡¹)=2))

+ constant:

ALGORITHM 2 approximateBT

Input: left limit l, right limit r, number of samples L,
pdf f(¢)

Output: sample positions ¯
m= (l+ r)=2;

/* one Dirac component remaining */

if L= 1 then
¯ = [m];

return ¯;
end
/* calculate integrals and distribute

Diracs components proportionally */

pleft =
R m
l
f(x)dx;

pright =
R r
m
f(x)dx;

Lleft = bL ¢pleft=(pleft +pright)c;
Lright = bL ¢pright=(pleft +pright)c;
/* assign remaining Dirac delta

component if necessary */

if Lleft +Lright = L¡ 1 then
if L ¢pleft=(pleft +pright)¡Lleft >
L ¢pright=(pleft +pright)¡Lright then

Lleft = Lleft + 1;
else

Lright = Lright + 1;
end

end
/* Recursive calls for left and right half */

¯Ã [];

if Lleft ¸ 1 then
¯Ã [¯,approximateBT(l,m,Lleft)];

end
if Lright ¸ 1 then

¯Ã [¯,approximateBT(m,r,Lright)];
end
return ¯;

5.1. Extensions

Although the binary tree approximation as presented

above works quite well in most circumstances, some

extensions are possible to improve it further.



Fig. 9. WD approximations for WN distributions using binary tree method with different values for ¾ (without moment correction). In all

cases, we use L= 25.

5.1.1. Shifting Invariance:
In principle, the proposed algorithm can be applied

to circular densities with arbitrary circular mean directly

and it is not necessary to enforce ¹= 0. However, the

binary tree approximation is not invariant under shift-

ing, i.e., the results of the approximation depend on the

location of the density. This is due to the choice of the

initial interval [l,r) = [0,2¼). In order to avoid intro-

ducing artifacts as a result of this issue, we recommend

enforcing ¹= 0 before performing the binary tree ap-

proximation and shifting the samples by ¹ afterwards.

This modification makes the proposed method invariant

to shifting operations. Also, it is worth mentioning that

for symmetric densities, this ensures symmetry around

0, which can be exploited to cut the computational effort

in half if L is even. This is done by setting the initial in-

terval as [l,r] = [0,¼], approximating with L=2 samples,

and obtaining the samples in [¼,2¼] by mirroring.

5.1.2. Moment Correction:
Because of its shape-based approach, the binary tree

approximation does not, in general, guarantee that any

trigonometric moments are maintained. This has the dis-

advantage that the original continous density cannot be

exactly recovered from the samples using a moment-

based estimator, not even for simple distributions such

as the WN, VM, and WC distributions. Thus, propaga-

tion through an identity function or a simple shift op-

eration is also not exact. This problem can be avoided

by introducing a post-processing step to retroactively

correct the first trigonometric moment. The downside

of such a correction step is that the probability mass

in each interval is not exactly retained anymore, i.e.,

we introduce a small error into the approximation of

the shape in order to get an approximation that has the

correct first trigonometric moment.

Correction of the first trigonometric moment is car-

ried out in two steps. First, we correct the circular mean,

i.e., we adjust the complex argument Argm1 to match

the original distribution. This is achieved by calculating

the circular mean of the original density and the circular

mean of the binary tree approximation and then shifting

all Dirac delta components by the difference. As long

as the first trigonometric moment of the true density is

easy to calculate, this step does not require much com-

putational effort, and thus, is always recommended.6

In order to correct the Euclidean norm j ¢ j of the
complex first trigonometric moment m1, i.e., the spread

of the distribution, we propose the following approach.

The basic idea is to perform a scaling operation that

moves all Dirac delta component inwards or outwards

with respect to the circular mean by scaling around the

mean by a factor of c > 0, i.e., we obtain the wrapped

Dirac mixture
LX
j=1

wj±(x¡ (Argm1 + c ¢©(¯j ¡Argm1))),

where ©(x) = (x+¼ mod 2¼)¡¼ is a function that

switches to a parameterization on [¡¼,¼). The scaling
parameter c is then obtained by solving the optimization

problem

argmin
c

¯̄̄̄
¯̄jm1j ¡ LX

j=1

cos(c ¢©(¯j ¡Argm1))
¯̄̄̄
¯̄ ,

where we use an initial value of c= 1 (i.e., no scaling

is performed). This one-dimensional optimization can

be efficiently solved using a quasi-Newton algorithm

[45, Sec. 6]. Typically, we obtain a result c¼ 1, i.e.,
only a slight scaling is necessary.

