Electrodeposition of chitosan enables synthesis of copper/carbon composites for H_2O_2 sensing

M. Islam a,*, N. Arya a,b, P.G. Weidler c, J.G. Korvink a, V. Badilita a,**

a Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
b Department of Chemical and Energy Engineering, Otto von Guericke University Magdeburg, Universitat Platz 2, 39106, Magdeburg, Germany
c Institute of Functional Interfaces, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany

Keywords:
Electrochemical deposition
Biopolymer derived carbon
Metal/carbon composite
Carbonization
Biosensor

Abstract

This work presents a novel approach in synthesizing copper (Cu)/carbon composite materials by electrodeposition of the biopolymer chitosan, a renewable carbon precursor, on a copper anode, followed by pyrolysis of the electrodeposited chitosan gel. The amount of copper in the Cu/carbon composite material can be controlled by modifying the pH of the chitosan solution from which the electrodeposition is performed. This further influences the physical properties of the composite material. Here we show a 14 fold increase in electrical conductivity of the Cu/carbon composite, when compared to the material without copper inclusions. Metal/carbon composite materials have a wide range of applications already reported in the literature. As a proof of concept, we demonstrate the electrochemical sensing capability of this Cu/carbon material for non enzymatic detection of hydrogen peroxide, achieving a sensitivity of 58.9 μA/mM cm2, which is comparable to state of the art non enzymatic hydrogen peroxide sensors. The anodic electrodeposition of chitosan proves to be a simple and straightforward medium for synthesis of Cu/carbon composites. We speculate that this method can be extended to obtain other metal/carbon composites as a low cost alternative for the fabrication of functional composite electrodes.

1. Introduction

Metal/carbon composites are an interesting class of materials due to their unique properties, such as high electrical conductivity, high wear resistance, and adjustable electrochemical properties. These properties have enabled the use of metal/carbon composites in a variety of applications, for instance as coating material, or as electrodes in energy devices and biosensors [1–5]. The preparation of metal/carbon composites includes deposition of metal on carbon surfaces [6,7], and carbonization of a precursor composite [3,8,9]. Deposition methods, such as sputtering and microwave plasma enhanced chemical vapor deposition, involve sophisticated infrastructure, which makes the preparation process complex and expensive. Furthermore, deposition methods can only enable metal incorporation on the surface of the carbon material. In comparison, infiltration of a metal salt in a carbon precursor allows for a simpler method for synthesis of the metal/carbon composite. However, selection of the precursors often becomes a crucial factor in this process, which can require a long sample preparation time. Furthermore, many metal precursors are highly corrosive, which requires additional sample handling precautions. In recent years, metal organic frameworks (MOFs) have emerged as a novel material for the preparation of metal/carbon composite through one step carbonization [1,10]. This comes with the disadvantage that the synthesis of MOFs is an extremely slow process, and requires a complex chemical process. Furthermore, the carbon precursors which are used in most of these processes are mainly petroleum derived and non renewable.

In this work, we propose the electrodeposition of chitosan on copper electrodes as a sustainable and environmentally friendly medium to prepare metal/carbon composite materials. Chitosan is a derivative polysaccharide from chitin, which is the second most abundant biopolymer in nature after cellulose [11,12]. Chitosan has proven to be a reliable candidate for the synthesis of carbon material upon carbonization in various applications. For example, Deng et al. reviewed the use of chitosan as a biomass precursor for synthesis of nitrogen doped carbon in supercapacitor applications [13]. Peng et al. synthesized mesoporous carbon material by
carbonization of a chitosan film in nitrogen environment for selective carbon dioxide (CO\textsubscript{2}) capture from dilute industrial sources [14]. Guo et al. synthesized 3D hierarchical N doped carbon nanoflowers using chitosan as the carbon precursor in a silica template approach, which showed superior performance as electrode in lithium sulphur batteries [15]. Chitosan also shows pH dependent solubility, which has enabled the patterning of chitosan on various surfaces using electrodeposition [16–20]. Electrodeposition is advantageous for patterning chitosan, because it allows for both temporal and spatial control of multiple layers of chitosan film on the electrode surface [21], which has enabled the deposition of chitosan films on a variety of microdevice geometries. For example, Wu et al. reported the electrodeposition of chitosan on microfabricated gold electrodes as thin as 20 μm [22]. A member of the present team of authors previously demonstrated electrodeposition of chitosan on the vertical sidewall of an integrated SU 8 microfluidic channel to operate as a chitosan mediated DNA hybridization biosensor [23,24]. Electrodeposition further allows for the deposition of metal/chitosan composite films by adding a metal precursor in the polyelectrolyte mix. For example, Ma et al. fabricated an immunosensor by electrodeposition of gold nanoparticle/chitosan composite for determination of aflatoxin B1 in maize. The gold nanoparticle/chitosan was achieved by mixing chloroauric acid, a gold precursor, in the chitosan solution during electrodeposition [25]. Pang and Zhitomirsky demonstrated the deposition of silver/chitosan composites through addition of silver nitrate in the chitosan solution during electrodeposition [26]. Towards deposition of composite films, Geng et al. reported that it is possible to obtain metal/chitosan composites without adding any metal precursor in the chitosan solution. They demonstrated that the chitosan molecules coordinated with the metal ions generated from the electrode within the polyelectrolyte, and deposited on the anode surface at a specific pH of the polyelectrolyte [27]. Such metal ion mediated electrodeposition enables a simple and fast approach for fabricating metal/chitosan composite. Here, we postulate that the pyrolysis of such metal/chitosan composite can lead to a simple and fast medium for the synthesis of a metal/carbon composite, and simpler when compared to the methods mentioned earlier.

