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Chapter 1

Introduction

Software-defined Networking (SDN) is an ongoing trend to manage, control and optimize
communication networks by means of software programmability. It has gained significant
traction in recent years with many real world applications. Google‘s private backbone
(B4), for example, is based on SDN since 2011 with great success [Jai+13; Hon+18]. The
SDN paradigm has several advantages, but the most important one is increased flexibility
[Jar+14; Kre+15]. Simply put: SDN allows it to add new functions to the network easier
and faster. This is possible because higher level network control tasks such as routing,
traffic engineering or access control are implemented as network applications, i.e., as
a piece of software. Network applications are executed in a logically centralized SDN
controller connected to a set of SDN switches which can be remotely programmed based
on centralized decisions.

Each SDN switch is equipped with a flow table where decisions from network applications
are stored in the form of so-called flow rules. Larger networks and more complex tasks
need more flow rules. Reactive network applications, for example, create flow rules in
response to events from the network such as number of active users or active connections
which can lead to high flow table utilization. The maximum capacity of such a flow
table, however, is limited because the required TCAM chips (Ternary Content Addressable
Memory) are expensive, have a high energy footprint and can therefore only be used in
small quantities [Ars+18].

Limited flow table capacity is a well known scalability and performance limitation for
SDN that was intensively studied [Cur+11; YTG13; JMD14; Kat+14b]. But despite
the fact that SDN is around for more than a decade, the situation has not yet changed
significantly. Current hardware switches are still limited to a couple of thousand flow
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table entries and capacity-related constraints are still present in the research community
[Jan+19; Wan+19b; Li+19a].

Several approaches exist that address this limitation. The B4 engineers, for example,
were forced to implement complex rule management strategies to deal with capacity
limitations [Jai+13]. Other researchers have proposed compression schemes to reduce
the number of flow rules before they are installed [KB13] or caching strategies where
only the most important flow rules are kept in the hardware switch [Kat+14b]. However,
most existing approaches make changes to the infrastructure [Cur+11; Yu+10; Kat+14b]
or require that network applications are aware of the performed optimization [KB13;
Len+15; KHK13]. These solutions are not well suited for scenarios where bottlenecks
only occur in parts of the network or within certain time frames (or exceed the available
capacity only slightly). In summary: it is difficult to utilize existing countermeasures for
limited flow table capacity in an on-demand fashion without side effects regarding the
controller, the network applications or even the design of the infrastructure itself.

This thesis presents a novel concept to address flow table capacity bottlenecks called
flow delegation [BZ16; BD17; BDZ19]. Flow delegation can be used on-demand in a
transparent fashion, without changes to network applications or any other part of the
infrastructure – something that cannot be achieved today with existing solutions. Core
idea is it to automatically relocate flow rules from a bottlenecked switch to neighboring
switches with spare capacity.

The introduction is structured as follows. First, the SDN workflow is explained in Sec. 1.1,
followed by the problem statement in Sec. 1.2, and the two main use cases in Sec. 1.3.
Flow delegation is introduced in Sec. 1.4. The structure of the thesis and the addressed
challenges are discussed in Sec. 1.5. The contributions are summarized in Sec. 1.6. And
Sec. 1.7 finally presents an outline of the rest of the document.

1.1 Software-defined Networking

This section briefly introduces the basic SDN workflow which makes it easier to understand
the flow delegation approach outlined below. Fig. 1.1 shows a single network application
and four SDN switches s1 to s4 connected to the SDN controller.

In step 1©, the network application makes a high level control decision. This could be,
for example, a routing decision for a pair of active users in the network. This decision
is communicated towards the SDN controller (e.g., via a programming interface) that
calculates one or more low level flow rules 2©. These flow rules are sent to the switches
in step 3© where they are stored locally inside a hardware flow table in step 4©. The
third step requires that control messages are exchanged between the controller and the
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Figure 1.1: Basic SDN workflow

switches via a control channel. The number of flow rules that can be stored in the flow
table are limited: current hardware SDN switches support between 1.000 and 5.000 flow
rules [Ryg+17; Cos+17; CYP18; Van+19].

A flow rule defines how a group of similar packets (e.g., all packets with the same IP
address) is processed by the switch. It therefore consists of two important parts. A match
part that selects a group of packets and an action part that is executed for each matched
packet. Flow rule f3 in Fig. 1.1, for example, selects every packet that is sent from user A

to user D based on source and destination (IP) addresses and forwards them to switch s2.

1.2 Problem Statement

An SDN switch suffers from a flow table capacity bottleneck if the amount of flow
rules determined by the controller for that switch is higher than the capacity of its flow
table. Without appropriate countermeasures, such a bottleneck can have a significant
negative impact. In the best case, some of the installed flow rules are optional (e.g., for
better monitoring quality) and the controller can mitigate the bottleneck in exchange for
slightly decreased performance (e.g., less monitoring accuracy). In the worst case, the
functionality of the network is affected which may result in loss of connectivity, security
issues or violation of service agreements. Both cases will probably result in loss of revenue
for the network operator.
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A visual example of a (single) switch suffering from a flow table capacity bottleneck
taken from [BZ16] is given in Fig. 1.2. It shows the utilization of the flow table over
time measured for a period of 400 seconds. The experiment was executed inside an
emulated network with a real SDN controller and 200 users (iperf sessions). The switch
supports a maximum of 600 flow rules (the dashed black capacity line). The used
network application creates two flow rules per active user, one per direction. More details
regarding the setup can be found in [BZ16].

Time (s) 

Capacity Flow table 

utilization 

(#rules in 

flow table) 

First bottleneck
 

Second bottleneck
 

Figure 1.2: Example for a flow table capacity bottleneck from [BZ16]

Within the first 130 seconds, the number of active users that communicate via the switch
is small and the flow table provides sufficient capacity. But between the 130s and the
210s mark and between 250s and 270s, the number of users as well as the number of
required flow rules increases which results in a bottleneck (red area). Such bottleneck
situations can easily occur, e.g., when the number of users is unexpectedly high due to a
popular video streaming event like the Red Bull Stratos jump [Pet14] or the SpaceX’s
Falcon launch [Mic18].

In the following, a switch that suffers from a flow table capacity bottleneck is referred to
as delegation switch. A switch that is connected to the delegation switch and has enough
spare capacity to mitigate the bottleneck is called remote switch.

1.3 Use Cases and Benefits

Before flow delegation is explained in more detail, this section highlights two important
use cases where network operators can expect benefits from using flow delegation. The
first use case is flow table capacity bottleneck mitigation with existing hardware

which is illustrated in Fig. 1.3.
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Figure 1.3: First use case for flow delegation

The left side represents the situation without flow delegation. The example assumes
a network equipped with switches that support 1000 flow rules, i.e., the network fails
when more than 1000 rules must be installed at the same time (red area). The situation
with flow delegation is shown on the right side. In this case, the network will not fail
if the flow table utilization exceeds the capacity as long as there is at least one remote
switch with enough spare capacity that can store the excess flow rules (green area).

The thesis applies flow delegation to 5000 different bottleneck scenarios with various
different characteristics and shows: flow delegation can mitigate bottlenecks which
exceed the maximum flow table capacity by up to 38%. This means flow delegation can
handle situations with 1380 concurrently installed flow rules while all (!) switches in the
infrastructure have a capacity of 1000 rules.

The second use case is reduction of operational and capital expenditure, i.e., oper-
ators buy switches with less TCAM to save money and energy, illustrated in Fig. 1.4.
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Figure 1.4: Second use case for flow delegation
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The left side represents the situation without flow delegation where a network operator
expects a maximum utilization of 1000 rules and buys switches with 1000 rules. With
flow delegation, the network operator can include the mitigation potential of the flow
delegation approach into the calculation and use cheaper and more energy efficient
switches with smaller TCAM chips. It is shown in the thesis that flow delegation allows
for a 28% reduction in TCAM size which can lead to significant savings.

Note that both values reported here – 38% and 28% – are median values and are thus not
achieved in all scenarios. Scenarios with more free capacity achieve better results (up to
52% reduction of required TCAM capacity) while scenarios with limited free capacity
perform worse (heavily depends on the scenario).

1.4 Flow Delegation

Given the two main use cases, this section will now further elaborate how flow delegation
works. The basic idea is as follows: In case of a flow table capacity bottleneck, a subset
of the flow rules of the bottlenecked delegation switch is “relocated” to a neighboring
remote switch with spare capacity. If a flow rule is relocated, all traffic for that rule is
redirected towards and processed within the remote switch (cf., Fig. 1.5).

Traffic for relocated flow rules is  

detoured via remote switch 

Capacity 

Time (s) Time (s) 

Capacity 

Remote Switch 

(RS) 

Physical link 

Flow rules relocated to remote switch 

(delegation) 

Flow table utilization (DS) 

Delegation Switch 

(DS) 

Flow table utilization (RS) 

1 

2 

Figure 1.5: Flow delegation approach



1.4 Flow Delegation 9

The red part on the left side shows the flow table utilization over time of the delegation
switch with two bottlenecks (same as in Fig. 1.2). The green part on the right side shows
the flow table utilization of the remote switch. Flow delegation will now relocate some

of the flow rules from the left to the right – indicated by the red dashed arrow in the
top of the figure labeled as 1© – so that the two bottlenecks are avoided. The second
red arrow in the bottom indicates that a portion of the overall traffic – all packets that
have to be processed by the relocated rules – has to be detoured via the remote switch

2©. This means some packets are sent to the remote switch, processed there, and sent
back to the delegation switch afterwards. The detoured traffic can be seen as the price or
overhead to be paid for flow delegation.

Further on in this section, it will be explained in more detail how the above concept
works. First, the goals are briefly summarized followed by a simple example scenario.
Afterwards, it is explained how flow rules can be relocated to a remote switch. The
section concludes with an illustration of the workflow.

1.4.1 Goals

Flow delegation was designed with two goals in mind: it has to be applicable to existing
SDN-enabled networks in an on-demand fashion and it must be possible to consider
estimations of future network situations. This means flow delegation has to work with
established protocols and the infrastructure – switches, controller, and network applica-
tions – cannot be changed. As a result, the flow delegation system has to be hidden from
controller and network applications. If a control message (from the controller) deals
with one of the installed flow rules, it should be executed as expected from the network
application regardless of whether the flow rule is currently delegated to a remote switch
or not.

1.4.2 Example Scenario

Consider the example network in Fig. 1.6 that consists of an SDN controller, a network
application, four SDN switches, and six users (A, B, C , D, Y, Z – the grey monitor symbols).
A to D are considered receivers, Y and Z are senders.

The red part on the left side shows the flow table of the delegation switch. The green part
on the right side shows the flow table of the remote switch. The flow tables of switches
s3 and s4 are not shown. The network application in this example creates a new flow
rule every time there is a new connection between two users. Connection here means a
user is sending one or more packets to another user for a period of time. The six flow
rules f1 to f6 in the flow table of the delegation switch represent six connections. The
yellow highlighting for rules f3 to f6 is used further below and can be ignored for now.
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Figure 1.6: Example scenario

The match part of the rules selects all packets for a single connection and the action part
determines the forwarding destination. The first rule f1, for example, selects all packets
sent from user Y to user A and the corresponding action forwards the packet to switch s3

(because user A is connected to switch s3). The second rule f2 selects packets from user
Y to user C and forwards them to s4. The other flow rules work the same way. Note that
there is currently only a single flow rule in the remote switch.

Assume for demonstration purposes that the flow tables of all switches have a maximum
capacity of six rules. This means the delegation switch is fully utilized and will run into a
bottleneck if a new flow rule is required – for example if user Y starts sending packets to
user B. Without countermeasures, the controller has only two options to deal with this
situation: it can either deny installation of the new rule or remove one of the existing
rules first. Both options lead to failing connectivity between one pair of users. Flow
delegation avoids this by relocating some of the rules to the remote switch.

1.4.3 Core Mechanism

First recall that all flow rules in the delegation switch were determined by one of the
network applications1. To make sure that flow delegation does not interfere with the
logic of these network applications, it is required that all flow rules “remain as they
are”, i.e., all packets are processed exactly as intended by the network applications.

1The example shows only one network application, but a real network will usually run multiple network
applications
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It is possible, however, to delegate rules to another switch without interfering with
the network application logic. For this to work, a novel detour procedure – the core
mechanism of flow delegation – is introduced that makes use of three classes of flow
rules [BZ16]: aggregation rules, remote rules, and backflow rules.

Aggregation rules are installed in the delegation switch in order to forward traffic
to the remote switch. To achieve this, they use a wildcard match that “covers“ a
subset of the flow rules in the flow table (the so-called cover set). Every packet
matched by a rule in the cover set is also matched by the aggregation rule. Consider
the four flow rules f3 to f6 in the delegation switch of the above example (Fig. 1.6,
the rules are highlighted in yellow). Now consider an aggregation rule that matches
all packets sent from user Z regardless of the destination. This can be expressed
with a wildcard for the destination part of the match, i.e., src= Z ,dst= ∗. It is
easy to see that every packet that has to be processed by one of the yellow rules is
also matched by this new wildcard rule.

Remote rules are installed in the remote switch. They represent the ”delegated“
rules, i.e., the rules that were relocated from the delegation to the remote switch.
They are basically a copy of the original rule from the delegation switch, with
one small exception: The action part of the rule is modified so that i) a marker
is attached to the packet that encodes the forwarding decision of the network
application and ii) packets are sent back to the delegation switch after processing.

Backflow rules are installed in the delegation switch. They are used to forward the
marked packets from a remote rule towards their correct destination. Because the
maximum number of potential forwarding destinations is limited by the number
of interfaces of the delegation switch, the number of backflow rules is also strictly
limited to the same value.

