
Modular Verification of JML Contracts
Using Bounded Model Checking

Master’s Thesis of

Jonas Klamroth

at the Department of Informatics

Institute of Theoretical Informatics

Reviewer: Prof. Dr. Bernhard Beckert

Advisor: Dr. Mattias Ulbrich

Second advisor: Dipl. Inform. Michael Kirsten

3 September 2018 – 3 March 2019

Karlsruher Institut für Technologie

Fakultät für Informatik

Postfach 6980

76128 Karlsruhe

I declare that I have developed and written the enclosed thesis completely by myself, and

have not used sources or means without declaration in the text.

PLACE, DATE

. .

(Jonas Klamroth)

Abstract

In this thesis, we present an approach that allows the veri�cation of Java programs with

regard to JML annotations with a bounded model checker. We therefore translate a

given Java program and its speci�cation into a program using assumptions, assertions

and nondeterministic values. The translation is proven correct for a while language and

formalized for a subset of Java and JML. Additionally, a tool is presented that implements

that approach and we show that the tool is capable of �nding proofs in multiple case

studies.

i

Zusammenfassung

In dieser Masterarbeit stellen wir einen neuen Ansatz zur Veri�kation von mit JML spe-

zi�erten Java-Programmen mittels eines Bounded Model Checkers vor. Hierzu wurde

eine Übersetzung von Java und der dazugehörigen Spezi�kation in ein um Annahmen,

Bestätigungen und nicht deterministische Werte erweitertes Java entwickelt. Wir beweisen,

dass diese Übersetzung für eine while-Sprache korrekt ist und formalisieren sie für eine

Teilmenge von Java und JML. Außerdem zeigen wir anhand mehrer Fallstudien, dass die

prototypische Implementierung dieses Ansatzes in der Lage ist Beweise über Programme

zu führen.

iii

Contents

Abstract i

Zusammenfassung iii

1 Introduction 1

2 Foundations 3
2.1 First Order Dynamic Logic (FODL) . 3

2.2 Program Veri�cation . 5

2.2.1 Deductive Veri�cation (DV) . 5

2.2.2 Bounded Model Checking (BMC) 5

2.3 Java Modeling Language (JML) . 7

2.4 Tools . 8

2.4.1 JBMC . 8

2.4.2 OpenJML . 8

3 Translating Java and JML to JAVA!? 11
3.1 Translating a While-Language . 11

3.2 Translating real Java and JML . 14

3.2.1 Nothing is changing - How to handle loop invariants 16

3.2.2 Translating expressions . 18

3.2.3 Translating Quanti�ers . 19

3.2.4 Framing everybody - or how to handle assignables 22

3.2.5 Ensuring Well-de�nedness . 25

3.2.6 Method Calls - Making it modular 26

3.2.7 Wreaking havoc - or how to anonymize Java objects 27

3.2.8 Object Invariants . 27

4 Implementation 29
4.1 Design Decisions . 29

4.2 Discussion of supported features . 30

4.3 Tool Options . 31

4.4 Testing . 31

5 Evaluation 33
5.1 Bubble Sort . 33

5.2 Big Integer Conversion . 33

5.3 HammingWeight . 34

5.4 Dual-Pivot-Quicksort . 35

v

Contents

5.5 PairInsertionSort . 36

5.6 Multiplication . 36

6 Related Work 39
6.1 Combining Deductive Veri�cation and BMC 39

6.2 KeY . 39

6.3 JML Runtime Checker . 40

7 Conclusion 41

Bibliography 43

A Appendix 47
A.1 Formal Rules . 47

A.2 Case Studies . 53

vi

List of Figures

3.1 Illustration of a heap in Java . 24

5.1 The idea of the to unsigned method (taken from [24]) 34

5.2 Di�erent runtimes of CBMC depending on input size 37

vii

List of Tables

3.1 Rewriting rules for the method body . 17

5.1 Di�erent runtimes of BubbleSort case study 33

A.1 Rule to translate a method contract . 47

A.2 Rule to translate a method that represents the e�ects of its contract . . . 48

A.3 Rule to translate expressions for assume-statements 49

A.4 Rule to translate expressions for assert-statements 50

A.5 Rule to translate the statements of a method body (Part1) 51

A.6 Rule to translate the statements of a method body (Part2) 52

ix

1 Introduction

Since the number of programs grows by the minute, the need for quality assurance in

software development is as important as it has never been before. Due to increasing

complexity and higher safety requirements, purely testing the software is often times

not su�cient. This is where software veri�cation comes into play. Software veri�cation

allows a program to be proven correct for a given speci�cation. The problem here is that

verifying software can be very time consuming. This thesis presents an approach which

combines two di�erent veri�cation techniques, modular veri�cation and bounded model

checking, in order to decrease the user interaction necessary while still allowing complex

properties to be veri�ed.

We formalize and implement a translation of programs speci�ed with the Java Model-

ing Language (JML) into a pure Java-program, only relying on two additional non-java

operations: assumptions and nondeterministic values. Using this translation, we are able

to apply the Java bounded model checker (JBMC) to our translated program and thus

allow the checker to verify JML speci�cations. Enabling a Bounded Model Checker this

way brings along two main advantages: 1) proofs may be split up between deductive

veri�cation tools and Bounded Model Checkers according to their respective strengths 2)

The Bounded Model Checker may be used to provide con�dence in the correctness of a

speci�cation (e.g., an invariant), by proving it for a bounded domain.

The translation we introduce is provided as formal rewrite rules and implemented in

a prototype. With this prototype we conducted several case studies, which show that

the approach is not only working but is advantageous (time and complexity wise) when

conducting certain proofs.

This thesis is split up into six main chapters: First we lay theoretical foundations for the

next chapters. Then we present the theory for our approach. We prove that the general

translation we are introducing is correct and give a set of rules, which is able to translate

a subset of Java and JML. In the third chapter we present our tool and talk about how

we implement the previously presented approach. The fourth chapter discusses the case

studies we did, to provide evidence that the presented approach is advantageous. Before

we end with a conclusion, we present related work and discuss how our approach relates

to existing tools and approaches.

1

2 Foundations

In this chapter introduce some basics which are necessary to then present our approach.

We �rst give a brief overview over syntax and semantics of �rst order dynamic logic

(FODL), then lay the basics of program veri�cation before we give a short introduction

into the Java Modeling Language and eventually present the tools we are using for this

thesis.

2.1 First Order Dynamic Logic (FODL)

In this section we give a brief overview over �rst order dynamic logic (FODL), which

allows us to do reasoning with programs. An understanding of �rst order logic (FOL) is

assumed. The here presented syntax and semantic is taken from [14].

We have a signature Σ = (F , P ,α) where F is a set of function symbols, P is a set

of predicate symbols and α : F ∪ P → N an arity function for those functions and

predicates. Additionally we have a set of variables Var . In the following section we will

use the following notations: var ∈ Var , f ∈ F ,p ∈ P ,proд1,proд2 ∈ Proд, fml1, fml2 ∈
Fml , termx ∈ Term:

De�nition 2.1.1
Term ::= var | f (term1, . . . , termα(f))

Fml ::= true | f alse | p(term1, . . . , termα(p)) | term1 = term2 | ¬fml1 | fml1 ∧ fml2 | fml1 ∨
fml2 | fml1 → fml2 | ∃var .fml1 | ∀var .fml1 | [proд]fml1 | 〈proд〉fml1
Proд ::= proд1 ∪ proд2 | var := term | proд1∗ | proд1;proд2 | var := ∗ | ?f ml

This is the syntactical material for FODL. To de�ne the semantics of these programs we

�rst need to de�ne �rst order structures and Kripke frames.

De�nition 2.1.2 A �rst order structure is a tuple (D, I) where D is the domain (a non emtpy
set of objects) and I is an interpretation: I (f) : Dα(f) → D for a f ∈ F and I (p) ⊆ Dα(p) for a
p ∈ P .

This de�nition introduces a domain (as a set of objects) which are the entities over

which reasoning can be done and an interpretation which de�nes the semantic of each

predicate and function. Notice how the interpretation of a function is a function into

the domain itself whereas the interpretation of the predicates is basically assigning truth

values to the predicates for all possible arguments.

De�nition 2.1.3 A �xed Kripke-Frame (SD,pD) given a �rst order logic domain D is a tuple
consisting of a set of states SD and a function pD : Proд → 2

S×S . Where SD = Var → D is
the set of assignments of elements of the domain to variables.

3

2 Foundations

This can be intuitively seen as a graph where the each node is one possible variable

assignment and each edge is given by all programs which lead from one variable assignment

to another. Thus by knowing the initial variable assignments and a program one can

walk along the according edges of said graph and see in which state (and thus variable

assignment) the programs terminates (if it terminates). With this idea we are now able to

de�ne the semantics of this logic.

The semantic of a term t ∈ Term is the usual �rst order evaluation of t in (D, I). To

allow us to de�ne the semantics of programs we need one more notation:

De�nition 2.1.4 Given s ∈ SD,a ∈ D,x ∈ Var a function update is

s[x/a](y) =

{
a if y = x
s(y) else

Which intuitively states that updating a variable assigning the value a to a variable x in

state s will not change the value of any variable in s except for x which then has the value

a.

With this, the semantic of a program proд ∈ Proд may be de�ned as follows:

De�nition 2.1.5 Given a Kripke-Structure K(SD,pD) the semantics of programs is:
p(x := v) ::= {(s, s1) | s1 = s[x/valD,I ,s(v)]}
p(x := ∗) ::= {(s, s1) | ∃a : s1 = s[x/a]}
p(a;b) ::= {(s, s1) | ∃t ∈ S : (s, t) ∈ p(a) ∧ (t , s1) ∈ p(b)}
p(a ∪ b) ::= p(a) ∪ p(b)
p(a∗) ::= {(s1, sn) | ∃n, s1, . . . , sn : ∀1 ≤ i < n : (si , si+1) ∈ p(a)}
p(?F) ::= {(s, s) | I , s � F }

(Where a,b ∈ Proд, x ∈ Var , v ∈ D and F is a program free FOL-formula.)

To understand this de�nition remember the idea of visualizing a Kripke-Structure as

a graph. Now if we assign a value to a variable, as we said before, no other variable

changes so we transition to the state where each variable has the same value except the

variable we changed which has the value we just assigned. Accordingly if we assign a

nondeterministic value we may transition to any state where each variable has the same

value except the one we just changed. The composition of programs is de�ned as one

would except: Starting in a state s, if there is a state s1 which can be reach be executing

the �rst part of the program and executing the second part of the program in s1 leads to

transitioning into state s2 then the composition of these two program parts transitions

from state s to state s2. The nondeterministic branching allows to provide two programs

where the decision of which one of them is executed is nondeterministic. The *-operator

is basically the extension of self composition to an arbitrary number of times. And the

test operator allows only transitions into states in which the given formula is valid.

The last missing de�nition is the semantic of formulas.

De�nition 2.1.6 Semantics of formulas:
I , s � p(t1, . . . , tα (p)) i� (valI ,s(t1), . . . ,valI ,s(tα(p)) ∈ I (p)
I , s � v = t i� valI ,s(t) = valI ,s(v)
I , s � [π]F i� ∀(s, s1) ∈ p(π) : I , s1 � F
I , s � 〈π 〉F i� ∃(s, s1) ∈ p(π) : I , s1 � F

4

2.2 Program Veri�cation

� is homomorphic for ¬,∧,∨,→,↔,∀x ,∃x

We write I � F for ∀s ∈ S : I , s � F and I , S′ � F for ∀s ∈ S′ : I , s � F where S′ ⊆ S .

With the syntactical base material we de�ned in 2.1.1 we are able to de�ne more complex

operators as known from real life programming languages:

• if ϕ then a else b↔ (?ϕ;a) ∪ (?¬ϕ;b)

• while ϕ do a od↔ (?ϕ;a)∗; ?¬ϕ

The if-then-else construct is represented using the test operator twice (once negated)

and combined nondeterministically all transition of this program are the ones which take

the expected branch (if ϕ is true than the if branch otherwise the else branch). Accordingly

the loop is represented using the * operator and the test operator. The negated test operator

afterwards guarantees as that all the "loop" is not left until ϕ is not true.

Now we call a program a while-program if ∗ and ∪ only occur in if and while statements

and var:= * does not occur in the program. Such programs are always deterministic (if the

program terminates it terminates always in the same state if started in the same).

2.2 Program Verification

Program veri�cation is the act of proving programs correct with respect to a given formal

speci�cation (e.g. JML see 2.3). In this thesis we focus on two di�erent veri�cation

techniques: deductive veri�cation and bounded model checking.

2.2.1 Deductive Verification (DV)

In deductive veri�cation the program and its properties to be proven are translated into

formulas of a logic (e.g. Hoare-Logic). Properties of programs are often times expressed

in Hoare-triples of the form: {P}S{Q} stating that a program S which is executed in a

state that satis�es P is guaranteed to end (if it ends) in a state that satis�es Q. Hoare-Logic

provides a set of rules which enables deduction over triples like this [15].

There are several tools supporting the user in translating a given program and its

speci�cation into a logic and allowing him to apply rules of a calculus, in order to prove the

program correct. Depending on the tool, di�erent logics and calculi may be used[1][5][23].

The main advantage of DV is that due to its nature of operating directly on the logic it

is very expressive which allows the user to prove even complicated properties. On the

other hand this leads to a high degree of needed user interaction since the decision of

which rule of the calculus to apply at each step is hard to automate.