In this work, we demonstrate the synthesis of a copper (Cu)/carbon composite material using metal ion mediated electrodeposition of chitosan, followed by carbonization in an inert atmosphere. We study how the pH of the polyelectrolyte solution used during electrodeposition can control the amount of Cu in the Cu/carbon composite. The morphology of the Cu in the composites also shows a strong dependence on the pH of the polyelectrolyte. The Cu/carbon composites show significant improvement in their electrical conductivity compared to the native carbon material. Utilizing the excellent biocatalytic properties of Cu [27,28], we further demonstrate the amperometric biosensing capabilities of the Cu/carbon composite synthesized here. The Cu/carbon composite shows good sensitivity for non enzymatic detection of hydrogen peroxide (H\textsubscript{2}O\textsubscript{2}), and is comparable in performance to other non enzymatic amperometric biosensors.

2. Results and discussion

2.1. Electrodeposition of chitosan

We performed electrodeposition of chitosan using poly electrolyte solution featuring different pH values ranging from 2 to 6, and copper electrodes, both as cathode and anode, using a set up schematically illustrated in Fig. 1. The highest pH we were able to use for electrodeposition was 6. A pH value higher than 6 makes the chitosan insoluble in the aqueous solution, which is not suitable for electrodeposition [18,29]. For the pH values ranging from 2 to 6, stable chitosan hydrogels were obtained on the cathode. This was due to the fact that the amino (−NH\textsubscript{2}) groups present in chitosan solution were protonated in the acidic media, and chitosan particles near the cathode surface experienced relatively high pH, which made the chitosan particles insoluble at the electrode interface, resulting in deposition of the chitosan on the cathode surface [29,30]. No anodic deposition was observed, when using a poly electrolyte with a pH below 5. However, a thick and stable anodic hydrogel started to appear on the anode when the pH was 5 and above. In contrast to the white cathodic hydrogel, the anodic gel appeared to be blue, as shown in Fig. 1 and S1. The blue color of the anodic hydrogel was attributed to Cu2+ ions in aqueous solution. This was in agreement with the article published by Geng et al. [19]. They reported that the anodic copper electrode generates Cu2+ ions because of electrochemical oxidation during electrodeposition. The chitosan molecules adjacent to the anodic surface coordinate with the Cu2+ ions through chelation and deposit on the anode surface as a stable hydrogel. Anodic deposition of chitosan has been previously reported by, e.g., Gray et al. [31]. However, in the work of Gray et al. anodic deposition occurred due to partial oxidation of the chitosan molecules, which generated aldehydes and coupled covalently with the amine groups. Furthermore, they showed that in a chitosan solution containing HCI, a pH gradient appeared near the anode during electrodeposition. The pH gradient can reach a pH of 1.0 at the vicinity of the anode surface. Such low pH is not suitable for chelation of chitosan with metal ions [32], and did not apply to our experiment. It should be mentioned here that Gray et al. used a gold electrode for electrodeposition and did not achieve any anodic deposition in the solution containing acetic acid. However, the anodic gel did not feature any metal ions. Our hypothesis is that the anodic deposition of a metal/chitosan composite hydrogel depends on the choice of electrode material as well as the choice of acid used to prepare the chitosan solution. An extensive study is needed to characterize the influence of different experimental parameters, i.e., choice of metal electrodes and choice of acid to form the acidic solution, and thereby explore in depth the mechanism of the anodic deposition of metal/chitosan composite gel.