The detour procedure is then realized as follows: It first takes a set of rules from the
delegation switch (e.g., the four yellow rules from Fig. 1.6) that can be covered by an
aggregation rule. The rules from this so-called cover set are transformed into remote
rules and installed in the remote switch. Next, the aggregation and backflow rules are
installed in the delegation switch. Finally, the rules from the cover set are removed from
the delegation switch which will decrease its flow table utilization2.

2Four rules are removed from the delegation switch. Because one aggregation rule and two backflow
rules are required, the total utilization is only reduced by 1 in this trivial example. This is different
in more realistic scenarios where the cover set can contain hundreds of rules while the number of
aggregation and backflow rules stays small.
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1.4.4 Workflow

Fig. 1.7 illustrates the flow delegation workflow. Consider a packet sent from user Z

towards user B that is received at the delegation switch. The top of the figure shows how
processing for this packet is done without flow delegation. Processing with flow delegation
is shown at the bottom. In the first case (without flow delegation), the packet arrives
at the delegation switch in step a©. It is matched by rule f4 (match: src= Z ,dst= B)
in step b©. The action part of f4 is executed and the packet is forwarded to switch s3 in
step c©. This is the normal processing workflow in SDN.

src=Z dst=* fwd(RS) f3 

f4 

f5 

src=Z dst=A 

src=Z dst=B 

src=Z dst=C 

set(M,3) fwd(DS) 

set(M,3) fwd(DS) 

set(M,4) fwd(DS) 

f6 src=Z dst=D set(M,4) fwd(DS) bf M=3 fwd(s3) 

Without flow delegation 

With flow delegation 

a 

Delegation Switch (DS) Remote Switch (RS) 

2 

Remote rules: copied from 

delegation switch 

Aggregation Rule: traffic is sent 

to remote switch 

Backflow rules: forward 

return traffic to original dest. 

b c 

1 3 
5 

bf M=4 fwd(s4) 

Flow table  

Flow rule 
Physical link 

4 

3 

2 

4 

Flow table DS  Flow table RS 

Figure 1.7: Flow delegation workflow example

In the second case (with flow delegation), the packet arrives at the delegation switch
in step 1©. Flow rule f4, however, was relocated together with the other yellow flow
rules to the remote switch. The four yellow rules were replaced with an aggregation rule
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(match: src= Z ,dst= ∗). So this time, the packet is matched by the aggregation rule
and sent towards the remote switch in step 2©. After the packet arrived at the remote
switch it is matched by the remote rule for f4 (match: src = Z ,dst = B) in step 3©. The
forwarding decision of the original rule is attached as a marker with set(M , 3) and the
packet is sent back to the delegation switch. In step 4©, one of the backflow rules (match:
M = 3) is matched and the packet is finally forwarded to the intended destination in step
5© (switch s3).

1.5 Structure and Challenges

The investigations carried out in the thesis are structured into three main parts: The
system design part investigates practical and architectural challenges associated with the
design of the flow delegation system. The algorithms part investigates the underlying
optimization problem – which is mitigation of bottlenecks considering future knowledge
and multiple objectives. And the evaluation part investigates feasibility, performance,
overhead, and scalability of flow delegation covering different scenarios. The subsequent
sections will briefly introduce these three parts and highlight the challenges involved.

1.5.1 System Design

The system design part investigates how flow delegation can be realized for software-
based networks. This includes design of an architecture for flow delegation with building
blocks that can address practical issues such as identifying the required monitoring
information, proper prioritization of the involved flow rules, transportation of meta-
information between delegation and remote switches, generation of control messages,
or state management. One important challenge in this context is defining a suitable
abstraction to describe subsets of flow rules to be delegated. This is addressed with the
so-called delegation template abstraction. The general idea behind this abstraction is
illustrated in Fig. 1.8.

The six flow rules in the middle represent the flow table of a bottlenecked switch. The four
purple boxes are four different delegation templates d1 to d4. Each delegation template
consists of an aggregation rule and its corresponding cover set. Delegation template d1,
for example, consists of an aggregation rule with match src= Y,dst= ∗ which covers
rules f1 and f2, i.e., the cover set is { f1, f2}. This represents one ”option for delegation“.
It basically means the flow delegation system can install an aggregation rule with the
specified match and relocate all rules in the cover set to a remote switch. This allows
for an easy comparison between delegation options and also for an easy-to-understand
interface between the building blocks of the architecture.
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src=Z dst=A 

src=Z dst=B 

src=Z dst=C 

fwd(s3) 

fwd(s3) 

fwd(s4) 

src=Z dst=D fwd(s4) 

src=Y dst=A 

src=Y dst=C 

fwd(s3) 

fwd(s4) 

match action 

Match:        src=Y dst=* 

Cover set:   {f1, f2} 

Delegation template (here: d1)  

(= wildcard match for a new aggregation 

rule and corresponding cover set) 

Challenge: 
How to calculate 

delegation templates? 

f3 

f4 

f5 

f6 

f1 

f2 

Match:        src=Z dst=* 

Cover set:   {f3, ..., f6} 

Match:        src=* dst=A 

Cover set:   {f1, f3} 

Match:        src=* dst=C 

Cover set:   {f2, f5} 

Wildcard match to 

be used in an 

aggregation rule 

d1 

d2 

d3 

d4 

Flow table 

Figure 1.8: Delegation template abstraction

However, calculating such delegation templates is a challenging task. First, the number
of possible aggregation rules for a realistic scenario can be large – it is easy to create
examples with millions or billions of wildcard matches if the flow table contains 1000 or
more flow rules. This is because SDN supports more than 30 different packet header fields
and all combinations of these packet header fields can be used. And second, the cover set
for each aggregation rule has to be independent of the remaining rules in the flow table
(those that are not covered) to avoid conflicts that can lead to wrong forwarding behavior.
These two challenges are addressed with a novel indirect rule aggregation scheme.

Another challenge in the system design context is control message interception. This is
required because flow delegation should not interfere with network application logic.
This can cause conflicts if the view of the network applications and the controller (without
flow delegation) and the actual view (with flow delegation) differ from each other. As
a consequence, the control messages sent from the controller have to be intercepted in
order to detect and resolve such conflicts. Fig. 1.9 shows an example for such a conflict.

It is the same example that was presented above in Sec. 1.4.2 where the four yellow flow
rules f3 to f6 are relocated to the remote switch. The network application, however, does
not know that these four rules were relocated, i.e., it still assumes they are present in
the flow table of the delegation switch. Now assume the network application decides
in step 1© that flow rule f4 has to be removed. The controller creates a new control
message with a command to remove rule f4 2©. If this control message is sent to the
delegation switch, an error occurs because no such flow rule exist 3©. To address this, a
new interception component is placed between the controller and the switches, shown
here as the black box. This component intercepts the control message. Since it knows that
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Figure 1.9: Control Message Interception

flow rule f4 was relocated to the remote switch, it can resolve the conflict by directing
the control message to the correct switch in step 4© (which is the remote switch in the
example).

1.5.2 Algorithms

The algorithms part investigates problem formulations and algorithms for flow table
capacity bottleneck mitigation. The basic problem is modeled as a two-step combinatorial
optimization problem as shown in Fig. 1.10: The first step is selection of delegation
templates so that all bottlenecks are mitigated, i.e., the different delegation templates
must be compared with each other. The second step is allocation of a suitable remote
switch with enough spare capacity to each selected delegation template, i.e., the different
remote switch options must be compared with each other.

Given that only the current situation is considered (single-period case), both steps can be
modeled as simple linear problems: finding a subset of the delegation templates can be
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Figure 1.10: Structure of the flow table capacity bottleneck mitigation problem

modeled as a knapsack problem and finding a suitable remote switch for each selected
template can be modeled as a facility location problem. This is more challenging, however,
if future network situations are taken into consideration which requires a multi-period
problem formulation. For the first step (selecting delegation templates), this is difficult
because the cover set of an aggregation rule changes over time if flow rules are added
and removed and time-related dependencies lead to a non-linear problem. And for the
second step (allocating suitable remote switches), quadratic objective terms are required
because the allocated remote switch may change over time.
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The challenge of including future knowledge is addressed with an assignment-based
linearization approach that iterates over all possible selections (in step 1) and allocations
(in step 2). The thesis further introduces a concept for periodic optimization to address
the exponentially growing input length that comes with the linearization.

1.5.3 Evaluation

Practical feasibility of flow delegation is first investigated in the system design part with
two proof-of-concept implementations. The two prototypes were created independently
from each other with two different programming languages and focus primarily on the
detour procedure and control message interception. Mininet is used here to emulate a
realistic software-based network.

Feasibility, performance, overhead, and scalability of flow delegation with respect to
a wide range of different scenarios is then investigated analytically3 in the evaluation
part. This requires, for example, new metrics to quantify flow delegation performance
and overhead. Important challenges in this context are the evaluation methodology and
reproducibility of the presented results. It has to be ensured that flow delegation is tested
against different scenarios, i.e., without introducing bias by only selecting scenarios
where the approach can work in its “comfort zone”. This is addressed with a four-step
scenario generation process and creation of randomized sets of scenarios. In addition, all
data sets and the code are made available to the public to support reproducibility.

1.6 Main Contributions

The overall contribution of this work is a flow delegation system that can mitigate flow
table capacity bottlenecks in an on-demand and transparent fashion. Flow delegation
differs from related work in four important ways. First, it has few requirements in terms
of protocol features that must be supported by the infrastructure, i.e., can work with all
actual versions of OpenFlow or similar protocols. No changes are necessary with respect
to the controller or the network applications. The fact that a flow rule is delegated to
another switch is hidden from the controller and the network applications, i.e., flow
delegation is transparent to the control plane. Second, flow delegation makes use of
existing spare resources in the infrastructure. Third, the approach can be enabled and
disabled on-demand and is thus well suited for bottlenecks that only occur in parts of the
network or within certain time frames – something that cannot be achieved with other
solutions. And fourth, the used algorithms can consider future network situations and
multiple objectives.

3Supported with simulations
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This thesis includes the following main contributions:

• The system design part (chapters 3 to 8) introduces a modular architecture for

flow delegation that consists of five independent building blocks: monitoring sys-
tem, rule aggregation scheme, delegation algorithm, detour procedure, and control
message interception. The interplay between the building blocks and the associated
practical challenges are investigated in detail. Besides the architecture and the
delegation template abstraction, a novel detour procedure is introduced that uses
three classes of carefully designed flow rules to realize delegation: aggregation
rules, remote rules, and backflow rules. This is complemented with a new indi-

rect rule aggregation scheme that can efficiently calculate delegation templates
independently of the flow rules installed in the flow table [BZ16]. In addition, a
concept for control message interception is created to hide flow delegation from
the controller and the network applications [BDZ19]. Two independent proof-of-

concept implementations based on OpenFlow show that flow delegation is feasible
in real networks. It is further shown that the overhead of the detour procedure
and the rule aggregation scheme is acceptable in terms of CPU consumption and
additional end-to-end delay for delegated traffic (which is below 0.1ms).

• The algorithms part (chapters 9 to 11) introduces a novel algorithm for flow

table capacity bottleneck mitigation based on combinatorial optimization. The
problem is first decomposed into two independent sub-problems [BD17]: a switch-
local problem to select delegation templates calculated by the rule aggregation
scheme (can be done individually for each switch) and a global problem to select
an appropriate remote switch for each selected delegation template. Both problems
are modeled as integer linear programming problems that are then addressed with

heuristics. The problem formulations and heuristics take predicted future network

situations into account and can proactively mitigate anticipated bottlenecks. They
can work with multiple and potentially conflicting objectives, e.g., minimize the
number of required aggregation rules, minimize the traffic that is detoured to
remote switches, or minimize the number of required control messages. The
designed heuristics operate in the millisecond range, i.e., they are fast enough to

be used in practice.

• The evaluation part (chapters 12 to 16) evaluates feasibility, performance, over-

head, and scalability of flow delegation based on a wide range of different scenarios.
As one main result, it is shown that flow delegation can successfully mitigate bot-
tleneck situations using only existing spare capacity from the infrastructure. The
evaluation further includes a careful analysis of the induced overhead. It is shown
that the amount of required aggregation and backflow rules is negligible (< 30)
and the number of additional control messages per second is also in an acceptable
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region – well below 100 messages/s in most cases. The amount of detoured traffic
(link overhead) depends on the scenario. Half of the investigated scenarios can be
handled with a maximum link overhead of less than 13 Mbit/s per bottlenecked
switch which may be distributed over multiple links if more than one remote switch
is used. The evaluation also demonstrates that flow delegation scales linear or sub-

linear with respect to the following important parameters: runtime of the required
algorithms, number of considered delegation templates, and number of switches in
the topology. The algorithms can be executed in less than 150ms using one core
which means a single commodity server with 32 cores can handle a network with
hundreds of switches.

1.7 Outline

Chapter 2 first introduces the necessary background and gives an overview of related
work. The remainder is structured as follows.

The system design part consists of chapters 3 to 8 and investigates the practical chal-
lenges associated with flow delegation. Chapter 3 introduces the architecture and the
central delegation template abstraction that is used in all subsequent chapters. Chapter 4
introduces the parameters to be monitored in order to realize flow delegation and defines
the lambda notation, a time slot based description for monitored parameters. Chapter 5
presents indirect rule aggregation schemes to efficiently calculate delegation templates.
Chapter 6 introduces the detour procedure to relocate rules and corresponding traffic
from delegation to remote switch. Chapter 7 introduces a solution for control message in-
terception to hide flow delegation from the controller and the network applications. And
Chapter 8 finally discusses the existing prototype implementations of the flow delegation
system.