2.2.2 Bounded Model Checking (BMC)

The explanations and de�nitions of this paragraph are taken from [10]. For model checking

the system under investigation is modeled as a Kripke structure. A Kripke structure is a

triple K =< S,R,L > where S is a set of states, L is a labeling function and R ⊂ S × S is a

5

2 Foundations

set of transitions. L assigns each state a set of atomic propositions. Using this notion a

model checker can be de�ned as a decision procedure for K , s � f where K is a Kripke

structure, s is a state and f is a state formula, if a state formula is a boolean combination

of atomic propositions and CTL* formulas (Computation Tree Logic), whose outermost

operator is a path quanti�er.

A Kripke structure can be represented as a directed graph were the nodes correspond

to the states, the edges correspond to the transitions and each node has a set of labels (the

atomic propositions). Adding a set I ⊂ S of initial states, a program run then corresponds

to a (possibly in�nite) sequence of states s0, s1, s2, . . . where (si , si+1) ∈ R for all i and

s0 ∈ I . If a property holds in every state of every possible run its a property of the program

modeled by this graph.

Bounded model checking is the idea of searching for a program run with maximum

length k, that violates a given property. By restricting the maximum length of a run it

becomes possible to encode this problem as a formula in propositional logic. Consider as

an example the property G p given in LTL establishing p as a global invariant. If we de�ne

propositional predicates I (s), which evaluates to true if s ∈ I and R(s1, s2), which evaluates

to true if (s1, s2) ∈ R we can construct the following formula [6]:

∃s0, s1, . . . , sk : I (s0)
k−1∧
i=0

R(si , si+1) ∧ ¬p(sk)

This formula is satis�able if and only if there is a run of length k which violates the

property. With quanti�er elimination and a Tseitin-Transformation this formula can be

transformed into conjunctive normal form which is the standard input format for most

SAT-solvers[6].

For the concrete translation of programs into SAT formulas there are several intermediate

steps. The approach described here is taken from CBMC [11]. At �rst loop constructs are

replaced by equivalent while loops. Then functions are inlined. Recursive functions calls

are inlined n times where n is speci�ed by the user. Loops are now unwound, meaning the

body is copied n times each time guarded by an if statement using the same condition as

the original while loop (n is speci�ed by the user). All remaining goto statements pointing

backwards are unwound in a similar manner. At this point the program only consists of

assignments and possibly branching goto statements which only point forward. At the

end the program is transformed into static single assignment form[2]. Now the translation

into a SAT problem is straight forward: We construct 2 bit-vector equations, one where for

each variable the assignment is encoded and one which encodes the assertion we want to

check. The conjunction of the �rst and the negated second equation gives us the desired

SAT formula.

The described transformation is given for C programs but is also applicable to Java pro-

grams with some additional preprocessing concerning exceptions and polymorphism[13].

Bounded model checking is inherently incomplete since it just searches for errors in

program runs up to the given bound. Errors which occur in runs longer than that do not

get detected and thus programs which allow such runs may not be proven correct with

bounded model checking. This lack of expressiveness is compensated by the fact that

6

2.3 Java Modeling Language (JML)

BMC is naturally highly automated (the translation into SAT is automated and SAT solvers

don’t need any user interaction).

2.3 Java Modeling Language (JML)

The Java Modeling Language (JML) is a speci�cation language for Java programs [21].

It follows the design by contract paradigm [19] and enables the user to specify several

properties of programs such as pre- post and frame-conditions. The speci�cation is written

in Java comments where each line is preceded by an ’@’. This way programs containing

JML speci�cations are always valid Java programs. JML syntax is close to Java syntax

with the addition of quanti�ers (forall and exists) and some special keywords. JML has no

universally accepted semantic but for this work we will use the one given in [7]. A small

example of a JML-speci�ed program is given in Lst. 2.1.

Listing 2.1: An example of a method speci�ed with JML

/ ∗@

@ r e q u i r e s x1 >= 0 && x2 >= 0 ;

@ e n s u r e s \ r e s u l t == x1 ∗ x2 ;

@ a s s i g n a b l e \ no th ing ;

@∗ /

p u b l i c i n t mult (i n t x1 , i n t x2) {

i n t r e s = 0 ;

/ /@ l o o p _ i n v a r i a n t r e s == i ∗ x2 ;

/ /@ d e c r e a s e s x1 − i ;

f o r (i n t i = 0 ; i < x1 ; ++ i) {

r e s += x2 ;

}

r e t u r n r e s ;

}

In this example, a method which multiplies two integers is speci�ed. The precondition is

that both integers are positive since otherwise the calculation as it is done would not work.

The postcondition is straight forward that the returned value equals the product of the two

input parameters. Notice the special JML-keyword \result which allows us to refer to the

returned value of a method. Additionally an assignable clause is speci�ed which allows us

to limit the �elds and variables to which this method may assign new values. In our case

the method itself should not write to any �elds or parameters. To specify this we add the

assignable clause with another JML-keyword \nothinд which describes what is expected:

stating that no variables or �eld other than local ones may be written to. In the method

body itself a loop invariant is used to specify the behavior of the loop. In this case the

invariant is pretty simple: A each loop execution the currently computed result is equal to

the value of the loop variable times the second parameter. Since the loop iterates up to

the �rst parameter and adds the second parameter to the result each time it is executed

this should lead straight to the expected postcondition. In addition to the loop invariant

decreases clause is given which is an expression evaluating to an integer. This integer is

7

2 Foundations

proven to be always greater or equal to zero and getting lesser each loop iteration. Thus it

can be proven, that the loop terminates.

2.4 Tools

We will make extensive use of the tools JBMC and openJML for this thesis. In this section

we are going to present these tools and give a brief introduction on how they operate.

2.4.1 JBMC

JBMC is a Bounded Model Checker (BMC) for Java[13]. It is developed parallel to CBMC

which is a BMC for C. JBMC takes a compiled Java �le (.class �le) as input and is able

to prove several properties of programs (e.g. absence of Null-Pointers or index out of

bounds exceptions). Additionally JBMC provides two functions which extend normal

Java: Assumptions and Nondeterministic values. Both are implemented as static methods,

which are provided by a class (CProver.java), which has to be imported if these functions

are used in a program. In order to understand why these two functionalities are essential

for proofs with a BMC, remember how BMC work (see 2.2.2). We see programs as all

possible state sequences that may occur when executing a certain source code. In Java

normally variables may not be used, as long as they are not initialized. Initializing them

leads to them having a certain value. Nondeterministic values allow the programmer to

assign an non speci�c value to a variable and thus, if verifying a program with a BMC

to consider all possible values for a certain variable. Accordingly an assume statement

(which takes a boolean expression as argument) allows the programmer to restrict the

considered states/traces at a certain point in the code.

Consider the code snippet given in 2.2:

Listing 2.2: An example demonstrating the use of JBMC speci�c operations

1 int x = CProver.nondetInt();
2 CProver.assume(x > 0);
3 assert(x >= 0);

Lets for a moment imagine that the type int had only 2 bits and the possible values

would be -1 to 2. So since we have only 1 variable in this miniature example and this

variable may take 4 di�erent values our state space consists of only 4 states. After the �rst

line of code we could be in every single one of them since we assigned a nondeterministic

value. However the assume statement limits the possible states to two of them, namely the

states where x = 1 and x = 2. Now at the assert statement we check whether the condition

of the assert is true in all states that we may be in. In our example this is obviously true.

2.4.2 OpenJML

OpenJML is a commandline-tool which is built on OpenJDK [12]. It provides a parser and

typechecker for JML-speci�cations which can be used to get an abstract syntax tree (AST)

from a given Java �le. Additionally OpenJML supports several modes which allow you to:

8

2.4 Tools

generate counter examples for violated speci�cations, verify speci�cations via SMT-solvers,

generate relevant test cases for a program using its speci�cation, create runtime checks

for a given speci�cation and create documentation taking JML-speci�cations into account.

An Eclipse Plug-In exists as a front-end which can graphically present the results openJML

obtained. For example showing counterexamples in the source code where the paths that

were taken are marked and the variable assignments at the time of the error are displayed.

For this thesis the most interesting part of OpenJML is the API it provides to parse JML

annotated Java code into an AST and manipulate it. OpenJML therefore extends visitors

and utils classes provided by the JDK to support not only Java but JML as well. In our

implementation we use OpenJML to parse the input �les and manipulate the AST.

9

3 Translating Java and JML to JAVA!?

In this chapter we an approach how to translate a JML annotated method into a method

with no speci�cation but added assume and assert statements, so that an assertion is

violated if and only if the original program violates its speci�cation.

De�nition 3.0.1 We will call Java with assumptions and nondeterministic values JAVA!?.

In the �rst section we introduce our basic idea and prove it to be correct for a simple

while language. Than we extend the ideas to �t a real world programming language and

re�ne it over the following sections.

3.1 Translating a While-Language

In this section we want to present a very general approach on how pre- and post-conditions

of a while-program may be translated into a program using assertions and assumptions

(which we will de�ne soon) and prove that this translation is correct.

For this section we use �rst order dynamic logic (as presented in 2.1) as our foundation

of argumentation. As a �rst step we extend the usual FODL-syntax to include two new

operations: assume and assert.

De�nition 3.1.1
Term ::= var | f (term1, . . . , termα(f))

Fml ::= true | f alse | p(term1, . . . , termα(p)) | term1 = term2 | ¬fml1 | fml1 ∧ fml2 | fml1 ∨
fml2 | fml1 → fml2 | ∃var .fml1 | ∀var .fml1 | [proд]fml1 | 〈proд〉sfml1
Proд ::= proд1 ∪ proд2 | var := term | proд1∗ | proд1;proд2 | var := ∗ | ?f ml | !f ml

As you can see, in addition to the standard FODL programs we added only one new

possible syntactic element: !f ml . This is because we can use the test operation as an

assume. So the new syntax element ! is meant to be an assert operation. The semantic of

these programs now has to be adapted to suite this new operation:

De�nition 3.1.2 Given a Kripke-Structure K(SDϵ ,pD) which in addition to the normal
states (implicitly given through D and Var) contains one special error state ϵ the semantics of
programs is as follows:

11

3 Translating Java and JML to JAVA!?

p(x := v) ::= {(s, s1) | s , ϵ ∧ s1 = s[x/valD,I ,s(v)]} ∪ {(ϵ, ϵ)}
p(x := ∗) ::= {(s, s1) | s , ϵ ∧ ∃a ∈ D : s1 = s[x/a]} ∪ {(ϵ, ϵ)}
p(a;b) ::= {(s, s1) | ∃t ∈ S : (s, t) ∈ p(a) ∧ (t , s1) ∈ p(b)}
p(a ∪ b) ::= p(a) ∪ p(b)
p(a∗) ::= {(s1, sn) | ∃n, s1, . . . , sn : ∀1 ≤ i < n : (si , si+1) ∈ p(a)}
p(?F) ::= {(s, s) | s , ϵ ∧ I , s � F } ∪ {(ϵ, ϵ)}
p(!F) ::= {(s, ϵ) | s , ϵ ∧ I , s � ¬F } ∪ {(s, s) | s , ϵ ∧ I , s � F } ∪ (ϵ, ϵ)

(Where a,b ∈ Proд and F is a program free FOL-formula.)

Notice how this de�nition of the semantic of assume (as the ?-operation) is slightly

di�erent from the semantic we normally see in programs like JBMC. In our de�nition an

assume(false) would lead to the program having no possible states after that statement

(unless we were in the error state before that). Normally a program with an assume(false)

keeps running just that all assertions succeed afterwards. For us however this de�nition

is useful as we are only interested whether all asserts hold or not (as you will see in the

coming paragraphs).

De�nition 3.1.3 We call the language with the presented syntax and sematic while!?-
language (as it is a normal while language with assertions and assumptions).

So now assume we have a program P where P ∈ Proд with precondition ϕ and postcon-

dition γ . We want to show that if P is executed in a state which satis�es ϕ than after the

execution of P γ holds. Expressed in the dynamic logic we just de�ned we want to show

that ϕ → [P]γ holds. In order to allow bounded model checkers like JBMC to verify such

a formula we have to translate it in a manner that only a program remains (into while!?).

So our proposed top level translation is (we write A⇒ B for A is translated to B):

ϕ → [P]γ ⇒?ϕ; P ; !γ

Our claim is that proving I � ϕ → [P]γ is equivalent to showing that ?ϕ; P ; !γ can not

terminate in ϵ . More formally:

Theorem 3.1.1 (I � ϕ → [P]γ) ↔ (¬∃(s, s1) ∈ p(?ϕ; P ; !γ) : s1 = ϵ)
In order to prove this theorem we introduce the following notation: We write S f irst for

the set {s | (s, s1) ∈ S} (Ssecond) accordingly).

Proof: First consider the set of statesT ⊆ S in which ϕ ↔ f alse . If that is the case, then

I ,T � ϕ → [P]γ ↔ I ,T � f alse → [P]γ which is valid and from the de�nition of p we

also know that p(?ϕ; P ; !γ) ↔ {s, s1 | ∃t : (s, t) ∈ p(?ϕ) ∧ (t , s1) ∈ p(P ; !γ)} but we know

that p(?ϕ)f irst ∩T = ∅ since ∀s ∈ T : I , s � ϕ ↔ f alse and ¬∃s ∈ S : I , s � f alse so we

know that p(?ϕ; P ; !γ)f irst ∩T = ∅ and thus ¬∃(s, s1) ∈ p(?ϕ; P ; !γ) : s1 = ϵ is valid as well.

So now consider the opposite and say S′ ⊆ S is the set of states in which ϕ ↔ true .

Now I � ϕ → [P]γ ↔ I , S′ � [P]γ and similarly S′ = {s1 | ∃s ∈ S : (s, s1) ∈ p(?ϕ)}.
We now introduce a second set S′′ ⊆ S′ de�ned as S′′ := {s1 | ∃s ∈ S′ : (s, s1) ∈ p(P)}
and thus we know that S′′ = p(?ϕ; P) and I , S′ � [P]γ ↔ I , S′′ � γ . From the de�nition

of the !-operator now follows directly that I , S′′ � γ ↔ ¬∃(s, s1) ∈ p(?ϕ; P ; !γ) : s1 = ϵ .

