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Abstract
Meteorologists in the energy industry increasingly draw upon the potential for
enhanced sub-seasonal predictability of European surface weather following
anomalous states of the winter stratospheric polar vortex (SPV). How the link
between the SPV and the large-scale tropospheric flow translates into forecast
skill for surface weather in individual countries – a spatial scale that is partic-
ularly relevant for the energy industry – remains an open question. Here we
quantify the effect of anomalously strong and weak SPV states at forecast ini-
tial time on the probabilistic extended-range reforecast skill of the European
Centre for Medium-Range Weather Forecasts (ECMWF) in predicting country-
and month-ahead-averaged anomalies of 2 m temperature, 10 m wind speed, and
precipitation. After anomalous SPV states, specific surface weather anomalies
emerge, which resemble the opposing phases of the North Atlantic Oscillation.
We find that forecast skill is, to first order, only enhanced for countries that are
entirely affected by these anomalies. However, the model has a flow-dependent
bias for 2 m temperature (T2M): it predicts the warm conditions in Western,
Central and Southern Europe following strong SPV states well, but is overcon-
fident with respect to the warm anomaly in Scandinavia. Vice versa, it predicts
the cold anomaly in Scandinavia following weak SPV states well, but struggles
to capture the strongly varying extent of the cold air masses into Central and
Southern Europe. This tends to reduce skill (in some cases significantly) for
Scandinavian countries following strong SPV states, and most pronounced, for
many Central, Southern European, and Balkan countries following weak SPV
states. As most of the weak SPV states are associated with sudden stratospheric
warmings (SSWs), our study thus advices particular caution when interpret-
ing sub-seasonal regional T2M forecasts following SSWs. In contrast, it suggests
that the model benefits from enhanced predictability for a considerable part of
Europe following strong SPV states.
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1 INTRODUCTION

The energy industry is strongly affected by weather on
hourly to seasonal time-scales via influences on electric-
ity supply, demand and prices (e.g., Troccoli et al., 2014;
Thornton et al., 2019). With the continuously increasing
use of renewable energy sources such as wind or sunlight,
this weather dependence has and will become even more
critical (e.g., Grams et al., 2017; Bloomfield et al., 2018;
van der Wiel et al., 2019). For instance, the daily-averaged
wind power generation in Germany can vary up to 30
GW1 and even more for Europe depending on the pre-
vailing synoptic situation (e.g., Beerli et al., 2017; Grams
et al., 2017). Consulting operational numerical weather
forecasts for specific countries is thus an important com-
ponent of the energy industry’s daily business. The steady
increase in computational power combined with a con-
tinuous improvement of numerical weather prediction
(NWP) systems in the last decades (Bauer et al., 2015) has
allowed us to extend the operational forecast horizon to
sub-seasonal time-scales (10–60 days; Vitart and Robert-
son, 2019). This time-scale closes the gap toward seasonal
climate predictions, which have already been run opera-
tionally for more than a decade (e.g., Palmer et al., 2004;
Kirtman et al., 2014), and thus advances the worldwide
efforts toward seamless weather and climate prediction
systems (Vitart and Robertson, 2019). Forecasting Euro-
pean weather for lead times beyond two weeks is still only
weakly to moderately skilful, with a strong dependence on
the season and the initial and predicted large-scale flow sit-
uation (e.g., Weigel et al., 2008; Vitart, 2014; Ferranti et al.,
2018), and therefore is an area of active research (Vitart
et al., 2017). Nevertheless, the European energy industry
has already become one of the most important end-users
of operational sub-seasonal forecasts. This requires a pro-
found understanding on if and how important sources
of sub-seasonal predictability enhance forecast skill for
energy-industry-tailored parameters. Beerli et al. (2017)
tackled this question by investigating the role of the strato-
sphere for the predictability of country-aggregated wind
power generation across Europe on monthly time-scales
in reanalysis data (see below for more details). Here we
build upon this study and investigate how the predictabil-
ity from the stratosphere found by Beerli et al. (2017)
translates into sub-seasonal numerical forecast skill for
energy-industry-relevant European surface weather on a
country scale. We continue with a brief discussion of
the current knowledge about sources of sub-seasonal pre-
dictability and forecast skill for European surface weather,

1https://www.energy-charts.de/power_de.htm?source=solar-wind&
year=2019&month=3 (accessed 24 January 2020)

before we discuss the scope of the study at hand in more
detail.

Predictability of the large-scale flow over Europe on
sub-seasonal time-scales is generally gained from the state
of low-frequency climate modes such as the winter strato-
spheric polar vortex (SPV; e.g., Baldwin and Dunkerton,
1999; Ambaum and Hoskins, 2002), the Madden–Julian
Oscillation (e.g., Cassou, 2008; Lin et al., 2009), the
El Niño–Southern Oscillation (e.g., Huang et al., 1998;
Toniazzo and Scaife, 2006), tropical rainfall in general (e.g.,
Scaife et al., 2017; Stan et al., 2017), the Quasi-Biennial
Oscillation (e.g., Holton and Tan, 1980; Anstey and Shep-
herd, 2014; Andrews et al., 2019), or variations in North
Atlantic sea surface temperature (e.g., Rodwell et al., 1999)
and soil moisture (e.g., Koster et al., 2010; Ardilouze et al.,
2017). It is now established that amongst those, the SPV
is potentially the most important source of sub-seasonal
predictability for European weather during mid- and late
winter (Kidston et al., 2015; Butler et al., 2019). This is
because anomalously strong SPV states are statistically fol-
lowed by persistent (up to 60 days) positive phases of the
North Atlantic Oscillation (NAO), and anomalously weak
SPV states by persistent negative phases of the NAO (Bald-
win and Dunkerton, 2001; Charlton-Perez et al., 2018). As
the NAO accounts for a major part of the large-scale flow
variability over Europe (Hurrell, 1996) and thus strongly
influences energy-industry-relevant surface weather (e.g.,
Brayshaw et al., 2011; Clark et al., 2017; Zubiate et al.,
2017), it acts as a connecting link between the strato-
sphere and the surface. Typically, a positive phase of the
NAO is associated with stronger (weaker) than normal
near-surface wind and precipitation in Northern (South-
ern) Europe and higher than normal near-surface tem-
peratures in Central to Northern Europe, and vice versa
during a negative phase of the NAO. The mechanisms
behind the downward influence from the stratosphere to
the troposphere are manifold and partly still debated (But-
ler et al., 2019). Most likely, the tropospheric conditions
before and during the anomalous SPV state (e.g., Ambaum
and Hoskins, 2002; Attard et al., 2016; Kodera et al., 2016;
Karpechko et al., 2017; Schneidereit et al., 2017; White
et al., 2019; Domeisen et al., 2020b) as well as internal
dynamics of the SPV itself (e.g., Holton and Mass, 1976;
Scott and Haynes, 2000; Albers and Birner, 2014; Jucker,
2016) influence the anomalous SPV event and its subse-
quent surface impact. A particular type of anomalously
weak SPV state is the so-called sudden stratospheric warm-
ing (SSW; Scherhag, 1952; Matsuno, 1971; Butler et al.,
2015), during which the stratosphere warms abruptly and
the westerlies associated with the SPV temporarily reverse.
As with weak SPV states as a whole, SSWs can trigger neg-
ative phases of the NAO leading to extreme cold waves
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particularly over Northern Europe and Northern Russia
(e.g., Kidston et al., 2015; Kautz et al., 2020). However,
due to the large case-to-case variability in the dynamics of
SSWs (e.g., Mitchell et al., 2013; Kretschmer et al., 2018),
the tropospheric weather regime response can also dif-
fer from the classical negative phase of the NAO and for
instance yield opposite temperature conditions for Europe
(Beerli and Grams, 2019; Domeisen et al., 2020b). SSWs are
thus particularly delicate events for the European energy
industry.