The algorithms part consists of chapters 9 to 11 and introduces the delegation algo-
rithm. Chapter 9 explains the two-step optimization approach and the decomposition
into the DT-Select and RS-Alloc sub-problems: DT-Select (first step) is solved for each
bottlenecked switch and selects a subset of the delegation templates calculated by the
rule aggregation scheme. The global RS-Alloc problem (second step) allocates a suitable
remote switch to each selected delegation template. Single and multi period formulations
are introduced and analyzed for both sub-problems. Two two following chapters then
introduce algorithms and heuristics for the multi period DT-Select (Chapter 10) and the
multi period RS-Alloc problem (Chapter 11).

The evaluation part consists of chapters 12 to 16 and evaluates the developed flow
delegation approach based on a broad set of different scenarios. Chapter 12 defines
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assumptions, terminology and the evaluation methodology. Chapter 13 presents a case
study with selected scenarios and shows how flow delegation works from a functional
perspective. Chapter 14 investigates the performance for different scenarios, i.e., the
amount of flow rules that can or cannot be relocated to another hardware switch. Chapter
15 investigates the overhead that is associated with flow delegation. Chapter 16 finally
evaluates runtime and scalability of the designed algorithms.

Chapter 17 concludes the thesis.



Chapter 2

Background

Some general definitions are given in Sec. 2.1. Software-defined Networking and the
most important underlying concepts for the thesis are defined in Sec. 2.2. Sec. 2.3
introduces the central term flow table capacity. Sec. 2.4 defines flow table capacity
bottlenecks and discusses related work.

2.1 General Definitions

This section introduces two frequently used concepts: time slots and the terminology of
delegation and remote switches.

2.1.1 Time Slots

Time recorded in a computer system is usually stored as a real value derived from a
system clock. We refer to such a value as a timestamp. A timestamp τ represents a
discrete point in time, e.g., the time a network application makes a decision, the time a
control message is sent, the time a flow rule is installed into a switch and so on. However,
because many processes in the context of flow delegation are executed periodically –
such as gathering monitoring data or running the delegation algorithm – this thesis uses
time slots instead of timestamps for simplicity.

21
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Definition 2.1: Time Slot

A time slot t ∈ T identifies the time window between τ−1 and τ. Timestamp τ−1

represents the end of time slot t−1 and the beginning of time slot t. Similarly,
timestamp τ represents the end of time slot t and the beginning of time slot t+1. All
time slots have the same duration, i.e., (τ−1−τ−2) = (τ−τ−1) = (τ+1−τ) = . . . = 1
second. Set T = {t1, ..., tm} is called an ordered set of m consecutive time slots.
Important time slots that come with a fixed meaning are summarized in Table 2.1.

According to the above definition, a time slot t simply represents a fixed time interval
of one second between two timestamps. The indices are organized in such a way that
timestamp τi always represents the end of time slot t i. Consider the following example:
Let Fs,t be the set of flow rules active in the flow table of switch s in time slot t. This means
the set contains all flow rules that are present in the flow table for at least some time
between timestamp τ−1 and timestamp τ with τ = τ−1 + 1 second. Another example:
the statement “a bottleneck occurred in time slot t” is equivalent to the statement “a
bottleneck occurred between timestamp τ−1 and τ”.

t t-1 

t without index represents 

an iterator variable for set T 

t... t2 t1 t+1 t... tm-1 tm t0 

t with index represents a time slot 

relative to the iterator variable (t) 

or the set of time slots (T) 
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 t0 ∉ T 
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τ0 τ1 τ2 τ... τ-1 τ τ+1 τ... τm-1 τm 

Figure 2.1: Illustration of the time slot concept

There is always only one single set T and this set will always have t1 as its first and tm as
its last element. The basic idea behind the indices in the time slot notation is summarized
in Fig. 2.1. If t ∈ T is used without an index, it represents an arbitrary time slot in T ,
often used as an iterator variable on set T , as in the following example.

⋂

t∈T

Fs,t = Fs,t1
∩ Fs,t2

∩ . . .∩ Fs,tm
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The above formula will return a set of all flow rules that are present in all time slots in T .
If t is used with an index, the variable is interpreted relative to time slot t or T . Consider
the following example:

tm−1
max
t=t1

�

|Fs,t ∩ Fs,t+1
|
�

=max
�

|Fs,t1
∩ Fs,t2

| , |Fs,t2
∩ Fs,t3

| , . . . , |Fs,tm−1
∩ Fs,tm

|
�

This will return the maximum amount of flow rules that are installed over a period of at
least two consecutive time slots (the formula itself is not important, only the usage of the
time slot variables). Note that set T is not specified in this formula (implicitly defined
by context because there is only one T). tm−1, used here as the upper iterator bound, is
interpreted relative to T , i.e., the second last element in T . Variable t+1 is interpreted
relative to the current position of the iterator variable.

Variable Meaning

t0 Time slot prior to t1, i.e., t0 /∈ T

t1 First time slot in set T

tm Last time slot in set T

t x x-th time slot in T

t−x x-th time slot prior to t, i.e., t3 if t = t4 and x = 1

t+x x-th time slot after t, i.e., t5 if t = t4 and x = 1

Table 2.1: Time slot variables with fixed meaning

2.1.2 Delegation and Remote Switch

Another important concept is that all switches s ∈ S in the infrastructure are automatically
assigned to one of two basic roles:

Definition 2.2: Delegation and Remote Switch

A switch with a flow table capacity bottleneck in time slot t is referred to as a
delegation switch (usually assigned variable s) for this time slot. All switches
r ∈ S \ s with a direct connection to s and some free flow table capacity are referred
to as remote switches (usually assigned variable r) for this delegation switch.

The role of a switch can change between time slots if the flow table utilization changes.
For a single time slot, however, a switch can either be a delegation switch or a remote
switch but not both. Flow delegation is only necessary if at least one of the switches
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suffers from a flow table capacity bottleneck, i.e., there is usually always at least one
delegation switch in the context of this work.

2.2 Software-defined Networking (SDN)

Software-defined Networking (SDN) is a modern network control paradigm where control
is done in software which provides network operators with a high degree of flexibility.
With SDN, new functions such as routing, traffic engineering or access control can be
added to the network easier and faster. This section will introduce SDN in detail and
is structured as follows. Sec. 2.2.1 presents three fundamental definitions. Sec. 2.2.2
discusses the overall SDN architecture and introduces northbound and southbound
interface. Sec. 2.2.3 briefly enumerates application areas for SDN. Sec. 2.2.4 covers the
most important SDN concepts relevant in this work.

2.2.1 Definitions

Before the concepts behind SDN are explained in detail, this section will first introduce
three fundamental definitions: packet header fields, flows and the term SDN itself.

2.2.1.1 Packet Header Field

Definition 2.3: Packet Header Field

A packet header field is a protocol field carried in the header of a packet. It is
interpreted based on the used protocol(s). Common header fields relevant for SDN
are from layer 2 (e.g., MAC addresses), layer 3 (e.g., IP addresses) and layer 4
(e.g. TCP ports) of the OSI model.

Depended on the deployed hardware, SDN may utilize a broad range of packet header
fields. The first generation of SDN switches was based on the OpenFlow switch specifica-
tion [ONF09]. This generation only supported the 12 basic packet header fields listed in
Table 2.2, some of which were overloaded in the beginning (the same field was used for
TCP ports, UDP ports and ICMP type/code).
Note that the first entry in Table 2.2 (in_port) is not a real packet header field according
to the above definition because it is not carried in the packet header. If a packet arrives
at an SDN switch, in_port represents the physical ingress port of the packet. It was
added to the table because it is a common strategy to match on physical ingress ports
and matches are defined based on packet header fields.

Later generations added support for SCTP, ARP, IPv6 and MPLS. And starting with Open-
Flow v1.3 [ONF12], the protocol uses extensible matches based on a type-length-value
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Packet Header Field Key Size in bits

Ingress Port Indicator in_port depends

Ethernet source address mac_src 48

Ethernet destination address mac_dst 48

Ethernet type ethertype 16

VLAN id vlan_id 12

VLAN priority vlan_pcp 3

IPv4 source address ip_src 32

IPv4 destination address ip_dst 32

IPv4 protocol ip_proto 0

IPv4 ToS bits ip_tos 6

TCP source port tcp_src 16

TCP destination port tcp_dst 16

Table 2.2: Relevant packet header fields for the thesis (based on OpenFlow v1.0 [ONF09])

definition to further increase flexibility. The use cases discussed in this thesis, however, do
only require the basic packet header fields shown in Table 2.2. All of them are supported
by current hardware switches. To support readability, the abstract field identifiers in the
second column of Table 2.2 (denoted “Key”) are used to refer to the corresponding packet
header field from now on. Due to space constraints, abbreviations of the identifiers are
used in certain cases – like src instead of ip_src. In this case, the concrete meaning
should be clear from context.

2.2.1.2 Flow

Definition 2.4: Flow

A flow is a sequence of packets where two packets zi and z j (i 6= j) from the
sequence share the same values for a pre-defined but otherwise arbitrary subset of
packet header fields.

Flows are the main forwarding abstraction of SDN. Following the above definition, a

flow can be described as a vector
�


k1, v1

�

, . . . ,



kn, vn

��⊺

of n different key-value pairs.
The key ki of the i-th entry represents a concrete packet header field. The corresponding
value vi represents the value that is associated with this packet header field. Table 2.3
gives three examples.
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Vector Notation Description

�



mac_dst, aa:aa:aa:aa:aa:01
�
� A flow that consists of all packets with the same

destination MAC address (uses only a single
packet header field with an exact value)

�


ip_src, 10.0.0.*
�




ip_dst, 20.0.0.*
�

�

A flow that consists of all packets where the IP
source and destination addresses are within a
certain subnet (two packet header fields, val-
ues are wildcarded to model the subnet rela-
tionship)




















(mac_src, aa:aa:aa:aa:aa:01
�




mac_dst, bb:bb:bb:bb:bb:01
�




ip_src, 10.0.0.1
�




ip_dst, 20.0.0.1
�




ip_proto, TCP
�

















A flow that consists of all packets with the same
five tuple of IP addresses, MAC addresses and
protocol type (five packet header fields with
five exact values).

Table 2.3: Flow examples

Note that the definition of the value part (vi) depends on the packet header field (ki). In
general, there are three types of values that can be distinguished. Exact values such as the
destination mac address aa:aa:aa:aa:aa:01 in the first column of Table 2.3. Wildcarded
values where a prefix of the selected packet header field is fixed and the remaining bits
are unspecified – see the two IP prefixes in the second column where the unspecified bits
are replaced with an asterisk (∗). And partially wildcarded values where an arbitrary bit
mask can be specified (such as ip_src, 10.*.*.1, not included as an example in Table
2.3). In practice, the majority of packet header fields can usually only be used with exact
values due to hardware restrictions. Only the address fields from layer 2 and 3 support
wildcards and partial wildcards.

In the remainder of this document, wildcards as well as partial wildcards are both denoted
with ∗. A single wildcard symbol (i.e., vi = ∗) means the packet header field can take an
arbitrary value. Wildcards for IP source and destination addresses can also be given in
CIDR notation (10.0.0.0/24 is equivalent to 10.0.0.*). In addition, a packet header field
ki that was not explicitly defined in the vector is interpreted as if it was defined with
vi = ∗. If required, shorthand notations like src=00** are used to save space.
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2.2.1.3 Software-defined Networking

Several definitions for Software-defined Networking are available. One that has attracted
attention from many researchers and fits well in the context of this thesis is the pillar-based
definition:

Definition 2.5: Software-defined Networking

According to Kreutz et. al. [Kre+15], Software-defined Networking (SDN) is a
network control architecture with four pillars:

(1) Decoupling of control plane and data plane

(2) Flow-based forwarding decisions

(3) External entity where the control logic is executed

(4) Software programmability via network applications

The first pillar (decoupling) says that the control logic is separated from the packet
processing functionality. In a traditional network, each forwarding device (switch, router)
has to provide support for both, control decisions and packet processing. With SDN, the
devices solely focus on packet processing and the control part is handled outside of the
forwarding devices.

The second pillar (flow-based forwarding) says that decisions in the network are flow-
based. In other words: It is a key concept of SDN to describe flows in the network
based on arbitrary packet header fields and define forwarding actions on top of them.
This is a fundamental improvement over traditional approaches. Consider routing as an
example. OSPF routes packets based solely on the destination IP address present in the IP
packet header [Moy98]. The same is true for most other interior (and exterior) gateway
protocols. Routing with SDN, on the other hand, is not by default restricted to a single
packet header field1. It can also utilize the source address or additional information from
the transport protocol header, if necessary.

The third pillar (external controller) says that the control logic is executed externally
inside the so-called SDN controller. This controller is a software framework running on
a commodity server. It provides an interface to network applications and establishes a
logical view of the network. Control decisions made in the controller are communicated

1The general concept of SDN is not restricted to pre-existing packet header fields at all. Approaches
like P4 or Protocol Oblivious Forwarding can also work with arbitrary / custom headers. Because this
distinction is not important for flow delegation, it is not discussed here further.
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towards the switch (in the form of control messages). Main benefits of this design: all
relevant information is logically centralized and the hardware can be scaled up easily.
Drawbacks are a potential single-point-of-failure that has to be addressed.

The fourth pillar (software programmability) says that the control logic is implemented
in the form of network applications. Such applications are executed by the SDN controller
and utilize the logically centralized view. This is the “main value proposition” of SDN
according to [Kre+15].