5.2. Properties of the Binary Tree Approximation
The runtime of the proposed method depends on

the shape of the probability density that is to be ap-

proximated. In practical experiments, it is not quite as

fast as the closed-form solution of the moment-based

approximation discussed above, but it is still very fast

compared to approaches that necessitate the solution of

complicated multivariate nonlinear optimization prob-

lems (e.g., [17]). In particular, if the cdf can be com-

puted efficiently as is the case for WN, VM, and WC

distributions, the proposed method is very cheap to per-

form (see Sec. 6).

Unlike the moment-based approaches discussed

above, we do not restrict ourselves to symmetric den-

sities here. Thus, the binary tree method is also appli-

6For symmetric densities, the shifting invariance modification

(Sec. 5.1.1) already guarantees that the circular mean is matched ex-

actly. In this case, the correction step can be omitted.



Fig. 10. WD approximations for WN distributions using binary tree method with different values for ¾ (with moment correction). In all

cases, we use L= 25.

Fig. 11. Distance measure between true density WN (x;¼,¾) and the different deterministic approximations.

cable to distributions with asymmetric densities such as

the wrapped exponential distribution and the wrapped

Laplace distribution [20]. More generally, it can also be

applied to multi-modal circular densities, e.g., wrapped

normal mixtures [2], von Mises mixtures [8], [44], [9],

or Fourier densities [59], [10], [46], [47].

Furthermore, this method produces a uniformly

weighted mixture. This is a desirable property because it

has advantages when reweighting the samples as parti-

cle degeneration does not occur as quickly. Reweighting

is a common technique used to derive nonlinear mea-

surement updates, e.g., as part of a progressive filter

[34], [35].

It should also be noted that the proposed approach

can be generalized to higher dimensions, i.e., to prob-

ability distributions on the torus [30], [40], [51] and

hypertorus [27], [41]. In that case, binary trees would

be replaced by quadtrees, octrees, etc. Even though

this generalization is straightforward, the higher-

dimensional version is limited to a small number of di-

mensions, because it scales exponentially with respect

to the considered number of dimensions. Also, an ef-

ficient implementation of the multidimensional integral

of the true density is required.

Examples of the binary tree approximation with-

out moment correction and with moment correction are

given in Fig. 9 and Fig. 10, respectively. It can be seen

that the binary tree approximation represents the shape

of the true distribution very well. The moment correc-

tion only changes the distribution very slightly, but ex-

actly enforcing the moment constraint has significant

advantages because it allows recovering the original

density for distributions that are uniquely defined by

their first trigonometric moment.

6. EVALUATION

In this section, we provide evaluations of the pro-

posed methods according to different criteria. We con-

sider a distance measure comparing the approximation

to the true distribution and evaluate the accuracy when

the approximations are applied for propagation of the

density through a nonlinear function.



6.1. Approximation Accuracy Based on Distance
Measure

To determine the approximation accuracy, we define

a distance measure between the original continous den-

sity and the discrete approximation. For two circular

densities f1(¢) and f2(¢) with cumulative distributions7

F1(x) =

Z x

0

f1(t)dt and F2(x) =

Z x

0

f2(t)dt,

we define the distance measure according toZ 2¼

0

(F1(x)¡F2(x))2dx:

This measure is essentially a circular version of the

distance used in [19], [49].

During the evaluation, we consider the density

WN (x;¼,¾) with several values of ¾ and approximated
it using the methods discussed in this paper. The results

are depicted in Fig. 11. It can be seen that the moment-

based approximation with L= 2 components is always

the worst method. The moment-based approximation

with L= 3 components is usually not very accurate ei-

ther. The moment-based approximation with L= 5 com-

ponents is always quite acceptable for ¸= 0:5. Setting

¸= 0:8 decreases the accuracy of the approximation

for small uncertainties, but improves the approxima-

tion quality for larger uncertainties. The superposition-

based approximation seems similar to the L= 5, ¸= 0:5

approximation for small noise, but outperforms it for

larger noise as long as enough components are used.

Both of the binary tree methods perform very well, es-

pecially if many components (say, L¸ 15) are used. The
corrected version (see Sec. 5.1.2) is slightly better in

some cases, but very similar to the uncorrected version

in others. We also compare to random sampling, which

can be seen to be very unreliable with such a small

number of samples.

Moreover, we investigated the runtime performance

of the proposed methods. All measurements were ob-

tained on a laptop with an Intel Core i7-2640M

@2.8GHz, 8GB RAM, and MATLAB 2015a. The re-

sults are given in Table I. As can be seen, all moment-

based methods are very fast, including the superposition

method. The binary tree method is more costly, particu-

larly for the WN distribution whose cdf is the most ex-

pensive to calculate, at least in our current implementa-

tions. The retroactive moment correction procedure (see

Sec. 5.1.2) somewhat increases the computation time, ir-

7It should be noted that the definition of the cumulative distribution

on the circle is somewhat problematic because the starting point of the

integration can be chosen anywhere in [0,2¼), i.e., it is not invariant

to shifting. The choice of the starting point also affects the distance

measure used in this section. In particular if Dirac delta components

are very close to the starting point, small changes to the starting point

can cause large changes in the cdf, and consequently the distance. To

minimize this effect, we use zero as a starting point and a density

centered around ¼, such that the probability mass is concentrated far

away from the starting point.

