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Abstract
A numerical model implemented in the open-source finite-element method
FreeFEM program is presented, with the aim of introducing students to the
calculation of AC losses in superconductors. With this simple approach, stu-
dents can learn about the critical state model used to describe the macroscopic
electromagnetic behavior of superconductors and the importance of different
factors influencing the AC losses of superconductors.
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1. Introduction

Despite being materials with no electrical resistance, superconductors exhibit power loss dissi-
pation when subjected to time-varying magnetic fields. This is a situation met often in several
applications. For example, power cables carrying AC transport current or DC superconducting
magnets being charged or discharged.

Such power dissipation can represent a significant burden, because of the low temperatures
at which superconductors operate. For example, 1 W dissipated at cryogenic temperature has
a much higher cost in terms of the energy necessary to remove the generated heat. On top of
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that, the efficiency of machines used to obtain cryogenic temperatures is very far from the
ideal one [1]. In short, such power dissipation—which goes under the general name of
‘AC loss’—can limit the efficiency and increase the cost of superconducting applications, thus
limiting the possibility of their penetration in the market. Therefore, for the design of efficient
superconducting applications, numerical models able to accurately predict the AC losses are
extremely important [2].

In this contribution, we propose a numerical model aiming at introducing students to
AC loss calculation in superconductors. The model is based on the finite-element method
(FEM) and is implemented in the open-source program FreeFEM [3, 4], which can be easily
installed as a stand-alone application on different platforms. This enables students to run the
scripts on their computers also outside of lectures and to review the problems at their own
pace. The code is available on the HTS Modelling Workgroup website [5] and as supplemental
material of this article.

The article is organized as follows. Section 2 concisely recalls the origin of AC losses in
type-II superconductors and introduces the critical state model (CSM) for modelling the elec-
trodynamics of ‘hard’ superconductors. Section 3 describes the implementation of the CSM
into the program FreeFEM. Section 4 contains a series of exercises related to AC loss calcu-
lation in superconductors. Section 5 discusses the relation of the results found in the exercises
to cases of practical interest. Finally, section 6 draws the main conclusions.

2. AC losses and critical state model

Superconductors used in large-scale applications belong to the group of type-II superconduc-
tors, which can maintain the superconducting state while being subjected to large magnetic
fields. They operate in the so-called mixed state: the magnetic field penetrates the supercon-
ductor in a quantized form: each quantum carries a very small quantity of magnetic flux,
approximately equal to 2.07 × 10−15 Wb. These flux quanta are characterized by a normal
zone and by superconducting screening currents, and they are also referred to as ‘vortices’.
The spatial gradient of magnetic flux inside the material gives rise to macroscopic currents
(figure 1). A detailed description and a visual representation of the mechanism are available
in [6].

The vortices can anchor (or ‘pin’) to imperfections of the materials, avoiding the move-
ment that would cause energy dissipation. This pinning mechanism is what enables type-II
superconductors to carry large currents in the presence of magnetic fields without dissipation.
The materials used in applications have a strong pinning force and are called ‘hard’ supercon-
ductors. When the magnetic field varies with time, the magnetic flux quanta have to rearrange
themselves in order to follow the time-varying excitation: as they move, they dissipate energy.
This is the mechanism behind AC loss dissipation in type-II superconductors.

For estimating the AC losses, one needs to determine how the macroscopic currents evolve
as a result of time-varying magnetic fields. This can be done by means of the critical state
model (CSM), developed by Bean in the early 1960s [7, 8]. The model assumes that the mag-
nitude of the macroscopic current density is either null or equal to the so-called critical current
density Jc.

The evolution of the current density in a superconductor is determined by the magnetic
history, according to the following principles:

• no current flows in the regions that have not been previously reached by the flux vortices;
• in the rest of superconductor, the flux vortices arrange with a gradient of density of

magnitude Jc.
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Figure 1. Penetration of magnetic field inside a type-II superconductor in the form of
quanta of magnetic flux (represented by the cylinders in the figure), surrounded by
superconducting screening currents. The spatial gradient of magnetic flux inside the
material gives rise to macroscopic currents. The red surface represents the cross section
where the magnetic field profiles of figure 1 are taken. Figure courtesy of Nicolò Riva,
EPFL.