2.2. Composition of carbonized gel

We carbonized the hydrogels electrodeposited on the anodic surfaces, which were obtained at a pH of 5 and higher. The
carbonization was carried out in a nitrogen environment at 900 °C with a heating rate of 5 °C/min. For comparison, we chose a cathodic hydrogel sample obtained at pH value of 2 and subjected this sample to a similar heating protocol. The carbonized anodic samples featured a brown color, whereas the cathodic sample appeared to be black, as shown in Fig. S2. We performed X ray diffraction (XRD) of the carbonized samples to investigate the composition and crystalline structure of the materials. The XRD patterns of the carbonized samples are presented in Fig. 2a. The XRD pattern for the cathodic gel exhibited two broad peaks around 2θ 26° and 2θ 44°, which were indexed to (002) and (100)/(101) reflections of carbon, respectively, according to the International Centre for Diffraction Data (ICDD) PDF number 25 0284. Such reflections are characteristics of amorphous carbon [33,34]. This was in accordance with previous publications reporting synthesis of carbon from pyrolysis of chitosan [35,36]. Tiny peaks corresponding to accidental contamination with Na2CO3 (ICDD PDF number 18 1208) were also observed in the XRD pattern for the carbonized sample stemming from the cathodic deposition from the solution with a pH value of 2. The analysis at the elemental level of the cathodic carbon sample is presented in Fig. S4c.

The XRD diffractograms for anodic samples obtained from solutions at pH 5, 5.5 and 6 exhibited distinct peaks for Cu at 2θ of 43.2°, 50.4° and 74.1°, which were indexed to (111), (200) and (220) crystalline planes, respectively, and matched to ICDD PDF no: 04 0836. Furthermore, broad peaks around 2θ 26° and 2θ 44° were also observed (see Fig. 3a), similar to the peaks observed for pH 2, confirming the presence of a significant amount of amorphous carbon in these samples. Therefore, the XRD patterns for the carbonized anodic samples confirmed the formation of Cu/carbon composites through carbonization of the anodic chitosan hydrogels. We further calculated the crystallite size of the Cu particles obtained for different pH values using the Scherrer equation and plotted in Fig. S3b. The crystallite size increased from 28.6 ± 1.0 nm for the sample obtained from the solution with the pH value of 5 to 31.3 ± 2.2 nm for the sample obtained from the solution with the pH value of 6. We hypothesized that increasing the pH of the chitosan solution might have resulted in a higher amount of Cu2⁺ in the anodic gel. During carbonization, the Cu2⁺ ions sintered together to form crystallites in a carbon matrix. Higher amount of Cu2⁺ ions in the gel might have yielded a larger crystallite size during the carbonization process. The pH dependence of the Cu2⁺...
amount in the anodic gel was confirmed by energy dispersive X-ray (EDX) analysis. Along with the Cu peaks, several other peaks were also observed in the XRD patterns for the anodic samples, which were attributed to sodium chloride (NaCl) (ICDD PDF No: 05-0628). NaCl was formed as a reaction product between the NaOH which was added to the chitosan solution for pH adjustment and the HCl used to dissolve the chitosan powder. NaCl was trapped inside the anodic gel matrix and remained in the Cu/carbon composite after the carbonization process.

Elemental analysis of the carbonized gels was performed using EDX. The EDX mapping and the EDX pattern (Fig. 2b) of a carbonized anodic gel confirmed the presence of the elements carbon (C), copper (Cu), oxygen (O), sodium (Na), chlorine (Cl) and nitrogen (N). Fig. 2c shows the amount of different elements present in the carbonized samples for various pH values. Carbon remained the major component in the sample. However, the amount of carbon in the carbonized anodic samples was lower than that of the cathodic gel. This was expected as no copper particles were present in the cathodic sample. Among the anodic samples, a dependence of pH on the amount of carbon and copper was observed from the EDX results (Fig. 2d). The amount of carbon decreased from 71.7 ± 3.2% for the sample corresponding to the pH 5 solution to 63.0 ± 2.8% for the sample corresponding to pH 6 solution, whereas the amount of copper increased from 4.1 ± 0.9% for the sample corresponding to pH 5 solution to 10.8 ± 1.6% for the sample corresponding to pH 6 solution. This confirms the earlier hypothesis that higher pH of the chitosan solution resulted in higher amount of Cu²⁺ in the anodic gel. Consequently, higher amount of Cu was obtained in the carbonized anodic samples obtained at higher pH. Presence of Na and Cl in the carbonized samples was attributed to the NaCl formed within the gel matrix and detected in the XRD diffractograms. It should be noted that all carbonized samples exhibited a significant presence of nitrogen. This was because chitosan results in nitrogen doped carbon upon carbonization, as reported in previous publications [15, 37–39]. Similar to carbon, nitrogen also exhibited a decreasing trend with increasing pH. This was expected as both carbon and nitrogen were derived from chitosan.

