Site-Specific Controlled Growth of Coiled Lambda-Shaped Carbon Nanofibers for Potential Application in Catalyst Support and Nanoelectronics

Christian Lutz, Uwe Bog, Richard Thelen, Julia Syurik, Sharali Malik, Christian Greiner, Hendrik Hölscher,* and Michael Hirtz*

ABSTRACT: Carbon nanofibers (CNFs), in particular branched ones, raise high interest because of their potential for nanoelectronics, catalyst presentation, and applicability as dry adhesives. Here, we present a facile method based on an open ethanol flame in a microchannel for the controlled growth of coiled lambda-shaped carbon nanofibers (cλCNFs). The cλCNFs consist of two coiled foot CNFs anchored to the substrate and a noncoiled head CNF. The number of twists in the helical structure of the foot CNFs is always the same number and in the opposite direction of rotation for a given cλCNF. The growth position of the cλCNFs on a substrate can be controlled by targeted deposition of nickel salt via an atomic force microscopy cantilever. An extensive characterization of the cλCNFs allows us to understand the growth process and to develop a model explaining the observed features of the structures. The presented facile but controlled fabrication process for cλCNFs offers a promising route for targeted synthesis of a novel carbon structure with chiral subcomponents for experimental and application use as in site-specific growth of branched CNFs for nanoelectronics or local presentation of catalysts.

KEYWORDS: branched carbon nanofibers, helical carbon nanofibers, coiled carbon nanofibers, scanning probe lithography

Carbon nanotubes and nanofibers can be grown in different types and shapes.1−6 Branched carbon nanotubes (CNTs) (i.e., structures such as Y-shapes) are of high interest because of their potential use in the field of nanoelectrical devices.1−6 Additionally, Y-shaped CNTs or carbon nanofibers (CNFs) can be used for mimicking hierarchical nanostructures found in nature, such as the nanostructures on the toes of Geckos,7−9 enabling their climbing ability. CNTs and CNFs without branches are still used for mimicking the nanostructures of geckos for their use as dry adhesives10−14 but branched CNFs could potentially mimic structures more closely. Finally, the use of CNFs as catalyst support has gathered high interest for improvement of catalytic activity.15−18 Several approaches were presented to fabricate branched CNTs or CNFs,19−29 Another peculiar subset of carbon structures are wound-up CNFs/CNTs. These twisted structures are commonly referred to as coiled or helical CNFs/CNTs and are of particular interest for introducing chirality into the system.30−35 They have been applied, for example, as a highly efficient adsorbent for wastewater treatment.36 While progress has been made on the bulk production of coiled CNFs,37 despite the richness of approaches and obtained carbon structures, the growth of single CNT/CNF-based nanostructures on defined positions and tuning their shape is still a tremendous challenge. In a previous study, we discovered a growth mode for lambda-shaped CNFs (labeled ΛCNFs or λCNFs, dependent on their geometry) with two feet anchored to the growing substrate and an optional free-standing head.29 These nanostructures grow in an open ethanol flame from NiCl2·6H2O catalyst sites deposited onto a 7 nm thick Cr-layer on a SiO2 wafer. To reduce the NiCl2-catalysts, they were placed adjacent to copper bars on the substrate that act as a catalyst to provide the required H2 from an ethanol flame.38

Here, we present an approach to utilize the open ethanol flame process to grow carbon nanostructures with two coiled “legs” and a noncoiled “head” at defined positions, which we name coiled lambda-shaped CNFs (cλCNFs). The detailed characterization of the obtained cλCNFs allows us to propose a growth model that can explain the unique shape of this fiber structure with only coiled legs but noncoiled head CNFs.
RESULTS AND DISCUSSION

Controlled Growth of Coiled Lambda-Shaped CNFs.