In mathematical terms, this is expressed as follows:

|J| =
{

0 in regions where B = 0
Jc elsewhere.

(1)

The direction of the current density is determined by the magnetization history of the
superconductor. An example is shown in figure 1 for an infinite superconducting slab sub-
jected to a time-varying magnetic field parallel to its face, for which the current density and
magnetic field profiles can be easily calculated. For this particular case, the slab is infinitely
large in the y and z directions and the problem to solve is one-dimensional: one has to find
the current and field profiles along the thickness of the slab (x direction). In addition, for this
infinite geometry, the field at the vacuum–superconductor interface is known and equal to the
applied one.

The general relation

∇× H = J (2)

becomes

∂H
∂x

= −Jz. (3)

Based on (1), the current density is different from zero only where the magnetic field is differ-
ent from zero and the gradient of the magnetic field is equal to ±Jc, according to (3). Figure 1
shows the magnetic field profiles across the slab’s thickness as the field is increased from zero
to a maximum, reduced to zero, and then inverted to a negative value. One remarkable feature
is that when the field is brought back to zero, some magnetic field is trapped in the supercon-
ductor. The profile of the trapped field depends on the amplitude of the field at which the slab
has been exposed.

With the CSM, the rate with which the field changes is irrelevant. The profiles of figure 1
depend only on the magnetization history of the sample, not on the rate with which the
magnetization occurs.

From the current density and magnetic field distributions shown in figure 1, it is pos-
sible to calculate the cyclic losses of a superconducting slab subjected to an AC magnetic

3
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Figure 2. An infinite superconducting slab subjected to a magnetic field parallel to its
face. Left: As the external field is increased from zero, it penetrates further inside the
superconductor; the slope of the front is constant and equal to −Jc, according to (3).
Right: As the external field is decreased, oppositely sloped fronts (slope +Jc) appear
near the surface of the slab; at t = t3, the external field is null, but some magnetic
field is trapped inside the superconductor; at t = t5 the external field is completely
reversed with respect to t = t2 and so are the field fronts inside the superconductor.
Reproduced from [9]. CC BY 3.0.

field. Other geometries, such as superconducting wires with circular cross section, are more
challenging and finding the current density and magnetic field distributions with pen-and-paper
calculations can be very difficult. Numerical simulations provide an easier and much more flex-
ible approach for finding such distributions. In the following section, we describe a possible
implementation of the CSM into a finite-element method program. Such implementation will
be used to calculate the current and magnetic field profiles and to evaluate the AC losses in
cases of increasing complexity.

3. The Campbell model

In 2007, Prof. A M Campbell presented a numerical model for the solution of the critical state
in superconductors using the magnetic vector potential as state variable [10]. The basic idea of
the model is to solve

∇×
(

1
μ0

∇× A
)

= J, (4)

where A is the magnetic vector potential and J is the critical current density. For the 2D
problems considered in this paper, the equation becomes

∇2A = −μ0J. (5)

According to the CSM, the E–J relationship takes the form of the thick black line in figure 2:
any electric field drives a current of magnitude Jc. For the implementation in a numerical model,
the sharp E–J relationship of the CSM needs to be smoothed. This can be done in different
ways, here we use

J = Jc erf

(
E
E0

)
, (6)

where erf is the error function [11] and E0 is a parameter controlling the steepness of the curve.
Other functions based on exponential [10] or hyperbolic tangent [12] can be used. Note that,
differently from the ‘pure’ CSM, with these approximations the current density can take values
in the interval [−Jc, Jc].