The potential predictability from the stratosphere has
triggered various studies quantifying the effect of anoma-
lous SPV states, in particular of the critical SSWs, on
sub-seasonal forecast skill. Most of these studies found
an increase in skill both for statistical models (e.g., Bald-
win et al., 2003; Charlton et al., 2003; Christiansen, 2005;
Karpechko, 2015) and numerical models (e.g., Charlton
et al., 2004; Mukougawa et al., 2009; Sigmond et al.,
2013; Tripathi et al., 2015a; 2015b; Scaife et al., 2016)
in predicting a particular tropospheric weather regime
response or anomalous large-scale surface weather con-
ditions directly. However, so far only Beerli et al. (2017)
have investigated how anomalous SPV states affect the
skill for predicting country-averaged surface weather all
over Europe, although this is the scale the energy indus-
try strongly relies on. They used a simple statistical
model based on the SPV state in ERA-Interim to predict
month-ahead-averaged anomalies of country-aggregated
wind power generation in Europe. They obtained consider-
able skill for Northern European countries, but only mod-
erate skill for Central European and no skill for Southern
European countries. The skill was shown to be associ-
ated with both anomalously strong and weak SPV states
at initial time, with the exception of Southern Europe,
where the weak SPV states led to negative skill and thus
to no skill overall. They showed that the NAO-related
near-surface wind anomaly dipoles that follow the anoma-
lous SPV states and affect primarily Northern and South-
ern Europe were mainly responsible for this skill pattern
across Europe.

In this study, we investigate to what degree the
influence of an anomalously strong and weak SPV on
statistical forecast skill for wind power generation, as
found by Beerli et al. (2017), applies to the proba-
bilistic surface weather reforecast skill of the ECMWF
(European Centre for Medium-Range Weather Forecasts)
sub-seasonal NWP ensemble. We relate the SPV state at
forecast initial time to the skill in predicting country-
and month-ahead-averaged 2 m temperature, 10 m wind
speed, and precipitation in Europe. These parameters are
directly relevant for the energy industry and other end
users of sub-seasonal forecasts (such as national weather

services).2 We analyze the three surface parameters sepa-
rately, although they often need to be considered in combi-
nation when predicting country-specific energy demand,
for instance. Investigating the skill from such a multivari-
ate perspective would thus be important as well but this
goes beyond the scope of this study. Section 2 starts with
an overview of the used datasets as well as the applied skill
score and statistical tests. The results are given in Section 3.
They demonstrate how the predicted anomaly compos-
ites compare to ERA-Interim and how this translates into
the skill for individual countries. Section 4 discusses and
summarizes the most important findings.

2 DATA AND METHODS

2.1 Model and observations

We investigate the skill of ECMWF sub-seasonal refore-
casts (hereafter just denoted “forecasts”), obtained from
the Subseasonal-to-Seasonal (S2S) Prediction Project
Database (Vitart et al., 2017), for 2 m temperature T2M
(daily-averaged), 10 m wind speed U10M (instantaneous
at 0000 UTC), and total precipitation P (daily accumu-
lated) during 22 winters between December 1995 and
February 2017 (initial dates in DJF, i.e., the lead times of
some forecasts extend into March). The reforecasts had
been initialized from ERA-Interim twice a week, run
with 11 ensemble members (1 control and 10 perturbed
forecasts) for a lead time of 46 days, and interpolated to a
1.5◦ × 1.5◦ grid after computation. Similarly to other stud-
ies (e.g., Schiraldi and Roundy, 2017; Deflorio et al., 2018),
we use more than two reforecasts per week to increase
sample size (to a total of 1,280), which comes with the
caveat of mixing different model versions (in our case
those are CY41R1, CY41R2, CY43R1, and CY43R3). Some
of these versions differ with respect to horizontal resolu-
tion of the atmosphere (i.e., from 32 km up to day 10 and
64 km beyond to 15 km up to day 15 and 31 km beyond)
and ocean (i.e., from 1 to 0.25◦) and the inclusion of active
sea ice. The number of vertical levels (91), which is crit-
ical for the representation of stratosphere–troposphere
coupling (e.g., Manney et al., 2017; Kawatani et al., 2019),
is the same in all model versions. It is further important
to note that the reforecast dataset used here likely yields

2Analyzing 100 m (instead of 10 m) wind speed would be ideal with
regard to wind power applications, but this parameter is not available in
the Subseasonal-to-Seasonal Prediction Project Database (Vitart et al.,
2017) used for this study. However, a comparison of daily 10 m and
100 m wind speed in 40 years of reanalysis data averaged over Germany
yields a very high correlation (not shown), which makes us confident in
using 10 m wind speed instead.
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lower levels of skill than the operational sub-seasonal
forecasting system of the ECMWF would have, particu-
larly during the first two weeks, due to the better initial
conditions from data assimilation and a higher number
of ensemble members in the operational set-up (cf., e.g.,
Vitart, 2014). Nevertheless, investigating reforecast data
enables us to elucidate systematic model behaviour. As
an observational reference, we use ERA-Interim reanal-
ysis data (Dee et al., 2011) for the same winters between
1995 and 2017, also retrieved on a 1.5◦ × 1.5◦ grid. The
three surface weather parameters in ERA-Interim are
postprocessed to be consistent with the model data: T2M
is calculated as an average over the 0000, 0600, 1200, and
1800 UTC values, U10M from the instantaneous 10 m u-
and v-components at 0000 UTC, and total P as the sum
over the 6-hourly accumulated fields at 0600, 1200, 1800,
and 0000 UTC.