Fig. 12. Runtime of the binary tree approximation.

TABLE I

Average runtime for a single approximation.

time (s)

method WN VM WC

L= 2 0.000166 0.000173 0.000150

L= 3 0.000166 0.000170 0.000152

L= 5 0.000246 0.000312 0.000223

Superposition (q= 5) 0.000334 0.000399 0.000315

BT (L= 25) 0.065933 0.004461 0.011233

BT corrected (L= 25) 0.081339 0.028380 0.033159

random (L= 25) 0.000269 0.000479 0.000254

respective of the underlying true distribution. Still, it can

be seen that all proposed approximation algorithms are

already suitable for many real-time applications even

though our MATLAB implementation is not well op-

timized. Particularly, the moment-based approaches are

very efficient and could even be used in situations where

only little computational power is available.

In order to more closely investigate the runtime of

the binary tree approximation, we provide a plot where

we show the runtime as a function of the number of

samples L in Fig. 12. It can be seen that the runtime

scales approximately linearly in L, i.e., it can be applied

efficiently even for many samples.8

6.2. Propagation Through a Nonlinear Function

Furthermore, we evaluate the proposed deterministic

approximation methods by determining the error when

propagating through a nonlinear function. For our eval-

uation, we consider the function gc : [0,2¼)! [0,2¼)

with

gc(x) = ¼ ¢
μ
sin

μ
sign(x¡¼)

2

jx¡¼jc
¼c¡1

¶
+1

¶
for some constant c > 0, which has previously been used

for evaluation purposes in [14]. It can be shown that this

8It seems intuitive that the runtime is linear in most cases, but for

pathological probability density functions it may not be possible to

provide that guarantee.



Fig. 13. Propagation of a prior WN distribution with parameters ¹= ¼, ¾ = 0:4 through a nonlinear function gc(¢) by means of the
proposed deterministic WD mixture approximation with five components. In this example, we use c= 0:9.

Fig. 14. The function gc(¢) for different values of c.

function is continuous for all c > 0. We have

g0c(x) = ¼ cos
μ jx¡¼jc
2 ¢¼c¡1

¶
¢ c ¢ jx¡¼j

c¡1

2 ¢¼c¡1
which is positive for x 2 [0,2¼), i.e., the function gc(¢)
is strictly increasing and furthermore bijective.9 Varying

the value of c allows us to control how strong the

nonlinearity is (see Fig. 14). The inverse function of

gc(¢) can also be calculated analytically according to

g¡1c (x) = sign
³
arcsin

³ x
¼
¡ 1
´´

¢
¯̄̄
2arcsin

³ x
¼
¡ 1
´
¼c¡1

¯̄̄1=c
+¼:

Now, we assume a random variable A is distri-

buted according to a WN probability distribution

WN (x;¹A,¾A). We propagate A through the nonlinear
function gc(¢) to get B = gc(A), and seek to obtain a
WN distribution f(x;¹B ,¾B) that approximates the dis-

tribution of gc(A). For x 6= ¼, the density of the exact
distribution is given by

fB(x) =
f(g¡1c (x);¹,¾)

g0c(x)
:

9The proposed approach is not limited to injective or continous func-

tions. However, we use such a function because these properties sim-

plify the calculation of the true posterior density.

This distribution is not a WN distribution, but can be ap-

proximated by one. To approximate the true distribution

with a WN distribution, we proceed as follows. First,

we deterministically approximate the prior distribution

WN (x;¹A,¾A) with a WD mixture
PL
j=1wj ¢ ±(x¡¯j)

using one of the methods presented in this paper. Then,

we propagate all samples through the nonlinear function

gc(¢), which yields
PL
j=1wj ¢ ±(x¡ gc(¯j)). Finally, we fit

a WN distribution WN (x;¹B ,¾B) to the resulting WD
mixture. This process is illustrated in Fig. 13.