Commonplace methods to grow CNFs and CNTs are chemical vapor deposition (CVD)\(^{39,40}\), or plasma enhanced chemical vapor deposition (PECVD).\(^{41}\) However, there are several studies using an open flame process to synthesize CNTs and CNFs as an alternative.\(^{13,29,42}\) These processes need less infrastructure and benefit from low process costs. Inspired by these studies, we used an open ethanol flame to grow coiled lambda-shaped CNFs (c\(\lambda \)CNFs) from NiCl\(_2\)\(\cdot \)6H\(_2\)O catalysts on a substrate. The substrate consists of a (10 × 10 mm\(^2\)) SiO\(_2\) wafer with a layer of 7 nm Cr on top and copper bars with widths of 14 \(\mu \)m, heights of ∼5 \(\mu \)m, and a periodicity of ∼100 \(\mu \)m. Using the tip of an atomic force microscope cantilever,\(^{50,51}\) the catalyst size and position on the substrate where CNFs will grow, can be defined with high precision.\(^{29}\) To obtain the c\(\lambda \)CNFs, catalytic salt (NiCl\(_2\)\(\cdot \)6H\(_2\)O) was deposited on the substrate between the copper bars (Figure 1a). The critical volume of NiCl\(_2\)\(\cdot \)6H\(_2\)O to grow single lambda-shaped CNFs was determined in our previous study to 0.033 \(\mu \)m\(^3\).\(^{29}\) Excessively high temperatures and humidities during the preparation process of the sample might lead to oxidation of the NiCl\(_2\)\(\cdot \)6H\(_2\)O catalysts preventing CNF growth.\(^{13,52}\) Therefore, the samples were prepared at lab temperatures below 23 °C and in relative humidities below 50%. Additionally, the samples were dried for more than 24 h before use, to reduce residual humidity to a minimum.

During growth, hydrogen is produced from the copper in the ethanol flame, which is required to reduce Ni-oxide possibly formed from the Ni-salt catalyst to a pure state.\(^{29}\) To achieve a stable ethanol flame without flicker, we used a setup based on a closed system with guided air inlet and outlet as described previously.\(^{29}\) On the position of the catalysts spotted in between the copper bars, the sample was covered with an Al\(_2\)O\(_3\)-plate, forming channel structures with a width of ∼100 \(\mu \)m and a height up to ∼10 \(\mu \)m. The such prepared sample was then positioned vertically aligned in the ethanol flame, at a height of 2 mm over the wick of the ethanol burner (Figure 1b). The ethanol flame temperature at the position, where c\(\lambda \)CNFs grow, was measured with a thermocouple to 750 °C. The growth time was 5 min for all experiments and a typical outcome is shown in Figure 1c. The obtained CNF structures have two coiled feet anchored to the substrate and a noncoiled head on top. Because of their appearance, we named these structures coiled lambda-shaped CNFs, abbreviated as c\(\lambda \)CNFs.

Geometry Analysis of Coiled Lambda-Shaped CNFs.

Our geometry analysis shows that the c\(\lambda \)CNFs have diameters in the range of 200 nm, approximately half of the diameters of previously grown noncoiled lambda-shaped CNFs.\(^{29}\) However, the lengths of the three parts (two legs and one head) can be much larger compared with the conventional lambda-shaped CNFs. The head CNF can reach lengths over 5 \(\mu \)m, and the distance between the positions where the two leg CNFs are anchored to the substrate is up to 10 \(\mu \)m. This can be explained with a higher flow velocity in the microchannel structures, transporting more carbon from the ethanol flame to the CNFs and leading to a higher growth rate.