4
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The electric field can be expressed as

E = −∂A
∂t

−∇φ. (7)

In this paper we consider individual tapes or multiple tapes in parallel, so the voltage gradi-
ent term ∇φ can be ignored. The combination of equations (5)–(7) allows solving general
time-dependent problems and calculating the power dissipation as product J · E. The cyclic
losses of an AC excitation (e.g. a sinusoidal external magnetic field) can be calculated by
integrating J · E on the superconductor’s cross section and averaging over the AC cycle.

However, it is possible to demonstrate that in certain AC cases, the cyclic losses can be
calculated as four times the losses dissipated in the first quarter of the AC cycle (starting from
a virgin sample, i.e. with no trapped magnetic flux) [13–16]. In addition, as long as the pen-
etration of the field inside the superconductor is monotonic, the time integration of the power
dissipation from t = 0 to the peak can be performed in one step. In that case, the AC losses can
be computed as

Q = −4
∫
Ω

JpAp dΩ, (8)

where Ω is the superconductor’s cross section, and Jp and Ap are, respectively, the current
density and the magnetic vector potential at the peak of the AC cycle. From the practical
point of view, this means that the cyclic AC losses can be computed with a single one-step
simulation, solving for the magnetic vector potential at the peak of the AC cycle3.

4. Exercises

The model aims at calculating the current density and magnetic field distributions in the
transverse cross sections of an infinitely long superconductor. In this respect, the computa-
tional domain is a two-dimensional space consisting of one air region in which one or more
superconductor cross sections are immersed. The magnetic flux density has only the two com-
ponents Bx and By, whereas the current density and magnetic vector potential have only the z
component and are therefore scalar (see figure 3 for the definition of the coordinates).

The current density distribution in the superconductor is calculated by solving the static
equation

∇2A = −μ0Jc erf(−A/Ar) (9)

where Ar is a parameter resulting from the combination of E0 and the time it takes to reach
the peak of the AC excitation (for a sine at 50 Hz, this is 5 ms). In this work, we used Ar =
1 × 10−7 Wb m−1.

An external uniform magnetic field is applied by setting the boundary conditions for
A on the outer air boundary. In 2D Cartesian coordinates, B = ∇× A becomes Bx =
∂A/∂y, By = −∂A/∂y. For example, in order to obtain a magnetic field B0 along y, it is
sufficient to impose A = −B0x as boundary condition. In a similar way, a transport current

3 This simple way of calculating the cyclic AC losses with a single-step calculation is not general and is valid only in
certain cases. One of the conditions is that the current density does not change sign during a monotonic increase of the
magnetic field. The cases considered here satisfy this condition, except for the case of ellipse with inclined field, for
which the error is nevertheless quite small. More details about AC loss calculation in superconductors can be found
in [1]. An illustration of the problem of the elliptical superconductor with inclined field can be found in [17].
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Figure 3. Approximation of the sharp E–J relationship of the CSM (thick black line)
by means of the error function.

is imposed by setting a constant value for the magnetic vector potential on the boundary. The
actual value of the current can be calculated in the post-processing by integrating the current
density J over the superconductor’s cross section.

The solution is sought on a multi-region domain (air and superconductor) discretized by
means of a mesh with triangular pattern. As test functions, second order polynomial functions
are used.

The weak formulation of the problem is [18]
∫
Ω

∇A · ∇v dΩ =

∫
Ω

μ0Jc erf(−A/Ar) · v dΩ, (10)

where Ω is the computational domain (air and superconductor) and v are second-order
polynomials.

Due to the non-linearity of the problem, the achievement of a stable solution occurs by
iteratively solving the weak formulation using the values computed in the previous iteration
as input for the next one until the difference among two consecutive iterations drops below a
certain value, in this case 1 × 10−7.

The cyclic losses can be computed by means of equation (8). In the exercises, we will
refer to magnetization and transport losses. The former are caused by an externally applied
AC magnetic field, the latter by an AC transport current.

The commented code for solving the exercises of sections 4.1 and 4.2 and a video tuto-
rial are provided as supplemental material (https://stacks.iop.org/EJP/41/045203/mmedia).
The code can also be used to solve the exercise with transport current (section 4.3) by simply
changing the boundary conditions.

