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ABSTRACT

In order to make convolutional neural networks (CNNs) us-
able on smaller or mobile devices, it is necessary to reduce
the computing, energy and storage requirements of these net-
works. One can achieved this by a fixed-point quantization
of weights and activations of a CNN, which are usually rep-
resented by 32-bit floating-point. In this paper, we present an
adaption of convolutional and fully connected layers in order
to obtain a high usage of the given value range of activations
and weights. Therefore, we introduce scaling factors obtained
by moving average to limit the weights and activations. Our
model, quantized to 8 bit, outperforms the 7-layer baseline
model from which it is derived and the naive quantization by
several percentage points. Our method does not require any
additional operations in the inference and both the weights
and activations have a fixed radix point.

Index Terms— CNNs, Fixed Point Quantization, Image
Processing, Machine Vision, Deep Learning

1. INTRODUCTION

Convolutional neural networks (CNNs) have become the state
of the art technique for image classification in many domains.
However, most CNNs require millions of MAC operations
with at least half precision. This requires both a higher energy
requirement due to multiplication and fetching and a larger
storage capacity than a low-bit fixed-point arithmetic. Ac-
cording to [1], an 8-bit fixed-point multiplication consumes
18.5 times less energy, 27.5 times less space on a chip and
only half the memory compared to half precision. Due to the
enormously high number of multiplications and values to be
stored, such a reduction in resource requirements is necessary
to operate CNNs on small or battery-powered devices such as
FPGAs or mobile phones.

1.1. Related Work

Quantization methods for CNNs can be divided into three ma-
jor groups: the first group contains methods that quantize a
CNN after training by determining optimal quantization lev-
els. In general, this group requires look-up tables in the infer-

ence to restore the original weights from the low-bit quanti-
zation levels. In addition, the MAC operations are performed
with floating point arithmetic. It can be shown, that mixed
quantization according to [2] achieves better results than lin-
ear, probabilistic or random quantization. In [3], the opti-
mal levels are calculated analytically. Ristretto [4] is an it-
erative algorithm that converts a floating-point to a dynamic
fixed-point CNN. Here, the statistical amplitude distributions
of weights and activations are analyzed and then the required
bit length is determined. Another approach is the so-called
deep compression [5, 6], where the weights are divided into
k clusters, which reduce the memory requirements to log2(k)
bits per weight. Huffman coding can reduce the memory fur-
ther.

In the second group, regularization terms are used during
training to minimize the quantization error in the test phase.
The quantization effects have to be taken into account while
training the CNN in order to avoid a large loss during the test
phase. In [7], a quantization scheme for MobileNets [8] is
presented, where both quantization noise of the weights and
too large activations are punished by a regularization term.

The methods of the last group use scaling factors during
training to find an optimal value range for the parameters. In
[9], dynamic fixed-point arithmetic is presented. Here, the bit
length is given and a scaling factor st is fit adaptively deter-
mining the radix point for each layer. Therefore, two overflow
rates are calculated, which represent the amount of related pa-
rameters which exceed the limits of the present quantization
range and its half. Other algorithms use a greedy approach
to find the optimal radix point [10]. In [11], an integer-only
framework is proposed. In contrast to methods mentioned
above, here the activations are also quantized. During train-
ing, 8-bit integers are mapped to real numbers in order to
transform the matrix multiplications into integer multiplica-
tions. Therefore, additional scaling is necessary, since the
weights are limited to [−127, 127].

1.2. Contributions

Our approach is based on scaling factors like the methods of
the third group. Not only do we consider the quantization of
the activations required for an FPGA-based implementation,



but we also propose a scheme that avoids additional opera-
tions due to scaling (such as mapping). In the convolutional
layers, we take advantage of the separability of the individual
kernels by using a scaling factor per kernel to achieve a better
mapping to the available value range.

2. BASIC CONSIDERATIONS

In this chapter we present the major aspects of CNNs for our
approach, namely properties of the ReLU function with re-
spect to scaling and quantization issues.

2.1. Scaling Parameters

Each neuron in a CNN uses a non-linearity σ(·), a weight
vector ~h and a bias b to process an output y from its input
vector ~x:

y = σ(~h · ~x+ b). (1)

Using the ReLU function as non-linearity σ(·), it can be
shown that

s · y = s · σ(~h · ~x+ b) = σ(s · ~h · ~x+ s · b), (2)

where s ≥ 0 is a scaling factor corresponding to the neuron y.
This applies because for ~h · ~x+ b > 0 the right side of eq. (1)
is linear and else zero. Since a convolution can be written as
matrix-vector-multiplaction, eq. (1) and eq. (2) are in princi-
ple also valid for convolutional layers. However, since several
neurons share a weight vector during convolution, it is useful
to apply one scaling factor per filter kernel in convolutional
layers. From eq. (2) we get the 2-D activation map ~Y from
the filter kernel ~h, bias b and the input tensor ~X by:

s · ~Y = σ((s · ~h) ∗∗ ~X + s · b). (3)

2.2. Quantization Issues

We have to consider both the limited value range and the gran-
ularity in order to minimize the losses caused by quantiza-
tion. Outliers are problematic when quantizing in fixed-point
arithmetic. This applies because a high ratio of maximum
absolute amplitude to mean amplitude leads to a higher quan-
tization error, since the maximum amplitude determines the
value range implicitly. Another problem according to [7] is
batch normalization, which is responsible for a high loss of
accuracy after quantization.