2.2.2 SDN Architecture and Interfaces

SDN is often depicted as a three-layered architecture. Fig. 2.2 shows the well-known
proposal by [Jar+14]. It consists of network applications, SDN controllers and SDN
switches (all colored blue) as well as some legacy components (not part of SDN, shown
here in beige). The three layers of the architecture are as follows. The lowest layer is
the data plane that consists of the SDN switches. It is responsible for packet processing
and forwarding. As already mentioned in the introduction, each SDN switch in the data
plane is equipped with a flow table to store flow rules from the SDN controller (shown
here as a match-action table).
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Figure 2.2: SDN Architecture, based on [Jar+14]
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The layer in the middle is the control plane that consists of the SDN controller(s). It
is responsible for managing control connections with SDN switches – which is required
because the switches are programmed remotely. The control plane basically serves as
an abstraction layer for the application plane. This can be compared to a “normal”
operating system (like Linux, Windows) that also provides various useful abstractions to
applications, e.g., memory management and support for I/O. The SDN controller does
the same for the network. If there are multiple controllers, the synchronization between
them is also done inside the control plane. The upper layer is the application plane that
consists of network applications. These are responsible for the actual implementation of
the required functionality like routing, load-balancing or any other form of control logic
for the network.

The three layers are interconnected via two interfaces: the northbound interface placed
between control plane and application plane and the southbound interface placed between
control plane and data plane. There are two additional interfaces inside the control plane.
The westbound interface is used for synchronization between different SDN controllers
and the eastbound interface connects the SDN part of the network with the legacy part
(if existing).

Various different protocols and solutions are available for all four interfaces (a good
and recent overview is given by Latif et. al. in [Lat+19]). The west- and eastbound
interfaces are not considered further in this thesis. The north- and southbound interfaces
are characterized below.

2.2.2.1 Northbound Interface

The northbound interface is used by network applications to communicate decisions
towards the control plane – for example, a routing decision for a pair of active users in
the network. The northbound interface is not standardized, i.e., every SDN controller
uses a proprietary solution (often a REST interface). The functionality offered via the
northbound interface differs widely. Existing SDN controllers such as Ryu [Ryu19]
or OpenDaylight [ODL19] give network application programmers access to low-level
constructs, i.e., programmers can create flow rules for individual SDN switches directly.

The research community also works on high level programming languages for SDN that
introduce an additional layer of abstraction. Frenetic [Fos+10], for examples, uses a
declarative query language similar to SQL to describe control decisions. NetKAT [And+14]
uses regular expressions to achieve similar results. Trident [GNY18] uses a special algebra
and several advanced programming constructs. SDNSOC [Cho+19] follows a object-
oriented approach for end-to-end policy composition. And there are many other examples
[Tro+16].
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One important aspect that all these approaches have in common is a (more or less)
automatic translation process between higher level decisions and lower level flow rules
for the individual switches. This means all decisions communicated via the northbound
interface are ultimately also reflected as flow rules communicated via the southbound
interface. Because of this, the focus in this thesis is solely on the southbound interface. If
a northbound interface is required (e.g., for prototyping) it is assumed that flow rules
are created directly by network applications.

2.2.2.2 Southbound Interface

The southbound interface is used by the controller to remotely manage SDN switches.
It basically serves as a hardware abstraction layer or “device driver” and handles all
communication between the control plane and the data plane (in both directions). This
includes the process of installing, removing and updating flow rules – which is one of the
crucial features necessary to realize the SDN paradigm. It also includes configuration
and management tasks such as port status or queue configuration as well as notifications
from the switches towards the controller, e.g., in case of certain events (link up/down)
or errors (link failure).

Unlike the northbound interface, different standardization efforts exist with respect to the
southbound interface. OpenFlow [ONF15a] driven by the Open Networking Foundation
is a well-known protocol in this area, sometimes described as the “lingua franca” of
SDN [JRW14]. The OpenFlow specification describes the components and requirements
for OpenFlow-capable switches and defines the OpenFlow pipeline, i.e., how packet
processing is done within the switch. Other well known southbound interface protocols
are NETCONF and OVSDB. NETCONF [Enn06] is based on XML and remote procedure
calls. OVSDB [PD13] is a JSON-based protocol that allows programmatic access to
the Open vSwitch (used in data centers and virtualized environments). In addition,
some hardware vendors have provided their own solutions such as OpFlex. And more
recently, the P4.org API Working Group proposed a new approach towards a unified and
silicon-independent interface called P4Runtime [Car18; P4o19].

This thesis will focus on OpenFlow as southbound interface for several reasons: i)
OpenFlow has attracted significant attention in industry and research and is supported by
a wide range of software and hardware switches. ii) The protocol is easy to understand
and can be used with all controllers including Ryu and Floodlight (which were used for
test bed experiments). iii) Fully functional library implementations for OpenFlow are
available for different programming languages which is a key requirement for control
message interception (see Chapter 7). And several tools required for prototyping such as
mininet or Wireshark also provide support for OpenFlow. The concepts discussed in this
thesis, however, are not restricted to OpenFlow. Flow delegation could potentially also
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be implemented with NETCONF or P4Runtime (or other southbound interfaces that are
based on flow rules with a match-action paradigm) without conceptual changes.

2.2.3 Application Areas

Since SDN was introduced in early 2009 [FRZ14], the paradigm was applied in many
different contexts. Well-known application areas are cloud and data center [Wan+15],
wide area networks [MK17] and telecom transport networks [Alv+17]. And there
are various other use cases, for example edge computing [BOE17], network function
virtualization [LC15], 5G [ARS16], the Internet-of-Things [BK16] or even explicit support
for big data [CYY16]. And while the individual areas are quite different from each other,
all of them are driven (and limited) by the fundamental SDN concepts discussed in the
next section. As a result, they may all suffer from flow table capacity bottlenecks (and
could all benefit from flow delegation).

2.2.4 Important Concepts of SDN

This section introduces fundamental concepts of SDN such as matches, actions and
flow rules. The two conceptually different modes of operation (proactive and reactive)
are discussed. The rule installation workflow and the packet processing workflow are
explained.

2.2.4.1 Match

It was already mentioned that decisions in a software-defined network are flow-based.
In order to realize a decision, the controller creates so-called “flow rules” to specify how
certain packets – that is all packets that belong to one flow – are processed by an SDN
switch. To achieve this, flow rules have two important components: a match part used to
define a flow (discussed in this section) and an action part to describe the instructions to
be executed for each matched packet (discussed in the next section).

Definition 2.6: Match

A match
−→
m is a vector

�


k1, v1

�

, . . . ,



kn, vn

��⊺

. The key ki of the i-th entry repre-
sents a concrete packet header field (e.g., ip_src). The corresponding value vi

represents the value that is associated with this packet header field (e.g., 10.0.0.1
or any other valid IPv4 address/subnet). vi = * indicates that all possibles values
can be taken.

This is the same vector notation introduced in Sec. 2.2.1.2 – which makes sense because
it is the goal of the match to define a flow. An easy way to understand how this is used
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within an SDN switch is the following function that takes a match −→m and an arbitrary
packet z:

check_match(z,−→m ) :=

(

1, inspect_header(z, k) = v ∀ (k, v) ∈ −→m

0, otherwise
(2.1)

The helper function inspect_header(z, k) extracts the value of packet header field k
within the header of packet z. The check_match(z,−→m ) function will now evaluate to 1 if
all packet header fields specified in −→m are present in packet z and the value of all fields
match the values in −→m . Note that the equality check of inspect_header(z, k) = v cannot
be realized as an exact match if v is a wildcarded value, but this is not considered here
for simplicity (not important for the general concept). If the result of check_match(z,−→m )
is 1 (denoted as “packet is matched”), packet z belongs to the flow defined by match
−→
m . If the result is 0 (denoted as “packet is not matched”), the packet does not belong to
the flow defined by match −→m . This is what an SDN switch essentially checks if a new
packet z arrives and the switch has to determine whether this packet is matched by −→m or
not. A graphic representation of check_match(z,−→m ) is given in Fig. 2.9. Note that the
statement “packet is matched by flow rule f ” is synonymous to “packet is matched by
match −→m of flow rule f ”.

2.2.4.2 Action

The action part of a flow rule describes the instructions to be executed for each matched
packet. An action is defined as follows:

Definition 2.7: Action

An action
−→
a is vector

�

a1(), . . . , am()
�⊺

where the i-th entry ai() describes a packet
processing instruction from Table 2.4. Instructions with smaller indices are executed
first.

Note that this is a simplified definition. It does not take the existence of multiple flow
tables into account and dependencies between certain types of actions are not considered
(such as that a packet cannot be changed after it was forwarded). It is, however, sufficient
to model the use cases discussed in this thesis. Table 2.4 is also not representative and
contains only a brief list of actions relevant for this document.

2.2.4.3 Flow Rule

Flow rules specify how packets of one flow are processed by an SDN switch. They are
an essential construct used extensively in this thesis. Given the definitions in the two
previous sections, a flow rule can be defined as follows:



2.2 Software-defined Networking (SDN) 33

Action Description

drop() Packet is dropped at the switch

ctrl() Packet is forwarded to controller

fwd(v)
Packet is forwarded via interfaces v OR towards
target switch/host v

set(k,v) Overwrite packet header field k with value v

Table 2.4: Actions considered in this thesis

Definition 2.8: Flow Rule

A flow rule f is a triplet

−→

m , −→a , prio
�

where −→m is a match according to Def. 2.6,
−→
a is an action according to Def. 2.7 and prio ∈ N is a priority value.

The logic behind this definition is simple. If a packet z belongs to the flow defined by
match −→m , all the instructions in −→a are executed for packet z. The priority value prio

is required because the same packet can be matched by multiple flow rules. Assume

flow rule f1 has match −→m 1 =
�


ip_src, 10.0.0.1
��

and flow rule f2 has match −→m 2 =
�


ip_src, 10.0.0.1
�

,



ip_dst, 20.0.0.1
��

. Is easy to see that a packet with ip_src =

10.0.0.1 and ip_dst = 20.0.0.1 will be matched by both −→m 1 and −→m 2. The priority is used
to ensure that there is always a single flow rule with highest priority for each possible
packet z. It is assumed here that this priority is explicitly defined by network application
programmers. Higher values for prio are considered a higher priority. Examples will
also use paraphrases like “low” or “high” for the priority to keep things simple.
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company 
network 
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ip = 107.13.4.15 

NAT network application 
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SDN switch 

Figure 2.3: Network Address Translation (NAT) example

Flow rules provide a very intuitive abstraction to describe network control decisions.
Take the scenario shown in Fig. 2.3 as an example. The local company network on the
left uses private IP addresses from subnet 10.0.0.0/8. The core network that connects
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the local company network with the Internet consists of three SDN switches s1, . . . , s3.
A special NAT network application is executed inside the controller to translate private
addresses into public addresses. Let us assume the NAT functionality is implemented in
s2. Further assume that user A with IP address 10.0.0.1 should be able to communicate
with user D in the Internet (IP address 107.13.4.15). The required address translation
functionality can be modeled as a flow rule


−→
m , −→a , prio

�

in the following way2:

−→
m =

 



ip_src, 10.0.0.1
�




ip_dst, 107.13.4.15
�

!

−→
a =

 

set(ip_src, 200.0.0.17)

fwd(s3)

!

prio = high

−→
m defines a flow that matches on all IP packets sent from user A towards user D. −→a
consists of two consecutive packet processing instructions that will be executed for
every packet z that arrives at s2 and matches on −→m . The first instruction set(ip_src,

200.0.0.17) overwrites the IP source address in the packet. The second instruction
fwd(s3) forwards the packet to the next switch which is s3 in this example. It is easy to
see that this will realize the required functionality. After the flow rule


−→
m , −→a , prio

�

was
installed (explained below in Sec. 2.2.4.5), the flow table of s2 will contain the following
entry:

Match Action Priority

ip_src=10.0.0.1

ip_dst=107.13.4.15

set(ip_src, 200.0.0.17)

fwd(s3)
high

The notation from Def. 2.8 and the table notation above can be used synonymous. Most
examples will use the table notation, often in a reduced form to save space. A shortened
version of the table above could look like this (the meaning of the variables should be
clear from context; A’ represents the public address 107.13.4.15):

Match Action Priority

src=A dst=D src ← A’, fwd(s3) high

2The example shows only one direction (from A to D). Also note that this is only one way to model this,
there are many different alternative solutions.
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It is important to mention that high level decisions usually result in multiple flow rules.
Consider the NAT example from above. Here, at least three flow rules are required to get
packets from the left side of the network to the right side (and three more for the return
path which is not shown). Fig. 2.4 illustrates this.
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Figure 2.4: Extended Network Address Translation (NAT) example

Flow rule f1 forwards the packet from s1 to s2. Flow rule f2 performs the address
translation and forwards the packet to s3. And flow rule f3 forwards the packet towards
the Internet. So one high level decision resulted in multiple rules for three different
switches.

2.2.4.4 Flow Table

The core functionality of the flow table is storing flow rules. In general, its detailed
structure and usage depends on the southbound interface protocol and the hardware in
use. The reference model of an SDN switch for OpenFlow v1.3, for example, is shown in
Fig. 2.5. It consists of ports, control channel (connection to controller), special tables
such as the group table and a flow table pipeline that interconnects multiple flow tables.
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A packet that arrives at one of the ports is processed by the pipeline (described in detail
in the specification [ONF12]).
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Figure 2.5: Switch and flow table model used in OpenFlow v1.3 (based on [ONF12])

For this thesis, however, the simpler model depicted in Fig. 2.6 is sufficient. The main
difference between this model and the OpenFlow model shown above is that it uses a
single flow table instead of a pipeline and does not consider special tables such as the
group table. This simplification is possible because dependencies between flow rules
stored in different flow tables – which may be relevant for flow delegation – can be simply
modeled as a rule conflict (see Sec. 3.2.4). This way, the dependencies can be considered
in the rule aggregation scheme without the need for a more complex flow table model.
The same is true for special tables. Given the simplified model in Fig. 2.6, the term flow
table can now be defined as follows:
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Definition 2.9: Flow table

A flow table is a hardware component in an SDN switch that can store flow rules.
Each entry of the flow table can hold one flow rule (regardless of the number
of packet header fields used for the match). Packets that arrive at the switch
are checked against all currently installed flow rules and processed based on the
highest priority matching flow rule. Packets where no matching flow rule is found
are discarded.
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Figure 2.6: Simplified switch and flow table model used in this thesis

Note that – if not explicitly stated otherwise – the term flow table in this document always
refers to the flow table inside a hardware SDN switch3. Such flow tables are realized with
Ternary Content Addressable Memory (TCAM) which is an expensive and power hungry
technology. Current TCAM chips can store only a few MByte per mm2 which makes it
difficult to equip hardware switches with large flow tables (some concrete numbers are
given in Sec. 2.3.1). However, TCAMs allow it to compare an incoming packet against
all flow rules in a single clock cycle which is required for high-speed packet processing.
The flow table can store additional metadata (counters, timeouts) for each flow rule.
Counters store monitoring information such as the number of packets and bytes processed

3Software switches which also have flow tables do not suffer from flow table capacity bottlenecks and
can thus not benefit from flow delegation.
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by the flow rule. Timeouts are used to automatically remove the flow rule from the flow
table after a specified duration (hard timeout) or if no packet was matched for a certain
duration (idle timeout).