So now we know that (I ,T � ϕ → [P]γ) ↔ (¬∃(s, s1) ∈ p(?ϕ; P ; !γ) : s1 = ϵ) and

(I , S′ � ϕ → [P]γ) ↔ (¬∃(s, s1) ∈ p(?ϕ; P ; !γ) : s1 = ϵ). And since T ∪ S′ = S we know:

(I � ϕ → [P]γ) ↔ (¬∃(s, s1) ∈ p(?ϕ; P ; !γ) : s1 = ϵ) q.e.d.

12

3.1 Translating a While-Language

Quantified expressions Now only one problem remains: In the logic we presented above:

by using one of the following operators ! or ?, formulas may be introduced into the

program and formulas may contain quanti�ers. These quanti�ers are not part of the

program syntax and thus we have to �nd a way to translate them as well. We propose the

following translations:

1. !(∀x : ϕ) ⇒ x := ∗; !ϕ

2. ?(∃x : ϕ) ⇒ x := ∗; ?ϕ

3. ?(∀x : j ≤ x ≤ k → ϕ) ⇒
b := true;
x := j;
while(x ≤ k) do
b := b ∧ ϕ;
x := x + 1
od ;
?ϕ(b)

4. !(∃x : j ≤ x ≤ k → ϕ) ⇒
b := true;
x := j;
while(x ≤ k) do
b := b ∨ ϕ;
x := x + 1
od ;
!ϕ(b)

Now we will prove that these translations maintain our claim made in Theorem 3.1.1.

For the �rst translation it su�ces to show that if in the �rst program the error state may

be reached, it may as well be reached in the second one.

ϵ ∈ p(!(∀x : ϕ))second ↔

ϵ ∈ ({(s, ϵ) | I , s � ¬(∀x : ϕ)} ∪ {(s, s) | I , s � (∀x : ϕ)})second ↔

ϵ ∈ ({(s, ϵ) | ∃x : I , s � ¬ϕ} ∪ {(s, s) | ∀x : I , s � ϕ})second ↔

ϵ ∈ {(s, s1)| ∃t ∈ S : (s, t) ∈ ({(v,w) | v , ϵ ∧ ∃a : w = v[x/a]} ∪ {(ϵ, ϵ)}) ∧ (t , s1) ∈
({(j, ϵ) | I , j � ¬ϕ} ∪ {(j,k) | I , j � ϕ})}second ↔

ϵ ∈ {(s, s1)| ∃t ∈ S : (s, t) ∈ ({(v,w) | v , ϵ ∧ ∃a : w = v[x/a]} ∪ {(ϵ, ϵ)}) ∧ (t , s1) ∈
({(j, ϵ) | I , j � ¬ϕ} ∪ {(j,k) | I , j � ϕ})}second ↔

ϵ ∈ p(x := ∗; !ϕ)second

Now to the translation of an assumed existential quanti�er. This proof is parallel to the

previous:

13

3 Translating Java and JML to JAVA!?

ϵ ∈ p(?∃x : ϕ)second ↔

ϵ ∈ ({(s, s)| I , s � ∃x : ϕ} ∪ {(ϵ, ϵ)})second ↔

ϵ ∈ {(s, s)| ∃x : I , s � ϕ}second ↔

ϵ ∈ {(s, s1)| ∃t ∈ S : (s, t) ∈ ({(v,w) | v , ϵ ∧ ∃a : w = v[x/a]} ∪ {(ϵ, ϵ)}) ∧ (t , s1) ∈
{(j, j)| I , j � ϕ} ∪ {(ϵ, ϵ)}}second ↔

ϵ ∈ p(x := ∗; ?ϕ)second

For the two last translations �rst notice that we only translate quanti�ers which a)

quantify over integers and b) are bounded (explicitly given upper and lower bound for x).

This is important for our translation to work. Now we want to provide proves for these

two rules in a little less formal way. First we prove the following lemma:

Lemma 3.1.1
[b := true;
x := j;
while(x ≤ k) do
b := b ∧ ϕ;
x := x + 1
od ;]
b ↔ ∀x : j ≤ x ≤ k → ϕ
is valid.
(if b is fresh variable and does not occur in ϕ, j and k)

First we notice that if j > k then the loop will never get executed and since b is initially

set to true it still will be at the end of the program which is expected. So now we assume

j ≤ k . In this case the loop will be executed at least once. In each iteration of the loop

b will stay true only if ϕ ↔ true . If at one iteration ϕ ↔ f alse than b will become and

stay equivalent to false. So b will be equivalent to false if and only if there is at least one

x for which ϕ ↔ f alse . Since x takes every value from j to k (its initialized with j and

incremented until its greater than k) if there was any value between j and k that did lead

to ϕ ↔ f alse it would be found and thus if b ↔ ∀x : j ≤ x ≤ k → ϕ
So with lemma 3.1.1 the correctness of the third translation rule follows instantly. A

proof for the last translation rule can be done correspondingly to the one just done for the

third rule.

3.2 Translating real Java and JML

We now present our translation from Java annotated with JML contracts to JAVA!? (see

3.0.1).

The main idea of the translation is to have rewriting rules which are applied recursively

in a top down manner meaning the program gets broken down into smaller and smaller

14

3.2 Translating real Java and JML

parts, which are then translated independently from each other. The translation for now

is given for methods but could easily be extended to classes.

Our rewriting rules are given as a table where the �rst column is the original program

and the second one the transformed version of it. To keep the translation tables as compact

as possible the method is expected to be compiling Java code and have a normalized

speci�cation (as described in [1]), which essentially means that there is exactly one

ensures-clause, one requires clause, one assignable-clause and one signals clause (although

we leave out the signals clause since we do not support the translation of that).

Before we dive into the rules themselves, hare are some basic formatting decisions to

make the rules more readable.

• Java-code is written in typewriter-font

• other rewriting rules which are used as subrules are written in italic

• the syntax [transformation()] is used to signal that the result of "transformation" is

inserted at this position

So now we can look at the rule for the transformation of a method:

m methodT(m)

/ ∗@ r e q u i r e s R ;

@ e n s u r e s E ;

@ a s s i g n a b l e A ;

@∗ /

M RT method (P) throws T {

B

}

M RT method (P) throws T {

[assumeT (R)c]
assume ([assumeT (R)v])
[saveOld(E,B)]
RT r e s u l t V a r =

[de f aultValue(RT)] ;
t r y {

[bodyT (B, P ,A)]
} c a t c h (ReturnExc e) { }

[assertT (E)c]
a s s e r t ([assertT (E)v])
r e t u r n r e s u l t V a r ;

}

As you can see, on the left side the untransformed method has a speci�cation containing

the mentioned clauses but is otherwise a fully generic Java method. Modi�ers (M), return

type (RT) and throwable (T) are not changed in the translation as they do not a�ect the

speci�cation. Furthermore the translated method is using other translations for its body,

its requires and its ensures clause. The basic idea is to assume the requires-clause then

execute the body (with some transformations) and assert the ensures-clause (same as in

the previous section for while!?). Beyond this base idea there are a few little details that

we want to take a closer look at.

First o� is the saveOld(E, S,B) line. This is due to the fact that JML allows referencing

the value of variables before executing the method with the \old keyword. So to be able

to use this keyword in our translation we save all values of the variables that appear as

15

3 Translating Java and JML to JAVA!?

argument in a \old-call to new variables, which we then can use instead of the function

call.

One line below that you can see a variable with the same type as the return type

(RT) being declared and initialized. This is necessary since the body may contain return

statements which would lead to skipping the part where the postcondition is asserted. So

in order to avoid this, instead of returning a value we save it to the variable that we just

declared. To have a compilable Java program this variable has to have a value when its

�rst used. Thats why we de�ned a default value for each return type and this value is

assigned to our return variable. For the same reason the transformed body is enclosed by

a try-catch-statement which basically "�lters" the ReturnException since this exception

should not be thrown outside this method.

Translation of the method body As mentioned before, the body has to be translated as

well. This translation is described by the rewriting rules given in table 3.1.

This transformation not only returns one value but two. The �rst column is the trans-

formed code as we have seen it before for the �rst rule (therefore the index c). The second

column represents the value of the transformed code (thus index v). As you can see, for

some rules this value column is empty. This is because we handle two di�erent kinds

of code fragments here: statements and expressions. While expressions have values,

statements do not. This di�erentiation between the transformed code and the value of

the transformed code is necessary because of rules like the if-rule. As you can see the

condition is basically copied in the transformation. But the transformed code potentially

adds statements before the if-statement itself. This added code for example may contain

assertions that are necessary due to the condition having side e�ects. So at this point we

need the expression itself (as condition for the if) and the code that was added because of

this expression. Hence the two columns.

One simple but essential rule is the last one which handles blocks. This rule allows us to

transform blocks (which in Java are a single statement), by transforming each statement

of the block body separately. The try-catch-rule and the return-rule are needed because of

the problem mentioned in the last paragraph, being that return would alter the control

�ow to skip over the assertions we want to make at the end of the method. So as described

above, we replace each return statement by assigning the return-value to a previously

created variable and throwing an exception (which we then can catch and progress with

the assertion of the postconditions). To prevent this exception from being caught anywhere

else but by our intended catch, we replace each try catch statement inside the method

body with a similar try catch statement which basically forwards each ReturnException

and thus prevents it from being caught to early. For the sake of oversight we left out some

rules at this point. For a list of the complete rule set refer to A.1.

3.2.1 Nothing is changing - How to handle loop invariants

One rule we want to speci�cally touch on is the loop-rule. Bounded model checking

inherently has issues with loops since more often than not loops have no upper bound

on how many times they may be executed. So the standard approach of BMC to unroll

the loop, does not work in this situation. A possible solution to this problem is using loop

16

3.2 Translating real Java and JML

b bodyT (b)c bodyT (b)v

r e t u r n expr ;

[bodyT (expr)c]
r e s u l t V a r = [bodyT (expr)v] ;
throw new ReturnExc () ;

l e x p r ◦ r e x p r

(◦ < {=,+ =,− =
, ∗ =, /=})

[assumeT (lexpr ◦

rexpr)v]

expr ;

[bodyT (expr)c]
[bodyT (expr)v] ;

t r y s tmt

c a t c h (ET e)

c s t m t

t r y {

[bodyT (stmt)c]
} c a t c h (ReturnExc e) {

throw e ;

} c a t c h (ET e) {

[bodyT (cstmt)c]
}

i f (c) thenStmt

e l s e o t h e r S t m t

[bodyT (c)c]
i f ([bodyT (c)v]) {

[bodyT (thenStmt)c]
} e l s e {

[bodyT (otherStmt)c]
}

{

s tmt1 ;

s tmt2 ;

s tmt3 ;

. . .

}

{

[bodyT (stmt1)c]
[bodyT (stmt2)c]
[bodyT (stmt3)c]
. . .

}

Table 3.1: Rewriting rules for the method body

17

3 Translating Java and JML to JAVA!?

invariants, as normal in tools for deductive veri�cation (e.g. KeY [4]). As we discussed

previously (2.1) a loop in dynamic logic has the following form: (?ϕ;a)∗; ?¬ϕ. Now if

we want to show that a post condition of that loop ∆ holds ([(?ϕ;a)∗; ?¬ϕ]∆) it su�ces

to show that for an arbitrary formula I : I ∧ (I ∧ ϕ → [a]I) ∧ (I ∧ ¬ϕ → ∆). So a loop

invariant is a formula that has to hold before and after each loop-iteration. Showing that

such an invariant holds before entering the loop and that if the invariant holds before

a loop iteration, it will hold afterwards as well, allows us to prove programs containing

loops independently of how many times they are executed. This is basically an induction

over the loop iterations.

So for our rule we assert the invariant, then we havoc (see 3.2.7) the assignables of

the loop, assume the invariant, execute the loop-body and assert the invariant again.

Additionally in our case we want to provide a possibility to prove termination of the loop.

In JML this is done with a decreases-clause. This clause states, that the given expression

decreases in each loop iteration and is always greater 0. This way the loop is guaranteed

to terminate at some point. Last but not least we add one more statement at the end of the

loop body: assume(false). This is necessary because we chose the a random loop iteration

but all assertions after the loop only have to hold if the loop was fully executed. So as long

as the loop body is executed, we assume(false) which prevents any assertions after that

point from failing.

b bodyT (b)c bodyT (b)v

/ ∗@ l o o p _ i n v a r i a n t I ;

@ l o o p _ m o d i f i e s A ;

@ d e c r e a s e s D ;

@∗ /

f o r (Type v = i ; c ; i n c) {

body

}

Type v = i ;

i n t oldD = D ;

[assertT (I)c]
a s s e r t ([assertT (I)v]) ;

havoc (v , A) ;

[assumeT (I)c]
a s s e r t ([assumeT (I)v]) ;

i f (c) {

[bodyT (body)c]
i n c ;

[assertT (I)c]
a s s e r t ([assertT (I)v]) ;

a s s e r t (D > 0

&& D < oldD) ;

assume (f a l s e) ;

}

3.2.2 Translating expressions

As mentioned before we use two di�erent translation rules for assume and assert statements.

This is mainly due to di�erent handling of quanti�ers (for detailed explanation see 3.2.3).

