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Trigonometric Moment Matching and Minimization
of the Kullback–Leibler Divergence

Gerhard Kurz1 and Uwe D. Hanebeck1

Abstract—We show an important property of the von Mises
distribution on the unit circle. If we approximate an arbitrary
circular distribution using a von Mises distribution, the result
obtained by trigonometric moment matching also minimizes
the Kullback–Leibler divergence (Theorem 1). This result is a
justification for circular filtering algorithms based on trigono-
metric moment matching as the loss of information is minimized.
Furthermore, we show that Theorem 1 does not hold for the
wrapped normal distribution.

Index Terms—Directional statistics, von Mises distribution,
wrapped normal distribution, circular filtering.

I. INTRODUCTION

It is known that the Gaussian distribution possesses an
interesting property: when we approximate an arbitrary density
on Rn with a Gaussian distribution in such a way that the
Kullback–Leibler divergence [9] is minimized, we obtain the
same parameters as we would obtain from moment matching
of the mean and the covariance. In other words, fitting a
Gaussian distribution to an arbitrary distribution by matching
its mean and covariance constitutes the optimal approximation
in terms of the Kullback–Leibler divergence. This classical
result has, for example, been stated in [13, Sec. 2], [14,
Appendix A.5]. Some further investigations for the exponential
family on Rn can be found in [8]. Note that this property of the
Gaussian distribution is lost when the Gaussian distribution is
used to approximate densities on manifolds, e.g., in the context
of approaches based on modified Kalman filters [18], [5], [3],
because the calculation of power moments does not consider
the topology of the underlying manifold.

In this paper, we prove that a very similar property holds for
the von Mises distribution, a probability distribution defined
on the unit circle, if we consider trigonometric moments
instead of power moments. The main result of this paper
can be stated as follows. If we approximate an arbitrary
density on the unit circle with a von Mises distribution, the
distribution obtained from trigonometric moment matching
also minimizes the Kullback–Leibler divergence. A similar
result was previously found for the related von Mises–Fisher
distribution on the three-dimensional unit sphere [4, p. 95].

This result is very important because it serves as a jus-
tification for the use of (trigonometric) moment matching
when performing von Mises-assumed density filtering on the
circle. A number of moment-based filters relying on the von
Mises distribution have been proposed [2], [19], [11], [7],
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and our new results indicate that these filters are not only
optimal in a moment-sense, but also minimize the Kullback–
Leibler divergence, i.e., the information lost as a result of the
approximation of the true density with a von Mises density
(similar to minimum divergence filtering [6]). These filters can
be applied to a variety of relevant applications in the fields of
aerospace, robotics, and signal processing. For example, they
can be used to estimate the heading of an aircraft, the angle
of a robotic joint, and the phase of a received signal.

It should be noted that there are other justifications for
the use of trigonometric moment matching. For example,
it has been shown that the point estimate that is obtained
by considering the complex argument of the first circular
moment m(p)

1 of a circular distribution p(·) has the following
property. The point estimate x = atan2(Im(m

(p)
1 ),Re(m

(p)
1 ))

minimizes the expected error given by the error function
d(x, y) = 1−cos(x−y), where y is a sample drawn from the
circular distribution p(·) (see [21, Sec. 2], [22, Example 1]).
Further research into optimal circular estimation based on
different error criteria (which necessitate the consideration of
higher moments) has been presented in [15], [16].

II. KLD PROPERTY OF THE VON MISES DISTRIBUTION

The probability density function of a von Mises distribu-
tion [20] is given by

g(x;µ, κ) =
1

2πI0(κ)
exp(κ cos(x− µ)) ,

where x, µ ∈ [0, 2π), κ ≥ 0, and I0 is the modified
Bessel function of the first kind and of order zero. Its first
trigonometric moment is given by the complex number

m
(g)
1 =

∫ 2π

0

g(x;µ, κ) exp(ix)dx

=

∫ 2π

0

g(x;µ, κ) cos(x)dx+ i

∫ 2π

0

g(x;µ, κ) sin(x)dx

=
I1(κ)

I0(κ)
exp(iµ) ∈ C

according to [12, eq. (3.5.29)]. For a given first trigonometric
moment |m(g)

1 | 6= 0, the parameters of a von Mises distribution
are obtained as

µ = atan2(Im(m
(g)
1 ),Re(m

(g)
1 )), κ = A−11 (|m(g)