2.2 Definition of country-
and month-ahead-averaged anomalies

We evaluate the model skill for country- and
month-ahead-averaged anomalies of T2M, U10M, and P,
which are defined as follows. First, we calculate the model
climatology as a function of the calendar day at forecast
initial time and the lead time. For example, the model cli-
matology for the forecast initialized on 1 December 2000
is obtained by averaging over all 11 ensemble members of
all the forecasts initialized on the same calendar day (i.e.,
on 1 December 1995, 1996, 1997, ..., 2000, ...) separately
for every lead time. The daily anomalies at every lead time
of a certain forecast are then calculated with respect to
the corresponding lead-time-dependent model climatol-
ogy. A similar principle for calculating calibrated model
anomalies has been used in various studies analyzing
data from the S2S database (e.g., Vitart, 2017; de Andrade
et al., 2019; Wulff and Domeisen, 2019). Second, these
daily anomalies are averaged spatially over every Euro-
pean country and, third, temporally over the first 31 days
of lead time (including forecast initial time). This yields
one value per forecast for every country and parameter.
The corresponding country- and month-ahead-averaged
anomalies in ERA-Interim are obtained in the same
way, but with respect to the ERA-Interim climatology,
which is calculated as a 31-day running mean over the
calendar-day average of all available years (1995–2017).
Although the approach for calculating the model clima-
tology is different from the one used for the ERA-Interim
climatology (using ensemble mean instead of running
mean), it allows for a similarly strong smoothing and elim-
inates (lead-time-dependent) model drifts. In this study,
we focus on month-ahead anomalies as a particularly

relevant time-scale for the energy industry (e.g., Dorring-
ton et al., 2020). In addition, predictability on sub-seasonal
time-scales is generally higher for temporally and spa-
tially aggregated fields compared to instantaneous fields
(e.g., Buizza and Leutbecher, 2015). Nevertheless, it is
important to keep in mind that the first two weeks typ-
ically contribute most to forecast skill on sub-seasonal
time-scales (e.g., Weigel et al., 2008; Vitart, 2014). For this
reason, we also briefly discuss forecast skill for weeks 1
to 4.

2.3 Definition of stratospheric polar
vortex strength

To investigate the model skill dependent on stratospheric
conditions, we additionally calculate the strength of the
polar vortex in the lower stratosphere (for simplicity just
referred to as stratospheric polar vortex, SPV, hereafter)
at forecast initial time (Beerli et al., 2017). First, we cal-
culate the instantaneous geopotential height anomalies at
100 hPa for every ensemble member (the 150 hPa level,
used by Beerli et al., 2017, is not available in the S2S
database) with respect to model climatologies computed
as for the surface parameters. The ensemble mean of these
anomalies is then spatially averaged over the polar cap
north of 60◦N. Defining the SPV strength on a level in
the lower stratosphere instead of the middle stratosphere
(∼10 hPa), where the SPV is typically strongest, has shown
to be most meaningful for evaluating stratospheric sur-
face weather impacts (Baldwin et al., 2003; Karpechko,
2015; Beerli et al., 2017; Charlton-Perez et al., 2018). This
is likely because the lower stratospheric circulation is
a good indicator for stratosphere–troposphere coupling.
To investigate the influence of anomalously weak and
strong SPV states on forecast skill, we define percentile
bins of the SPV anomalies of all forecast initial times
and, based on those, select the forecasts initialized in
the 2% strongest, 10% strongest, 10% weakest, and 2%
weakest SPV states (weak SPV states correspond to pos-
itive polar-cap-averaged geopotential height anomalies,
and vice versa).

2.4 Ranked probability skill score
(RPSS)

We use a three-category ranked probability skill score
(RPSS; Wilks, 2011) to quantify how well a set of n
model forecasts predicts above-normal, near-normal, or
below-normal T2M, U10M, and P in a country (i.e.,
the upper, middle, and lower terciles of the correspond-
ing month-ahead anomalies, respectively) compared to
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a climatological reference forecast. In our case, the
climatological reference forecast assumes an equal occur-
rence probability of one third for each tercile. The RPSS is
calculated by relating the mean ranked probability score
(RPS) of the n model forecasts, RPS = 1

n

∑n
i=1 RPSi, to the

mean ranked probability score of the corresponding clima-
tological reference forecasts, RPSclim (Wilks, 2011):

RPSS = 1 − RPS
RPSclim

. (1)

The RPS for a single forecast is calculated as (Wilks,
2011)

RPS =
3∑

m=1
(Ym − Om)2 =

3∑
m=1

[( m∑
j=1

yj

)
−

( m∑
j=1

oj

)]2

. (2)

Here, yj and oj are the cumulative probability vec-
tor components of the forecast and the observation with
j= 1,2,3 corresponding to the three terciles. For example,
a forecast, in which 30% of the ensemble members predict
an anomaly belonging to the first tercile, 60% to the sec-
ond tercile, and 10% to the third tercile, yields a cumulative
forecast probability vector Y = (0.3,0.9,1.0). Assuming the
observed anomaly would belong to the second tercile (i.e.,
the second component of the observation vector would
have a probability of 1 and the other two components
one of 0) would yield a cumulative observation vector
O= (0,1,1). And, in our case, the cumulative climatological
reference forecast vector required for calculating RPSclim
would consequently be Y clim = (1/3,2/3,1). The RPS is thus
0 for a perfect forecast and positive for a non-perfect fore-
cast. And, consequently, the RPSS is 1 for a perfect fore-
cast, 0 if the forecast is equally good as the climatological
reference forecast, and negative if the forecast is worse
than the climatological reference forecast. In this study,
the terciles for the forecast vector Y for a specific coun-
try and parameter are defined based on the corresponding
month-ahead anomalies from all ensemble members in all
available forecasts between 1995 and 2017, whereas the
terciles for the observation vector O are defined based on
the daily month-ahead anomalies in ERA-Interim but over
the same years.

2.5 Statistical testing

Grouping the forecasts into those initialized in the extreme
SPV states (Section 2.3), which is a key approach of this
study, yields a relatively small sample size by nature.
For instance, the two groups associated with the 10%
strongest and 10% weakest SPV states consist of 129 and
127 individual forecasts, respectively. In addition, several

of these individual forecasts are initialized only some days
apart and thus most likely during the same extreme SPV
period. The two aforementioned forecast groups consist of
only 12 such periods each (mainly representing individ-
ual winters), which reduces the samples to a small number
of truly independent forecasts. To account for these sam-
ple sizes and autocorrelation problems as well as to test
whether forecast groups are significantly different from cli-
matological (i.e., SPV-independent) conditions (see below
for details), we create two different bootstrapped distribu-
tions for each of these forecast groups: a (group-internal)
resampled distribution and a corresponding climatologi-
cal distribution. To obtain the resampled distribution, we
randomly resample 1,000 times 80% of all the winters in a
certain forecast group (for instance, 80% of the 12 winters
in the case of the aforementioned forecast groups) with-
out replacement. To obtain the climatological distribution
corresponding to a certain forecast group, we randomly
sample 1,000 times a set of forecasts (with the same size
as well as a similar calendar day sequence of initial times
as the original forecast group) from all available forecasts
independent of the SPV state.