In this translation we again use two di�erent columns where the �rst one is a list of

added statements inserted before the expression may be evaluated and the second one

is the translated expression itself. So for example consider the following translation of a

18

3.2 Translating real Java and JML

implies-expression:

a assumeT (a)c assumeT (a)v

expr1 <==> expr2

[assumeT (expr1)c]
[assumeT (expr2)c]

[assumeT (expr1)v] ==
[assumeT (expr2)v]

As you can see the rule is used recursively for each subexpression to created the

necessary code for it and then transforms the equivalence-expression into an equivalent

equals-expression. So this rule does not add any code itself but only passes on the code of

its subexpressions. We wont discuss any further translation rules for expressions but you

can �nd a complete table with all of them at A.1.

3.2.3 Translating Quantifiers

Quanti�ers are an essential part of JML. There are two di�erent types of JML-quanti�ers:

universal-quanti�ers and existential-quanti�ers. Quanti�ers may be unbound (e.g. \forall

int i; i ≤ i + 1;) and may quantify over objects (e.g. \forall Object o; list.contains(o); o ==

null). However in this work we only support quanti�ers over a range of integers (with an

explicitly given lower and upper bound). So in short we allow only quanti�ed expressions

of the form:

\forall/exists int i; i ≥ n && i ≤ j; ϕ(i);
Other conditions to the variable bound by the quanti�er may be included in the last

part of the quanti�ed-expression (for condition cond: \forall/exists int i; i ≥ n && i ≤ j;

cond(i)→ ϕ(i);)
For the following chapter we call the variable bound by a quanti�er the quanti�er

variable, the condition to the quanti�er variable the quanti�er condition and the expression

which is quanti�ed over the inner expression of a quanti�er. (In the example above i is the

quanti�er variable, “i ≥ n && i ≤ j” the quanti�er condition and “cond(i)→ ϕ(i)” is the

inner expression). A quanti�er whose quanti�er condition evaluates to false is called an

empty quanti�er.

In JBMC, due to the nature of the tool, assert statements are implicitly all quanti�ed

and assume statements are implicitly exists quanti�ed (3.1). So the JML-expression (\forall

int i; i >= 0 && i < 10; i >= 0;) could be asserted using the following translation:

Listing 3.1: Translation of an assertion of a forall quanti�er

1 int i = nondetInt();
2 assert(!(i >= 0 && i < 10; i >= 0) || i >= 0);

Notice how the quanti�er variable is translated as a nondeterministic integer, which is

not bounded at all. The inner expression however is only asserted for the given range (if i

is not in range the asserted expression is trivially true due to the �rst part of the or). An

important detail is the order of the quanti�er condition and the inner expression in this

case since the inner expression should only be evaluated for values of i which are valid

according to the condition. For a detailed discussion of this issue see 4.1. Similarly the

following expression (\exists int i; i >= 0 && i < 10; i >= 0;) may be assumed as follows:

19

3 Translating Java and JML to JAVA!?

Listing 3.2: Translation of an assumption of an existantial quanti�er

1 int i = nondetInt();
2 CProver.assume(i < 10 && i >= 0);
3 CProver.assume(i >= 0);

Note how the translations di�er in the second line. In contrast to the assume in the

second translation, we use the negated quanti�er condition as an additional asserted

expression in the �rst one. The more intuitive way is the second translation, where the

restrictions to the quanti�ed variable are assumed. This has the advantage that no value

that the quanti�er excluded is used in the translation and it limits the paths JBMC has to

check, such that we can expect that JBMC runs faster. However in the �rst translation

this would lead to wrong results when translating empty quanti�ers. An empty universal

quanti�er evaluates always to true, but its quanti�er condition evaluates to false. So

assuming the quanti�er condition in this case would cut all remaining execution paths

and thus result in JBMC not �nding any errors after that line. In the second translation

this e�ect is intended. Since an empty existantial quanti�er should evaluate to false and

we want to assume this expression, the result of assuming false is the expected behavior.

More problematic are the quanti�ers which can not be translated using the implicit

semantics of the used statement (assume and forall, assert and exists; we call these quanti-

�ers “demonic quanti�ers”). In this case we decided to use an explicit loop to translate the

given quanti�er. Using this idea the JML-expression (\exists int i; i >= 0 && i < 10; i >=
0;) may be asserted as follows:

Listing 3.3: Translation of an assertion of an existanial quanti�er

1 boolean b = false;
2 for(int i = 0; i < 10; ++i) {
3 b = b || i >= i;
4 }
5 assert b;

and accordingly (\forall int i; i >= 0 && i < 10; i >= 0;) may be assumed with:

Listing 3.4: Translation of an assumption of a forall quanti�er

1 boolean b = true;
2 for(int i = 0; i < 10; ++i) {
3 b = b && i >= i;
4 }
5 assume b;

So the formal translation rule would look like this:

20

3.2 Translating real Java and JML

a assumeT (a)c assumeT (a)v

(\ e x i s t s i n t i ;

i >= min && i <= max ;

expr)

i n t i = n o n d e t I n t () ;

CProver . assume (i <= max

&& i >= min) ;

[assumeT (expr)c]

expr

(\ f o r a l l i n t i ;

i >= min && i <= max ;

expr)

f r e s h B o o l (t rue , b) ;

f o r (i n t i = min ; i <= max ;

++ i) {

[assumeT (expr)c]
b = b && [assumeT (expr)v]

}

b

Notice how these rules introduce new code as discussed in the previous section. For

example the boolean variable b (forall-translation) can not be evaluated (or at least is not

equivalent to the translated expression) if the new code is not executed before.

These translations are exactly the ones we presented in the translation of a while-

language earlier this chapter (see 3.1). Since the argumentation why this is a sound is

equivalent to the ones for the while-language we wont go into details at this point.

3.2.3.1 Dealing with Negated Quantifiers

Additionally we have to take care of negated quanti�ers. There are two problems: The

�rst one being that the easiest translation for angelic quanti�ers namely translating

Listing 3.5: Assert a negated quanti�ed expression

1 assert(!(\forall int i; i >= 0 && i < 10; i >= 0;))

as:

Listing 3.6: Assert a negated quanti�ed expression (wrong translation)

1 int i = nondetInt();
2 assert(!(i >= 0) || !(i >= 0 && i < 10; i >= 0));

is obviously wrong. To solve this problem we use the duality of the two quanti�ers:

¬(∃i : ϕ(i)) ↔ ∀i : ¬ϕ(i)
and

¬(∀i : ϕ(i)) ↔ ∃i : ¬ϕ(i)
Knowing that we can eliminate negated quanti�ers and such avoid needing a translation

for them. The second problem is that quanti�ers may appear as subterms in a negated

term. For example how do we assert:

Listing 3.7: Assert a negated expression containing a quanti�er

1 assert(!(5 > i || (\forall int i; i >= 0 && i < 10; i >= 0;)));

21

3 Translating Java and JML to JAVA!?

Here the solution is to bring the formula into negation normal form (NNF). In NNF

negations are only allowed before variables and literals. For example ¬(A ∧ B) may be

rewritten to ¬A ∨ ¬B (De Morgans law).

Lemma 3.2.1 Each term consisting of variables, literal, quanti�ers and the logical operations
¬,∧,∨,→,↔ can Be brought into NNF.

To do this transformation we use the following table:

A NNF(A)

¬(A ∧ B) ¬NNF (A) ∨ ¬NNF (B)
¬(A ∨ B) ¬ANNF (A) ∧ ¬NNF (B)
¬(A→ B) NNF (A) ∧ ¬NNF (B)
¬(A↔ B) (¬NNF (A) ∧ NNF (B)) ∨ (NNF (A) ∧ ¬NNF (B))
¬¬A NNF (A)

¬(∃i : A(i)) ∀i : ¬NNF (A(i))
¬(∀i : A(i)) ∃i : ¬NNF (A(i))

We can use this theory for JML expressions as well, since we support exactly these

boolean operators (and, or, implies, equivalence). So before applying our translation we

always bring each expression into NNF as a preprocessing step. This way we do not have

to deal with the two problems mentioned above.

3.2.4 Framing everybody - or how to handle assignables

In this section we discuss how assignable-clauses (see 2.3) may be translated.

There are three di�erent syntactic entities in Java, to which an assignment can be made:

a (local) variable, a class-�eld or a �eld of an array.

In order to allow only legal assignments according to a given speci�cation, before each

statement which includes a write operation (e.g. =, ++, –, +=, -=,...) we assert that the

assignment is legal. To de�ne what "legal assignment" means we use the following notions.

First we call the left side of an assignment lhs and the right side rhs. Each method may

have exactly one (wlog) assignable clause consisting of several LocationSets. A LocationSet

may be:

• a parameter: passed to a method

• a �eld: of a class

• an arrayRange (a[i], a[i..j], a[..i], a[i..], a[*]): this is not Java

but JML speci�c

• all �elds of an object (�elds of object o: o.*) (we call that a wildcard-�eld): again this

is JML speci�c

We de�ne a predicate conforms(l, s), which is true if and only if an assignment to l is

allowed with an assignable clause only consisting of s. For the following de�nition we

22

3.2 Translating real Java and JML

assume that "this." is never left out (so this.f is never written as f). Additionally we assume

that index-ranges are always given in the form i..j meaning that if the upper bound is not

given we set it to the length of the indexed array minus 1 and if the lower bound is not

given we set it to 0 (e.g. arr[..i] becomes arr[0..i], arr[*] becomes arr[0..arr.length] and so

on) and if only 1 index is given, upper and lower bound are set to this index (e.g. arr[i]

becomes arr[i..i]). Last but not least we introduce a function val(x) which gives us the

value of a given variable/�eld/arrayAccess. We de�ne conforms(l, s) as follows:

De�nition 3.2.1
conf orms(a[idx],b[i ..j]) ::↔ val(a) = val(b) ∧val(idx) ≤ val(j) ∧val(idx) ≥ val(i)
conf orms(a[i],b) ::↔ val(a) = val(b)
conf orms(t . f ,o.∗) ::↔ val(t) = val(o)
conf orms(t . f ,o. f) ::↔ val(t) = val(o)
conf orms(v, s) ::↔ val(v) = val(s)

This de�nition intuitively states that:

• its legal to assign to a array �eld if either the array itself is writable or an array

range of this array is writable and the index of the write assignment is between the

upper and lower bound of the array range

• its legal to assign to a �eld of object o if either all elements of object o are assignable

or exactly this �eld of this object is assignable

• its legal to assign to a variable if the referenced object is assignable itself or aliases

with an object which is assignable

And with this de�nition we are now able to de�ne what a legal assignment is:

De�nition 3.2.2 An assignment to lhs l with corresponding assignable clause c (consisting
of one or more locationSets s) is called legal if ∃s ∈ c : conf orms(l , s) or l is a local variable
with primitive type.

This is the intuitive way to de�ne a legal assignment as it states that we need some

location set in the assignable-clause which allows us to perform said assignment. Assign-

ments to local variables of primitive type are always legal as they cannot alias with other

objects and thus can not manipulate heap objects.

To clarify why we de�ne conforms(x, y) as we did, we illustrate the heap as a table (see

Fig. 3.1) where each column is an object on the heap and each row is a �eld that an object

may or may not have. Now consider an assignment to *.f is made. First thing we notice

is that any locationSet that does not end with .f cannot allow such an assignment since

all �elds are rows and as such are pairwise disjunct (exception .* which allows writing

to any �eld). Now all we have to check, is whether the object is the same. Since Java

variables however are not objects but references to objects we can not distinguish on a

syntactical level whether two variables P and T reference the same object or not. Hence

the comparison of the values of the variables. In the graphic this is illustrated as the two

variables P and T which point to the same object.

23

3 Translating Java and JML to JAVA!?

Figure 3.1: Illustration of a heap in Java

This approach however can not handle newly created objects. For example the snippet

of code shown in Lst. 3.8 could not be veri�ed.

Listing 3.8: An example showing a case which can not be handled with the �rst approach

1 //@ assignable \nothing;
2 private void method(SomeObject o) {
3 SomeObject obj = new SomeObject();
4 obj.someField = value;
5 }

Since obj is a newly created object assigning to its �elds is legal but by the de�nition

above there is no assignable clause, which allows writing to this object so this could not

be veri�ed.

To avoid this weakness we de�ne an additional predicate f resh(o) which we assume for

each newly created object. So in the translation after each assignment of an new object o

to a local variable we assume f resh(o).

Now we can re�ne our de�nition 3.2.2 of a legal assignment to:

De�nition 3.2.3 An assignment is legal if ∃s ∈ c : conf orms(l , s) ∨ f resh(l) or l is a local
variable with primitive type.

So now that we know what an legal assignment is, we can use a translation rule to

ensure that only legal assignments are allowed.

24

3.2 Translating real Java and JML

b bodyT (b)c bodyT (b)v

l e x p r ◦ r e x p r

(◦ ∈ {=,+ =
,− =, ∗ =, /=})

a s s e r t (conf orms(lexpr ,A)) ;

[bodyT (rexpr)c]
l e x p r ◦ [bodyT (rexpr)v]

As you can see, if any expression occurs that assigns a value to a lhs, than an according

assert statement is added to ensure that its legal.

3.2.5 Ensuring Well-definedness

The well-de�nedness of a speci�cation is de�ned as whether all expressions in the spec-

i�cation can be evaluated without throwing an exception. In our case this is straight

forward since we translate the speci�cation to normal Java anyway. So all we have to do

is to ensure that the translation has the same semantic as the original speci�cation. For

most operations this is naturally given. For example a speci�cation only consisting of the

following ensures clause: ensures 1/0 > 0 is not well de�ned but since we translate this to:

assert 1/0 > 0 we don’t have to do any special treatment. The only exception to this is the

treatment of shortcut evaluation in combination with demonic quanti�ers. Consider the

speci�cation clause in Lst. 3.9.