Both XRD diffractograms and EDX analysis confirmed that the amount of Cu increased in the anodic gel with the increase in the pH of the initial solution from which the chitosan was electrodeposited. Our hypothesis is that such phenomenon can be attributed to the chelation behavior between chitosan and Cu²⁺ ions. Chitosan solution exhibits no chelation under high acidic conditions (pH ≤ 4), because the –NH₂ groups of chitosan get protonated to form NH₃⁺. However, when the pH increases towards neutral values, complexation between –NH₂ groups and Cu²⁺ ions starts to form [40–42]. Previous studies already proposed that the complexation of Cu²⁺ with amino group under neutral conditions is carried out in two forms [42, 43]. When the pH of chitosan solution is in the range 5–5.8, a complex [Cu(–NH₂)]²⁺ is formed. As the pH increases above 5.8, the second form of complexation [Cu(–NH₂)₂]²⁺ is formed [44, 45]. This indicates that, during electrodeposition, the chitosan gel trapped more Cu²⁺ ions in the gel matrix through formation of complexes with increasing pH of the chitosan solution. Furthermore, it also explains why the anodic gels appeared at a pH of 5 or higher. However, more electrochemical studies are needed to fully understand this mechanism.
2.3. Microstructure of the carbonized anodic gel

Carbonization of the chitosan gels resulted in a porous microstructure (Fig. S4a), which featured mostly large macropores. The pore size distribution was random and irregular. This was mainly attributed to the evaporation of the water from the hydrogel. The carbonized cathodic gel did not feature any Cu particles, as expected and shown in Fig. S4b. In contrast, the presence of Cu particles was distinctively visible in the scanning electron microscopy (SEM) images of the carbonized anodic gels, as presented in Fig. 3a–c. The SEM measurements have shown a dependency of the size and shape of the Cu particles on the pH of the initial chitosan solution. The shape of the Cu particles for pH 5 and pH 5.5 was spheroidal (see Fig. S5); the particle size distributions of the carbonized gels stemming from chitosan solutions with pH values of 5 and 5.5 are shown in the insets of Fig. 3a and b, respectively. The average size of the Cu particles increased with pH of the initial chitosan solution. The average diameter of the Cu particles obtained from chitosan solutions with pH values of 5 and pH 5.5 was 3.69 ± 2.67 μm and 6.35 ± 4.68 μm, respectively. Compared to the samples obtained from solutions with pH values of 5 and 5.5, the sample corresponding to the solution with pH 6 exhibited irregular and larger shape of the Cu particles, as shown in Fig. 3c and its inset. We attribute the dependence of the shape and size of the Cu particles on pH to the fact that increasing pH results in higher amount of Cu²⁺ in the chitosan hydrogel. The Cu²⁺ ions go through aggregation and sintering due to close spatial proximity to form spheroidal particles at higher temperature during carbonization. A higher amount of Cu²⁺ ions with increasing pH of the original chitosan solution resulted in a denser spatial distribution, which yielded larger particles. With further increase in pH, more Cu²⁺ ions get trapped in the hydrogel, causing a dense spatial distribution. This might have triggered the formation of the copper particles in irregular non-spherical shapes. The larger size of the irregular shapes is also evidence of the dense proximity of the Cu²⁺ ions. It should be noted here that the majority of the Cu particles were observed on the surface of the samples; the presence of the Cu particles in the core of the sample was comparatively low (Fig. S6). This might be due to the migration of Cu particles towards the surface during the carbonization process while performing carbonization with metals, reported previously by other researchers [46–48].