4.1. Round superconductor in external field

This exercise consists in calculating the magnetization losses of a round superconducting wire
subjected to an external magnetic field. The superconductor is defined as an ellipse with semi-
axes a = R

√
η and a = R/

√
η, so that the area of the ellipse is always πab, independently

of the value of η. This definition will be useful for the exercises of section 4. For now,
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Figure 4. Round superconductor subjected to an external field. The condition A =
−0.02x Wb m−1 applied on the boundary of the air domain results in a vertical magnetic
field of 20 mT: distributions of (a) magnetic vector potential; (b) magnetic flux density;
(c) current density.

we consider a circle and then set η = 1. We choose R = 1 mm and a critical current density
Jc = 1 × 108 A m−2. The critical current of the wire is therefore about 314.15 A.

Figure 4 shows the distributions of magnetic vector potential, magnetic flux density
and current density in a round superconductor subjected to a magnetic field of 20 mT.4

Note the bending of the magnetic vector potential lines around the superconductor (figure 4
(a)), which results in a magnetic flux density higher than the applied one (figure 4(b)). In
the superconductor, a non-zero current density is present only in the regions where there is
magnetic flux density, and its value is ±Jc, as expected according to the CSM (figure 4(c)).

Figure 5 shows the calculated cyclic losses as a function of the magnitude of the external
field B0. The losses agree well with the approximate analytical expression by Carr [19]:

QM = πR2 (8/3)μ0Hp
2(H0/Hp)3

(3π2/32) + (H0/Hp)2
(J m−1). (11)

4 For readability reasons, this and other similar figures have been plotted with Matlab, which has better graphical
capabilities than FreeFEM. GNU/Octave is another viable option.
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Figure 5. Magnetization AC losses as a function of the magnitude of the external field
B0 for a round superconductor wire.

where H0 = B0/μ0 and Hp = 2RJc/π. On a log–log scale like that of figure 5, one can observe
a change of slope, from Q ≈ B3 to Q ≈ B1, occurring when the field fully penetrates the
superconductor. This exercise confirms the accuracy of AC loss calculation by means of
equation (11) and a general important feature of the magnetization losses of superconductors:
when plotted as a function of the applied field, initially they increase very rapidly, then, after
the field fully penetrates the superconductor, more gradually.

4.2. Elliptical superconductor in external field

The first part of this exercise consists in repeating the previous exercise keeping the external
field at a given value (and applied along the y direction) and varying the aspect ratio of the
ellipse by changing the parameter η (figure 6). It should be noted that even if the aspect
ratio of the superconductor changes (because of η), both the amount (i.e. the area of the
ellipse πab) and the ‘quality’ (i.e. the critical current density Jc) of the superconductor material
remain the same. In other words, this exercise investigates solely the effects of a geometrical
deformation of the superconductor’s cross section on the AC losses.

Figure 7 shows the magnetization AC losses of an elliptical superconductor for an applied
magnetic field of 20 mT as a function of the parameter η. This parameter modifies the
aspect ratio of the ellipse, and values of η > 1 correspond to progressively flatter ellipses5.
The magnetic field is applied parallel to the ellipse’s minor axis. As a consequence, as the
ellipse become flatter, the magnetic field lines bend and concentrate more around the edges of
the ellipse. The field there is progressively higher (an example for η = 10 is shown in figure 7)
and this explains why the losses increase with η.

One could expect the AC losses to decrease for η < 1 (when the field becomes parallel
to the ellipse’s major axis), but this happens only to a certain extent. This is probably due to
the fact that as η becomes very small, the ellipse becomes very elongated in the direction

5 For small and large values of η the ellipse becomes very elongated, so one should make sure that the mesh is
sufficiently fine, with at least a few elements along the minor axis.
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Figure 6. Magnetic flux density distribution in and around an elliptical superconductor
with η = 10 for an applied magnetic field of 20 mT. The magnetic flux density reaches
values higher than the applied one, in this case about 40 mT. Compare this with the case
of a circular superconductor (η = 1, figure 4(b)), where the maximum value is 33 mT.