Listing 3.9: An example of a well de�ned ensures-clause

1 //@ ensures true || (\exists int i; i >= 0 && i < 1; 1/i == 0);

In Java the evaluation of an or-expression is stopped after evaluating the �rst operand, if

it evaluates to true (since the result is going to be true independently of the evaluation of

the second operand). So the above speci�cation is well-de�ned since there is no case in

which an exception could be thrown. But the translation as we proposed it would translate

Lst. 3.9 to the code shown in Lst. 3.10 example to:

Listing 3.10: An example of a well de�ned ensures-clause translated

1 boolean b = false;
2 for(int i = 0; i < 1; ++i) {
3 b = b || 1/i == 0;
4 }
5 assert(true || b);

As you can see the value of the quanti�er is basically precomputed and thus this speci�-

cation would result in an error. The solution of this problem is, to translate the quanti�er

only if it is needed. So for each operator with a possible shortcut (and, or, implies) we

de�ne a function sc(op), which gives us the value for which the shortcut is taken.

op sc(op)

&& false

‖ true

==> false

25

3 Translating Java and JML to JAVA!?

Now we can adapt the translation for these operators as follows:

a assertT (a)c assertT (a)v

expr1 ◦ expr2

◦ ∈

{&&, | |,+,−, ∗, /,%,==
, ! =}

[assertT (expr1)c]
[assertT (expr2)c]

[assertT (expr1)v] ◦

[assertT (expr2)v]

becomes

a assertT (a)c assertT (a)v

expr1 ◦ expr2

◦ ∈ {+,−, ∗, /,%,==
, ! =}

[assertT (expr1)c]
[assertT (expr2)c]

[assertT (expr1)v]◦
[assertT (expr2)v]

expr1 ◦ expr2

◦ ∈ {&&, | |}

[assertT (expr1)c]
f r e s h B o o l (f a l s e , b) ;

i f ([assertT (expr1)v] != s c (◦)) {

[assertT (expr2)c]
b = [assertT (expr1)v]

}

[assertT (expr1)v]◦
b

Notice how the second part of the operation is only executed if it is necessary and thus

can only throw an exception if the in standard Java semantics an exception would have

been thrown anyway.

Using this adapted translation the example given in Lst. 3.9 gets translated to Lst. 3.11.

Listing 3.11: An example of a well de�ned ensures-clause adapted translation

1 boolean b1 = false;
2 if(true != true) {
3 boolean b2 = false;
4 for(int i = 0; i < 1; ++i) {
5 b2 = b2 || 1/i == 0;
6 }
7 b1 = b2;
8 }
9 assert(true || b1);

Note how the critical operation (i/0) is never executed and thus no error occurs and the

expression is evaluated as expected.

3.2.6 Method Calls - Making it modular

The standard treatment for method calls in JBMC is inlining them. Now that we want

to have a modular tool we have to provide a possibility to avoid this behavior. If the

called method has a speci�cation this is however straight forward: We assert that the

precondition of the called method is satis�ed when we call it, then we havoc all assignables

of this method and assume its postcondition. So the rule we use is as follows:

26

3.2 Translating real Java and JML

m methodCallT(m)

/ ∗@ r e q u i r e s R ;

@ e n s u r e s E ;

@ a s s i g n a b l e A ;

@∗ /

M RT method (P) throws T {

B

}

M RT methodC (P) throws T {

[assertT (R)c]
assert([assertT (R)v])
saveOld(E,B)
havoc(A)
RT r e s u l t V a r ;

[assumeT (E)c]
assume ([assumeT (E)v])
r e t u r n r e s u l t V a r ;

}

As in the "normal" translation of the method we use the method saveOld to store values

of variables which are later referred to via \old . Note that we again introduce a variable

for the return value. We have to do this before assuming the postcondition since the

postcondition may contain restrictions to the returned value.

3.2.7 Wreaking havoc - or how to anonymize Java objects

At several points in the translation it is necessary to anonymize certain values or objects.

We call this operation havoc. Havocs may be applied to locationSets (which are, just a

reminder):

• a variable

• a �eld

• an arrayRange (a[i], a[i..j], a[..i], a[i..], a[*])

• all �elds of an object (�eld of object o: o.*) (we call that wildcard-�eld)

For variables havocing is equivalent to assigning a nondeterministic value of the same

type. For arrays we treat each �eld of the array as an independent value and thus can

assign nondeterministic values as for variables. It may be necessary to create a for loop to

iterate over all indices since they might be determined at runtime (e.g. a[i..j]). A special

case is a[*] where we currently assign a new nondeterministic array and assume that

it has the same length. This is not sound since it is not the same object as before. The

same is true for wildcard-�elds where we currently use f = nondetObject as havoc for f.*.

As mentioned this translation su�ers from the same problem as the havoc method for

array-wildcards.

3.2.8 Object Invariants

JML allows to specify object invariants. Informally object invariants are invariants that

have to hold whenever an object may be accessed from outside the class itself (e.g. after

each method call of this object, after a public constructor, ...). For a formally complete

27

3 Translating Java and JML to JAVA!?

de�nition on when object invariants have to hold and di�erences between static and

instance invariants please refer to [21].

As a simpli�cation consider object invariants to be normal JML-expressions as they

may occur in method pre- or postconditions. If thats the case to support object invariants

we additionally assume the object invariant at the start of a method and after a method

invocation and in return show that it still holds after executing the method body and

before invoking a method.

This is a rude simpli�cation and is just thought to demonstrate that supporting object

invariants with the presented approach is theoretically possible.

28

4 Implementation

In this chapter we are going to present our tool, which implements most parts of the

theoretical approach presented in chapter 3. We will therefore describe how the tool is

working and what features we implemented. We then discuss the features we left out as of

now and which of them are theoretically plausible to implement at a later stage. In the last

section of this chapter we describe how we tested our translation in order to guarantee a

certain degree of stability.

The tool is written as a Java console application. Input for it is a �le with Java code

and JML speci�cation. Additionally some options may be provided. For a more detailed

description of the available options and their e�ects see 4.3. The tool internally translates

the �le and calls JBMC for the speci�ed method.

4.1 Design Decisions

The basic design decision for the translation was that it should be able to be used like a

runtime checker. So given a well-de�ned speci�cation (see) that is not violated by the

program the result of the original program and the translated version should be equivalent

(exceptions are thrown for the same inputs and if no exception is thrown the return

value is the same). The well-de�nedness is a necessary limitation to that claim since the

speci�cation is translated to JAVA!? (see 3.0.1) and may thus throw exceptions if its not

well-de�ned. If the program does not conform to the speci�cation, then assertions will fail

or exceptions are thrown so the result may also di�er from the original program.

Knowing that we would not be able to support all Java/JML features for our prototype,

it was important to us to make clear to the user which features we support which we don’t,

to prevent unsound behavior. So our solution was to use a white list approach where

whenever a feature of either JML or Java is present in a �le that our tool does not support,

we throw an according exception. This way our tool may support a smaller subset of

Java/JML than it is theoretically capable of, but we are sure that no the proofs our tool

produces are unsound due to unsupported features not being detected.

Last but not least we wanted to make sure that the tool brings everything it needs to

be executed. So we decided to ship included JBMC and OpenJML versions so that there

is no confusion on which version of OpenJML or JBMC we are using and that bugs due

to con�icting versions being used are eliminated. Everything the tool needs is copied

automatically.

29

4 Implementation

4.2 Discussion of supported features

Since our tool is a prototype, not all features presented in the last chapter are already

implemented. In this section we would like to discuss which features we implemented and

which are still missing and why.

Method Contracts For method contracts we support exactly one speci�cation case for

normal behavior. Furthermore we only support the most fundamental keywords in

requires, ensures and assignable to support pre-, post- and frame-conditions.

Other clauses like signals or signals_only are currently not supported but should

be relatively easy to implement since they require one more catch statement for the try

which surrounds the body anyway. For signals an additional assertion is added for

signals_only all listed exception types are caught so JBMC would only fail if an ex-

ception type not listed it thrown. Other clauses like diverges or measured_by may

be harder to implement but discussing all of them here would go beyond the scope of this

work.

Java-Expressions Java expressions should be fully supported however since the white

list approach of our implementation requires to list all supported operations explicitly we

may have missed some. This is no fundamental problem but only a matter of seconds to

add them to the list of supported operations.

JML-Expressions JML expressions may contain either Java expressions or special JML

expressions. For special JML expressions we only support a small subset, since normally

supporting these expressions need explicit implementations for each of them. Most

importantly we support quanti�ers over bound integer ranges. In general supporting

quanti�cation over unbound ranges is, at least for demonic quanti�ers, impossible due to

the nature of BMC. Quanti�cation over bounded sets of objects is certainly possible[9] but

requires some more implementation.

Additionally we support the \old keyword however only for primitive types. To refer

to the old value of a variable the obvious way is to save its value before executing the

code. However this is not trivial for non primitive types due to the complexity of creating

a deep copy of objects in Java[18]. Furthermore we support implications and equivalence

as the are not part of the normal Java syntax but easy to implement (see 3.2.3.1). Last but

not least \result is supported as it is a crucial tool in specifying method behavior.

Loop specification Providing loop invariants is supported. For the exact handling of

loop invariants refer to 3.2.1. We also support decreases statements and assignables

for loops. As of now this is only supported for while and (standard) for loops however

extending the implementation to support do-while or for-each loops is possible.

Assignables Our implementation allows assignable clauses with all types of locations sets

including the special keywords \nothing and \everything. Our approach is sound

but not complete since we are not able to handle assignments of newly created objects.

30

4.3 Tool Options

The approach of using uninterpreted functions as presented in 3.2.4 is possible to realize,

since JBMC allows the use of uninterpreted functions, but is currently not implemented.

Object Invariants Object invariants are currently not supported but are not theoretically

out of scope (see 3.2.8).

4.3 Tool Options

The tool supports the following options:

• �leName (needed): The path to the �le that contains the method to be veri�ed.

• methodName: The name of the method to be veri�ed (currently only methods of

the class with the same name as the �le are supported)

• -verifyAll/-va: may be given instead of a methodName. If given the tool veri�es all

methods (in the class with the same name as the �le).

• -dontFilter/-df: The tool as default �lters the jbmc output to provide a more readable

result. If this is not wanted the �lter may be turned o� using this option.

• -keepTranslation/-kp: The tool internally creates a new java �le containing the

translation of the given speci�cation. This �le gets deleted after calling jbmc. Given

-keepTranslation this temporary �le will not be deleted.

• -jbmcOpt/-j: This option takes jbmc options to be given to jbmc (may be used

multiple times to pass multiple options).

• -help/-h: Shows a help message for the program which lists all options and explains

the general usage.

4.4 Testing

A test for our scenario is not a unit test of the implementation but a Java method with

speci�cation which is annotated as to whether this method with its given speci�cation

should be veri�able with our approach or not. The expected result is provided using a

custom annotation. Additionally its possible to provide the number of times JBMC should

unwind loops and recursions via another annotation. The test framework translates these

tests and runs JBMC on each of them asserting that the result of JBMC is the expected one.

This way writing tests to test new behavior is very fast and easy.

The test suite provided with the tool contains over 100 tests covering all major features

of the tool. Three aspects of the tool were tested. First the soundness of the tool. This

is normally done with tests that are expected to be not veri�able. The second aspect is

the completeness of the supported features. Last but not least there are some tests which

ensure that unsupported features throw exceptions.

As an example consider the following two tests:

31

4 Implementation

Listing 4.1: An example for a test case

1 //@ ensures !(\forall int i; i >= 0 && i < 3;
2 (\exists int j; j >= 0 && j < 3; j > i));
3 @Verifiable
4 private void negatedQuantifierTest1() {}
5

6 //@ ensures !(\forall int i; i >= 0 && i < 3;
7 (\exists int j; j >= -1 && j < 3; i > j));
8 @Fails
9 private void negatedQuantifierTest3() {}

As seen in 4.1, the tests are annotated as to whether they should be veri�able or not. In

this case the translation of negated nested quanti�ers is tested.

32

5 Evaluation

To evaluate the presented approach we conducted multiple case studies proving real world

programs taken from di�erent contexts to show that the presented approach is not only

working but provides signi�cant improvements for prove �nding. The full source code for

all case studies can be found in the appendix of this thesis (see A.2).

5.1 Bubble Sort

As a �rst test for our approach we wrote a simple bubble-sort implementation. The top

level speci�cation states that the array is sorted in the usual way (each element is smaller

or equal to the following one). It contains the usual two nested loops which iterate over

the array and a swap method which swaps the position of two array elements. This swap

method does an in place swap with bitwise xors.

We proved this example with our approach for arrays up to size 5. To examine our ap-

proach we tweaked this case study in two directions: Firstly we proved it with and without

loop invariants provided, secondly we proved it inlining the swap function compared to

using its speci�cation instead. Our goal was to compare the di�erent versions according

to runtime. In table 5.1 you can see the results of this experiment.

5.2 Big Integer Conversion

Wolfram Pfei�er as his Bachelor thesis proved the basic arithmetic operations of the

BigInteger class of Java correct[24]. This case study was conducted with KeY which lead

to the problem that one particular method was di�cult to verify due to its nature of

containing several bit operations on integers. The functionality of this method is that it

converts a signed integer into an unsigned integer (see Fig. 5.1). To prove this method

Pfei�er et al. translated their JML contract in a equivalent assert statements and proved

this translation with CBMC. Our approach was now capable of proving the method to be

correct without further changes. This example shows that we are able to prove methods

/w invariants w/o invariants

inlining 28s 30s

no inlining 33s -

Table 5.1: Di�erent runtimes of BubbleSort case study

33

5 Evaluation

Figure 5.1: The idea of the to unsigned method (taken from [24])

that are not provable in KeY and such facilitates the idea that a JML supporting bounded

model checker can be an asset to deductive veri�cation at certain points.