For the further procedure we define the distance between
two quantization steps ∆ := 2−LF and the Amplitude A :=
2LI , where LF is the floating point bit length and LI the inte-
ger bit length granted for the representation of the respective
value. In this way we can represent signed values between
−A

2 and A
2 −∆. Unsigned values – these are the activations

after a ReLU – are representable between 0 and A−∆.

3. PROPOSED METHOD

In contrast to other methods, we aim not to determine the
value range of quantization in retrospect or adaptively. Our
idea is to define the value range a-priori and to learn the
weights in such a way that weights and activations lay within
the given value range. Thus, the goal is to train the CNN
in such a way that no unexpected losses occur due to quan-
tization. Therefore, we modify the layers of the CNN by
introducing scaling factors, using a new variant of ReLU and
abandoning batch normalization.

3.1. Adapting Convolutional Layers

According to section 2.1, we extend the convolutional layer
by a scaling factor si > 0 for each filter kernel ~hi. These fac-
tors are determined during training by moving average. The
task of the scaling factors is to limit both the activation and
the weights. With the designations from eq. (3) we get the
three conditions

Ymax := max{σ((si · ~hi) ∗ ∗ ~X + si · bi)}
!
≤ Ay −∆y (4)

hmax := max{|si · ~hi|}
!
≤ Aw

2
−∆w (5)

bmax := |si · bi|
!
≤ Aw

2
−∆w, (6)

where we determineAw,Ay , ∆w and ∆y from the bit lenghts
LI,w, LF,w, LI,y and LF,y as defined in section 2.2. The scal-
ing factor is determined by moving average according to

si ← m · si + (1−m) · zi with (7)

zi = min

{
α ·MA

Ymax + ε
;

α ·Mw

max{hmax; bmax}+ ε

}
,

where m is the momentum, α is a buffer and ε is a summand
for numerical stability. The amplitude of si is limited and ini-
tialized to smax. To prevent the problem of outliers mentioned
in 2.2 we use a L2 regularizer.

At the end of the training phase, the scaling factors are
multiplied to their corresponding kernels and biases as in
eq. (3). The results are the weights to be quantized and used
in the inference.

3.2. Adapting FC Layers

In order to comply with the specified range of weights
[−Aw

2 + ∆w,
Aw

2 − ∆w], we limit the maximum amplitude
of weights and biases by a constraint for FC layers.

To limit the activation, we use the activation function from
fig. 1. During the training phase, we use soft clipping to pre-
vent the gradient from vanishing. The ReLU becomes

σ(x) = 0.1x+ 0.9 · (Ay −∆y) (8)
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Fig. 1: ReLUs used in 1st FC layer: A hard clipping (or-
ange) must be performed for the inference due to the limited
bit length. Therefore a modified ReLU (blue) is used in the
training instead of the original ReLU (black).

for x > (Ay −∆y). We set σ(x) = 0 for x < ∆
2 to prevent

too small activations. In the inference phase, we use hard
clipping.

The output of the last FC layer is signed. Within the test
phase the output is thus clipped at −Ay

2 + ∆y and Ay

2 −∆y

and the classification is done by argmax.
In the training phase, however, we need a softmax acti-

vation in order to calculate the crossentropy. For the same
reason we use our modified ReLU, during training we thus
apply between the last FC layer and softmax the function

ρ(x) =


0.1x+ 0.9 · (Ay

2 −∆y) for x ≥ +
Ay

2 −∆y

0.1x− 0.9 · (Ay

2 −∆y) for x ≤ −Ay

2 + ∆y

x else
.

(9)

4. EXPERIMENTAL SETUP

In this section the four data sets we use, the baseline model
and the training process are described.

4.1. Data Sets

The CIFAR-10 data set [12] consists of 60,000 RGB images
of size 32 × 32 and represents an object classification task
with 10 classes. The data set is split up in 50,000 images for
training and 10,000 images for testing the classifier.

The second data set is the Street View House Numbers
(SVHN) data set [13], which contains RGB images of real
world digits. The size of the images is 32 × 32 and the data
set is divided into 73,257 training and 26,032 test images.

The Fashion-MNIST data set [14] also represents an ob-
ject classification task in which 70,000 fashion articles have to
be distinguished between 10 different classes. The monochro-
matic images are upscaled to 32 × 32 pixels. The data set is
composed of 60,000 training and 10,000 test images. We also

CONV* 32

CONV* 64

CONV 128

CONV* 128

CONV 256

GAP

FC 64

FC 10

Fig. 2: The baseline model consists of five convolutional lay-
ers with 32, 64, 128 and 256 kernels. The layers marked with
* are followed by max-pooling. We use a global averaging
pooling layer and two FC layers with 64 and 10 neurons.

choose the MNIST data set [15], which represents a charac-
ter recognition task. Upscaling and partioning of training and
test data sets are chosen as for the Fashion-MNIST data set.