1 |)

where A1(κ) = I1(κ)/I0(κ). If |m(g)
1 | = 0, we have κ = 0

and µ is undefined, i.e., the resulting distribution is uniform.
Based on these fundamentals, we can formulate and prove the
main theorem of this paper.
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Theorem 1. Consider an arbitrary probability density p(x) on
the unit circle that is nowhere zero, i.e., p(x) > 0 ∀x ∈ [0, 2π),
and a von Mises distribution q(x;µ, κ) with parameters µ and
κ. Then

[µ, κ] = argminµ,κDKL(p||q(x;µ, κ))

yields the same result as matching the first circular moment
m

(p)
1 of p(x).

Proof. First, we observe that q(x;µ, κ) > 0 for all x, µ, κ,
i.e., the KLD is well-defined. Thus, we have

DKL(p||q) =
∫ 2π

0

p(x) log

(
p(x)

q(x;µ, κ)

)
dx

=

∫ 2π

0

p(x) log(p(x))dx−
∫ 2π

0

p(x) log(q(x;µ, κ))dx

=

∫ 2π

0

p(x) log(p(x))dx

−
∫ 2π

0

p(x) log

(
1

2πI0(κ)
exp(κ cos(x− µ))

)
dx

=

∫ 2π

0

p(x) log(p(x))dx+

∫ 2π

0

p(x) log(2πI0(κ))dx

−
∫ 2π

0

p(x)κ cos(x− µ)dx

=

∫ 2π

0

p(x) log(p(x))dx+ log(2πI0(κ))

− κ
∫ 2π

0

p(x) cos(x− µ)dx .

a) Location parameter: Now, we take the derivative with
respect to µ and set to zero. Interchanging differentiation
and integration is allowed according to Lebesgue’s dominated
convergence theorem as long as p(x) is integrable. This yields

∂

∂µ
DKL(p||q) = −κ

∫ 2π

0

p(x)
∂

∂µ
cos(x− µ)dx

= −κ
∫ 2π

0

p(x) sin(x− µ)dx

= −κ
∫ 2π

0

p(x)
(
sin(x) cos(µ)− cos(x) sin(µ)

)
dx

= −κ
∫ 2π

0

p(x) sin(x) cos(µ)dx

+ κ

∫ 2π

0

p(x) cos(x) sin(µ)dx
!
= 0

⇔ cos(µ)

∫ 2π

0

p(x) sin(x)dx
!
= sin(µ)

∫ 2π

0

p(x) cos(x)dx

⇔ cos(µ) Im(m
(p)
1 )

!
= sin(µ)Re(m

(p)
1 ) .

Consequently, we obtain a unique solution, which is given
by µ = atan2(Im(m

(p)
1 ),Re(m

(p)
1 )) for |m(p)

1 | 6= 0 and
undefined µ otherwise. Considering the second derivative

∂2

(∂µ)2
DKL(p||q)

∣∣∣
µ=atan2(Im(m

(p)
1 ),Re(m

(p)
1 ))

=
∂

(∂µ)

(
− κ

∫ 2π

0

p(x) sin(x) cos(µ)dx

+ κ

∫ 2π

0

p(x) cos(x) sin(µ)dx

)∣∣∣
µ=atan2(Im(m

(p)
1 ),Re(m

(p)
1 ))

=

(
κ sin(µ)

∫ 2π

0

p(x) sin(x)dx

+ cos(µ)κ

∫ 2π

0

p(x) cos(x)dx

)∣∣∣
µ=atan2(Im(m

(p)
1 ),Re(m

(p)
1 ))

= κ sin(atan2(Im(m
(p)
1 ),Re(m

(p)
1 )))

∫ 2π

0

p(x) sin(x)dx

+ κ cos(atan2(Im(m
(p)
1 ),Re(m

(p)
1 )))

∫ 2π

0

p(x) cos(x)dx

=
κ

|m(p)
1 |

((
Im(m

(p)
1 )
)2
+
(
Re(m

(p)
1 )
)2)

> 0

proves that this is a minimum (as κ > 0 for |m(p)
1 | 6= 0, see

below).
b) Concentration parameter: Now, we take the derivative

with respect to κ using the identity ∂
∂κI0(κ) = I1(κ) and set

to zero
∂

∂κ
DKL(p||q) =

I1(κ)

I0(κ)
−
∫ 2π

0

p(x) cos(x− µ)dx !
= 0

⇔ I1(κ)

I0(κ)

!
=

∫ 2π

0

p(x) cos(x− µ)dx = |m(p)
1 | (1)

A proof of the identity (1) in is given the appendix. This
yields κ = A−11 (|m(p)

1 |) where A1(t) = I1(t)/I0(t). Because
the second derivative fulfills

∂2

(∂κ)2
DKL(p||q) =

∂

∂κ

I1(κ)

I0(κ)
= A′1(κ) > 0

for arbitrary κ as shown by [1, eq. (15)], this value of κ
constitutes a minimum.