On the one hand, the resampled and corresponding
climatological distributions are used to quantify robust-
ness, as defined by Papritz (2020), and significance of the
mean month-ahead anomalies (i.e., the composite maps)
of a forecast group (Figures 3,5, and 6 below in Section 3).
Robustness indicates to what degree the mean anomaly
is representative for the underlying individual anoma-
lies (i.e., how little the individual anomalies differ from
the mean anomaly). To this end, we calculate the mean
anomaly for each of the 1,000 resamples of the resampled
distribution, which yields a distribution of mean anoma-
lies. Based on this distribution and following Papritz
(2020), we define the actual mean anomaly to be robust on
the first level, if the absolute value of the mean anomaly is
greater than the interquartile range of the resampled dis-
tribution, and on the second level, if it is greater than the
difference between the 90 and 10% percentiles (Figure 1).
As a second measure, significance quantifies how strongly
the anomaly differs from climatology. We determine this
by comparing the resampled distribution of mean anoma-
lies of a forecast group to the corresponding climato-
logical distribution of mean anomalies. We define the
mean anomaly to be significant if the 12.5% percentile
of the resampled distribution is greater than the 87.5%
percentile of the corresponding climatological distribution
for positive anomalies and inverse for negative anomalies
(Figure 1; the numbers 12.5 and 87.5% result from the
arbitrary but reasonable condition that the centred 75% of
the two distributions should not overlap). Although these
two statistical characteristics are related, the robustness
additionally helps us to understand the RPSS for a certain
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A

P12.5 P78.5

F I G U R E 1 Principle for assessing robustness and
significance demonstrated with a synthetic example: the mean
anomaly A of the forecast group is robust on the first level because
A is larger than the interquartile range IQR of the resampled
distribution (red curve), and on the second level because it is larger
than the range between the 10 and 90%iles P10− 90. However, the
anomaly is not significant as the 12.5%ile P12.5 of the resampled
distribution is not larger than the 78.5%ile P78.5 of the climatological
distribution (black curve)

mean anomaly: for instance, a robust modelled anomaly
but non-robust observed anomaly could indicate that the
model mostly predicts an anomaly of the same tercile
in contrast to the observed anomalies falling into differ-
ent terciles (due to their larger spread around the mean
anomaly), which would yield a low RPSS.

On the other hand, we use the resampled and
corresponding climatological distributions to determine
whether the RPSS of a forecast group is significantly differ-
ent from climatological (i.e., SPV-independent) conditions
(Figures 4 and 7 below in Section 3). This is achieved by
following the same principle as used for testing the signif-
icance of the mean anomalies: we calculate the RPSS for
each of the 1,000 resamples in the resampled distribution
and for each of the 1,000 samples in the corresponding cli-
matological distribution. Based on the resulting two RPSS
distributions, we define the RPSS of a forecast group to
be significantly different from climatological conditions on
the 25, 10, or 5% level, if the 25/75%, 10/90%, or 5/95%
percentiles of the two distributions do not overlap.

3 RESULTS

3.1 Overall month-ahead forecast skill

Figures 2a–c show the RPSS for month-ahead 2 m temper-
ature (T2M), 10 m wind speed (U10M), and precipitation
(P) of all forecasts between 1995 and 2017 for most Euro-
pean countries. On average, the RPSS is higher for T2M
than for U10M and P, and ranges from 0 up to 0.4. There
are large regional variations of skill with a characteristic

pattern for all of the three parameters: for T2M, the RPSS
tends to be higher in Central to Eastern Europe, Sweden,
and Italy than in Western to Southwestern Europe as well
as the UK, Norway, Finland, and parts of the Balkans. For
U10M, the RPSS is highest in Northern Europe (partic-
ularly Sweden) but also in the UK, Baltics, and Iberian
Peninsula and much lower in Central to Eastern Europe
and the Balkans. A similar pattern occurs for P, although
the highest values in Northern Europe are limited to Nor-
way.

Figures 2d–f provide a first qualitative test of whether
and how anomalous SPV states at forecast initial
time – independently of whether they are anomalously
strong or weak – might influence this regional variation
in the overall RPSS in Figures 2a–c: it summarizes the
ERA-Interim anomaly patterns for the three parameters
after the 10% strongest and 10% weakest SPV states (see
caption for more details; note that the separate anomalies
following these two extreme SPV states will be shown and
discussed later in Figures 3d,f, 5d,f, and 6d,f). In addition,
the mean absolute month-ahead sea level pressure (SLP)
of the two forecast groups is indicated with two differ-
ent contours. Figures 2d–f thus reflect the NAO-related
patterns that typically follow anomalous SPV states (e.g.,
Tripathi et al., 2015b; Beerli et al., 2017): after the 10%
strongest SPV states, a strong meridional SLP gradient
occurs over the North Atlantic and Europe (solid con-
tours). This likely indicates the positive-NAO-like weather
pattern characterized by a strong zonal jet stream. In con-
trast, the meridional SLP gradient is much weaker after
the 10% weakest SPV states (dashed contours), which
likely reflects the negative-NAO-like weather pattern
with a weaker, wavier, and more southward-shifted jet
stream. These circulation patterns lead to the character-
istic NAO surface weather anomalies, indicated by the
shading, which particularly affect Central to Northeast-
ern Europe in terms of T2M and Northern and Southern
Europe in terms of U10M and P. The regions affected
by strong anomalies (Figures 2d–f) are to first order
co-located with the regions experiencing a relatively high
RPSS (Figures 2a–c). This points toward a potential influ-
ence of anomalous SPV states on the overall forecast skill
via the modification of the NAO. However, it does not
indicate the separate contributions from the anomalies
following strong and weak SPV states. In the next section,
we thus investigate this correlation, and potential causal-
ity, in more detail by quantifying the model skill after
anomalously strong and weak SPV states separately. We
first analyze how well the model reproduces the anomaly
patterns after strong and weak SPV states compared to
ERA-Interim. This helps us to understand the RPSS for
individual countries after anomalous SPV states, which
is discussed subsequently. Our main focus is on T2M
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F I G U R E 2 (a–c) RPSS of all 1,280 forecasts for country- and month-ahead-averaged (a) T2M, (b) U10M, and (c) P. Note that the RPSS is
only calculated for the countries marked by the respective brownish colour shade. (d–f) Difference (shading) between the mean month-ahead
anomalies in ERA-Interim for the dates initialized in the 10% strongest SPV states minus the mean month-ahead anomalies for the dates
initialized in the 10% weakest SPV states for, again, (d) T2M, (e) U10M, and (f) P. Note that the anomalies following the 10% strongest and
weakest SPV states are not exactly opposite (cf. Figures 3d,f, 5d,f, and 6d,f) and thus contribute differently to the magnitude of the anomaly
differences shown here. The mean sea level pressure for the dates initialized in the 10% strongest (weakest) SPV states is indicated by the
solid (dashed) contours. The values in the box in the upper right corners indicate the numbers of forecasts in these two forecast groups

(Section 3.2.1); U10M and P are discussed more briefly
afterwards (Section 3.2.2).