Figure 7. Magnetization AC losses of an elliptical superconductor for an applied
magnetic field of 20 mT as a function of the parameter η.

parallel to the field. It is therefore very easy for the field to penetrate the superconductor and
hence the losses do not decrease.

The second part of this exercise deals with another important factor affecting the values
of the AC losses: the direction of the magnetic field. Figure 8 shows the AC losses for an
elliptical superconductor with η = 10 subjected to a magnetic field of 20 mT of various orien-
tations. When the field is parallel to the minor axis (θ = 0◦), the field near the edges is greatly

9
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Figure 8. Magnetization AC losses of an elliptical superconductor (with η = 10)
subjected to an external magnetic field of 20 mT of different orientations.

enhanced (see figure 7) and the losses are high. When the field is parallel to the major axis
(θ = 90◦), the distortion of the field is minimal, the field is almost equal to the applied one and
the losses are low.

As it will be discussed later, the shape of the superconductor and the orientation of the
magnetic field have important consequences for the design of superconducting applications.

4.3. Elliptical superconductor with transport current

This exercise consists in calculating the AC losses in a superconductor of elliptical cross
section caused by an AC transport current of magnitude I0. A transport current can be
imposed by applying a constant value of the magnetic vector potential on the boundary of the
air domain. The value of the generated current is calculated in the post processing as integral
of J over the superconductor’s cross section.

Figure 9 shows the distributions of magnetic vector potential, magnetic flux density and
current density in a round superconductor carrying transport current. Similarly to the case of
magnetization, a non-zero current density is present only in the regions where there is magnetic
flux density.

Figure 10 shows the transport AC losses as a function of the current magnitude for η values
equal to 1 and 10. The results are rather similar. This is in accordance with the result of the
analytical formula by Norris [13]:

QT =
Ic

2μ0

π

[(
1 − I0

Ic

)
ln

(
1 − I0

Ic

)
+

(
2 − I0

Ic

)
I0

2Ic

]
, (12)

which predicts that the losses do not depend on the aspect ratio of the ellipse. This is a
substantial difference with respect to the magnetization losses.

10
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Figure 9. Round superconductor carrying a transport current. The condition A = −1.5
× 10−4 Wb m−1 applied on the air boundary of the air domain results in a transport cur-
rent of 232 A: distributions of (a) magnetic vector potential; (b) magnetic flux density;
(c) current density.

4.4. Stack of tapes in external field

Superconducting tapes are often assembled together in cable structures, in order to obtain
conductors with higher current-carrying capacity. The simplest tape assembly is a stack of
tapes. In this and the next subsections, we investigate the magnetization and transport AC
losses of a stack of five tapes. We use elliptical tapes with η = 10.

Figure 11 shows the current density distribution in a five-tape stack subjected to a mag-
netic field of 50 mT parallel to the ellipses’ minor axes. Due to the small separation
between the tapes (1 mm center-to-center), the tapes have a strong electromagnetic coupling.
As a result, the stack behaves similarly to a unique larger conductor, with a width-to-thickness
ratio close to unity. This is clearly visible from the shape of the current-free region, which
resembles that of the circular superconductor shown in figure 4(c).

From figure 11 one can see that the top and bottom tapes have a larger current penetration.
This is because they are exposed to a larger magnetic field. As a consequence, they are expected
to have larger AC losses than the tapes in the center of the stack, which are partially ‘protected’
from the penetration of the magnetic field. This is confirmed from the data shown in table 1,
which show the magnetization AC losses of the five-tape stack for different center-to-center
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Figure 10. Transport AC losses as a function of the magnitude of transport current I0
for elliptical superconductor wires of different aspect ratio.