For an exact geometry analysis, 50 c\(\lambda \)CNFs were imaged by SEM. The head part is indicated with “1”, the foot counter-clockwise from the head in the top view is “2”, and the other foot is “3”. The summarized results for the c\(\lambda \)CNFs geometry is given in Figure 2. The number of twists of the two CNFs anchored to the substrate are \(T_2 = 14.0 \pm 7.5 \) (\(N = 50 \) here and in the following) and \(T_3 = 14.2 \pm 8.3 \) and are nearly identical, whereas no twists were observed for the free-standing head CNF in any cases. The lengths of the two CNFs connected to the substrate surface are \(L_2 = (2.8 \pm 1.2) \mu \text{m} \) and \(L_3 = (2.8 \pm 1.2) \mu \text{m} \) and are identical, whereas the free-standing head CNF can be much longer \(L_4 = (4.2 \pm 2.3) \mu \text{m} \). The diameters of the two CNFs connected to the substrate surface are \(D_2 = (152.2 \pm 32.7) \text{ nm} \) and \(D_3 = (166.3 \pm 39.7) \text{ nm} \) and are slightly smaller as the diameter of the free-standing head CNF \(D_4 = (171.0 \pm 42.1) \text{ nm} \). The angles between the two CNFs connected with the substrate are \(\alpha_{13} = (154.8 \pm 53.9) \degree \) whereas the other two angles between the head CNF and the two leg CNFs are smaller with \(\alpha_{12} = (94.87 \pm 43.5) \degree \) and \(\alpha_{13} = (105.0 \pm 48.5) \degree \).

In order to group the c\(\lambda \)CNFs data for further analysis, we plotted the head/feet length ratio and the number of twists in the CNF feet in a diagram (Figure 3), showing the number of twists vs the length ratio between head and feet. A great range of different values indicate that the c\(\lambda \)CNFs nucleate at different points in time during the overall growth period of 5 min. We observed a free area above a ratio of 1.0 and 20 twists (which is
no artifact of the specific growth time but can be understood in terms of the \(\lambda \)CNF growth model discussed in the next section. The diagram also reveals that \(\lambda \)CNFs can develop to bottom-heavy or top-heavy configurations.

To probe its mechanical stability, one leg CNF of a \(\lambda \)CNF was cut utilizing a focused ion beam (FIB). Figure 4 shows the respective SEM images of the \(\lambda \)CNF before (top) and after the cut (bottom). After cutting, the complete structure moved and changed shape, which is most likely caused by relaxation of internal stress in the structure after the cut. This outcome is different to our previous study where we grew noncoiled \(\lambda \)CNF, which showed no obvious relaxation by immediate structural change. However, the twists by themselves remain unchanged, implicating that they are fixated into the structure after removing the sample from the ethanol flame.

In addition to the geometrical analysis, the chemical composition of the \(\lambda \)CNFs was also explored by energy-dispersive X-ray spectroscopy (EDS), and results are shown in Table 1.

A substrate area free of CNFs was chosen as reference area, showing a clear signal of silicon oxide (SiO\(_2\)) in EDX, as well as the background levels of the other analyzed materials. The neck-part and the coiled foot-part of the \(\lambda \)CNF have nearly the same material composition of carbon and residual amounts of oxygen, silicon, copper, and nickel. The apparent low amount of carbon is an artifact resulting from the high background levels of silicon and oxygen from the substrate. The graphitic carbon nature of the CNFs is clearly confirmed by the Raman spectra (Figure 5), as was expected from previous studies of CNF growth in the open ethanol flame process. The catalytic centers appear to consist of a nickel/copper alloy (1:6).

Coiled Lambda-Shaped CNF Growth Mechanism.