Fig. 3d and e shows the high resolution transmission electron microscopy (HRTEM) images of spots 1 and 2, respectively. Spot 1 represents a site where no Cu particle was present. Spot 2 was chosen on a Cu particle. HRTEM image of Spot 1 exhibited a turbostratic microstructure of carbon, which is similar to the microstructure observed in the HRTEM of carbonized cathodic gel (Fig. S4d). No graphitized microstructure of carbon was observed here. However, a few layers of graphitized carbon can be seen around the Cu particle, as indicated in Fig. 3e. This indicates that localized graphitization of carbon occurred at the interface of Cu and carbon, however, it was limited to only few layers at the interface. This supports the fact that Cu does not have a strong influence on the graphitization of the carbon, as compared other metals such iron, nickel and cobalt [49–51]. The turbostratic microstructure of the carbon also correlates with the presence of the broad peak around 2θ = 24° in the XRD diffractograms. The HRTEM image of Spot 2 showed distinct lattice fringes of Cu with a d spacing of 2.14 Å and 1.86 Å, which correspond to the (111) and (200) crystal planes of copper, respectively [52,53].

2.4. Electrical characterization

The electrical conductivity of the carbonized samples was measured using the four point probe method. As the carbonization process resulted in rough, porous and irregular shape carbonized gel samples, it was not feasible to perform the four point probe method on the samples as obtained after the carbonization process. Hence, we prepared circular pellets with a diameter of 10 mm by crushing the carbonized gels into fine powders, followed by mixing with polytetrafluoroethylene (PTFE) additive and compression at high pressure (see Experimental section for details). The four point probe measurements were performed on the circular pellets. As a result, the values obtained from the four point probe tests were not the absolute values for the carbonized samples, rather the measurements took into account also the PTFE used to form the pellets. However, these measurements can dictate the trend of the electrical properties of the carbonized samples. The electrical conductivity is plotted with respect to the pH of initial chitosan solution in Fig. 4a. One can notice that the standard deviation in the measurement values was significantly high. This might be due to the fact that PTFE was used as an additive for the preparation of the pellets. During mixing the carbonized sample with PTFE, a homogeneous mixture was expected, but not observed. We suspect that localized concentration of PTFE as well as Cu particles has occurred. Such localized concentrations might have resulted in significant deviation in the measurement values.

![Figure 4](image-url)
The carbonized anodic samples showed higher conductivity compared to the carbonized cathodic samples. The electrical conductivity for the cathodic samples was $0.148 \pm 0.06 \Omega^{-1} \text{cm}^{-1}$ whereas the electrical conductivity for the anodic samples ranged from $0.361 \pm 0.179 \Omega^{-1} \text{cm}^{-1}$ for the sample obtained from the solution with a pH value of 5, to $2.132 \pm 1.87 \Omega^{-1} \text{cm}^{-1}$ for the sample obtained from the solution with a pH value of 6. This was expected considering the presence of copper particles in the anodic samples. It was also evident that the electrical conductivity increased within the anodic samples with the increase in the pH of the initial chitosan solution. The sample obtained from the solution with pH 5 exhibited an increase in electrical conductivity of 2.44 fold compared to the cathodic sample, whereas the sample obtained from the solution with pH 6 showed a 14.4 fold increase in electrical conductivity (Fig. 4b). The curve fitting using the average conductivity values within the pH range 5–6 showed that the improvement in the electrical conductivity within this range was exponential. However, such exponential relation might not be true. The pH window is too small, and the number of intervals within the pH window are too few to draw such a conclusion. Nevertheless, the improvement in the conductivity can be attributed to the increase in the amount of Cu in the anodic samples with the increasing pH. We expected that the electrical conductivity would vary linearly in relation to the amount of Cu, which was not the case, as shown in Fig. 4b. Our current hypothesis is that higher amount of Cu resulted in higher proximity among the Cu particles, which enhanced the charge transfer within the carbon/Cu composite. Furthermore, it was seen in the TEM images that localized graphitization occurred at the interface of Cu and carbon. Increased amount of Cu also increased the occurrence of localized graphitization. Graphene has significantly higher electrical conductivity when compared to amorphous carbon [54–56]. Therefore, higher occurrence of localized graphitization is also supposed to contribute to an increased electrical conductivity of the carbonized anodic gels.