Figure 11. Current density distribution in a five-tape stack subjected to a magnetic field
of 50 mT, parallel to the minor axes of the ellipses. The center-to-center distance between
the tapes is 1 mm.

distances. As the distance increases, the tapes tend to behave more like individual ones, and
the AC losses increase.

One can calculate the AC losses of an individual elliptical tape (with η = 10) subjected to
the same field of 50 mT and find them to be 4.03 × 10−2 J m−1. Then, for reference, one can
estimate the losses of five ‘independent’ tapes as five times that amount, i.e. 2.02× 10−1 J m−1,
and observe that the losses of the stack are much lower, especially when the tapes are closely
packed.

12
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Figure 12. Current density distribution in a five-tape stack carrying a total transport
current of 930 A. The center-to-center distance between the tapes is 1 mm. The current
is not evenly distributed between the tapes.

Table 1. Magnetization AC losses of a five-tape stack for different center-to-
center distances.

AC losses (J m−1)

Tape 1 mm 2 mm 5 mm

1 1.45 × 10−2 2.15 × 10−2 3.30 × 10−2

2 8.86 × 10−3 1.49 × 10−2 2.97 × 10−2

3 7.83 × 10−3 1.37 × 10−2 2.91 × 10−2

4 8.86 × 10−3 1.49 × 10−2 2.96 × 10−2

5 1.45 × 10−2 2.15 × 10−2 3.30 × 10−2

Total 5.46 × 10−2 8.65 × 10−2 1.54 × 10−1

Table 2. Transport AC losses in a five-tape stack.

Tape Current (A) AC losses (J m−1) Norris losses (J m−1)

1 291 2.05 × 10−2 1.20 × 10−2

2 123 6.75 × 10−3 4.97 × 10−4

3 101 5.07 × 10−3 2.62 × 10−4

4 123 6.75 × 10−3 4.97 × 10−4

5 291 2.05 × 10−2 1.20 × 10−2

Total 930 5.95 × 10−2 2.53 × 10−2

One can conclude that assembling the tapes into a stack has a positive effect for the
magnetization losses. This is due to the fact that, if the tapes are closely packed, the stack
behaves as a monolithic conductor with a smaller width-to-thickness ratio, so that the con-
centration of the magnetic flux at the edges is reduced. As the distance between the tapes is

13
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increased, the magnetic flux penetrates between the tapes, which tend to behave as individual
ones. The monolithic-conductor behavior gradually disappears and the losses increase.

4.5. Stack of tapes with transport current

In the case of a stack of tapes, the current is injected at the ends where the tapes are usually
soldered together. Due to the different impedance of the current paths offered by the different
tapes, the current is not equally divided between them, but tends to flow in the tapes situated at
the top and the bottom of the stack. This case can be easily considered with the current model
by simulating several tapes on top of each other and applying the transport current as done in
section 4.3 for an individual tape. It is important to note that the boundary condition for the
magnetic vector potential A = A0 only sets the total current flowing in the stack, not the current
flowing in each tape, which is determined by the impedance offered by the different current
paths.

Figure 12 shows the distribution of current density in a five-tape stack. It is clearly vis-
ible that most of the current flows in the top and bottom tapes. In the simulated case, a
magnetic vector potential of 5 × 10−4 Wb m−1 generates a total current of about 930 A,
but the currents in the various tapes and the corresponding cyclic losses are very far from
equal, as reported in table 2. One can also easily verify that the losses of the individual tapes
are higher than those calculated for a single tape by means of equation (12), with I0 equal to
the values in the second column of the table. This is because the tapes carry transport current
while they are also subjected to the field generated by the other tapes.

In fact, the tapes are electromagnetically coupled, and they approximately behave in the
same way as a larger, unique superconductor. If one uses equation (12) with the ‘total’ values
of I0 and Ic, i.e. I0 = 930 A and Ic = 5× 314.15 A, one obtains an AC loss value of 5.04× 10−3

J m−1, which is not too far from the 5.95 × 10−3 J m−1 numerically calculated for the stack
(see table 2). As it will be discussed later in section 5, this loss increase due to electromagnetic
interaction between the tapes in a stack limits the possibility of using stacks for long-distance
transmission of AC power.