During the last decades, growth of coiled CNFs and CNTs was reported by several groups and different growth models were suggested. Nonetheless, although early reports on...
vermicular CNFs date back to 1953,54 no definitive or unified growth model has emerged yet. Hence, it is no surprise that most reports on coiled CNFs/CNTs did not suggest a growth model. The diverse range of circumstances in regard to position of catalytic center during growth, pairwise or singular CNF/CNT growth, used techniques and process parameters, and morphology in obtained CNFs/CNTs suggest that probably not all coiling in CNFs/CNTs is caused by the same mechanism. Most studies propose either chemical modification during the growth process (introduction of pentagons and heptagons into the hexagonal tube lattice)55−58 and/or the unequal extrusion of carbon material from the catalytic center,59−62 but mechanical causes63 and thermodynamic/entropical reasons58,64 were hypothesized, too. In regard to possible growth mechanisms for our cλCNFs, two specific morphologies strike out as bearing significant resemblance: X/Y junction carbon nanocoils28 and carbon coils growing pairwise from a single catalytic center.35,63,65,66 For the coiled carbon structures with X and Y junctions, a growth mechanism based on the either merging of independently growing carbon coils or growth of three or even four carbon coils from a matching number of facets on the catalytic center was suggested.28 This cannot explain the growth of the cλCNFs, as these structures always originate from a single catalytic center.35,63,65,66 Furthermore, the consistent switch from coiled feet CNFs to noncoiled head CNF in each and every observed cλCNFs would not be understood in this growth model.

The pairwise growing carbon coils bear a striking resemblance to the feet CNFs of the cλCNFs: They, too, exhibit the same length and the same number of twists but opposite chirality in the respective pairwise grown carbon coils.35,63,65,66 For these, a mechanical origin of the coiling by stress release in the previously straight grown CNFs by a change in van der Waals force mediated attachment to the substrate on temperature variation in the growths process is suggested.63 This hypothesis fails for our cλCNFs, too, as we clearly observe the formation of noncoiled λCNFs (that are already only attached to the substrate exclusively at the end points of the feet CNFs) and our process parameters are kept constant during the whole growth process. Interestingly, for the pairwise grown carbon coils, Tang et al. reported a preferred angle between the two carbon coils of 70° with a minority of pairs with 35° or 130°, respectively, but no intermediate angles,65 while in our present study we observe a wide range of angles with a mean of (154.8 ± 53.9)° (as described in section 2.2.). This underlines another difference in growth, as in our cλCNFs, this angle is defined by the lengths and the point at which the feet CNFs anchor to the substrate.

However, the detailed observation of cλCNFs in different stages of growth allows us to come forward with a possible growth model for our case (Figure 6). As shown in our last work,29 for noncoiled CNFs, two CNFs grow from one Ni catalytic center forming a ΛCNF first and then a λCNF on further growth. In the present study, we observe a coil structure in the feet CNFs (anchored to the substrate), which we propose to be caused by the CNF head part of λCNFs starting to rotate through their feet CNF, due to the higher flame velocity in the microchannel. This results in twists in the foot CNFs, while the head CNF remains straight. The head CNF will continue to grow during rotation, until reaching a certain length, where rotating is no longer possible for geometrical constraints. After this length is reached, the head CNF can still continue to grow, but the foot CNFs reach their final number of twists.

Having formulated this hypothesis for the growth process, we can discuss our empirical findings on the cλCNF in light of this

![Figure 3. Diagram of the number of feet twists as a function of the ratio of head and feet CNF length. The data points represent 50 cλCNFs grown in a 5 min process. The insets exemplify the morphology of selected cλCNF. Their respective data point in the diagram is indicated by arrows.](image1)

![Figure 4. A cλCNF with one CNF foot cut off the substrate using a focused ion beam. While the overall shape of the structure changed due to release of mechanical stress, the twists in the feet CNFs remained unaltered.](image2)
First, if this hypothesis for the growth process is correct, the number of twists in each of the two legs of the cCNF should be equal and independent of their sizes, which was observed in our experiments (Figure 2a). Second, the winding up of the feet $CNFs$ will start up from the Y-junction where the feet and head $CNFs$ meet and not be present prior to emergence of the head CNF. This can also clearly be seen in the panels of Figure 6 directly following the cCNF, where more and more twists wind