2.5. Electrochemical sensing of H$_2$O$_2$

We investigated the electrochemical sensing capability of the carbonized anodic samples for the detection of hydrogen peroxide (H$_2$O$_2$). The electrochemical measurements were carried out in a typical three electrode electrochemical cell as illustrated in Fig. 5a. 0.02 M phosphate buffered saline (PBS) solution was used as the electrolyte for the electrochemical measurements. We chose the Cu/carbon sample obtained from the precursor chitosan solution with pH 6 for the electrochemical measurements due to the presence of the highest amount of copper and therefore the highest electrical conductivity among all samples studied. Further, we compared the electrochemical measurement of the Cu/carbon sample with the carbon sample obtained for cathodic gel. Fig. 5b represents the cyclic voltammograms (CVs) of the cathodic carbon and anodic Cu/carbon samples in the presence and absence of 0.5 mM H$_2$O$_2$. It can be seen that the carbon electrode exhibited almost identical CVs in the presence and absence of H$_2$O$_2$. The Cu/carbon electrode also exhibited similar CV curve in the absence of
H₂O₂. However, the Cu/carbon displayed a significant increase in current, when H₂O₂ was introduced in the electrolyte. Furthermore, the CV curve was considerably wider than the CV curves for other samples. This is because the Cu particles in Cu/carbon electrode were the electro active sites for the reduction of H₂O₂. In absence of H₂O₂, the Cu in the Cu/carbon electrodes remain as Cu⁺, as shown in Eq. (1) [57]. In the presence of H₂O₂, reduction of H₂O₂ occurs at the Cu sites, which results in Cu²⁺ ions (Eq. (2)). Generation of the Cu²⁺ on the Cu/carbon produces more free electrons, which causes higher current in the presence of H₂O₂. Such a reaction at the Cu/carbon electrode in the presence of H₂O₂ thus enables the successful detection of H₂O₂. During a potential sweep of the cyclic voltammetry, the Cu²⁺ ions get reduced to Cu, before it reacts with H₂O₂ again (Eq. (3)) [57,58]. Such reversible reaction keeps the electrode surface active for sensing. It should be noted here that the reactions between Cu and H₂O₂ should result in distinct redox peaks, as reported by other authors [57–60]. However, no distinct redox peak was observed in the CV curve of our Cu/carbon composites electrode in the presence of H₂O₂. Such behavior can be attributed to the use of the PTFE as the binder material during the electrode preparation. PTFE is a non conductive material, which adds to the impedance of the electrode. We suspect that the impedance of the PTFE might have overshadowed the redox peaks originating from the reactions between Cu and H₂O₂, resulting in an ohmic shape CV curve. A similar phenomenon was reported by Liu et al. where using a non conductive polydopamine film for binding Cu nanoparticles to graphene oxide resulted in a near ohmic shaped CV curve during electrochemical sensing of H₂O₂ [61]. Nevertheless, our electrode was still capable of successful detection of H₂O₂. This was advantageous, because the Cu/carbon electrode did not require any enzyme immobilization on its surface for the detection of H₂O₂, which is needed for majority of the traditional sensor materials and causes difficulties in storage, handling and stability of the sensor material [62,63].

\[
\begin{align*}
\text{Cu} + \text{H}_2\text{O} &\rightarrow \text{Cu(OH)}_{\text{ads}} + \text{H}^+ + \text{e}^- \\
\text{Cu} + \text{H}_2\text{O} &\rightarrow \text{CuO} + \text{H}_2\text{O} \\
\text{Cu}_2\text{O} + \text{H}_2\text{O} + 2\text{e}^- &\rightarrow 2\text{Cu} + 2\text{OH}^-
\end{align*}
\] (1) (2) (3)

We measured the amperometric response of the Cu/carbon electrode upon successive addition of 0.5 mM H₂O₂ in the PBS electrolyte. The amperometric response is presented in Fig. 5c. A considerable change in current was observed upon step wise addition of H₂O₂. A steady state current (95% of the maximum value) was recorded within 3 s, which indicated that the Cu/carbon electrode was capable of fast electron transfer when exposed to H₂O₂. We plotted the calibration curve of the response current with the concentration of H₂O₂ in Fig. 5d. The Cu/carbon electrode exhibited a linear response with the concentration of the H₂O₂. The linear regression equation fitted to the calibration curve was

\[
y = 733.4 \times [\text{H}_2\text{O}_2] + 58.9x, \text{ with a correlation coefficient of 0.9918.}
\]

The calibration curve depicted that the sensitivity of the Cu/carbon electrode for sensing of H₂O₂ was 58.9 μA/mM/cm². The sensitivity of the electrode material demonstrated in the present work was comparable to that of other non enzymatic amperometric H₂O₂ sensors, as shown in Table S1.