5.3 HammingWeight

The hamming weight of an integer is the number of 1 bits in its binary representation. So

to determine the hamming weight of an integer, the naive approach is to iterate over its

bits and count the ones that are not zero. A more sophisticated approach is to use some

bit magic to calculate the hamming weight in constant time. This can we done as shown

in Lst. 5.1:

Listing 5.1: One way to calculate the Hammingweight of an integer

x = x − ((x >>> 1) & 0 x55555555) ;

x = (x & 0 x33333333) + ((x >>> 2) & 0 x33333333) ;

x = (x + (x >>> 4)) & 0 x 0 f 0 f 0 f 0 f ;

x = x + (x >>> 8) ;

x = x + (x >>> 1 6) ;

r e s u l t = (x & 0 x 3 f) ;

Now for our case study we extended this to integer arrays in the natural way, where the

hamming weight of an integer array is the sum of the hamming weights of the integers

in the array. We proved that the hamming sum of an integer array does not exceed 32

times the length of the array. This is a very simple example but demonstrates 2 strengths

of our approach. If we use the "bit magic"-approach we take advantage of JBMCs ability to

handle bit operations very well and if we take the naive approach we have a bounded loop

which we can simply unroll without needing an invariant. Both approaches are veri�ed

using our tool taking less than a second each.

34

5.4 Dual-Pivot-Quicksort

5.4 Dual-Pivot-Quicksort

Schi� et al. proved JDKs implementation of Dual-Pivot-Quicksort correct (although they

found one invariant that does not hold)[4]. Since this algorithm operates di�erently

depending on the size of the array to verify the algorithm as a whole we would have to

do this for arrays of size bigger than 46, which is not feasible for our approach. However

again in this paper CBMC was used to prove a method which contained bit operations.

We were able to reproduce the proof for this method and some of the auxiliary methods

that were used in the proof. Our tool was able to verify the given speci�cation without

further adaption fully automatically.

Interestingly we found a minor error regarding the well-de�nedness (see 4.1) of one

veri�ed method. Consider the loop invariant in Lst. 5.2.

Listing 5.2: The original loop invariant of the Dual-Pivot-Quicksort proof

1 @ loop_invariant
2 @ k <= great && 0 <= great
3 @ && (\exists int i; left <= i && i <= great;
4 a[i] <= pivot2)
5 @ && (\forall int i; great < i && i <= \old(great);
6 a[i] > pivot2)
7 @ && great <= \old(great);
8 @ assignable great;
9 @ decreases great;

Notice that the variable дreat maybe changed during the loop body (as it is part of

the assignable-clause). This means that to show the invariant we have to show it for an

arbitrary value for дreat . Now notice that great has given an upper and lower bound

in the invariant itself, however the upper bound is only given after the two quanti�ed

expressions. So assuming the invariant for an arbitrary value of great is not well de�ned

since the index of the array access in the exists quanti�er has basically no upper bound.

To correct this speci�cation it su�ces to change the order of the lines so that the upper

bound is given before the quanti�ed statements are reached as seen in Lst. 5.3

Listing 5.3: The corrected loop invariant of the Dual-Pivot-Quicksort proof

1 @ loop_invariant
2 @ k <= great && 0 <= great
3 @ && great <= \old(great)
4 @ && (\exists int i; left <= i && i <= great;
5 a[i] <= pivot2)
6 @ && (\forall int j; great < j && j <= \old(great);
7 a[j] > pivot2);
8 @ assignable great;
9 @ decreases great;

35

5 Evaluation

5.5 PairInsertionSort

PairInsertionSort is the counterpart to DualPivotQuickSort which is used to sort arrays

with less than 47 elements. It is part of the Java standard library. We veri�ed this algorithm

using our tool for arrays up to length 5. To do so we removed all given loop invariants

and block contracts and proved only the sortedness of the resulting array not that it is a

permutation of the original array. This proof was successful without any adaptations of

the source and was conducted fully automatically in approximately 10s.

Again we experimented with adding known loop invariants and removing them to see

whether or not and how fast our tool can verify these loop invariants. This time the loop

invariants where more complex than in the previous examples and our tool failed to proof

any of them in reasonable time. We tried several con�gurations but it seems that all of

them are hard to proof for our approach.

5.6 Multiplication

The last case study reveals one weakness of our approach. We tried to prove the program

shown in Lst. 5.4.

Listing 5.4: Method which multiplies two integers by multiple additions with speci�cation

1 /*@
2 @ requires x1 >= 0 && x2 >= 0;
3 @ requires x1 < N && x2 < N; //limit x1, x2 somehow
4 @ ensures \result == x1 * x2;
5 @ assignable \nothing;
6 @*/
7 public static int mult(int x1, int x2) {
8 int res = 0;
9 //@ loop_invariant res == i * x2;

10 //@ loop_invariant i >= 0 && i <= x1;
11 //@ loop_modifies res;
12 //@ decreases (x1 - i) + 1;
13 for(int i = 0; i < x1; ++i) {
14 res += x2;
15 }
16 return res;
17 }

As you might have noticed, this is the same example as in 2.3 where we multiply two

integers by multiple additions. Note that this is an example containing a loop where we

are theoretically able to eliminate the loop using the loop rule with the given invariant,

such that an unbounded veri�cation is possible. But here comes the weakness of JBMC

into play. If x1 and x2 are not limited, JBMC takes hours to verify this little example. The

problem here is that x1 and x2 are nondeterministic values (since they are parameters)

and the multiplication of two nondeterministic values apparently is very hard to handle

for JBMC. This problem can be boiled down to the code shown in Lst. 5.5:

36

5.6 Multiplication
Sheet1

Page 1

1 2 3 4 5 6 7 8 9 10
0

200

400

600

800

1000

1200

1400

Runtime for multiplication example

Runtime [s]

N

number of Bits

Figure 5.2: Di�erent runtimes of CBMC depending on input size

Listing 5.5: A minimal code example exposing the weakness of JBMC concerning multiplica-
tion of nondeterministic values

1 //@ requires x1 < N && x2 < N;
2 //@ requires x2 >= 0&& x1 >= 0;
3 //@ requires res == x1 * x2;
4 //@ ensures res + x2 == (x1 + 1) * x2;
5 public void test(int x1, int x2, int res) {
6 }

We conducted an experiment where we ran this example with di�erent values for N.

The results of this experiment are shown in Fig. 5.2. As you can see, the runtime of CBMC

grows way faster than the input and becomes so large that verifying programs that rely

on this is basically infeasible.

37

6 Related Work

The idea of automated software veri�cation is not new. There are several ideas, tools and

approaches on how to handle di�erent aspects but there is no silver bullet. On a top level

view there are three main quality criteria that are essential at this �eld:

• the complexity of the properties that can be veri�ed

• the scalability of the approach

• the amount of needed user interaction

For each quality there are tools which focus on that criterion. For rather simple properties

like dereferencing null pointers or dead locks there are tools like JayHorn[16] and JBMC[13].

These tools are highly automated and mostly run fast even on big code samples but are

not suitable to verify complex (object related) properties of programs. Other tools like

OpenJML[12] and InspectJ[22] provide the possibility to specify (via JML) and verify such

properties but may timeout or return "unkown". In contrast to these approaches there are

tools which focus on proofs of complex properties without restrictions to loop iterations

or heap size but in turn need a lot of user interaction in order to �nd proofs (for example

KeY[1] or Coq[5]).

6.1 Combining Deductive Verification and BMC

There are several papers which present approaches based on combining deductive veri�ca-

tion and BMC. For example in [25] �nite state systems are veri�ed relative to linear time

logic constraints or in [26] where many connections between DV and BMC are shown

and examples how these two approaches can interact are presented. Another paper that

discusses this synergy and shows how BMC and DV can be used to create an advantageous

proof system for C is shown in [3].

6.2 KeY

KeY[1] is a tool for deductive veri�cation developed at the Karlsruher Institute of Tech-

nology and the TU Darmstadt. It allows verifying Java programs annotated with JML

contracts. As the underlying logic a sequence calculus is used. The Java program gets

translated into a sequence to which the user can apply rules of the calculus to prove the

generated proof veri�cation conditions. KeY provides an auto pilot which automatically

searches for rule applications which close a proof and o�ers a translation of a sequent

to SMT. This translation allows to generate counterexamples when veri�cations fails.

39

6 Related Work

Additionally a symbolic execution debugger integrated into Eclipse as a plugin allows to

debug programs using extra information obtained by symbolic execution.

6.3 JML Runtime Checker

Gary Leavens et al. presented a tool which is able to translate JML into runtime assertions

checks for Java programs[9]. In this paper they discuss similar topics as we did in this

thesis like for example the well-de�nedness of speci�cations and the translation of quan-

ti�ers. At this point they o�er quanti�cation over iterable collections and o�er implicit

quanti�ers like \sum. Additionally the paper discusses speci�cation inheritance and

model speci�cations. This approach is quite similar to the one we presented here having

the main di�erence is that while Leavens et al. use their approach to actually perform

runtime checks we use it as the input for a static veri�cation tool (thus they translated

JML to Java and we translate JML to Java!?). Our advantage is that the performance of

the generated code does not matter (since the generated code should never actually be

executed) which they describe to be one of the main disadvantages. Similar approaches

have been presented by [8], [20] and [17].

40

7 Conclusion

In this thesis we presented an approach which allows the veri�cation of Java programs

annotated with JML contracts using a BMC. We discussed how we are able to translate

JML contracts into Java!?, an augmented Java with assumes, asserts and nondeterministic

values. We proved that the basic idea of our translation is correct for a while-language

and presented formal rules for the translation of a subset of Java/JML. Additionally we

implemented our approach as a command line tool in Java. This tool allows the veri�cation

of JML contracts using our translation and the Bounded Model Checker JBMC. To evaluate

our approach we conducted several case studies which show that our tool is able to

proof contracts which were di�cult to proof in other tools and even showed a minor

well de�nedness error in one speci�cation. As this approach uses Java/JML as input it is

possible to use it in combination with other proof systems.

We see several ways to extend our research in this area: The First one being that

the supported subset of JML could be extended to support more features of JML (e.g.

Object invariants, signals-clauses, ...). Secondly the translation could possibly be improved

concerning the runtime of JBMC. As our focus was the soundness of our translation, the

number of asserts and whether there are possibilities to allow JBMC to verify our translated

program faster, were not yet fully explored. Furthermore the counterexamples that are

generated by JBMC for a failed proof attempt are very hard to read. A more readable

presentation of those counterexamples, at best with line numbers and error descriptions

in the original source, would help a great deal when trying to understand why a proof is

not closing.

Overall we consider this thesis a success as the goal laid out in the proposal of this work

was achieved: We were able to verify JML contracts which were di�cult to prove in a

DV-tool alone and thus showed that the combination of DV and BMC is advantageous.

41

Bibliography

[1] Wolfgang Ahrendt et al., eds. Deductive Software Veri�cation – The KeY Book: From
Theory to Practice. en. Programming and Software Engineering. Springer Interna-

tional Publishing, 2016. isbn: 978-3-319-49811-9. url: https://www.springer.
com/de/book/9783319498119 (visited on 02/06/2019).

[2] B. Alpern, M. N. Wegman, and F. K. Zadeck. “Detecting Equality of Variables in

Programs”. In: Proceedings of the 15th ACM SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages. POPL ’88. event-place: San Diego, California, USA.

New York, NY, USA: ACM, 1988, pp. 1–11. isbn: 978-0-89791-252-5. doi: 10.1145/
73560.73561. url: http://doi.acm.org/10.1145/73560.73561
(visited on 02/07/2019).

[3] Bernhard Beckert et al. “Integration of Bounded Model Checking and Deductive

Veri�cation”. en. In: Formal Veri�cation of Object-Oriented Software. Ed. by Bernhard

Beckert, Ferruccio Damiani, and Dilian Gurov. Lecture Notes in Computer Science.

Springer Berlin Heidelberg, 2012, pp. 86–104. isbn: 978-3-642-31762-0.

[4] Bernhard Beckert et al. “Proving JDK’s Dual Pivot Quicksort Correct”. en. In: Veri�ed
Software. Theories, Tools, and Experiments. Ed. by Andrei Paskevich and Thomas

Wies. Vol. 10712. Cham: Springer International Publishing, 2017, pp. 35–48. isbn:

978-3-319-72307-5 978-3-319-72308-2. doi: 10.1007/978-3-319-72308-2_3.

url: http://link.springer.com/10.1007/978-3-319-72308-2_3
(visited on 02/01/2019).

[5] Yves Bertot and Pierre Castéran. Interactive Theorem Proving and Program Devel-
opment: Coq’Art: The Calculus of Inductive Constructions. en. Texts in Theoretical

Computer Science. An EATCS Series. Berlin Heidelberg: Springer-Verlag, 2004.

isbn: 978-3-540-20854-9. url: https://www.springer.com/gp/book/
9783540208549 (visited on 02/06/2019).

[6] Armin Biere and Daniel Kröning. “SAT-Based Model Checking”. en. In: Handbook
of Model Checking. Ed. by Edmund M. Clarke et al. Cham: Springer International

Publishing, 2018, pp. 277–303. isbn: 978-3-319-10575-8. doi: 10.1007/978-3-
319-10575-8_10. url: https://doi.org/10.1007/978-3-319-
10575-8_10 (visited on 02/07/2019).

[7] Daniel Bruns. “Formal Semantics for the Java Modeling Language”. en. Dipl. KIT,

June 2009.