<table>
<thead>
<tr>
<th>position</th>
<th>C [wt %]</th>
<th>O [wt %]</th>
<th>Si [wt %]</th>
<th>Cu [wt %]</th>
<th>Ni [wt %]</th>
</tr>
</thead>
<tbody>
<tr>
<td>CNF neck-part</td>
<td>25.29 ± 0.46</td>
<td>34.95 ± 0.31</td>
<td>39.73 ± 0.29</td>
<td>not detected</td>
<td>not detected</td>
</tr>
<tr>
<td>CNF twisted-foot-part</td>
<td>27.85 ± 0.46</td>
<td>34.68 ± 0.32</td>
<td>37.42 ± 0.28</td>
<td>not detected</td>
<td>not detected</td>
</tr>
<tr>
<td>catalytic center</td>
<td>9.69 ± 0.49</td>
<td>39.69 ± 0.32</td>
<td>46.61 ± 0.33</td>
<td>3.44 ± 0.13</td>
<td>0.56 ± 0.07</td>
</tr>
<tr>
<td>reference (free-area)</td>
<td>8.49 ± 0.49</td>
<td>38.10 ± 0.32</td>
<td>53.33 ± 0.36</td>
<td>not detected</td>
<td>not detected</td>
</tr>
</tbody>
</table>

The wt% and standard deviation of the elemental composition was determined by the AZtec software.

Figure 5. Raman spectra of coiled lambda-shaped $CNFs$ at 514 nm, showing a sharp G band which is indicative of graphitic $CNFs$, further confirmed by the I_D/I_G ratio of 0.736. A broadened 2D band (attributed to strain) is observed.

Figure 6. Growth model for cCNF. Two $CNFs$ grow from one catalytic center made by Ni forming a ΛCNF and finally a λCNF as described previously. After this point is reached, due to the higher flame velocity in the microchannels, the CNF head part starts to rotate through their foot $CNFs$, winding them into equal number of twists. The head CNF will grow further, until it cannot pass any more through the space between the foot $CNFs$, thus stopping the winding process. Even then, the head CNF can continue growing, but no additional twists will be introduced to the foot $CNFs$. Part of the figure is adapted with permission from ref 29.
As both foot CNFs are relative stiffness of the CNF, the earlier the twisting would stop. As both foot CNFs are fixed against the substrate, the twisting would stop at the point where the longitudinal stress created by the twisting is equal to the force (introduced to the head CNF by the gas stream of the flame) that causes the twisting during the CNF growth. Here, the free area in the diagram of twists versus head to feet CNFs length ratio (Figure 3) suggests that our proposed geometrical stop of twisting sets in much earlier than any stop by reset force, as for the top-heavy cλCNFs no foot CNFs with more than 20 twists are observed, while the bottom-heavy cλCNFs can have many more twists (up to 34 observed in our sample).

CONCLUSIONS

In summary, we presented a method for the controlled growth of a unique form of coiled lambda-shaped CNFs (cλCNFs) in a microchannel placed into an open ethanol flame. The resulting carbonic structures feature two coiled foot CNFs anchored to the substrate and a noncoiled head CNF. The growth position of the cλCNFs can be determined by the controlled deposition of nickel salt via an atomic force microscope cantilever as precursor for the catalytic growth center. Extensive characterization of the cλCNFs in regard to chemical and morphologic properties lead to a conclusive growth model that explains the exclusive and always of opposite rotational direction coiling of the foot CNFs.

Another deduction from the presented growth model is that the twists in both of the foot CNFs should be always of opposite direction of rotation (Figure 7a). This opposite direction of rotation was indeed observed in all investigated cλCNFs. In order to further analyze the symmetry between the respective foot CNFs of a cλCNF one can also look at the angle of the twists in relation to the CNFs main axis. This angle is generally between 0° and 90°, as defined in Figure 7a.

A tabulation of the measured angles in 50 cλCNFs shows a striking symmetry (Figure 7b). The angles against the main axis (or twisting angle) are for the noncoiled head CNF \(\delta_1 = (0.0 \pm 0.0)^\circ \) \((N = 50)\), whereas for the two foot CNFs, values of \(\delta_2 = (63.9 \pm 8.5)^\circ \) and \(\delta_3 = (65.5 \pm 5.5)^\circ \) are obtained.