3.2 Month-ahead anomalies and
forecast skill after anomalous SPV states

3.2.1 2 m temperature

Figure 3 shows the mean modelled month-ahead T2M
anomalies in the forecasts initialized in the 2% strongest,
10% strongest, 10% weakest, and 2% weakest SPV states
in comparison to the corresponding mean anomalies in
ERA-Interim. In addition, robustness and significance of
the anomalies are indicated (Section 2.5 gives details).
After the 2% strongest SPV states (Figures 3a,b), the model
predicts a strong and widely robust positive-NAO-like
warm anomaly (of up to 2◦C) over large parts of Europe.
This is relatively consistent with ERA-Interim in Cen-
tral, Western, and Southwestern Europe despite differ-
ences in the magnitudes. However, there is a strong
mismatch in Northern Europe, particularly Scandinavia,
where only weak and non-robust anomalies appear in

ERA-Interim. Although most anomalies in the model
and in ERA-Interim are robust, they are hardly signifi-
cant. A comparable anomaly structure with a similarly
good agreement between the model and ERA-Interim
occurs after the 10% strongest SPV states (Figures 3c,d),
but larger parts of the anomalies are significant and
the mismatch in Northern Europe is smaller compared
to the 2% strongest SPV states. A similarly structured
but cold negative-NAO-like anomaly is predicted after
the 10% weakest SPV states in good agreement with
ERA-Interim (Figures 3e,f). The most pronounced dif-
ference compared to the 10% strongest SPV states is
that the anomaly tends to extend less into Southwestern
Europe. After the 2% weakest SPV states (Figures 3g,h),
the model predicts a cold anomaly (of up to –2◦C) over
a wide range of Europe, which is weaker and much less
robust than the warm anomaly after the 2% strongest SPV
states. In ERA-Interim, however, the cold anomaly is even
weaker than in the model and hardly robust over most
of Europe, except for Sweden. In summary, the model
thus tends to have a north–south asymmetry in model
performance after the most extreme SPV states: it pre-
dicts the warm conditions over Central, Western, and
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F I G U R E 3 (a, c, e, g) Composites of month-ahead T2M anomalies of the forecasts with different SPV states at initialization time: (a)
2% strongest, (c) 10% strongest, (e) 10% weakest, and (g) 2% weakest SPV states. (b, d, f, h) show the corresponding ERA-Interim anomalies.
In addition, the robustness is indicated by the point hatching (first, weaker level) and the line hatching (second, stronger level) and the
significance is indicated by the black transparent shading (Section 2.5 gives details). The values in the upper-right corners indicate the
number of forecasts in the corresponding forecast groups



BÜELER et al. 3683

F I G U R E 4 RPSS distributions for T2M in selected European countries of all forecasts (filled grey), of the forecasts initialized in the 2%
strongest (filled dark red), the 10% strongest (filled light red), the 10% weakest (filled light blue), the 2% weakest SPV states (filled dark blue),
and the 2% weakest SPV states if the winter 2008/2009 is excluded from the dataset (hatched dark blue; text gives details). As described in
detail in Section 2.5, the distributions of the filled boxes (including the hatched box) are based on the bootstrapped resampled distributions of
the corresponding forecast group. The blank narrow boxes show the bootstrapped climatological distributions corresponding to each forecast
group. One, two or three stars above a box indicate that the RPSS (filled boxes) is significantly different from its corresponding climatological
RPSS (blank boxes) at the 25, 10, or 5% level. The boxes span the interquartile range, the whiskers indicate the 10 and 90%iles, and the
horizontal dashed lines show the median. The horizontal solid lines indicate the RPSS calculated over all forecasts of the corresponding bin,
independent of the bootstrapped distribution. Figure S1 shows the same analysis but for all European countries

Southern Europe relatively well but tends to be overconfi-
dent with respect to the warm anomalies over Scandinavia
after the 2% strongest SPV states. In contrast, it predicts
the cold anomalies over Scandinavia relatively well but
struggles to capture the correct extent of the cold air
masses into Western, Central, and Southern Europe after
the 2% weakest SPV states. The overall weaker robustness
of both the modelled and observed anomalies after the
2% weakest SPV states may further indicate the stronger
case-to-case variability in the large-scale response (or in
how far the cold air masses extend into Europe) fol-
lowing weak SPV states as found by Beerli and Grams
(2019) and Domeisen et al. (2020b). After normal SPV
states, the model predicts hardly any systematic anoma-
lies, which is consistent with ERA-Interim (not shown). In
the following, we demonstrate how the discussed model
performance after the different SPV states on the large
scale translates into the RPSS for T2M in individual
countries.

Figure 4 shows the RPSS for T2M for a selection of
countries for all forecasts (grey boxes) and for the fore-
cast groups initialized in the specific SPV states (coloured
boxes) which we have already discussed in Figure 3.
We show distributions of the RPSS based on the boot-
strapped resampled distribution introduced in Section 2.5
(filled boxes) in addition to the actual RPSS for a specific

forecast group (horizontal black solid lines inside the
boxes). To test whether the RPSS of a specific forecast
group is significantly different from the climatological (i.e.,
SPV-independent) RPSS, we compare its resampled RPSS
distribution (filled boxes) to the corresponding climato-
logical RPSS distribution (blank narrow boxes) which is
based on randomly selected forecast groups of equal size
(Section 2.5 gives details). Three significance levels are
indicated with one (25% level), two (10% level), or three
stars (5% level) above the corresponding boxes. For brevity,
results are shown for subjectively selected countries from
the different European regions (which, however, does not
necessarily mean that they are representative in terms of
skill; Figure S1 in the Supporting Information shows all
countries). Before focusing on the RPSS conditioned on the
SPV states, it is worth noting that the RPSS of all forecasts
in Figure 4 (grey boxes; as in the RPSS maps in Figure 2) is
significantly different on the 10% level between the coun-
tries with the highest skill, such as Italy or Germany, and
the countries with the lowest skill, such as Spain (because
the 10/90% percentiles of the corresponding grey RPSS
distributions do not overlap). This result itself has implica-
tions for energy meteorology, considering for instance the
dependence of the energy demand of Germany and Spain
on near-surface temperature during winter (e.g., Bessec
and Fouquau, 2008).
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Our main objective is to understand to what degree the
forecasts initialized in anomalously strong and weak SPV
states relate to and possibly influence the strong regional
skill variation shown in Figure 2 (and by the grey boxes
in Figure 4). The RPSS after the 2% strongest SPV states
(filled dark red boxes) for Germany, France, Spain, and
the UK is higher compared to climatological conditions
(blank dark red boxes; significant for all except the UK).
Also the RPSS after the 10% strongest SPV states (light
red boxes) is enhanced for some of these countries (sig-
nificantly for Germany and Spain). For Italy, Sweden, and
Romania, the RPSS is unchanged after the 2% and 10%
strongest SPV states (with the exception of a significant
reduction after the 10% weakest SPV states for Sweden).
In contrast, the RPSS is significantly reduced for Norway
after both the 2% and 10% strongest SPV states. Note that
these modifications in skill are, if at all, significant on
very different levels, as indicated by the stars in Figure 4.
Nevertheless, there are some outstanding and highly sig-
nificant modifications of the RPSS such as the increase for
France or Spain. The reason for this skill pattern can be
understood from the anomaly maps in Figures 3a–d: the
countries with a significantly enhanced RPSS (Germany,
France, and Spain) are affected by the well-predicted warm
anomaly over Europe, which is mostly robust both in
the model and in ERA-Interim. This consistency in the
robustness implies that the positive mean anomaly is rep-
resentative for most individual anomalies. Therefore, most
of the individual anomalies are consistently assigned to
the upper tercile both in the model and in ERA-Interim,
which yields a relatively high RPSS. In contrast, the model
predicts a robust warm anomaly for Norway and Sweden
after the 2% strongest SPV states, which hardly appears
in ERA-Interim (particularly for Norway). This implies
that the model predicts a positive anomaly (upper ter-
cile) in most cases with a strong SPV, which is in con-
trast to the observed individual anomalies varying either
between negative and positive values (all three terciles) or
around the climatological state (middle tercile). The erro-
neous prediction of the upper tercile in most cases thus
leads to the relatively low, in the case of Norway even
significantly reduced, RPSS. Italy, as a third example, is
largely unaffected by any (robust) anomaly both in the
model and in ERA-Interim, which explains its unchanged
RPSS compared to climatological conditions. Note that
the consistency in robustness between the model and
ERA-Interim thus appears as a better measure to under-
stand differences in the RPSS than the consistency in
significance. Therefore, we mainly focus on robustness
hereafter.