We calculate the optimal WN approximation

WN (x;¹opt,¾opt) of the posterior density fB by match-
ing the first trigonometric moment of fB . This is

achieved by using a grid of 20 000 equidistant samples

on the circle that are weighted using the prior pdf, prop-

agated through the nonlinear function and then used to

obtain the parameters of the optimal WN approxima-

tion. Then, we use the Kullback-Leibler divergence

DKL(WN (x;¹opt,¾opt)kWN (x;¹B ,¾B))

=

Z 2¼

0

WN (x;¹opt,¾opt) log
μWN (x;¹opt,¾opt)
WN (x;¹B ,¾B)

¶
dx

between the WN (x;¹opt,¾opt) and the fitted distribution
WN (x;¹B ,¾B) to quantify the information loss by this
approximation. The results for ¹= ¼ and different val-

ues of the nonlinearity parameter c as well as several

possible uncertainties ¾ are depicted in Fig. 15. In ad-

dition to the Kullback-Leibler divergence, we also con-

sider the error in the first trigonometric moment¯̄̄̄
¯̄Z 2¼

0

fB(x)eixdx¡
Z 2¼

0

LX
j=1

wj ¢ ±(x¡gc(¯j))eixdx
¯̄̄̄
¯̄

of the approximation compared to the true density.

Results obtained using this error measure are shown in

Fig. 16.

In this evaluation, we consider the moment-based

approaches with L= 3 and L= 5 samples (¸= 0:5),

as well as the superposition approach with q= 5, the

uncorrected and corrected versions of the binary tree

method with L= 25 and also L= 25 random samples.



Fig. 15. Kullback-Leibler divergence between best WN that approximates the posterior and the WD-based WN approximation.

Fig. 16. Error in the first trigonometric moment between the true posterior and the WD-based approximation.

It can be seen that the random sampling generally per-

forms very poorly compared to the deterministic sam-

pling schemes, which is to be expected because random

sampling generally needs a significantly larger num-

ber of samples to provide good results. As far as the

moment-based approximations are concerned, the eval-

uation indicates that the method with L= 5 components

significantly outperforms the method with L= 3 com-

ponents, particularly in scenarios with strong nonlinear-

ity. The superposition method generally provides fairly

similar results to the approximation with L= 5 compo-

nents and does not seem to provide a significant advan-

tage in the considered settings in spite of the increased

number of Dirac delta components. Both versions of the



binary tree method generally provide very good results.

In some cases, the uncorrected version suffers from the

systematic error in the approximation, however, so the

corrected version should be preferred if the slight in-

crease in computation time is acceptable.

7. CONCLUSION

We presented several new methods to deterministi-

cally approximate circular distributions with wrapped

Dirac mixtures. The proposed approaches are applica-

ble to a variety of circular distributions, in particular

the widely used wrapped normal and von Mises distri-

butions.

First, we considered approximations with a fixed

number of Dirac delta components based on one or two

trigonometric moments. Because all expressions can be

evaluated in closed form, these algorithms require little

computational power and are suitable for implementa-

tion even on embedded devices. One might wonder if

the presented algorithms can easily be generalized to

higher moments, but such a generalization is nontriv-

ial due to the fact that preserving n moments involves

finding the roots of polynomials of degree n. Analytic

solutions only exist for polynomials of degree · 4 and
are very complicated for n= 3 and n= 4.

Second, we presented a superposition method that is

able to combine the results of multiple moment-based

approximations to obtain a wrapped Dirac mixture with

a larger number of components while still maintain-

ing the first and second trigonometric moment. The re-

sulting approximations can also be computed in closed

form.

Third, we presented the binary tree method, a shape-

based approximation with an arbitrary number of Dirac

delta components. The resulting approximations repre-

sent the shape of the true continous density much more

accurately than those obtained with the superposition

method, but they do not guarantee that the trigonometric

moments are maintained. However, an additional cor-

rection step can be used to ensure that the first trigono-

metric moment is matched.

When considering a particular practical application,

one of these approaches has to be chosen. The most

appropriate choice mostly depends on the nonlinearity

of the problem (within the range of the uncertainty) and

on the available computation time. The moment-based

approximation with five components is very fast, but

may not be sufficient for strongly nonlinear problems.

To handle nonlinear problems better, the superposition

method can be used at a moderately higher computa-

tional cost. The best results are usually obtained by the

binary tree method using a sufficiently large number of

components, but it is computationally more costly and

does not guarantee that the second moment is retained.

Future work includes the generalization of the pro-

posed approaches to higher dimensions, e.g., the hyper-

sphere, the hypertorus, partially wrapped spaces, and the

groups of rigid body motions in two and three dimen-

sions. Some preliminary work in this area has already

been published [15], [13], [36], but there are still many

open questions, when it comes to deterministic sampling

on periodic manifolds.

MATLAB implementations of the sampling methods

presented in this paper are available as part of libDi-
rectional [37], an open source library for directional
statistics and directional estimation.
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par la phase des signaux GNSS.
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