43

https://www.springer.com/de/book/9783319498119
https://www.springer.com/de/book/9783319498119
https://doi.org/10.1145/73560.73561
https://doi.org/10.1145/73560.73561
http://doi.acm.org/10.1145/73560.73561
https://doi.org/10.1007/978-3-319-72308-2_3
http://link.springer.com/10.1007/978-3-319-72308-2_3
https://www.springer.com/gp/book/9783540208549
https://www.springer.com/gp/book/9783540208549
https://doi.org/10.1007/978-3-319-10575-8_10
https://doi.org/10.1007/978-3-319-10575-8_10
https://doi.org/10.1007/978-3-319-10575-8_10
https://doi.org/10.1007/978-3-319-10575-8_10

Bibliography

[8] Patrice Chalin and Frédéric Rioux. “JML Runtime Assertion Checking: Improved

Error Reporting and E�ciency Using Strong Validity”. en. In: FM 2008: Formal
Methods. Ed. by Jorge Cuellar, Tom Maibaum, and Kaisa Sere. Lecture Notes in

Computer Science. Springer Berlin Heidelberg, 2008, pp. 246–261. isbn: 978-3-540-

68237-0.

[9] Yoonsik Cheon and Gary T Leavens. “A Runtime Assertion Checker for the Java

Modeling Language (JML)”. en. In: (Apr. 2004), p. 10.

[10] “Introduction to Model Checking”. en. In: Handbook of Model Checking. Ed. by

Edmund M. Clarke et al. Cham: Springer International Publishing, 2018. isbn: 978-

3-319-10574-1 978-3-319-10575-8. doi: 10.1007/978-3-319-10575-8. url:

http://link.springer.com/10.1007/978-3-319-10575-8 (visited

on 02/07/2019).

[11] Edmund Clarke, Daniel Kroening, and Flavio Lerda. “A Tool for Checking ANSI-C

Programs”. en. In: Tools and Algorithms for the Construction and Analysis of Systems.
Ed. by Kurt Jensen and Andreas Podelski. Lecture Notes in Computer Science.

Springer Berlin Heidelberg, 2004, pp. 168–176. isbn: 978-3-540-24730-2.

[12] David R. Cok. “OpenJML: JML for Java 7 by Extending OpenJDK”. en. In: NASA
Formal Methods. Ed. by Mihaela Bobaru et al. Lecture Notes in Computer Science.

Springer Berlin Heidelberg, 2011, pp. 472–479. isbn: 978-3-642-20398-5.

[13] Lucas Cordeiro et al. “JBMC: A Bounded Model Checking Tool for Verifying Java

Bytecode”. en. In: Computer Aided Veri�cation. Ed. by Hana Chockler and Georg

Weissenbacher. Lecture Notes in Computer Science. Springer International Publish-

ing, 2018, pp. 183–190. isbn: 978-3-319-96145-3.

[14] David Harel, Dexter Kozen, and Jerzy Tiuryn. “Dynamic Logic”. In: Handbook of
philosophical logic. Springer, 2001, pp. 99–217.

[15] C. A. R. Hoare. “An Axiomatic Basis for Computer Programming”. In: Commun. ACM
12.10 (Oct. 1969), pp. 576–580. issn: 0001-0782. doi: 10.1145/363235.363259.

url: http://doi.acm.org/10.1145/363235.363259 (visited on

02/07/2019).

[16] Temesghen Kahsai et al. “JayHorn: A Framework for Verifying Java programs”. en. In:

Computer Aided Veri�cation. Ed. by Swarat Chaudhuri and Azadeh Farzan. Lecture

Notes in Computer Science. Springer International Publishing, 2016, pp. 352–358.

isbn: 978-3-319-41528-4.

[17] Nikolai Kosmatov and Julien Signoles. “Runtime Assertion Checking and Its Combi-

nations with Static and Dynamic Analyses”. en. In: Tests and Proofs. Ed. by Martina

Seidl and Nikolai Tillmann. Lecture Notes in Computer Science. Springer Interna-

tional Publishing, 2014, pp. 165–168. isbn: 978-3-319-09099-3.

[18] Charlie Lai and Sun Microsystems. “Java insecurity: Accounting for subtleties that

can compromise code”. In: IEEE Software (2008).

[19] Gary T Leavens and Yoonsik Cheon. “Design by Contract with JML”. en. In: (2006),

p. 12.

44

https://doi.org/10.1007/978-3-319-10575-8
http://link.springer.com/10.1007/978-3-319-10575-8
https://doi.org/10.1145/363235.363259
http://doi.acm.org/10.1145/363235.363259

Bibliography

[20] Gary T Leavens et al. “How the Design of JML Accommodates Both Runtime Asser-

tion Checking and Formal Veri�cation”. en. In: (), p. 27.

[21] Gary T Leavens et al. JML Reference Manual. 2008.

[22] M. Nagel, M. Taghdiri, and T. Liu. “Bounded Program Veri�cation Using an SMT

Solver: A Case Study”. In: 2012 IEEE Fifth International Conference on Software Testing,
Veri�cation and Validation(ICST). 2012, pp. 101–110. isbn: 978-0-7695-4670-4. doi:

10.1109/ICST.2012.90. url: doi.ieeecomputersociety.org/10.
1109/ICST.2012.90 (visited on 02/06/2019).

[23] David von Oheimb. “Hoare logic for Java in Isabelle/HOL”. en. In: Concurrency
and Computation: Practice and Experience 13.13 (Nov. 2001), pp. 1173–1214. issn:

1532-0626, 1532-0634. doi: 10.1002/cpe.598. url: http://doi.wiley.
com/10.1002/cpe.598 (visited on 02/07/2019).

[24] Wolfram Pfei�er. “Specifying and Verifying Real-World Java Cod with Key - Case

Study java.math.BigInteger”. en. Bachelor. KIT, May 2017.

[25] Amir Pnueli and Elad Shahar. “A platform for combining deductive with algorithmic

veri�cation”. en. In: Computer Aided Veri�cation. Ed. by Rajeev Alur and Thomas A.

Henzinger. Lecture Notes in Computer Science. Springer Berlin Heidelberg, 1996,

pp. 184–195. isbn: 978-3-540-68599-9.

[26] Natarajan Shankar. “Combining Model Checking and Deduction”. en. In: Handbook
of Model Checking. Ed. by Edmund M. Clarke et al. Cham: Springer International

Publishing, 2018, pp. 651–684. isbn: 978-3-319-10575-8. doi: 10.1007/978-3-
319-10575-8_20. url: https://doi.org/10.1007/978-3-319-
10575-8_20 (visited on 02/06/2019).

45

https://doi.org/10.1109/ICST.2012.90
doi.ieeecomputersociety.org/10.1109/ICST.2012.90
doi.ieeecomputersociety.org/10.1109/ICST.2012.90
https://doi.org/10.1002/cpe.598
http://doi.wiley.com/10.1002/cpe.598
http://doi.wiley.com/10.1002/cpe.598
https://doi.org/10.1007/978-3-319-10575-8_20
https://doi.org/10.1007/978-3-319-10575-8_20
https://doi.org/10.1007/978-3-319-10575-8_20
https://doi.org/10.1007/978-3-319-10575-8_20

A Appendix

A.1 Formal Rules

m methodT(m)

/ ∗@ r e q u i r e s R ;
@ e n s u r e s E ;
@ a s s i g n a b l e A ;
@∗ /

M RT method (P) throws T {

B

}

M RT method (P) throws T {

try {

[assumeT (R)c]
assume([assumeT (R)v])

} catch (E x c e p t i o n e) {

throw new S p e c E x c e p t i o n () ;

}

[saveOld(E,B)]
RT r e s u l t V a r ;

try {

[bodyT (B, P ,A)]
} catch (t ∈ T) { }

catch (ReturnExc e) {

try {

[assertT (E)c]
a s s e r t ([assertT (E)v])
return r e s u l t V a r ;

} catch (E x c e p t i o n e) {

throw new S p e c E x c e p t i o n () ;

}

}

}

Table A.1: Rule to translate a method contract

47

A Appendix

m methodCallT(m)

/ ∗@ r e q u i r e s R ;
@ e n s u r e s E ;
@ a s s i g n a b l e A ;
@∗ /

M RT meth (P) throws T {

B

}

M RT methC (P) throws T {

try {

[assertT (R)c]
assert([assertT (R)v])

} catch (E x c e p t i o n e) {

throw new S p e c E x c e p t i o n () ;

}

RT r e s u l t V a r ;

[saveOld(E,B)]
havoc(A)
try {

[assumeT (E)c]
assume ([assumeT (E)v])
return r e s u l t V a r ;

} catch (E x c e p t i o n e) {

throw new S p e c E x c e p t i o n () ;

}

}

Table A.2: Rule to translate a method that represents the e�ects of its contract

48

A.1 Formal Rules

a assumeT (a)c assumeT (a)v

expr1 ◦ expr2

◦ ∈ {&&, | |,+,−, ∗, /,%. ==
, ! =}

[assumeT (expr1)c]
[assumeT (expr2)c]

[assumeT (expr1)v]◦
[assumeT (expr2)v]

◦expr

◦ ∈ {!}
[assumeT (expr)c] ◦[assumeT (expr)v]

expr1 <==> expr2

[assumeT (expr1)c]
[assumeT (expr2)c]

[assumeT (expr1)v] ==
[assumeT (expr2)v]

expr1 ==> expr2

[assumeT (expr1)c]
[assumeT (expr2)c]

![assumeT (expr1)v]
| | [assumeT (expr2)v]

(\ f o r a l l in t i ;

i >= min &&

i <= max &&

cond ;

expr)

f r e s h B o o l (true , b) ;

for (in t i = min ;

i <= max ;

++ i) {

i f (cond) {

[assumeT (expr)c]
b = b && assumeT (expr)v ;

}

}

b

(\ e x i s t s in t i ;

i >= min &&

i <= max &&

cond ;

expr)

in t i = n o n d e t I n t () ;

assume (i >= min &&

i <= max) ;

[assumeT (expr)c]

expr

\ o l d (expr) [assumeT (expr)c]
дetOld(
[assumeT (expr)v])

a r r a y [expr] [assumeT (expr)c]
a r r a y [

[assumeT (expr)v]]

l i t e r a l l i t e r a l

v a r i a b l e v a r i a b l e

Table A.3: Rule to translate expressions for assume-statements

49

A Appendix

a assertT (a)c assertT (a)v

expr1 ◦ expr2

◦ ∈ {&&, | |,+,−, ∗, /,%. ==
, ! =}

[assertT (expr1)c]
[assertT (expr2)c]

[assertT (expr1)v]◦
[assertT (expr2)v]

◦expr

◦ ∈ {!}
[assertT (expr)c] ◦[assertT (expr)v]

expr1 <==> expr2

[assertT (expr1)c]
[assertT (expr2)c]

[assertT (expr1)v] ==
[assertT (expr2)v]

expr1 ==> expr2

[assertT (expr1)c]
[assertT (expr2)c]

![assertT (expr1)v]
| | [assertT (expr2)v]

(\ f o r a l l in t i ;

i >= min &&

i <= max &&

cond ;

expr)

in t i = n o n d e t I n t () ;

[assertT (expr)c]

! (i >= min &&

i <= max) | |

expr

(\ e x i s t s in t i ;

i >= min &&

i <= max &&

cond ;

expr)

f r e s h B o o l (fa l se , b) ;

for (in t i = min ;

i <= max ;

++ i) {

i f (cond) {

[assertT (expr)c]
b = b | | assertT (expr)v ;

}

}

b

\ o l d (expr) [assertT (expr)c]
дetOld(
[assertT (expr)v])

a r r a y [expr] [assertT (expr)c]
a r r a y [

[assertT (expr)v]]

l i t e r a l l i t e r a l

v a r i a b l e v a r i a b l e

Table A.4: Rule to translate expressions for assert-statements

50

A.1 Formal Rules

b bodyT (b)c bodyT (b)v

return expr ;

[bodyT (expr)c]
r e s u l t V a r = [bodyT (expr)v] ;
throw new ReturnExc () ;

method (P) ;

assertAssiдnables(A1,A2);
methodC (P) ;

l e x p r ◦ r e x p r

(◦ ∈ {=,+ =,− =, ∗ =, /=})

a s s e r t (lexpr ∈ A) ;

[bodyT (rexpr)c]
l e x p r ◦

[bodyT (rexpr)v]

◦expr

(◦ ∈ {++,−−})

a s s e r t (expr ∈ A) ;

[bodyT (expr)c]
◦[bodyT (expr)v]

expr◦

(◦ ∈ {++,−−})

a s s e r t (expr ∈ A) ;

[bodyT (expr)c]
[bodyT (expr)v]◦

expr ;

[bodyT (expr)c]
[bodyT (thenStmt)v] ;

try s tmt

catch (ET e) c s t m t

try {

[bodyT (stmt)c]
} catch (ReturnExc e) {

throw e ;

} catch (ET e) {

[bodyT (cstmt)c]
}

i f (c) thenStmt

e l se o t h e r S t m t

[bodyT (c)c]
i f ([bodyT (c)v]) {

[bodyT (thenStmt)c]
}

e l se {

[bodyT (otherStmt)c]
}

Table A.5: Rule to translate the statements of a method body (Part1)

51

A Appendix

b bodyT (b)c bodyT (b)v

/ ∗@ l o o p _ i n v a r i a n t I ;
@ l o o p _m o d i f i e s A ;
@ d e c r e a s e s D ;
@∗ /

for (Type v = i ; c ; i n c) {

body

}

Type v = i ;

in t oldD = D ;

a s s e r t (I) ;

havoc(v,A)
assume (I) ;

i f (c) {

[bodyT (body)c]
i n c

a s s e r t (I) ;

a s s e r t (D >= 0 &&

D < oldD) ;

assume (f a l s e) ;

}

{

s tmt1 ;

s tmt2 ;

s tmt3 ;

. . .

}

{

[bodyT (stmt1)c]
[bodyT (stmt2)c]
[bodyT (stmt3)c]
. . .