It should be noted that the biosensing measurements were performed using circular pellets prepared from the carbonized anodic gel. The pellets did not feature the inherent porosity of the pristine carbonized samples, and also contained PTFE as binder material. We expect that the pristine Cu/carbon composite material can exhibit higher sensing capabilities due to its purity and porous morphology. However, using the pristine Cu/carbon composite as the working electrode is challenging, because its irregular shape makes it difficult to establish electrical connections within the electrochemical cell. One solution might be integrating the pristine composite with a microelectromechanical system (MEMS) device. Geng et al. showed in their article that it is possible to pattern the anodic chitosan gel on microfabricated copper microelectrodes [19]. Using a similar approach, a MEMS device can potentially be fabricated featuring Cu/carbon composites electrodes, which can facilitate easy electrical connection within an electrochemical cell and enable electrochemical measurements without need for pellet production. Ongoing work includes fabrication of such Cu/carbon based MEMS devices and investigation on their performances in biosensing.

3. Conclusion and outlook

We successfully demonstrated the use of electrodeposition of chitosan on a copper anode as a simple approach for the synthesis of a Cu/carbon composite material. The anodic electrodeposition of chitosan occurred within a small window of pH, ranging from 5 to 6. Electrodeposition within this pH range showed that increasing pH resulted in the generation of a higher amount of Cu²⁺ ions within the chitosan hydrogel. Carbonization of the Cu/chitosan gel at 900 °C in a nitrogen environment resulted in the synthesis of a Cu/carbon composite. As expected, the amount of Cu in the composite increased with increasing pH of the chitosan solution used in electrodeposition. The Cu/carbon composite exhibited a 14.4 fold improvement in electrical conductivity compared to chitosan derived carbon material. Furthermore, the composite also exhibited good non enzymatic sensing capability for the detection of H₂O₂. A sensitivity of 58.9 μA/mM cm² was achieved for the Cu/carbon material, which is comparable to the other non enzymatic amperometric H₂O₂ biosensors.

Although the current work is focused on the Cu/carbon composite, we expect that other metal/carbon composite materials can be similarly synthesized using metal ion mediated chitosan electrodeposition. Previous publications showed that, apart from Cu, chitosan is able to make complexes with other metals too, including with Zn, Fe, Ni and Ag [64–66]. Using such metals as the anode material in the electrodeposition of chitosan is expected to form corresponding metal/chitosan composites, which can be converted to metal/carbon composite through carbonization. However, using each of these metals as electrodes in an electrodeposition needs individual extensive investigation towards optimization of the electrodeposition parameters, the effect of carbonization on the precursor composite materials, and the application of the final composite material. For example, Fe and Ni are known for their superior catalytic properties in graphitization [67,68]. Carbonization of Fe or Ni chitosan composites is expected to form corresponding metal/chitosan composites, which can be converted to metal/carbon composite through carbonization. Furthermore, smart design and fabrication can enable the integration of different anode materials towards the fabrication of metal/carbon composite based multifunctional high performance devices.

4. Experimental

4.1. Materials

Chitosan (Molecular weight: 190,000–310,000; Product number: 448,877), hydrochloric acid (HCl), and sodium hydroxide (NaOH) were purchased from Sigma Aldrich, Germany. Millipore water was used for preparation of all the solutions used in this work.
4.2. Electrodeposition of chitosan

For electrodeposition of chitosan, we first prepared 120 mL of chitosan solution by dispersing 1% w/v (1.2 g) chitosan powder in 115.2 mL of distilled water, followed by adding 4% v/v 2 M HCl (4.8 mL) into the solution with continuous stirring on a magnetic stirrer plate in order to dissolve the chitosan particles. Once all the chitosan was dissolved and a transparent solution was obtained, 1 M NaOH was added to the chitosan solution and stirred for 30 min to obtain a desired pH value of the solution. pH color strips (Sigma Aldrich, product number 109,584) were used to determine the pH value of the solution. Four different chitosan solutions with different pH values were prepared in this work. We used copper foils as both cathode and anode for electrodeposition. Electrodeposition position was performed using a programmable DC power supply (Voltcraft VLP 1602). For all the chitosan solutions, a DC voltage of 25 V was applied to the electrodes during electrodeposition. Each electrodeposition experiment was carried out for 13 min on an electrode surface area of 100 mm². After electrodeposition, the hydrogel was scraped off from the electrode surface and immersed in acetone for overnight. Acetone immersion was performed in an acetone bath at 4°C to 5°C for 12 h to 24 h to remove the remaining soluble components. After acetone immersion, the hydrogel was dried at room temperature by natural cooling. After overnight immersion in acetone, the hydrogel was dried at room temperature for a few hours to obtain a xerogel.