The skill pattern looks substantially different after
the 2% weakest SPV states (filled dark blue boxes in
Figure 4): only Sweden tends to have an increased RPSS

compared to climatological conditions, although this is not
significant. For all the other countries, the RPSS tends to
stay unchanged (Italy, UK, and Norway) or to be reduced
(Germany, Romania, France, and Spain; significantly for
all except Germany). Similar but smaller RPSS changes
emerge after the 10% weakest SPV states (light blue boxes)
with a few exceptions (a significant decrease for Italy and a
non-significant increase for Norway). However, it is impor-
tant to note that the spread in the RPSS after the 2%
weakest SPV states is remarkably large for many countries.
This indicates a strong case-to-case variability in the model
performance and will be analyzed in more detail subse-
quently. Figures 3e–h provide an explanation for this skill
pattern: after the 2% weakest SPV states (Figures 3g,h),
Sweden is the only country where the robust cold anomaly
in the model agrees well with ERA-Interim and thus
tends to increase the RPSS. For most other countries, the
cold anomalies are rather small and only weakly robust
(both in the model and in ERA-Interim). This indicates a
strong case-to-case variability in the anomalies following
the 2% weakest SPV states, which probably explains the
non-robust and thus statistically indistinguishable RPSS
for some countries (such as Germany) compared to clima-
tological conditions. However, for some Central, Southern
European, and Balkan countries such as Romania, France,
and Spain, the RPSS is significantly reduced (and in some
cases even negative). We hypothesize that this is due to
their location at the transition zone from the colder con-
ditions over Northern Europe to the warmer conditions
over North Africa and Western Asia. Whenever the model
has a subtle error in the prediction of this transition zone
(which is at least the case on average as indicated by
Figures 3e–h), it can lead to the wrong anomaly (mid-
dle or even opposite tercile) and thus a reduced RPSS
for these countries. A similar hypothesis has been sug-
gested by Domeisen et al. (2020a), who also found an aver-
age mismatch in this transition zone for T2M following
weak SPV states between different models and reanalysis.
After the 10% weakest SPV states (Figures 3e,f), the model
response agrees much better with the observed response,
particularly over Northern Europe. Therefore, the RPSS
for Scandinavian countries (Sweden and Norway) tends to
increase. Nevertheless, there are still mismatches between
the model and ERA-Interim with respect to the exten-
sion of the cold anomalies into Central and Southern
Europe. This explains the significant reduction in the RPSS
for Italy, Romania, France, and Spain even after the 10%
weakest SPV states and gives further indications that the
conditions in the transition zone between cold and warm
anomalies are challenging to predict. Figure S1 (same as
Figure 4 but for all countries) shows a similar reduction in
the RPSS for most Southern European and Balkan coun-
tries and thus corroborates the systematic problem in the
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model in predicting the T2M response in these regions
after weak SPV states.

As discussed in section 2.5, our bootstrapping
approach of resampling subsets of winters (i.e., distinct
periods of anomalous SPV states) accounts for the small
sample size of the forecast groups initialized in the 2%
most extreme SPV states. Nevertheless, the resulting RPSS
distributions (Figure 4) are biased toward few periods
that are represented by many individual forecasts (this
is because the RPSS of every resample including this
period is dominated by the forecasts of this period). In
our dataset, the most obvious period of this kind is the
persistent phase of an extremely weak SPV in February
2009, which accounts for around 50% of all the 25 fore-
casts initialized in the 2% weakest SPV states. To test the
sensitivity of our skill analysis to this period, we have
recalculated the RPSS distribution after the 2% weakest
SPV states after removing the whole winter 2008/2009
from the dataset (hatched blue boxes in Figure 4). Indeed,
the RPSS spread becomes much smaller and reveals a
clearer skill pattern for many countries (compared to the
2% weakest SPV states including the winter 2008/2009,
i.e., the filled blue boxes): the RPSS improves for Norway
(significantly) and the UK, which is consistent with Swe-
den and thus corroborates the argument of enhanced skill
for Northern Europe after weak SPV states. On the other
hand, the RPSS is significantly reduced and negative for
Italy, which aligns with the still poor model performance
for other Central, Southern European, and Balkan coun-
tries (such as Romania, France, and Spain). Therefore, the
weak SPV event in winter 2008/2009 indeed influences
the skill pattern in Figure 4. Nevertheless, removing this
outlier demonstrates that the north–south contrast in skill
for T2M following the weakest SPV states is a robust find-
ing. The reason for this is that, even without the dominant
winter 2008/2009, the anomaly composites (correspond-
ing to Figures 3e,f, but not shown here) indicate a model
bias in the extent of the cold air masses into Central and
Southern Europe compared to ERA-Interim.

Aside from determining whether the skill after a spe-
cific extreme SPV state is significantly different from cli-
matological conditions, Figure 4 further allows detecting
significant differences in skill between strong and weak
SPV states directly. For instance, the (enhanced) RPSS for
France and Spain after the strongest SPV states is signifi-
cantly higher than their (reduced) RPSS after the weakest
SPV states (as the 10 and 90% percentiles of the equally
sized dark red and dark blue RPSS distributions in Figure 4
do not overlap). The same, but vice versa, applies to Norway
if the winter 2008/2009 is removed. These country-specific
findings can be an important guidance for end-users of
sub-seasonal weather forecasts such as energy meteorolo-
gists.

T A B L E 1 Pearson correlation coefficients (r) between the
month-ahead T2M anomalies of the ensemble mean and of
ERA-Interim for the countries and specific forecast groups
shown in Figure 4

Country All
2% strongest
SPV states

2% weakest
SPV states

Italy 0.71 0.82 0.54

Germany 0.69 0.87 0.71

Sweden 0.68 0.69 0.81

Romania 0.71 0.69 0.41

UK 0.68 0.77 0.72

France 0.65 0.87 0.31

Norway 0.66 0.66 0.77

Spain 0.61 0.86 0.10

To test the sensitivity of our results for T2M to the used
skill score, we have performed a similar analysis as sum-
marized in Figure 4 but by determining correlation instead
of the RPSS. More specifically, we have computed the Pear-
son correlation coefficient between the month-ahead T2M
anomalies of the ensemble mean and of ERA-Interim for
the same countries and forecast groups shown in Figure 4.
The results, summarized in Table 1, confirm the results
from the RPSS analysis for many countries at least in a
qualitative sense: countries with a significantly enhanced
or reduced RPSS after extreme SPV states compared to cli-
matological conditions have a correspondingly enhanced
or reduced correlation coefficient after the same extreme
SVP states. For instance, the correlation coefficients for
France are 0.87 after the 2% strongest SPV states, 0.31 after
the 2% weakest SPV states, and 0.65 for all forecasts, which
confirms the asymmetric skill pattern shown in Figure 4.
Similarly, Sweden has a correlation coefficient of 0.69 after
the 2% strongest SPV states, 0.81 after the 2% weakest SPV
states, and 0.68 for all forecasts, which is rather inverse
to the skill pattern for France, as shown in Figure 4. To
interpret these results in a statistically sound way, the cor-
relation coefficients would have to be calculated for the
same bootstrapped distributions as in Figure 4 and not
only for the ensemble mean. Nevertheless, this simple cor-
relation analysis supports our interpretation of at least the
qualitative pattern of country-specific skill modification
for T2M after extreme SPV states based on the thorough
analysis using the RPSS.