2.2.4.5 Remote Control

This section will now explain how SDN implements remote control, i.e., the ability
to remotely control the SDN switches. Remote control is realized by the southbound
interface protocol (here: based on OpenFlow) and consist of three basics steps: i) a
control channel between controller and switch is established, ii) the command – such as
installing a new flow rule – is wrapped in a control message which is sent to the switch
via the established control channel, and iii) the switch extracts the command from the
control message and executes it. Prior to a more detailed explanation of this process, it
is first necessary to introduce the term “control message”:

Definition 2.10: Control Message

A control message is a packet that transmits protocol data units of the southbound
interface protocol from SDN controller to SDN switches and vice versa. A list of
relevant control messages is provided in Table 2.5. They are specified as functions
and should be interpreted as a command the receiver of the control message has
to execute, similar to a remote procedure call. Example: A control message with
the install(f) protocol data unit sent from controller to switch means the switch
(receiver of the message) has to install flow rule f in its flow table.

Protocol data unit OpenFlow syntax [ONF12] Direction Description

hello() OFPT_HELLO S↔ C Version negotiation

install( f ) OFPT_FLOW_MOD C→ S Install flow rule f

delete( f ) OFPT_FLOW_MOD C→ S Delete flow rule f

update( f , f ′) OFPT_FLOW_MOD C→ S Update flow rule f with f’

packet_in(z, p) OFPT_PACKET_IN S→ C Unmatched packet z via port p

packet_out(z, p) OFPT_PACKET_OUT C→ S Forward packet z via port p

feature_req(k) OFPT_FEATURES_REQUEST C→ S Request switch capabilities

feature_rsp(k) OFPT_FEATURES_REPLY S→ C Report switch capabilities

counters_req( f ) OFPT_MULTIPART_REQUEST C→ S Request flow rule counters

counters_rsp( f ) OFPT_MULTIPART_REPLY S→ C Report flow rule counters

Table 2.5: Relevant control messages (S = Switch, C = Controller)
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Workflow and the control messages listed in Table 2.5 are based on OpenFlow v1.3
[ONF12] which was used for all prototypes and test bed experiments. The core concept,
however, can also be realized with other southbound interface protocols that use a
match-action paradigm. Note that the notation is slightly different from the OpenFlow
specification to be consistent with other chapters and to abstract from unnecessary details
– see the “OpenFlow syntax” column in Table 2.5 for a mapping to the specification.
Further note it is not the purpose of this section to explain the protocol behavior of
OpenFlow in all details. However, a basic understanding of the mechanics and control
messages is important for the control message interception building block in Chapter 7.

The remote control workflow is depicted in Fig. 2.7. This example assumes a “new”
software-defined network, i.e., the switch is not yet connected to the SDN controller.
Control messages are shown as blue boxes ( c ).
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Figure 2.7: Remote control workflow on the example of flow rule installation

1© The switch is powered on. The flow table is empty and all incoming packets will
be dropped. The controller does not yet now the switch.
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2© It is assumed that the switch knows the IP address of the controller (statically
configured). As soon as the switch OS is booted and the OpenFlow protocol
daemon is started within the switch OS, it will initiate a TLS or TCP connection

(control channel) towards the controller.

3© The control channel is established and can be used to exchange control messages.
Version negotiation begins. Hello control messages are sent immediately by both
sides (controller and switch). Both sides use the information inside the hello control
message to determine the protocol version used for all subsequent control messages.

4© Version negotiation has succeeded and OpenFlow enters the feature discovery

phase. Here, the controller uses the feature_req control message to get informa-
tion about the capabilities supported by the switch. The switch answers with its
capabilities using a feature_rsp control message.

5© Feature discovery phase has succeeded and the switch is ready to receive any

other control message, e.g., to install flow rules.

6© A network applications uses the northbound interface to inform the controller about
a new high level control decision.

7© The controller generates a new flow rule f to implement the decision, wraps it
into a control message (using the install protocol data unit) and sends this message
to the switch via the (still) active control channel.

8© The switch receives the control message, extracts the install protocol data unit and
executes it. The flow rule is added to the flow table.

Note that the handshakes in the beginning (steps 2© to 4©) are only required once when
the switch is first connected to the controller. The controller will manage separate active
control channels (i.e., TLS/TCP connections) for all switches in the network.

2.2.4.6 Proactive and Reactive Flow Rule Installation

Decision making – or flow rules installation – in SDN can be done proactively or reactively
(or a combination of both). The difference is explained in Fig. 2.8. In the proactive case,
the decision in step a© is made before the first packet arrives which is packet z in the
figure. This is basically the same concept used in traditional routing which can of course
also be realized with SDN. Other common examples for a proactive decision are global
access control or coarse granular load balancing. The flow rules that correspond to the
proactive decision are installed regardless of whether there is any traffic that has to be
processed by them or not (step b©). If packet z arrives later on in step c©, the flow rules
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are already present in the flow tables and the packet can be forwarded without involving
the controller.
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Figure 2.8: Proactive and reactive flow rule installation

In the reactive case, there are no pre-defined flow rules that match on packet z. Instead,
the flow table has a proactively installed “default rule” that will send all unmatched traffic
to the controller. The default rule has a special match −→m with value vi = ∗ for every
possible packet header field. This assures that check_match(z,−→m ) = 1 for all packets
(every packet is matched). The action is set to ctrl(). prio is set to the lowest supported
priority value so that any other flow rule has a higher priority than the default rule. The
shorthand table notation for a default rule is as follows:

Match Action Priority

* ctrl() lowest

Now consider the workflow shown in the right hand of Fig. 2.8. If packet z arrives in step
1©, there are no other rules except for the default rule and the packet is forwarded to

the controller (step 2©). The controller forwards the packet4 to the network application
in step 3©. The network application can then make a fine granular decision based on
the provided packet header information (step 4©). This will result in one or more new

4Usually, only the first x bytes of the packet are sent to the controller where x is a configurable value.
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flow rules that matches on packet z (and all packets that belong to the same flow as z)
which is installed into the switch in step 5©. Note that packet z itself is not automatically
processed by the newly installed flow rule which is why Fig. 2.8 also has a red dashed
arrow for step 4© and 5© (packet z is handled individually).
Reactive flow rule installation for arbitrary flows is one of the strongest SDN features
(not possible with traditional routing!). It can be used to implement individual security
policies for all active flows in the network, for fine granular monitoring or for dynamic
load-balancing. On the other hand, it is also a common reason for flow table capacity
bottlenecks (discussed in more detail below in Sec. 2.3.2.3).
Flow delegation does not distinguish between proactive and reactive flow rule installation
(both concepts can cause bottlenecks). But it is especially useful if decisions are made
reactively and some switches of the network suffer from high load due to a high number
of active users or connections.

2.2.4.7 Packet Processing inside the Switch

The focus so far was primarily on the control plane, i.e., how flow rules are defined and
installed via control messages. This section briefly summarizes how flow rule processing
in the data plane is done (from a conceptional point of view).
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Figure 2.9: Packet Processing inside the Switch

Fig. 2.9 shows the flow table of a single switch with three flow rules. If a new packet
z arrives at the switch (step 1©), the packet header fields of this packet are checked
against all installed flow rules (step 2©). That is, for each flow rule fi =


−→
mi,
−→
ai , prioi

�

in the flow table, function inspect_header(z, k j) is executed for all tuples



k j, v j

�

in −→mi.
If this function returns 1 for all packet header fields (k j), rule fi is considered a match.
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Next, the flow rule with highest priority among all matching flow rules is selected (step
3©). This determines the matching flow rule for packet z. Steps 1© to 3© are realized

with the help of Ternary Content Addressable Memory (TCAM) so that all checks for all
flow rules can be done in a single clock cycle. After the matching flow rule is found, the
corresponding packet processing instructions are executed for packet z (step 4©).

2.3 Flow Table Capacity

Hardware flow table capacity is an important parameter for SDN scalability and flexibility.
Cohen et. al. [Coh+14a], for example, showed that flow table capacity aware algorithms
can improve performance in backbone and data center networks by up to 100%. And
many other researchers have shown that limitations with respect to flow table capacity
can have a significant negative impact on functionality and performance [YTG13; JMD14;
Kat+14b]. The term flow table capacity (cTable

s
) is defined here as follows:

Definition 2.11: Flow Table Capacity

The flow table capacity cTable

s
∈ N denotes the maximum number of full-featured

flow rules that can be installed into the flow table of switch s. Full-featured means
potentially all supported packet header fields can be used in the match −→m of a flow
rule in parallel.

It is assumed that one flow rule always occupies exactly one entry in the flow table, i.e.,
aspects such as automatic rule expansion [RK10] inside the switch are not considered. In
addition, it is assumed that the capacity refers to the maximum amount of “full-featured”
flow rules, i.e., flow rules that can match on multiple fields in parallel including wildcards
and partial wildcards for each packet header field (if wildcards are supported). This is
important because such full-featured flow rules can i) only be efficiently realized with
TCAM and ii) require a high amount of bits/entry. [KB13] reports 356bit/entry, which
has increased for newer versions of OpenFlow. Non full-featured flow rules – such as rules
that only match on the full destination MAC address – can be realized with DRAM/SRAM
and do not suffer from capacity limitations to the same extent as full-featured flow rules.

2.3.1 Some Numbers for Hardware SDN Switches

Despite the fact that SDN is being around for more than one decade, most hardware SDN
switches still only support between 1.000 and 10.000 full-featured flow rules. Information
on the exact number of supported flow rules are difficult to obtain, at least without direct
access to the physical hardware. Only some switch vendors like HP and Brocade provide
exact TCAM numbers. Examples are given in Table 2.6.
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Switch Flow table capacity

HP 2920 500

HP 3500/5400/6600 1500-2000

HP 5900/5920 2048

Brocade ICX6610 1500

Table 2.6: Flow table capacity of hardware SDN switches

Other vendors like Pica8 or Juniper do not directly publish specific numbers. But various
researchers from different institutions have published experiments with a wide range of
available hardware switches. A recent study from Van Bemten et. al. [Van+19] reports
numbers between 100 and 4094 for switches from Pica8, HP, Dell and NEC. The authors
also observed that rules may be incorrectly added or suffer from unpredictable aging
(size is reduced with each consecutive run). A study from Piotr et. al. [Ryg+17] reports
between 460 and 1526 for a number of different HP switches. Costa et. al. [Cos+17]
perform experiments with OpenFlow switches using different brands from Extreme,
NetFPGA, Datacom, Pica8, Mikrotik, HP and LinkSys. They report similar numbers in the
range from 100 to 4096. [KPK14] reports numbers between 750 and 2000 for switches
from Pica8, Dell and HP. [CYP18] reports numbers between 2000 and 8000 for Pica8,
Edgecore, Dell and HP.

2.3.2 High Demand for Flow Rules

From perspective of the network applications, the number of required flow rules can
easily surpass the capacity provided by state-of-the-art SDN switches. Empirical data with
respect to flow table capacity bottlenecks, however, is also difficult to find. A study from
Yu et. al. [Yu+16] analyzed the number of required flow rules for a campus network and
a nation wide research network based on real traffic traces. The campus network trace
(captured 2010) resulted in 11.000 concurrent flow rules for one switch5. The research
network trace (captured 2013) resulted in 100.000 concurrent flow rules. Another study
from 2010 shows that the number of concurrent flows processed by data center edge
switches is in the range of 1000 to 5000 [BAM10a]. It is an interesting observation that
current hardware switches are not capable of dealing with such numbers (especially
because the data used in the studies is 7-10 years old).

5Under the assumption that a flow rule is installed for each unique flow in the network (based on the
default 5-tuple) and the rule is removed after 60s of idle time.
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The remainder of this section discusses several common patterns that cause high flow
rule demands. Certain types of networking applications conceptually deal with an effect
that is known as the flow table explosion problem [ONF15b]. This problem occurs
if independent actions have to be performed based on different packet header fields
(discussed in Sec. 2.3.2.1). Multistage processing (Sec. 2.3.2.2) and fine-grained control
and visibility (Sec. 2.3.2.3) are other reason why the demand for flow rules is constantly
increasing.

2.3.2.1 Independent Actions

The well-known learning switch pattern relies on two independent actions that use two
different packet header fields: Ethernet destination address (mac_dst) and Ethernet
source address (mac_src). Assume a packet with mac_src= MAC14 and mac_dst= MAC6

enters a switch at port P14 and is then send to the controller because no matching flow
rules are installed. The controller learns that address MAC14 is behind port P14. Assume
further, the controller does already know that address MAC6 is behind port P6. To avoid
that subsequent packets are also sent to the controller, the application has to install a

new flow rule with −→m =
�


mac_src, MAC14

�

,



mac_dst, MAC6

��

and −→a =
�

fwd(P6)
�

.