An alternative hypothesis for the stop of twisting during the growth process is that the twisting introduces a reset force that makes it harder to introduce additional twists. The higher the relative stiffness of the CNF, the earlier the twisting would stop. As both foot CNFs are fixed against the substrate, the twisting would stop at the point where the longitudinal stress created by the twisting is equal to the force (introduced to the head CNF by the gas stream of the flame) that causes the twisting during the CNF growth. Here, the free area in the diagram of twists versus head to feet CNFs length ratio (Figure 3) suggests that our proposed geometrical stop of twisting sets in much earlier than any stop by reset force, as for the top-heavy cλCNFs no foot CNFs with more than 20 twists are observed, while the bottom-heavy cλCNFs can have many more twists (up to 34 observed in our sample).

METHODS

Substrate and Microchannel Fabrication. For the growth of coiled lambda-shaped CNF, a substrate (Si with 7 nm Cr on top) with arrays of copper grids was fabricated as described elsewhere.29 A cover plate made by Al\(_2\)O\(_3\) was placed over the copper bars to achieve several microchannels. The microchannels in the cross section have a height of 5–10 \(\mu\)m and a length of 60 \(\mu\)m.

Deposition of Catalysts. The cantilever based deposition of catalyst was performed with a commercial system (Molecular Printer, nABLE GmbH, Germany). A self-built holder was equipped with a cantilever type “A” (Nanoink Inc., U.S.A.), previously dip-coated with a solution (2 mg/mL) of NiCl\(_2\)6H\(_2\)O in ethanol mixed with glycerol (1:10) as the ink. Deposition was performed directly onto the substrate between two copper bars. The deposition was conducted with a dwell time of 4 s at 60% relative humidity.

Growth of Coiled Lambda-Shaped CNFs. A self-built machine was used to grow coiled lambda-shaped CNFs, described in detail elsewhere.29,29 It consists of an ethanol burner with a combustion rate of 0.4 mL/min in a closed system with a guided air flow, to achieve an ethanol flame without jitter. The substrate (10 \(\times\) 10 mm\(^2\)) with the cover plate to grow coiled lambda-shaped CNFs was placed vertically in the ethanol flame.

CNF Characterization. The morphology of the cλCNFs was investigated with a scanning electron microscopy (SEM) SUPRA 60 VP (Zeiss, Germany). Raman spectra were measured on an inVia Raman microscope (Renishaw, U.K.) at 514 nm. EDS measurements were performed with a Zeiss Leo 1530 SEM operating at 20 kV. The EDS were acquired using the “Point & ID” option in AZtec software using an Oxford X-Max \(^{50}\) detector. The EDS detector is a 50 mm\(^2\) large area detector.
sition, which can quantify elements heavier than carbon to an accuracy of 0.01% by weight, thus the Oxford Instruments AZtec materials characterization system can gather highly accurate data at the micro- and nanoscales. The detector conforms to ISO 15632:2012 Microbeam analysis - Selected instrumental performance parameters for the specification and checking of energy-dispersive X-ray spectrometers for use in electron probe microanalysis.

CNF Geometry Analysis. For 50 c-CNFs from one experiment with 5 min growth time, detailed measurements for length, diameter, and number of coils in the foot CNFs were manually obtained with the onboard SEM software. The angle between the three CNFs was measured manually on print outs of images with appropriately oriented c-CNFS. All reported values are means ± SD.

FIB Cutting of CNFs. A c-CN was cut using a focused ion beam setup (Helios Nanolab 650 from FEI, USA) operating at an acceleration voltage of 30 kV with an ion beam current of 80 pA. The cutting time was 1 s for the cut of one foot of the c-CN.

REFERENCES