3.2.2 10 m wind speed and precipitation

Figures 5a–d demonstrate remarkably well that, on the
large scale, the model predicts the positive-NAO-like
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F I G U R E 5 As Figure 3, but for U10M
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anomaly dipole structure with stronger than normal U10M
over Northern Europe and weaker than normal U10M over
Mediterranean Europe after the 2 and 10% strongest SPV
states. The same applies to the inverse, negative-NAO-like
anomaly dipole after the 2 and 10% weakest SPV states
(Figures 5e–h). Most of the anomalies are consistently
robust both in the model and in ERA-Interim and they
reach values of more than ±1.4 m⋅s−1. The most pro-
nounced mismatches occur on the regional scale: after the
2% and 10% strongest SPV states (Figures 5a–d), the mod-
elled anomalies extend slightly too far to the east. After the
2% weakest SPV states, the transition zone between nega-
tive and positive anomalies tends to be slightly displaced
in the model compared to ERA-Interim. Furthermore, the
positive anomalies in Mediterranean Europe are rather
weak, patchy, and hardly robust, both in the model and
in ERA-Interim. The large-scale structure and robustness
of the P anomalies, shown in Figure 6, strongly correlate
with the one for U10M (Figure 5) because of the common
dependency of the two parameters on cyclone activity. The
most important difference is that the maximum P anoma-
lies, reaching values of more than ±1.4 mm⋅day−1, are
concentrated along the coast of Norway (mainly the moun-
tainous part) and the western coasts of the Mediterranean,
which are primarily affected by the NAO-related merid-
ional excursions of the storm track. Consistent with the
mismatches found for U10M (Figure 5), the model tends to
predict the extent of the negative P anomaly in the Mediter-
ranean after the 2% and 10% strongest SPV states too far to
the east into the Balkans. Likewise, there is a meridional
shift in the position of the rather patchy anomaly dipole
after the (particularly 2%) weakest SPV states in the model
compared to ERA-Interim.

Figure 7 shows that the RPSS of all forecasts (grey
boxes) for U10M (Figure 7a) and P (Figure 7b) tends to be
lower than for T2M (Figure 4) on average. This indicates
an overall lower predictability for U10M and P compared
to T2M at least in the model. Considering the anoma-
lous SPV states, Figure 7a shows that the skill pattern
for U10M is qualitatively similar to the skill pattern for
T2M (Figure 4) in the sense that most displayed coun-
tries experience either an enhanced or unchanged RPSS
after strong SPV states (although on a lower significance
level on average). However, the key difference is that
Southern European and Balkan countries such as Italy,
Spain, or Romania do not experience a reduced but rather
unchanged or even enhanced RPSS also after weak SPV
states (particularly if the winter 2008/2009 is removed).
This is because the U10M anomaly dipole (Figures 5e–h)
is shifted more poleward compared to T2M (Figures 3e–h)
and thus affects Southern Europe and the Balkans more
directly. However, more Central European countries such
as Germany or France still tend to experience reduced skill

after weak SPV states, which results from their location
in the transition zone between the positive and negative
anomalies (as discussed above for T2M). The slight posi-
tional error of the predicted anomaly dipole and thus this
transition zone in the meridional direction after the 2%
weakest SPV states (Figures 5g,h) gives evidence for this.
In contrast to U10M, for P the symmetric skill pattern
with a (in some cases significantly) enhanced RPSS both
after strong and weak SPV states is limited to Italy, Nor-
way, and Spain (Figure 7b; again, particularly if the winter
2008/2009 is removed). This is because the considerable
P anomalies mainly occur in these regions, as discussed
above (Figure 6). For most other countries, the RPSS after
the 2% weakest SPV states is either unchanged or tends
to be reduced, which is again due to the positional error
of the predicted anomaly dipole (for instance over Ger-
many and France; Figures 6g,h). An exception is Romania
with an inverse asymmetric skill pattern: the skill tends
to be reduced (non-significantly) after the 2% strongest
SPV states due to the overconfident dry anomaly of the
model over the Balkans (Figures 6a,b), but enhanced (sig-
nificantly if the winter 2008/2009 is removed) after the 2%
weakest SPV states due to the relatively well-predicted and
robust wet anomaly concentrated over the Balkans and the
Black Sea region (Figures 6g,h).

4 DISCUSSION
AND CONCLUSIONS

We have demonstrated that the ECMWF sub-seasonal
reforecast skill (three-category RPSS) for predicting
energy-industry-relevant, country- and month-ahead-
averaged surface weather anomalies substantially varies
among different European regions: for T2M, the skill is
generally higher for Central, Eastern, and Northeastern
Europe compared to Southwestern Europe, whereas for
U10M and P, the skill is higher for Northern and Southern
Europe compared to Central Europe. The strong regional
variation in forecast skill primarily reflects the anomaly
patterns associated with the NAO, which dominates
European surface weather variability on sub-seasonal
time-scales. Beside other climate modes (Section 1),
anomalous SPV states can lead to persistent NAO-like sur-
face weather anomalies and thus considerably influence
skill. In this study, we have demonstrated that the changes
in skill of the forecasts initialized during anomalous SPV
states are not always positive but can be negative when
focussing on a country level: for T2M, many Western,
Central, Southern European and Balkan countries tend to
have enhanced skill after the strongest SPV states (com-
pared to SPV-independent, climatological conditions), but
reduced and in some cases even negative skill after the
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F I G U R E 6 As Figure 3, but for P
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F I G U R E 7 As Figure 4, but for (a) U10M and (b) P. Figures S2 and S3 show the same analysis but for all European countries

weakest SPV states. The asymmetry tends to be vice versa
for Scandinavian countries, with enhanced skill after the
weakest but reduced skill after the strongest SPV states.
This can be explained by a north–south asymmetry in
model performance after the most extreme SPV states on
average: the model predicts the positive-NAO-like warm
anomalies in Western, Central, and Southern Europe rel-
atively well but tends to be overconfident with respect
to the warm conditions in Northern Europe, particularly
Scandinavia, after the strongest SPV states. In contrast, it
predicts the negative-NAO-like cold anomalies in North-
ern Europe centred over Scandinavia considerably well but
struggles to correctly capture the strongly case-dependent
extent of the anomalously cold air masses into Cen-
tral and Southern Europe. It is important to note that a
substantial case-to-case variability occurs in the mean
anomaly patterns following extreme SPV states, which