If the controller would only install a rule with −→m =
�

(mac_dst, MAC6)
�

, other hosts
behind port P14 are never learned because the packets are not send to the controller. This,
however, results in N 2 rules if N is the number of active hosts in the network (10.000
flow rules for 100 hosts). The problem can be avoided by using two flow tables (source
address lookup is performed in the first table and destination address lookup in the
second table), but many hardware switches do not support multiple tables in hardware.

2.3.2.2 Multistage Processing

Multistage processing is another pattern that often leads to high flow rule demands. One
example is sliced policing, i.e., the traffic is separated into different slices and each slice
is associated with a set of policies. This results in #slices ∗#policies flow rules because
each packet has to be processed twice (selecting a slice and enforcing the policy). Service
Function Chaining is another common example where different operations have to be
executed after one another (e.g., identify the chain, select target network function within
the chain, decrease index within the chain after processing). This results in an explosion
of flow rules if the number of flow tables is lower than the number of processing stages
(very similar to the learning switch problem discussed above).
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2.3.2.3 Fine-grained Control and Visibility

Fine-grained control and visibility is another source for high flow rule demands. The
authors in [Yu+10], for example, analyze different scenarios where up to 80 million
access policies have to be considered. Various other applications have high demands as
well, e.g., for realizing QoS [Kim+10], performing energy aware routing [Hel+10] or
due to host mobility aspects [Yu+10]. Monitoring with full visibility (i.e., the global view
inside the controller is aware of every single flow) can also require a large amount of
flow rules [Cur+11].

2.3.3 Conclusion

Current SDN switches do not provide sufficient flow table capacity while the demand
is constantly increasing due to more advanced use cases [Cur+11] (e.g., smart cities,
Internet-of-Things, 5G, ...). It is not expected that this problem can be compensated
with bigger or more powerful hardware. This holds true even under the assumption
that Moore’s law continues to be valid after 2020 [ITR15], because i) stronger hardware
normally goes hand in hand with increased capital and operational expenditure and ii)
the potential performance improvements are likely to be put into perspective by rising
demands. In other words: flow table capacity bottlenecks are likely to become an even
bigger problem in the future.

2.4 Flow Table Capacity Bottlenecks

The following will first present a more detailed definition for the term flow table capacity
bottleneck. Afterwards, existing research to cope with such bottlenecks is discussed.

2.4.1 Bottleneck Definition

Fig. 2.10 shows the situation for a switch with a flow table capacity bottleneck in time
slot notation (see Sec. 2.1.1). The bottleneck is depicted as a red area between the curve
of the utilization values and the capacity.

cTable

s
denotes the flow table capacity of the considered switch (see Def. 2.11). The

other variable uTable

s,t denotes the flow table utilization measured for a specific time slot.
Utilization means the current number of flow rules present in the flow table of the
considered switch. More precisely: the current number of flow rules present at the end
of the time slot (the exact number of installed flow rules, not the average or maximum
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Time 
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Flow table 
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𝑢𝑠,𝑡2𝑇𝑎𝑏𝑙𝑒 = Utilization for switch s in time slot t2 

𝑐𝑠𝑇𝑎𝑏𝑙𝑒 = Capacity of switch s  

(static for all time slots) 

Figure 2.10: Flow table capacity bottleneck in time slot notation

utilization6). This value changes over time because network applications can install and
remove flow rules in response to events from the network such as number of active users
or active connections. Given uTable

s,t and cTable

s
, a bottleneck can be defined as follows:

Definition 2.12: Flow Table Capacity Bottleneck

Switch s ∈ S suffers from a flow table capacity bottleneck in time slot t if
uTable

s,t > cTable

s
where cTable

s
∈ N denotes the maximum capacity of the flow table of

switch s and uTable

s,t ∈ N denotes the current utilization of the flow table of switch s

in time slot t.

Important: uTable

s,t represents the utilization from the perspective of the con-

troller and the network applications. Flow delegation is completely ignored for this
value, i.e., flow rules relocated to a remote switch are included (would normally be
installed in s) and backflow / aggregation rules are not included (would normally
not be installed in s). This ensures that a switch is still considered a delegation
switch even if the “real” utilization with flow delegation is below the capacity.

For simplicity, it is assumed that the capacity cTable

s
does not change over time while

different switches can have different capacities (this is why cTable

s
has a switch index but

no time slot index).

6Average and maximum values are valid alternatives here. The benefit of using the actual utilization is
simpler verification of simulation results. Because flow delegation is primarily concerned with flow rules
that last longer than a single time slot and the minimum lifetime of a flow rule in all experiments was
set to 3 seconds, the measured difference between the three alternatives in the performed experiments
was negligible. The raw data sets also include average and maximum values.
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2.4.2 Existing Research on Flow Table Capacity Bottlenecks

Existing work on flow table capacity bottlenecks can be roughly divided into five large
areas:

(1) Resource-aware network applications: capacity limitations of the flow table are
considered at application level (discussed in Sec. 2.4.2.1)

(2) Flow rule eviction: a flow rule has to be selected for eviction if the capacity of the
flow table is exceeded and a new flow rule is installed (discussed in Sec. 2.4.2.2)

(3) Software offloading: the hardware flow table is used as a cache and low priority /
low volume flows are offloaded to a software flow table (discussed in Sec. 2.4.2.3)

(4) Flow rule distribution: flow rules are distributed over multiple hardware switches
to utilize existing spare flow table capacity (discussed in Sec. 2.4.2.4)

(5) Flow table compression: the set of all flow rules is compressed prior to installation
into the hardware flow table (discussed in Sec. 2.4.2.5)

The following sections describe relevant related work for the above areas and briefly
discuss the different approaches with respect to flow delegation. Sec. 2.4.3 contains
pointers to relevant surveys. In conclusion, Sec. 2.4.4 summarizes the observations and
presents a compressed overview in Table 2.8.

2.4.2.1 Resource-aware Network Applications

One approach to address flow table capacity bottlenecks are resource-aware network
applications. These applications either try to minimize the number of flow rules required
to achieve their functional goal (such as creating a traffic matrix for all flows in the
network). Or they have detailed knowledge about the topology and the capabilities of
the deployed switches and use this knowledge to avoid flow table capacity bottlenecks.
There are literally hundreds of SDN-related publications where flow table capacity is
considered at network application level. A few recent examples from 2018 and 2019 are
listed in Table 2.7.

Discussion: The problem is that resource-aware network applications usually consider
only a single use case such as routing, monitoring or security. The solutions are highly
specialized towards this use case and cannot be generalized for other applications. Solv-
ing the bottleneck problem at application level might work well if the whole network is
controlled by a single application. But this approach will fail if multiple network applica-
tions are executed in parallel. In addition, resource-aware network applications can only
adapt to the maximum reported flow table capacity. This leads to reduced application
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Category Approach Main task of the network application

Routing Sway [SBM18] QoS routing for the Internet-of-Things

RA-RA [Pei+18] Routing for service function chains

Flow-Aware Routing [CYP18] Routing and forwarding in wireless data centers

Q-Data [Pha+19] Machine-learning based flow rule management

Monitoring FlowStat [BMJ19] Gathering per-flow statistics

TM Estimation Framework [TCL18] TCAM efficient traffic matrix estimation

FlowTracer [Wan+19a] Effective flow trajectory detection

DHHH Detection [WYW19] Distributed detection of hierarchical heavy hitters

Security RCMD [MTG18] Security of in-band control paths

FlowCloak [Bu+18] Prevention of middlebox-bypass attacks

Revive [HM18] Data plane failure recovery

Table 2.7: Network applications that consider flow table capacity bottlenecks

performance if the flow table is highly utilized and the application adapts accordingly
(e.g., by reducing the target monitoring accuracy in case of monitoring application).
Flow delegation, on the other hand, works independently from individual use cases. The
delegation process is hidden from the controller and the network applications. It can
thus support any kind of network application, regardless of whether that application is
resource-aware or not. And because additional capacity of neighboring switches can be
utilized, network applications are not forced to reduce their flow rule demand without
necessity.

2.4.2.2 Flow Rule Eviction

The idea behind flow rule eviction is it to remove an existing (and potentially still active)
flow rule from the flow table if a new flow rule has to be installed and there is no free
flow table capacity available. This can be either done switch-driven or controller-driven.

Switch-driven flow rule eviction: Here, the switch itself has a local eviction strategy
– such as least-recently-used – that is executed when a new flow rule is installed. In
this case, eviction can be done without involving the controller. This requires hardware
support from the SDN switch and is not standardized by currently existing southbound
interfaces. Several non-trivial proposals for switch-driven eviction exist. The authors in
[CLC16] utilize bloom filters stored in SRAM to track the importance of existing flow rules.
FlowMaster [KB14] proposes a per flow prediction algorithm to assess the importance
that can be implemented in TCAM/SRAM (demonstrated with an FPGA prototype). IRCR
[Che+18] uses a new software module at the SDN switch that considers the arrival
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probability of new traffic for existing flow rules to determine the best eviction candidate.
Another notable mechanism for P4-based eviction was proposed in [He+18] where flow
rules are removed after a TCP FIN or RST flag is detected.

Controller-driven flow rule eviction: Without explicit support from the switch, the
controller has to decide which flow rules are kept and which are removed from the flow
table in case of a bottleneck. This is usually done by setting timeouts for each flow
rule. SmartTime [Vis+14], for example, uses a heuristic to determine TCAM-efficient
idle timeouts. The idea is to proactively evict flow rules from the flow table before a
bottleneck occurs. TimeoutX [Zha+15] calculates adaptive timeouts for new flow rules
based on estimated flow rule lifetime and current flow table utilization. The authors
in [YR18] and [Li+19b] use machine learning to tune timeouts for proactive flow rule
eviction. And there are many other approaches that manipulate timeouts to prevent
bottlenecks [Zha+14; Zhu+15; Yan+16; xu+18].

Discussion: All eviction-based approaches have the problem that the available flow table
capacity of a bottlenecked switch is not actually increased. Eviction will just remove “less
important“ flow rules from the flow table. This will only help with scalability if such less
important flow rules exist. It cannot deal with situations where a switch is highly utilized
and all flow rules are actively required – i.e., situations where there are no good eviction
candidates. Even worse, installing and evicting a large number of flow rules in short
succession can lead to a phenomenon called “rule replacement storm” [CYP18] which
has significant negative impact on scalability. Flow delegation, on the other hand, was
explicitly designed to cope with bottlenecks that are caused by over-utilization (as long
as some nearby switches have free capacity).

2.4.2.3 Software Offloading

Another well-known technique for dealing with flow table capacity bottlenecks is software
offloading. Software offloading is based on the observation that fast hardware and flexible
software can complement each other. The basic idea is to distinguish between a “fast path”
(hardware flow table) and a “slow path” (software flow table). Flow rules processing a
large amount of packets are stored in the hardware flow table. The remaining flow rules
are offloaded to a software flow table.

Software offloading inside the switch: Some approaches exist where software offload-
ing is realized directly inside the switch. SSDN [Nar+12], for example, proposes a
programmable software subsystem based on network co-processors placed at the switch.
Packets that are not matched in the hardware flow table are processed in this subsystem.
T-Flex [Maq+15] introduces a virtual memory mechanism for the hardware flow table.
This is realized with an additional software flow table executed at the switch CPU (the
authors implemented their idea in a data center switch equipped with a multi-core Intel
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Xeon processor). The authors in [Hun+18] propose an approach that exploits other
(non-TCAM) hardware tables – such as IP/MAC/ACL tables – to increase the amount
of flow rules that are processed by the ASIC. However, these approaches are difficult to
realize in practice because changes to the switch design are required.

Software offloading with external memory: A less invasive solution is software of-
floading with external memory. Here, the hardware flow table is complemented with an
external software flow table (usually a software switch placed on the controller or some
remote server). This allows for a trade off between data plane performance (forwarding
speed) and flow table capacity. The hardware flow table provides high data plane per-
formance but has limited capacity. The software table, on the other hand, has (almost)
unlimited flow table capacity but the provided data plane performance is usually one or
two orders of magnitude lower than that of a hardware switch.

A well-known approach in this category is CacheFlow [Kat+14b]. The CacheFlow ar-
chitecture uses one or multiple software switches attached to a hardware switch. The
latter is then used as a cache for the most popular flow rules in the network. A caching
algorithm is responsible to decide which flow rules are placed in the cache and which
are placed in the slower software switches. Similar to the flow delegation approach in
this thesis, CacheFlow is transparent towards the control plane. This is achieved by a so
called CacheMaster module that intercepts all control messages between controller and
switches.

There are several approaches with similar focus as CacheFlow. AutoSlice [BP12] uses
a concept called “auxiliary software datapath” to offload low-volume traffic flows to a
software table. Shadow Switch [BM15] makes use of a software switching layer to speed
up flow rule installation. The authors in [MDS17] propose a memory management system
placed at the controller that supports a swapping function. If a hardware flow table is
full, some flow rules are removed and stored in a “swap database” at the controller.

Caching algorithms for software offloading: A lot of work has been done in the area of
caching algorithms for software offloading. The goal of these algorithms is it to select flow
rules that should be offloaded to the slower software table while existing dependencies
are not violated. CoverSet [Kat+14a; Kat+14b], for example, uses newly created dummy
flow rules to reduce the number of dependencies prior to the caching decision. The
authors in [SC16] extend this approach so it can work on set of flow rules instead of
only individual flow rules. In addition, their algorithm exploits temporal and spatial
localities. Temporal locality means a flow rule that was triggered by network traffic
will be triggered again soon and spatial locality means that, at short time scales, traffic
concentrates on flow rules with similar packet header fields. CAB [Yan+14; Yan+18a]
chooses a different approach based on a geometric representation of the set of flow rules
– hyper-rectangles where each dimension refers to one packet header field – to deal with
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dependencies. Other researchers propose two-stage caching architecture that rely on
multiple (smaller) TCAM chips in the hardware flow table to further optimize caching
[XW17; Wan+17; Din+17] . And there is a range of other approaches [Li+15; Hua+16a;
Yan+18b; Li+19c].