The images of all data sets are given with a pixel value p
between 0 and 255 and are preprocessed by

p′ = 2LF,y−1 · p− 128

128
. (10)

4.2. Baseline Model and Proposed Model

As baseline model we choose the CNN shown in fig. 2 with
five convolutional and two FC layers. We use the normal
ReLU activation function in the convolutional layers and
max-pooling as shown in fig. 2. Both FC layers use dropout
with a probability of 0.5. We use an L2 regularizer with the
parameter λ2 = 10−4.

The baseline model is compared to our modified model,
where we adapt the layers of the baseline model as described
in section 3. We set the integer bit length of the weights to
LI,w = 2 and LF,w to be variable, i. e. we get A = 4 and ∆ =
2−LF,w . For the activations we set LI,y = 3 and LF,y variable
as well. Empirically, we found for eq. (7) the momentumm =
0.98 and the buffer α = 0.94. In order not to learn outliers
of the scaling factors, we limit the maximum factor to 4 and
ignore values zi that are more than three times larger than si.
To make the results comparable, we set the L2 regularization
parameter to λ2 = 10−4 in both models.

4.3. Training Process

We train both the baseline model and the adapted model for
90 epochs on the four data sets mentioned above. We use the
Nadam optimizer [16] with an initial learning rate of 2 · 10−3

and a batch size of 32. We use cyclic annealing according
to [17] with three cycles. The algorithm is implemented in
Keras (Tensorflow) [18].
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Fig. 3: CIFAR-10 test accuracy for different quantization lev-
els in per cent.

After the training, the scaling factors are multiplied to the
corresponding weights in our proposed model. The weights
are then quantized in both models and the test accuracy is
then determined. The activations are also quantized in the
inference. Our results are then compared to the test accuracy
of the baseline model with its 32-bit floating-point arithmetic.

5. RESULTS

The test accuracy on the CIFAR-10 data set for different quan-
tization levels is illustrated in fig. 3. The 32-bit baseline accu-
racy is 79.52 %. First, we find that with our quantized model,
we can become more accurate than the 32-bit model. We as-
sume that scaling has a normalizing effect on the activations
similar to batch normalization. Qualitatively, we also find
that our model has a higher robustness to the quantization of
the activations, but is less robust to a coarse quantization of
the weights. For example, the accuracy of our model at 4-bit
weights is less than 20 %, while it is about 50 % in the base-
line model. It is noticeable that in our model at high weight

32-Bit Q. Baseline Model Proposed Model
CIFAR 79.52 67.96 76.20 82.63 83.58
SVHN 93.46 62.46 88.87 94.35 94.84
MNIST 99.42 93.21 99.29 99.41 99.49
Fashion 92.08 62.41 91.52 92.46 92.93

Table 1: The Table shows the test accuracy of the infer-
ence on the data sets from sec. 4.1. We compared the 32-bit
baseline model to the quantized baseline model and our pro-
posed model. For both quantized models the floating-point
bit lengths are LF,w = 6 and LF,y = 1 (left column) and
LF,w = 6 and LF,y = 5 (right column).

bit lengths there is no significant decrease in accuracy if the
bit length of the activations goes back to four bits. Even at
two bits, an accuracy up to 46.8 % can be achieved. These
observations also apply to the other four data sets.

In the following we will consider an 8-bit quantization for
the weights and a 4-bit or 8-bit quantization for the activa-
tions, since these are most suitable for the implementation.
The test results are shown in table 1. The best result in each
case is in bold. Our model with an 8-bit quantization always
shows the best results. The reduction of the precision of the
activations to 4 bits in the baseline model results in a signif-
icant degradation of the classifier for all four data sets, while
the decrease in our model is marginal. We can also observe
a relatively high loss of 2 − 3 percentage points on the CI-
FAR and SVHN data sets when quantizing from 32-bit float
to 8-bit fixed point. The loss in our model is much lower. The
internal 32-bit inference of our proposed model reaches a test
accuracy of 95.16 % before quantization on the SVHN data
set, which is a loss of only 0.32 percentage points compared
to the 8 bit inference.

The results should make it clear that our model is much
better suited for training a low-bit inference than the generic
approach. Unlike other methods, no additional operations in
the inference are required and we achieve a normalizing effect
by scaling. The results can still be improved by optimizing the
topology, since we only use a seven layer CNN.

6. CONCLUSION

In this paper we presented a quantization approach for CNNs
that reduces the accuracy loss due to quantization signifi-
cantly compared to a baseline model. First we showed how to
adapt the architecture in order to quantize a CNN efficiently.
Therefore, we introduced scaling factors. Then we tested our
method on four benchmark data sets and achieved a higher
accuracy as the baseline model. Since we achieve quanti-
zation by scaling the weights after training, no additional
arithmetic operations are required in the inference. This
means that an implementation on an FPGA, for example, is
more resource-efficient.
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