can critically affect the robustness of such an analysis.
However, by applying a thorough significance test, we can
show that this SPV-dependent north–south asymmetry
in skill for T2M is remarkably robust for various coun-
tries such as France, Spain, or Norway (Figure S1 gives
an overview of all countries). This is a key finding of our
study and suggests a flow-dependent T2M model bias in
the corresponding regions following extreme SPV states.
Furthermore, it aligns with the enhanced (reduced) skill
for T2M in Central to Southern Europe after strong (weak)
SPV states found by Domeisen et al. (2020a, their figures 5
and 6), and demonstrates how their findings translate into
a country-scale perspective. In contrast to T2M, the model
skill for U10M and P tends to increase for both Northern
and Southern European countries after both strong and
weak SPV states (for P, this increase is mainly limited
to Norway and the Iberian Peninsula). This results from
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the NAO-like north–south dipole in the anomaly pattern,
which is predicted relatively well at least on the larger
scale. Nevertheless, the skill still tends to be reduced or at
least unchanged for certain Central European countries
such as France following extreme SPV states. We hypoth-
esize that this is because Central Europe is located at the
transition zone between the NAO-induced positive and
negative U10M and P anomalies, which is slightly dis-
placed in the model in the meridional direction and thus
yields erroneous anomalies on average. Our analysis thus
provides indications that a good forecast skill for the NAO
index (and thus the large-scale flow pattern) does not
necessarily imply a good forecast skill for surface weather
in those European regions that are located at the edge of
the NAO-related surface weather anomalies and thus are
particularly sensitive to a correct forecast of their position.
The differences in skill between Northern and Central
Europe for U10M are similar to the findings of Beerli et al.
(2017) for wind power generation (their figure 8a). How-
ever, their purely statistical approach does not have skill
for Southern European countries after weak SPV states,
which is in contrast to our NWP-based findings and thus
demonstrates the added value of using a dynamical model
for this region.

When investigating forecast skill on sub-seasonal
time-scales, it is important to keep in mind that the first
two weeks typically contribute most to the skill (e.g.,
Weigel et al., 2008; Vitart, 2014). To test this hypothesis, we
have performed the same RPSS analysis as summarized in
Figure 4 but for the T2M anomalies averaged separately for
weeks 1 to 4 after forecast initial time (Figures S4 and S5).
Indeed, the RPSS decreases roughly exponentially from
week 1 to 4, independent of the SPV state at forecast initial
time. In most cases, there is no or even negative skill left for
week 4. The most striking exception is the RPSS for weeks 3
and 4 after the 2% and 10% strongest SPV states, which is
still considerably high for many Central to Southern Euro-
pean countries and thus substantially contributes to their
high RPSS for the month-ahead anomalies. The remark-
able skill for T2M for weeks 3 and 4 is useful for the energy
industry, which also relies on weather forecasts on weekly
time-scales for their planning and decision-making.

Despite remarkable correlations between the initial
SPV state and surface weather forecast skill, our results
do not tackle the question of causality. Various studies
have shown that the large-scale tropospheric flow regime
(and thus the surface weather response) following anoma-
lous SPV states does not only depend on the stratosphere
itself but also on the tropospheric state before and dur-
ing the stratospheric event (e.g., Ambaum and Hoskins,
2002; Karpechko et al., 2017). For instance, it is possible
that the enhanced skill for T2M for Western, Central, and
Southern Europe following strong SPV states, as found

in this study, partly results from a relatively predictable
positive-NAO-like flow regime that is already active before
and during the strong SPV states. This would be in line
with the SPV–NAO coupling found by Ambaum and
Hoskins (2002) and indicate that the strong SPV is rather
an integrator than a trigger of the positive phase of the
NAO. Similarly, the tropospheric conditions before and
during the weak SPV states investigated here might be
co-responsible for how well the model predicts the extent
of the cold anomalies, centred over Scandinavia, into Cen-
tral and Southern Europe (cf., e.g., Domeisen et al., 2020b).
Although this is important from a dynamical perspective,
it does not diminish the usefulness of the SPV state as an
indicator for modified sub-seasonal forecast skill.

The strong regional contrasts in the modification of
country-scale model skill after extreme SPV states is a
key finding of this study. Two main implications result
from this: on the one hand, end-users of sub-seasonal fore-
casts such as energy meteorologists or national weather
services have to be aware of this regional skill modi-
fication when making decisions based on country-scale
surface weather predictions after extreme SPV states.
In particular, the reduced skill for T2M for many Cen-
tral, Southern European, and Balkan countries follow-
ing weak SPV states might be of critical importance for
the energy industry, which requires correct forecasts of
European cold air outbreaks potentially following weak
SPV states. On the other hand, our results for T2M
reveal two problems in the model: predicting the average
temperature conditions in Scandinavia following strong
SPV states and in Central to Southern Europe follow-
ing weak SPV states. The sources of these problems can
be manifold. For instance, the model can have errors in
the representation of the stratosphere–troposphere cou-
pling, of the large-scale weather regime response following
extreme SPV states, or of the regional surface weather
imprint of these large-scale weather regimes. We believe
that a detailed analysis of the large-scale weather regime
response following extreme SPV states would be an impor-
tant starting point to better understand these regional
model biases. The first problem (reduced skill for T2M in
some Scandinavian countries following strong SPV states)
could be associated with the misrepresentation of varia-
tions in the positive-NAO-like weather regime response,
which determine if and how far the anomalously warm
air extends into Scandinavia. Using a higher number of
Atlantic-European weather regimes than just the bimodal
NAO, Beerli and Grams (2019) showed that the positive
phase of the NAO indeed manifests itself mainly in the
zonal regime with a warm anomaly centred over Scan-
dinavia, or the Scandinavian trough regime with a warm
anomaly shifted more to the east over Western Russia.
Regarding the second problem (reduced skill for T2M in
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many Central to Southern European countries following
weak SPV states), it is worthwhile relating our results to
the widely studied sudden stratospheric warmings (SSWs)
as particularly extreme cases of weak SPV states. Compar-
ing the forecasts after the 2% weakest SPV states to the SSW
compendium by Butler et al. (2017) reveals that all except
one forecast in this category were initialized ten or more
days after (and, in one case during) an SSW. This indi-
cates that the erroneous extent of the cold anomaly into
Central to Southern Europe, which results in reduced skill
for many countries, are at least an indirect consequence
of SSWs. Therefore, we require a better understanding of
the dynamics of weak SPV states, in particular SSWs, their
subsequent surface weather response, and how these two
aspects are represented in the model. Beerli and Grams
(2019) and Domeisen et al. (2020b) showed that weak
SPV states or SSWs, respectively, tend to be followed by
either the mostly mild and windy Atlantic trough regime
or the cold and calm Greenland blocking regime which
corresponds to the negative phase of the NAO. Whether
the model has a systematic bias in (one of) these regime
responses following both strong and weak SPV states is a
subject of our future work.
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