Discussion: Other than in the eviction case, software offloading will increase the maxi-
mum available flow table capacity of a bottlenecked switch. And because software tables
can store a large amount of flow rules, this approach can theoretically increase flow
table capacity by orders of magnitude (which is not possible with flow delegation7). In
addition, software offloading is a generic approach and existing network applications
can be used without modifications. However, the approach has two severe drawbacks: i)
additional infrastructure in form of software tables has to be installed in the network and
ii) flow rules placed in a slower software flow table suffer from a significant performance
degradation [Bei+15; Sha+16; Emm+18]. This is especially critical if the software flow
table is not placed in immediate vicinity of the hardware flow table which can result in
unacceptable delay. In comparison, flow delegation requires no infrastructural changes.
Performance impact on delegated flows is small (up to 0.1ms of additional delay) and
insusceptible to fluctuations because processing of the packets is still done in hardware.
Furthermore, flow delegation can be easily combined with software offloading by using a
software switch as extension switch. And all caching algorithms designed for software
offloading can be used without no or minor modifications for the rule aggregation scheme
(see Sec. 5.1.2).

2.4.2.4 Flow Rule Distribution

Flow rule distribution will – as the name suggests – distribute the set of required flow
rules among all available hardware switches in the network. The most notable work
in this area is DIFANE [Yu+10]. DIFANE achieves scalability by distributing flow rules
over a certain set of authority switches. The controller first distributes the space of
all possible flow rules (flowspace) into several partitions and each authority switch is
responsible for only one partition. All flow rules are then proactively installed at their
respective authority switch. Ingress switches are equipped with coarse-grained, low
priority partition rules that encapsulate and redirect incoming traffic to an authority
switch where the appropriate packet processing is done. Palette [KHK13] follows a very
similar approach and distributes large flow tables into equivalent sub-tables that are
then distributed among the hardware switches. JumpFlow [Guo+15] proposes a new
forwarding scheme that uses the vlan_id packet header field to carry routing information.

7The maximum number of extra flow rules that can be provided by flow delegation depend on the
available free capacity in the network. Say the bottleneck switch has a flow table capacity of N . Flow
delegation may be able to deal with a demand of 2 ∗ N or 3 ∗ N flows rules, but not with 100 ∗ N .
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It tries to achieve load balancing between all flow tables based on a global optimization
problem calculated in the controller. And there are many other approaches with similar
ideas [Kan+13; Ngu+14; Len+15; Hua+16b; SLC18; OA18].

Discussion: Flow rule distribution is similar to flow delegation in the sense that it tries to
efficiently utilize existing flow table capacity in the network. The main problem of all the
above approaches is compatibility. Flow rule distribution usually performs a “re-design”
of the network from a control plane perspective so that existing applications are restricted
to the specific design of the solution. As a result, none of the above approaches can
be used with arbitrary network applications. Most of them also require infrastructural
changes or changes to the southbound interface. Flow delegation, on the other hand,
is hidden from the controller and the network applications and can support arbitrary
network applications.

2.4.2.5 Flow Table Compression

Another technique to address flow table capacity bottlenecks is compression. Approaches
based on compression try to minimize the number of required flow rules without violating
the high level decisions from the network applications. Unlike flow rule distribution,
compression usually focuses on a single switch / flow table.
TCAM Razor [LMT10], for example, takes a set of input flow rules and uses a multi-step
process based on decision diagrams, dynamic programming and redundancy removal
to create a smaller but semantically equivalent set of output flow rules. Bit Weaving
[MLT12] is based on the idea that adjacent flow rules with the same action and a hamming
distance of 1 and can be merged into a single flow rule. And there is many other work
on generic TCAM compression independently of SDN [Don+06; MY09; BH12]8. Other
work was done in the context of SDN. Compact TCAM [KB13] reduces the number of
bits occupied by a single flow rule in the hardware flow table. It is based on the idea that
flows in the network are classified based on static-sized, unique flow identifiers instead
of arbitrary packet header fields (which can require hundreds of bits). The authors in
[BM14] rely on wildcard aggregation based on the Espresso heuristic (usually used for
logic minimization). Minnie [Rif+15] uses wildcard rules to compress existing routing
tables based on source and destination addresses.

Discussion: Flow table compression can reduce the number of required flow rules but
their efficiency depends heavily on the use case. Generic compression schemes such as
TCAM Razor report average savings of 81.8% [LMT10]. This is possible because the
evaluation focuses on range expansion which is not that relevant for SDN. Compression
schemes that focus on SDN report savings between 17% [BM14] and 50% [Rif+15].

8Note that these approaches usually consider packet classification with range fields – such as matching
on all ports between 1000 and 2000 – which is not considered here (not supported by OpenFlow).
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Compression-based approaches, however, suffer from the same problem as flow rule
distribution: the compression process will change the set of flow rules which is not
transparent to the control plane. This hinders compatibility and the approach cannot be
used with arbitrary network applications.

2.4.3 Further Reading

Several surveys are available that focus on flow table capacity bottlenecks. [Ngu+16]
from 2016 deals with the rule placement problem in OpenFlow networks. The authors
distinguish between three categories (eviction, distribution, compression) and discuss
several interesting future research directions. Two surveys on energy efficient SDN
from 2015 [AO15] and 2019 [AÖ19] cover many of the approaches mentioned above.
[AMA19] from 2019 also studies flow table reduction mechanisms in great detail and
covers some related areas such as predictive flow rule placement that are not discussed
here. Please note that this thesis focuses solely on the data plane. Dedicated control plane
issues such as controller placement, controller performance, horizontally and vertically
scaling of the controller or consistency of the global view are not discussed. A survey
on control plane scalability issues conducted by Karakas and Durresi [KD17] gives an
excellent overview of this related research domain.

2.4.4 Summary

All approaches discussed so far have the same overall goal as flow delegation – that is avoid
or mitigate flow table capacity bottlenecks –, but none of them fulfills all requirements
considered in this thesis. The differentiation from related work is summarized in Table
2.8. The second column (scal) rates the expected scalability improvements that can be
reached using the approach. A value of ++ means that more flow rules can be provided.
The third column (ovhd) rates the overhead associated with the approach (e.g., in terms
of additional latency). A value of ++ means less overhead. The last column (combined)
states whether the approach can be combined with flow delegation or not. The columns
OD to HC denote the following:

[OD] On-demand deployment is considered, i.e., it is possible to enable and disable
the approach based on the current situation in the network (core requirement).

[IC] No infrastructural changes are required (such as new hardware or changes to
existing interfaces)

[SC] Existing spare capacity available in the network is utilized to cope with the
bottlenecks
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[HC] The approach is hidden from the controller and the network applications, i.e.,
arbitrary network applications can benefit from it

Table 2.8: Comparison between flow delegation and related work

scal ovhd OD IC SC HC cmb

Resource-aware applications (Sec. 2.4.2.1)

e.g. RA-RA [Pei+18], FlowCloak [Bu+18], Revive
[HM18], Q-Data [Pha+19], FlowTracer [Wan+19a],
FlowStat [BMJ19]

++ ++ ✘ ✔ ✘ ✘ ✔

Flow rule eviction (Sec. 2.4.2.2)

e.g. AHTM [Zha+14], FlowMaster [KB14], SmartTime
[Vis+14], TimeoutX [Zha+15], IRCR [Che+18], HQ-
Timer [Li+19b]

o o ✘ ✘ ✘ ✔ ✔

Software offloading (Sec. 2.4.2.3)

e.g. SSDN [Nar+12], AutoSlice [BP12], CacheFlow
[Kat+14b], T-Flex [Maq+15], Memory Swapping
[MDS17], CRAFT [XW17]

++ - ✘ ✘ ✘ ✔ ✔

Flow rule distribution (Sec. 2.4.2.4)

e.g. DIFANE [Yu+10], Palette [KHK13], One Big Switch
[Kan+13], JumpFlow [Guo+15], FTRS [Len+15],
SA/SSP [SLC18]

+ + ✘ ✔ ✔ ✘ ✘

Flow table compression (Sec. 2.4.2.5)

e.g. TCAM Razor [LMT10], Bit Weaving [MLT12], Com-
pact TCAM [KB13], Wildcard Compression [BM14],
Minnie [Rif+15]

o ++ ✘ ✔ ✘ ✘ ✘

Flow delegation

The approach proposed in this thesis
+ + ✔ ✔ ✔ ✔

scal = Expected scalability improvement
ovhd = Expected overhead / delay for individual flows
OD = On-demand deployment is considered
IC = No infrastructural changes are required
SC = Utilizes existing spare capacity
HC = Hidden from controller / network applications
cmb = Approach can be combined with flow delegation
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Resource-aware network applications (Sec. 2.4.2.1) can provide very efficient solu-
tions with respect to scalability (++) as well as overhead (++) because they can focus
on a single use case perfectly tuned to the expected situation. The main problem with
resource-aware applications is that bottleneck mitigation aspects are closely coupled to
one use case and cannot be used by arbitrary (other) applications.

Flow rule eviction (Sec. 2.4.2.2) has the problem that real over-utilization scenarios
cannot be mitigated because the capacity of the switch is a hard limit (existing spare
capacity is not utilized). This limits the scalability potential (scalability: o). Eviction can
also cause significant overhead if flow rules are evicted and installed in short succession
(overhead: o).

Software offloading (Sec. 2.4.2.3) can theoretically increase flow table capacity by
orders of magnitude (scalability: ++) but flow rules placed in a slower software flow
table suffer from a significant performance degradation (overhead: -). In addition, the
approach requires changes to the infrastructure.

Flow rule distribution (Sec. 2.4.2.4) can improve scalability by exploiting existing spare
capacity in the network but the expected improvements are smaller than those of software
offloading (scalability: +). But at the same time, the overhead is also smaller because
packet processing is done in hardware and not in software (overhead: +). Major problem
is compatibility, i.e., the distribution process is not hidden from the controller and the
network applications.

Flow table compression (Sec. 2.4.2.5) is limited by the flow table capacity of a single
switch (same as flow rule eviction, scalability: o) but the overhead is very low because
packet processing remains in hardware (overhead: ++). It shares the same compatibility
problem as flow rule distribution and cannot support arbitrary network applications.

In comparison, flow delegation (the approach proposed in this thesis) has similar ex-
pected scalability improvements and overhead as flow rule distribution while being
transparent towards controller and network applications. It can thus support arbitrary
network applications. And unlike all other discussed approaches, flow delegation explic-
itly supports on-demand deployment. It is also important to mention that three of the
five existing approaches for flow table capacity bottleneck mitigation can be combined
with flow delegation9.

9Flow rule distribution and flow table compression cannot be used together with flow delegation because
both approaches usually require that network applications are aware of the distribution/compression
scheme and changing the set of installed flow rules “a second time” (i.e., by flow delegation) is
problematic.
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Chapter 3

Architecture and Abstractions

The core principle behind flow delegation and the general workflow are simple. Applica-
tion of the flow delegation approach to real networks, however, is not. The system design
part of the thesis – which consists of Chapters 3 to 8 – investigates numerous practical
challenges associated with flow delegation which includes overall architecture, interfaces,
monitoring, rule conflicts, rule aggregation, metadata transport between delegation
and remote switch, generation of control messages, state management, control message
interception, and other relevant aspects. The system design part makes the following
contributions:

(1) Chapter 3 introduces a modular architecture for flow delegation that consists of
five independent building blocks. It also introduces the novel delegation template
abstraction as an interface between the building blocks.

(2) Chapter 4 deals with monitoring. It introduces the parameters to be monitored in
order to realize flow delegation and defines the so-called lambda notation, a time
slot based description for monitored parameters.

(3) Chapter 5 presents the novel concept of indirect rule aggregation schemes to
calculate delegation templates independently of the flow rules installed in the flow
table.

(4) Chapter 6 proposes a detailed design of the detour procedure to relocate rules and
corresponding traffic from delegation to remote switch. This procedure translates
delegation templates to concrete flow rules and control messages.

(5) Chapter 7 introduces a solution for control message interception to hide flow
delegation from the controller and the network applications.

59
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(6) Chapter 8 finally discusses the existing prototype implementations of the flow
delegation approach and demonstrates that the designed architecture works in real
(emulated) software-based networks.

3.1 Architecture

Fig. 3.1 shows the proposed architecture. Pre-existing components – the SDN controller
and the SDN switches – are colored in blue . The flow delegation system is colored in
red . It is located inside the control plane but outside of the SDN controller and could,

for example, be executed as a separate computer program on the same host as the SDN
controller.
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Figure 3.1: Architecture of the flow delegation system

The flow delegation system consists of five building blocks shown as grey boxes in the
figure. These building blocks represent the required core functionality of the system:

1 A monitoring system to detect or anticipate flow table capacity bottlenecks

2 A rule aggregation scheme to calculate (potential) aggregation rules
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3 A delegation algorithm to select aggregation rules and allocate remote switches

4 A detour procedure to relocate rules/traffic from delegation to remote switch

5 Control message interception to hide flow delegation from network applications

All building blocks will be explained in detail in this thesis. Monitoring system, rule
aggregation scheme, detour procedure and control message interception are discussed
below. The delegation algorithm is discussed in the algorithms part (chapters 9 to 11).