}

Table A.6: Rule to translate the statements of a method body (Part2)

52

A.2 Case Studies

A.2 Case Studies

Listing A.1: Case Study BubbleSort

1 package CaseStudy;
2

3 import TestAnnotations.Unwind;
4 import TestAnnotations.Verifyable;
5

6 /**
7 * Created by jklamroth on 10/26/18.
8 */
9 class BubbleSort {

10 /*@
11 @ requires arr != null && arr.length <= 5;
12 @ ensures (\forall int v; v >= 0 && v <= \result.length - 1; (\

forall int w; w >= 0 && w <= v - 1; \result[v] >= \result[w
]));

13 @ assignable arr[*];
14 @*/
15 @Verifyable
16 @Unwind(number = 7)
17 static int[] sort(int arr[]) {
18 for(int j = arr.length - 1; j >= 0; --j) {
19 for (int i = 0; i < j; ++i) {
20 if (arr[i] > arr[i + 1]) {
21 swap(arr, i, i + 1);
22 }
23 }
24 }
25 return arr;
26 }
27

28 /*@
29 @ requires array != null && array.length >= 2;
30 @ requires first < array.length && first >= 0;
31 @ requires second < array.length && second >= 0;
32 @ requires first != second;
33 @ ensures \old(array[first]) == array[second] && \old(array[

second]) == array[first];
34 @ assignable array[first], array[second];
35 @*/
36 @Verifyable
37 static void swap(int array[], int first, int second) {
38 array[first] = array[first] ^ array[second];
39 array[second] = array[second] ^ array[first];
40 array[first] = array[first] ^ array[second];
41 }
42 }

53

A Appendix

Listing A.2: Case Study DualPivotQuicksort

1 package CaseStudy;
2

3 import TestAnnotations.Unwind;
4 import TestAnnotations.Verifyable;
5

6 class DualPivotQuicksort {
7

8 static int less, great;
9 static int e1,e2,e3,e4,e5;

10

11 /*@
12 @ requires a != null && a.length <= 5;
13 @ requires 0 <= left && right < a.length;
14 @ requires left == less && less < great && great < a.length;
15 @ requires (\exists int j; less+1 <= j && j < great; a[j] >=

pivot1);
16 @ ensures less < great;
17 @ ensures (\forall int i; left < i && i < less; a[i] < pivot1);
18 @ ensures a[less] >= pivot1;
19 @ ensures \old(less) < less;
20 @ assignable less;
21 @*/
22 @Verifyable
23 @Unwind(number = 7)
24 static void move_less_right(int[] a, int left, int right, int

pivot1) {
25 /*@
26 @ loop_invariant
27 @ 0 <= less && less <= great && great < a.length
28 @ && (\forall int i; left < i && i < less+1; a[i] < pivot1

)
29 @ && (\exists int j; less+1 <= j && j < great; a[j] >=

pivot1)
30 @ && \old(less) <= less;
31 @ loop_modifies less;
32 @ decreases great - less;
33 @*/
34 while (a[++less] < pivot1) {
35 }
36 }
37

38 /*@
39 @ requires a != null && a.length <= 5;
40 @ requires 0 <= left && left <= less && less < great && great

== right && right < a.length;
41 @ requires (\exists int i; less <= i && i < great; a[i] <=

pivot2);
42 @ ensures less <= great;
43 @ ensures (\forall int i; great < i && i < right; a[i] > pivot2

);
44 @ ensures a[great] <= pivot2;
45 @ ensures great < \old(great);

54

A.2 Case Studies

46 @ assignable great;
47 @*/
48 @Verifyable
49 @Unwind(number = 7)
50 static void move_great_left(int[] a, int left, int right, int

pivot2) {
51 /*@
52 @ loop_invariant great > 0;
53 @ loop_invariant left <= great && great <= right;
54 @ loop_invariant less <= great;
55 @ loop_invariant (\forall int i; great-1 < i && i < right; a[

i] > pivot2);
56 @ loop_invariant (\exists int j; less <= j && j < great; a[j]

<= pivot2);
57 @ decreases great;
58 @ loop_modifies great;
59 @*/
60 while (a[--great] > pivot2) {
61 }
62 }
63

64 /*@
65 @ requires a != null && a.length <= 5 && left >= 0;
66 @ requires 0 <= k && k <= great && great < a.length;
67 @ requires (\exists int i; left <= i && i <= great; a[i] <=

pivot2);
68 @ ensures 0 <= great;
69 @ ensures (\forall int i; great < i && i <= \old(great); a[i] >

pivot2);
70 @ ensures a[great] <= pivot2 || great == k;
71 @ ensures k <= great && great <= \old(great);
72 @ assignable great;
73 @*/
74 @Verifyable
75 @Unwind(number = 7)
76 static void move_great_left_in_loop(int[] a, int k, int left, int

right, int pivot2) {
77 /*@
78 @ loop_invariant
79 @ k <= great && 0 <= great
80 @ && (\exists int i; left <= i && i <= great; a[i] <=

pivot2)
81 @ && (\forall int j; great < j && j <= \old(great); a[j] >

pivot2)
82 @ && great <= \old(great);
83 @ decreases great;
84 @ loop_modifies great;
85 @*/
86 while (a[great] > pivot2 && great != k) {
87 --great;
88 }
89 }
90

91 /*@

55

A Appendix

92 @ requires 0 <= left && left < right && right - left >= 46 &&
left <= 10000 && right <= 10000;

93 @ ensures left < e1 && e1 < e2 && e2 < e3 && e3 < e4 && e4 < e5
&& e5 < right;

94 @ assignable e1,e2,e3,e4,e5;
95 @*/
96 @Verifyable
97 static void calcE(int left, int right) {
98 int length = right - left + 1;
99 int seventh = (length >> 3) + (length >> 6);

100 seventh++;
101 e3 = (left + right) >>> 1; // The midpoint
102 e2 = e3 - seventh;
103 e1 = e2 - seventh;
104 e4 = e3 + seventh;
105 e5 = e4 + seventh;
106 }
107 }

56

A.2 Case Studies

Listing A.3: Case Study Hamming Weight

1 package CaseStudy;
2

3 import TestAnnotations.Unwind;
4 import TestAnnotations.Verifyable;
5

6 class HammingWeight {
7

8 /*@ requires a != null;
9 @ requires a.length <= 5;

10 @ ensures \result <= a.length * 32;
11 @ assignable \nothing;
12 @*/
13 @Verifyable
14 @Unwind(number = 6)
15 int weight(int[] a) {
16 int result = 0;
17 //@ loop_invariant result <= i * 32;
18 //@ loop_invariant i >= 0 && i <= a.length;
19 //@ loop_modifies result;
20 for(int i = 0; i < a.length; i++) {
21 int x = a[i];
22 x = x - ((x >>> 1) & 0x55555555);
23 x = (x & 0x33333333) + ((x >>> 2) & 0x33333333);
24 x = (x + (x >>> 4)) & 0x0f0f0f0f;
25 x = x + (x >>> 8);
26 x = x + (x >>> 16);
27 result += (x & 0x3f);
28 }
29 return result;
30 }
31

32 /*@ requires a != null;
33 @ requires a.length <= 5;
34 @ ensures \result <= a.length * 32;
35 @ assignable \nothing;
36 @*/
37 @Verifyable
38 @Unwind(number = 6)
39 int weight3(int[] a) {
40 int result = 0;
41 for(int i = 0; i < a.length; i++) {
42 int x = a[i];
43 x = x - ((x >>> 1) & 0x55555555);
44 x = (x & 0x33333333) + ((x >>> 2) & 0x33333333);
45 x = (x + (x >>> 4)) & 0x0f0f0f0f;
46 x = x + (x >>> 8);
47 x = x + (x >>> 16);
48 result += (x & 0x3f);
49 }
50 return result;
51 }
52

57

A Appendix

53 /*@ requires a != null;
54 @ requires a.length <= 5;
55 @ ensures \result <= a.length * 32;
56 @ assignable \nothing;
57 @*/
58 @Verifyable
59 @Unwind(number = 33)
60 int weight2(int[] a) {
61 int result = 0;
62 //@ loop_invariant result <= i * 32;
63 //@ loop_invariant i >= 0 && i <= a.length;
64 //@ loop_modifies result;
65 for(int i = 0; i < a.length; i++) {
66 int x = a[i];
67 while(x != 0) {
68 result += x&1;
69 x = x >>> 1;
70 }
71 }
72 return result;
73 }
74 }

58

A.2 Case Studies

Listing A.4: Case Study Multiplication of Nondeterministic Values

1 package CaseStudy;
2

3 import TestAnnotations.Unwind;
4 import TestAnnotations.Verifyable;
5

6 /**
7 * Created by jklamroth on 2/1/19.
8 */
9 public class MultExample {

10 /*@
11 @ requires x1 >= 0 && x2 >= 0;
12 @ requires x1 < 256 && x2 < 256;
13 @ ensures \result == x1 * x2;
14 @ assignable \nothing;
15 @*/
16 public static int mult(int x1, int x2) {
17 int res = 0;
18 //@ loop_invariant res == i * x2;
19 //@ loop_invariant i >= 0 && i <= x1;
20 //@ loop_modifies res;
21 //@ decreases (x1 - i) + 1;
22 for(int i = 0; i < x1; ++i) {
23 res += x2;
24 }
25 return res;
26 }
27

28 //@ requires x1 < 256 && x2 < 256;
29 //@ requires x2 >= 0&& x1 >= 0;
30 //@ requires res == x1 * x2;
31 //@ ensures res + x2 == (x1 + 1) * x2;
32 @Verifyable
33 public void test(int x1, int x2, int res) {
34 }
35 }

59

A Appendix

Listing A.5: Case Study PairInsertionSort

1 package CaseStudy;
2

3 import TestAnnotations.Unwind;
4 import TestAnnotations.Verifyable;
5

6 /**
7 * This Pair Insertion Sort in which two elements are handled at a

time
8 * is used by Oracle’s implementation of the Java Development Kit (

JDK)
9 * for sorting primitive values, where a is the array to be sorted,

and
10 * the integer variables left and right are valid indices into a that
11 * set the range to be sorted.
12 * This was the first challenge from the VerifyThis competition @

ETAPS 2017
13 * organized by M. Huisman, R. Monahan, P. Mueller, W. Mostowski,
14 * and M. Ulbrich.
15 * The specification considers only sortedness, the permutation

property
16 * is yet to be done.
17 * @author Michael Kirsten <kirsten@kit.edu>
18 */
19 public class PairInsertionSort {
20

21 /*@ public normal_behaviour
22 @ requires a != null && a.length < 5;
23 @ requires 0 < left && left <= right && right < a.length;
24 @ //requires right - left + 1 < 47;
25 @ requires (\forall int i; left - 1 <= i && i <= right; a[left

- 1] <= a[i]);
26 @ assignable a[left..right];
27 @ ensures (\forall int i; \old(left) - 1 <= i && i < \old(right

); a[i] <= a[i + 1]);
28 @*/
29 @Unwind(number = 7)
30 @Verifyable
31 public static void sort(int[] a, int left, int right) {
32

33

34 for (int k = left; ++left <= right; k = ++left) {
35 int a1 = a[k];
36 int a2 = a[left];
37

38 if (a1 < a2) {
39 a2 = a1;
40 a1 = a[left];
41 }
42

43 while (a1 < a[--k]) {
44 a[k + 2] = a[k];
45 }

60

A.2 Case Studies

46 a[++k + 1] = a1;
47 while (a2 < a[--k]) {
48 a[k + 1] = a[k];
49 }
50

51 a[k + 1] = a2;
52 }
53 int last = a[right];
54 while (last < a[--right]) {
55 a[right + 1] = a[right];
56 }
57

58 a[right + 1] = last;
59 }
60 }

61

A Appendix

Listing A.6: Case Study BitInteger toUnsinged

1 package CaseStudy;
2

3 import TestAnnotations.Verifyable;
4

5 /**
6 * Created by jklamroth on 12/18/18.
7 */
8 public class BigInt {
9 int[] result;

10

11 final static long LONG_MASK = 0xffffffffL;
12

13 // returns the value of the input integer as if it was unsigned
14 /*@ ensures value == 0 ==> \result == 0;
15 @ ensures value != 0 ==> \result > 0;
16 @ ensures value > 0 ==> \result == value;
17 @ ensures value < 0 ==> \result == value + 0x100000000L;
18 @ ensures \result >= 0;
19 @ ensures \result < 0x100000000L;
20 @*/
21 @Verifyable
22 public static long toUnsigned(int value) {
23 return (long)value & 0xffffffffL;
24 }
25 }

62

	Abstract
	Zusammenfassung
	Introduction
	Foundations
	First Order Dynamic Logic (FODL)
	Program Verification
	Deductive Verification (DV)
	Bounded Model Checking (BMC)

	Java Modeling Language (JML)
	Tools
	JBMC
	OpenJML

	Translating Java and JML to JAVA!?
	Translating a While-Language
	Translating real Java and JML
	Nothing is changing - How to handle loop invariants
	Translating expressions
	Translating Quantifiers
	Framing everybody - or how to handle assignables
	Ensuring Well-definedness
	Method Calls - Making it modular
	Wreaking havoc - or how to anonymize Java objects
	Object Invariants

	Implementation
	Design Decisions
	Discussion of supported features
	Tool Options
	Testing

	Evaluation
	Bubble Sort
	Big Integer Conversion
	HammingWeight
	Dual-Pivot-Quicksort
	PairInsertionSort
	Multiplication

	Related Work
	Combining Deductive Verification and BMC
	KeY
	JML Runtime Checker

	Conclusion
	Bibliography
	Appendix
	Formal Rules
	Case Studies