III. WRAPPED NORMAL DISTRIBUTION

Another common distribution on the unit circle is the
wrapped normal distribution [17] with density

f(x;µ, σ) =

∞∑
k=−∞

N (x+ 2kπ, µ, σ) ,

where x, µ ∈ [0, 2π) and σ > 0. Using a numerical counterex-
ample, we can show that the property given in Theorem 1 for
the von Mises distribution does not hold for wrapped normal
distributions. Consider the distribution given by the piecewise
constant probability density function

p(x) =

{
0.1
2π , x ∈ [0, 95π)
9.1
2π , x ∈ [ 95π, 2π)

.

Approximating this distribution by trigonometric moment
matching (see [11, Lemma 2], [10, Sec. III-A2]) yields

µ1 = atan2(Imm
(p)
1 ,Rem

(p)
1 ) = 5.969026,

σ1 =

√
−2 log(|m(p)

1 |) = 0.493689,

whereas approximating by minimizing the Kullback–Leibler
divergence using a numerical optimization procedure results
in µ2 = 5.969026, σ2 = 0.599728. Indeed, we find

DKL(p||f(x;µ1, σ1)) = 0.9121382830 ,
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Fig. 1: Counterexample for the wrapped normal distribution. On the left, we show the true density p(x) and both wrapped
normal approximations, whereas on the right, we show the KLD and the absolute error of the first moment as a function of
σ. It can be seen that the result from moment-matching does not minimize the KLD. If we perform the same experiment with
a von Mises distribution, both methods yields the same result as proven in this paper.

DKL(p||f(x;µ2, σ2)) = 0.8690821170 ,

i.e., the moment-based solution has a slightly, but unambigu-
ously higher Kullback–Leibler divergence. These results are
visualized in Fig. 1. If we perform the same steps with a VM
distribution, we obtain µ1 = µ2 = 5.969026, κ1 = κ2 =
4.675421 and a KLD of 0.6792864525 in both cases.

IV. CONCLUSION

We have shown that the von Mises distribution obtained by
trigonometric moment matching is also optimal with respect to
the Kullback–Leibler divergence. This is an important result,
because it serves as a justification for moment-based filters
assuming a von Mises distribution. As we have shown, these
filters not only retain the trigonometric moments, but also
minimize the information that is lost when approximating the
true density with a von Mises density. Furthermore, we have
shown that the same property does not hold for the wrapped
normal density.

The results presented in this paper have significant implica-
tions in a variety of applications where circular filters based on
trigonometric moment-matching can be applied. In particular,
a lot of common aerospace problems such as estimation of the
heading or, more general, the orientation of an aircraft may
benefit from this result.

APPENDIX

Here, we show the identity used in (1). First we observe
that

cos(µ) =
Re(m

(p)
1 )

|m(p)
1 |

, sin(µ) =
Im(m

(p)
1 )

|m(p)
1 |

because µ = atan2(Im(m
(p)
1 ),Re(m

(p)
1 )). Using the cosine

addition formula, we obtain∫ 2π

0

p(x) cos(x− µ)dx

=

∫ 2π

0

p(x)(cos(x) cos(µ) + sin(x) sin(µ))dx

= cos(µ)

∫ 2π

0

p(x) cos(x)dx+ sin(µ)

∫ 2π

0

p(x) sin(x)dx

= cos(µ)Re(m
(p)
1 ) + sin(µ) Im(m

(p)
1 )

=
Re(m

(p)
1 )

|m(p)
1 |

Re(m
(p)
1 ) +

Im(m
(p)
1 )

|m(p)
1 |

Im(m
(p)
1 )

=
Re(m

(p)
1 )2 + Im(m

(p)
1 )2

|m(p)
1 |

=
|m(p)

1 |2

|m(p)
1 |

= |m(p)
1 | .
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