4.3. Carbonization

The xerogels were carbonized in a horizontal tube furnace (Carbolite Gero, Carbolite, Germany) under a constant nitrogen flow (0.8 L/min). The heat treatment protocol was adapted from a heating protocol popularly used in the carbon microelectromechanical system (C-MEMS) technology to convert a pattern polymer into glassy carbon structures [69–73]. The protocol featured three steps: (i) raising the temperature of the furnace to 900 °C from room temperature with a heating rate of 5 °C/min, (ii) a dwell at 900 °C for 1 h, and (iii) cooling down to room temperature by natural cooling.

4.4. Characterization

The carbonized samples were characterized for material composition and crystallinity by X ray diffraction (XRD) using a Bruker D8 Advance diffractometer using Cu Kα1,2 radiation (λ = 1.5405 Å). We estimated the crystallite size (D) of the Cu in the Cu/carbon composite by using Scherrer equation (Eq. (4)), which correlates D with the wavelength of X ray (λ), the Bragg angle (θ), the half width of the diffraction peak (B), and dimensionless shape factor (k) [74]. When the detailed shape of a crystallite is unknown, as is the case here, a value of k of 0.9 is preferred [74,75]. Of note, the crystallite size calculated here is a lower estimate, as any correction for stress/strain and instrumental contributions were not considered. Consideration of these contributions in measurement would narrow the line width and thus increase domain size.

\[D = \frac{k \lambda}{B \cos \theta} \] \hspace{1cm} (4)

The microstructure of the carbonization samples was investigated using a Carl Zeiss AG–SUPRA 60VP scanning electron microscope. Energy dispersive X ray (EDX) spectroscopy (Bruker AXS) mounted on the SEM was used to investigate the material composition of the samples. For measurement of electrical sheet resistance of the carbonized samples, we first prepared pellets with a thickness (t) of 185 ± 30 μm. To prepare the pellets, we manually crushed the carbonized samples into powder using a mortar and pestle. 21 g of such powder was homogeneously mixed with 9 g polytetrafluoroethylene (PTFE) binder. This mixture was pressed by 80 ton pressure for 1 min in a universal testing machine to form the pellets. The electrical sheet resistance (Rs) of the pellets were calculated by Eq. (5) by using the resistance (R) values measured using the four point probe method. A Keithley 2,400 source meter was used for recording the resistance value during the four point probe measurement. The conductivity (σ) of the carbonized samples was calculated using 6, which relates the conductivity (σ) with the sheet resistance and thickness (t) of the sample.

\[R_s = \frac{\pi}{\ln 2} R \] \hspace{1cm} (5)

\[\sigma = \frac{1}{R_s t} \] \hspace{1cm} (6)

4.5. H2O2 biosensing

For biosensing applications, pellets of carbonized samples were prepared as detailed above. The electrochemical measurement for the biosensing was performed on an Autolab PGSTAT302F (Metrohm AG, Switzerland) electrochemical workstation using a typical three electrode cell. A platinum wire and Ag/AgCl (saturated with aqueous solution of KCl) were used as the counter electrode and the reference electrode respectively. The pellets of carbonized mate rials were used as working electrodes. Cyclic voltammogram measurement and amperometric response were determined by using a 0.02 M PBS (pH 7) as an electrolyte solution. A 0.5 mM H2O2 concentration was used to define the catalytic behavior of working electrode. Amperometric response was carried out at 0.80 V potential at continuous stirring condition.

Authors contribution

Conceptualization — M.I. and V.B.; Experiments and data curation — N.A., P.G.W., and M.I.; Formal analysis — M.I., N.A., P.G.W., and V.B.; Project administration — M.I. and V.B.; Supervision — M.I., V.B. and J.G.K.; Writing and revision — M.I., N.A., P.G.W., V.B. and J.G.K. All authors have read and approved the final version of the manuscript.

Data availability

The raw/processed data required to reproduce these findings cannot be shared at this time due to legal or ethical reasons.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgement

All the authors thank the Karlsruhe Nano Micro Facility (KNMF) (project number 2019 023 027429), and Prof. Christian Kübel and Dr. Di Wang from the Institute of Nanotechnology (INT), KIT, for facilitating HRTEM characterization. Monsur Islam, Nikhil Arya and Jan G. Korvink acknowledge support from the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy via the Excellence Cluster 3D Matter Made to Order (EXC 2082/1 390761711). Vlad Badilita