5. A look at real applications

The simplicity of the used model notwithstanding, some results of the proposed exercise
highlight important features that are at the core of present day’s research aiming at the com-
mercialization of superconducting applications. This applies particularly to high-temperature
superconductor (HTS) tapes, which are manufactured in two forms: as multi-filamentary tapes
embedded in a silver matrix or as coated conductors where the superconductor material is a
thin film a few millimeters wide and only one or few micrometers thick. In the first case, the
area of the superconducting filaments has an approximate elliptical shape, so that the approach
of the proposed exercise can be directly applied. In the second case, the geometry is more
‘extreme’ and as such more challenging to simulate. But because of the extremely large width-
to-thickness ratio, some of our findings (such as the influence of the orientation of the field on
the magnetization losses) are even amplified.

For example, superconducting transformers have the tape wound in the form of a solenoid.
In most of the solenoid, the field is oriented parallel to the flat face of the tape (i.e. θ = 90◦

with the definitions of figure 8), which results in low AC losses. At the two ends of the
solenoid, however, there is a substantial perpendicular component of the field (see figure 13),
which causes very large AC losses. In [20] the authors report some calculation for a solenoid
used as a shielded-core superconducting fault current limiter (SFCL) where the last turn has
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Figure 13. Magnetic field lines in and around a multi-layer solenoid made of flat tapes.
Inside the solenoid, the field has the ‘good’ orientation, i.e. parallel to the flat face of the
tapes. At the extremities, however, there is a substantial ‘bad’ perpendicular component,
which can cause a quite high local power dissipation.

Figure 14. Magnetic field lines of the cross section of a cable carrying current. Due to the
interaction between the fields generated by the various tapes, the field is mostly oriented
in the ‘good’ direction, i.e. parallel to the flat face of the tapes. The ‘bad’ perpendicular
component is almost completely canceled. The cancelation is more effective as the gap
between them is reduced.

a power dissipation ten times higher than that of the turns situated in the central part of the
solenoid. In general, measures can be taken to avoid excessive power dissipation at the ends,
e.g. by using ferromagnetic shields or superconductors made of narrower transposed strands.

Resistive-type SFCL are usually manufactured in the form of bifilar windings [21]. The
current of adjacent turns flows in opposite directions, thus strongly reducing the ‘bad’ field
component perpendicular to the flat face of the tape (i.e. θ = 0◦ with the definitions of figure 8)
and then reducing the losses. Bifilar windings have the additional advantage of reducing the
coil’s inductance virtually to zero.

For transporting AC power over long distance, one could be tempted to use compact
tape stacks, because of the extremely reduced cross section. However, this would not
be an efficient solution. From the electromagnetic point of view, the stack behaves like a
monolithic conductor, and this has much larger losses than the same number of independent
tapes, as shown in table 2. This is why AC power cables are manufactured by putting the tapes
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side-by-side around a cylindrical former: the ‘bad’ component of the magnetic field generated
by the tapes near the gap between them is strongly reduced (see figure 14), and so are the AC
losses. In this way, the AC losses of each tape are even lower than those of as many individual
tapes carrying the same current. This was confirmed by measurements in [22].

6. Conclusion

With this work, we presented a finite-element model, implemented in the open-source pro-
gram FreeFEM, that can be used to introduce students to calculation of AC losses in super-
conductors. Estimation and reduction of AC losses are important topics for designing and
manufacturing efficient and cost-competitive superconducting applications. With the presented
model, students can learn about the influence of the superconductor’s geometry and of field
orientation on the AC losses as well as on the effects of assembling superconducting tapes in
bigger cable structures.

The model is implemented in an open-source program and runs on several platforms as a
stand-alone application. The solution of the proposed exercises is very fast (tens of seconds),
so that the students can quickly simulate different cases, both in the classroom and on their
own.
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