3.2 Core Concepts and Abstractions

This section defines several important concepts such as symbolic set, conflict-free cover
set, and rule conflicts. Based on these definitions, the delegation template abstraction
is defined. Main goal of this abstraction is it to describe “options” for delegation. Each
delegation template represents one option. This allows for a clear and easy-to-understand
separation of concerns between the building blocks (see Fig. 3.2):

• The rule aggregation scheme calculates a set of delegation templates for all (bottle-
necked) switches

• The monitoring system provides information for each calculated delegation template

• The delegation algorithm takes the calculated delegation templates and the moni-
toring information to select a subset of the templates so that the bottlenecks are
mitigated

• The detour procedure takes the selected delegation templates and creates the
necessary control messages

• The control message interception component uses the currently selected delegation
templates to make sure that flow delegation is hidden from the control plane

In this context, two important aspects have to be taken into account. First: in order to
mitigate a flow table capacity bottleneck in switch s and time slot t, the flow delegation
system has to relocate some of the flow rules in Fs,t to a remote switch. However, it is not
possible to simply select a random subset F subset

s,t ⊂ Fs,t and relocate all flow rules in this
subset. To be able to relocate the flow rules in F subset

s,t , an aggregation rule is required
that can forward all traffic associated with the flow rules in the subset. For a random
subset, such an aggregation rule usually does not exist. Secondly, even if a suitable
aggregation rule is found, flow rules can have dependencies among each other. These
dependencies can lead to the so-called rule conflict problem between rules in F subset

s,t and



62 3 Architecture and Abstractions

Get monitored parameters 

for all switches 

Aggregation 
Scheme 

2 

Monitoring 
System 1 

Calculate a set of delegation templates 

for all (bottlenecked) switches 

... ... ... Monitored parameters Delegation templates Control Messages 

Delegation 
Algorithm 

3 

Ds,t 

Dt∗∗ 
Select delegation templates and allocate a 

remote switch to each selected template 

... 

Detour 
Procedure 4 

Control 
Message 

Interception 
5 

Calculate sets of control messages for 

selected / unselected delegation templates 

... 

Dt∗∗ 
C 

Check and modify control messages to hide 

flow delegation from the control plane  

Figure 3.2: Idea of how the delegation templates are used

Fs,t which results in wrong packet processing if the rules in F subset
s,t are relocated to the

remote switch.

The delegation template abstraction splits the flow rules in Fs,t into multiple disjoint sets

F
subset_1
s,t , . . . , F

subset_n
s,t so that i) an aggregation rule exists for each of the subsets and ii)

all subsets can be relocated without rule conflicts. A single subset F
subset_i
s,t ⊂ Fs,t together

with instructions for creating a suitable aggregation rule for this subset is what is referred
to here as delegation template.

The following sections will now introduce necessary concepts for the delegation template
abstraction. Sec. 3.2.1 introduces two basic definitions (aggregation match and aggre-
gation rule). Sec. 3.2.2 contains a comprehensive example of how aggregation is used
with flow delegation. Sec. 3.2.3 provides additional definitions before the rule conflict
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problem is explained in Sec. 3.2.4. Finally, the concept of the conflict-free cover set is
introduced in Sec. 3.2.5 together with a generic algorithm to calculate it (Sec. 3.2.6).
Sec. 3.2.7 finally defines the delegation template abstraction.

3.2.1 Aggregation Rules

Two important concepts for flow rule aggregation are aggregation matches and aggrega-
tion rules. An aggregation match is a special wildcard match −−→magg where some of the
packet header fields are wildcarded (see Sec. 2.2.4.1) so that the new match “covers“ a
set of already existing matches.

Definition 3.1: Aggregation Match

Let Ms,t :=
¦−→

mi

�

�


−→
mi,
−→
ai , prioi

�

∈ Fs,t

©

be the set of matches for a set of flow
rules Fs,t . Further let Magg ⊆ Ms,t be a non-empty subset of these matches. An
aggregation match

−−→
magg /∈ Ms,t is then a match according to Def. 2.6 with at least

one wildcarded value so that all packets matched by a match in Magg ⊆ Ms,t will
also be matched by −−→magg.

The set Ms,t is a helper construct that contains all matches from Fs,t (each flow rule in
Fs,t has one match). The relationship between −−→magg and Magg is also known as the cover

set relationship. The aggregation match allows for a very simple and intuitive definition
of aggregation rules:

Definition 3.2: Aggregation Rule

A flow rule fagg =

−−→
magg,

−−→
aagg, prioagg

�

/∈ Fs,t is referred to as an aggregation rule

if −−→magg is an aggregation match according to Def. 3.1. The two other parts of the
flow rule (−−→aagg and prioagg) are referred to as aggregation action and aggregation
priority.

Note that aggregation action and aggregation priority are not restricted in this definition
because the cover set relationship is only defined on matches. This is special in the
context of flow delegation where flow rules are relocated and not replaced (explained in
the example in the next section).

3.2.2 Aggregation Example

The goal in most existing aggregation schemes is it to replace some of the rules in Fs,t

with an equivalent aggregation rule so that all packets are processed as intended by
the network applications but with a smaller number of rules (see related work in Sec.
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2.4.2.5). In the proposed flow delegation system, however, aggregation is used somewhat
differently. Because the rules are not replaced but only relocated to a remote switch, it is
not necessary to find an equivalent rule. It is only required to find a suitable aggregation
match – which is much easier to find. This is very similar to how aggregation is used in
the context of software offloading (see Sec. 2.4.2.3).

To better understand how aggregation matches and aggregation rules are applied in this
thesis, consider the example below. It consists of nine flow rules Fs,t = { f1, . . . , f9} in
delegation switch s in time slot t with different actions and priorities (0 is the lowest
priority).

Flow table of delegation switch s

(without flow delegation)

Rule Match −→mi Action −→ai Priority

f1 src=11 dst=*1 −→
a1 100

f2 src=*0 dst=10 −→
a2 90

f3 src=00 dst=10 −→
a3 80

f4 src=** dst=10 −→
a4 70

f5 src=10 dst=0* −→
a5 60

f6 src=10 dst=10 −→
a6 50

f7 src=10 dst=11 −→
a7 40

f8 src=11 dst=00 −→
a8 30

f9 src=** dst=** ctrl() 0

Flow table of delegation switch s

(with flow delegation)

Rule Match −→mi Action −→ai Priority

f1 src=11 dst=*1 −→
a1 100

f2 src=*0 dst=10 −→
a2 90

f3 src=00 dst=10 −→
a3 80

f4 src=** dst=10 −→
a4 70

f5,6,7 src=10 dst=** fwd(r) 60

f8 src=11 dst=00 −→
a8 30

f9 src=** dst=** ctrl() 0

The table on the left side shows the flow table of delegation switch s without flow
delegation. The table on the right side shows the same flow table with flow delegation.
This means an aggregation rule was added ( f5,6,7) and three rules ( f5, f6, f7) were
relocated to a remote switch r. The important rules are highlighted in yellow.

The corresponding flow table of the remote switch r is shown below (only for the case

with flow delegation).
−→
m∗

i
and
−→
a∗

i
indicate that matches and actions of the relocated rules

were translated prior to the relocation. However, it is assumed that the packet processing
behavior is the same, except that the processing is happening in the remote switch and
the packet is sent back afterwards (the translations are explained in the detour procedure
building block in Chapter 6, not important here):
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Flow table of remote switch r:

Rule Match Action Priority

. . . . . . . . . . . .

f ∗5
−→
m∗5, src=10 dst=0* −→

a5
∗, fwd(DS) 60

f ∗6
−→
m∗5, src=10 dst=10 −→

a6
∗, fwd(DS) 50

f ∗7
−→
m∗7, src=10 dst=11 −→

a7
∗, fwd(DS) 40

. . . . . . . . . . . .

Given the special structure of this example – f5, f6 and f7 have the same source address
and are placed next to each other with respect to priority – there is an easy to find

aggregation match
−−→
magg =

�


src, 10
�

,



dst, **
��

. Because the example is small, it is
possible to go through all possible packets that could arrive at switch s. Doing so, it can
be seen that all packets matched by −→m5,

−→
m6 and −→m7 will also be matched by −−→magg. So −−→magg

is a valid aggregation match according to Def. 3.1 (in this example, Ms,t is
�−→

m1, . . . ,−→m9

	

and Magg is
�−→

m5,
−→
m6,
−→
m7

	

).

In a next step, aggregation match −−→magg is used to create a new aggregation rule f5,6,7 =

−−→
magg,

−−→
aagg, 60

�

. The action part of the rule is set to−−→aagg =
�

fwd(r)
�

. This new aggregation
rule f5,6,7 will forward all traffic for f5, f6 and f7 to the remote switch without interfering
with any other rule in Fs,t . The easiest way to verify this statement is again going through
all possible packets that could arrive at switch s. For the situation depicted above, there
are only three different cases: i) a packet is matched by a rule from { f1, . . . , f4} which all
have higher piority and will thus have precedence over the orange rules, ii) a packet is
matched by one of the orange rules, so this will be either { f5, f6, f7} in the case without
flow delegation or f5,6,7 in the case with flow delegation and iii) is packet is matched by a
rule from { f8, f9}with f9 matching all possible packets. So given that packets matching on
f5,6,7 are processed in the remote switch in the exact same way as if they were processed
by { f5, f6, f7} (which is true in the case of flow delegation), the packet processing outcome
of the two tables shown above is exactly the same for all possible packets.

Three important remarks regarding the above example:

• Note that f5, f6, and f7 are not actually deleted but relocated to the remote switch.
This is important, because the three actions −→a5 ,−→a6 and −→a7 can be different. If the
three actions are the same (−→a5 =

−→
a6 =

−→
a7), it would be possible to actually replace

the three rules with

−−→
magg,

−→
a5 , 60

�

(this is the idea behind schemes like bit weaving
[MLT12]). But if the actions are different, this is not possible because different
actions have to be realized as different flow rules (obviously).
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• The process of “going through all possible packets” is a common way of checking
whether two sets of flow rules lead to the same packet processing. This process
will be formalized using the symbolic set concept in the next section.

• The above example does only work because f5, f6 and f7 form one block with
respect to priorities and the aggregation rule is inserted with the same priority. This
however, is not a realistic assumption. In a real flow table, the rules covered by an
aggregation match are not necessary aligned in one block with respect to priorities.
This can result in rule conflicts which will lead to wrong forwarding behavior. The
following sections explain this in more detail and show how a conflict-free cover
set can be created (using the same example discussed here).

3.2.3 Symbolic Set and Cover Set

The example from the previous section introduced the process of “going through all
possible packets” as a natural way of comparing different matches with each other
(equivalent here to different flow rules because only the matches are relevant). To
formalize this process, the so-called symbolic set of a match −→m is introduced as follows:

Definition 3.3: Symbolic Set

The symbolic set for match −→m is defined as Z :=
�

z ∈ Z
�

�check_match(z,−→m ) = 1
	

where Z is the set of all possible packets (all combinations of all packet header
fields with all possible values). The symbolic set of a flow rule f =


−→
m ,−→a ,prio

�

is equal to the symbolic set of −→m .

Function check_match(z,−→m ) was defined in Eq. (2.1) and evaluates to 1 if all packet
header fields specified in −→m are present in packet z and the value of all fields match the
values in −→m . So the symbolic set of −→m basically consists of all packets matched by −→m .

Each packet in a symbolic set will be expressed as a k-bit value where k is the combined
number of bits of all packet header fields. Assume there are only the two packet header
fields from the example in the previous section (src and dst, each represented with 2
bits). In this case, the set of all possible packets will be given as the combination of all
4-bit values, i.e., Z = {0000, 0001, . . . , 1110, 1111}1.

Based on this notation, the symbolic set of −→m5 =
�


src, 10
�

,



dst, 0*
��

is denoted as
Z5 = {1000, 1001}. The first element represents a packet with src=10 and dst=00. The
second element represents a packet with src=10 and dst=01. It is easy to see that these

1The set of all packets in a real network is very large (>> 2100). However, it is only a helper construct
that is not involved in actual calculations.
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are the only two packets that will be matched by −→m5. With the symbolic set, the cover set
relationship between a single match and a set of matches can be defined as follows:

Definition 3.4: Cover Set

The cover set for match −−→magg with respect to set of matches M = {−→m1, . . . ,−→mn} is

defined as M C :=
¦−→

mi ∈ M
�

� Zi ⊆ Zagg, i = 1, . . . , n
©

. Zagg is the symbolic set of
−−→
magg and Zi is the symbolic set of the i-th match in M .

This is an intuitive way to define the cover set relationship: if all packets matched by
−→
mi ∈ M are also matched by −−→magg,

−→
mi is covered by −−→magg. Note that only the match

is important here. Action and priority are not relevant for the cover set relationship
(this is why the cover set is defined using matches and not flow rules). Consider the
following example to clarify the idea. It shows the symbolic sets for the example from
Sec. 3.2.2. The first rule represents the new aggregation rule (using aggregation match
−−→
magg). The cover set for −−→magg in this example is M C = {−→m5,−→m6,−→m7}. The important rules
are highlighted in orange.

Rule Match (−→mi) Action Priority Symbolic set Zi for match −→mi Zi ⊆ Z5,6,7

f5,6,7 src=10 dst=** fwd(r) 60 Z5,6,7 := {1000, 1001,1010, 1011} -

f1 ∈ F src=11 dst=*1 −→
a1 100 Z1 := {1101,1111} no

f2 ∈ F src=*0 dst=10 −→
a2 90 Z2 := {0010,1010} no

f3 ∈ F src=00 dst=10 −→
a3 80 Z3 := {0010} no

f4 ∈ F src=** dst=10 −→
a4 70 Z4 := {0010,0110, 1010,1110} no

f5 ∈ F src=10 dst=0* −→
a5 60 Z5 := {1000,1001} yes

f6 ∈ F src=10 dst=10 −→
a6 50 Z6 := {1010} yes

f7 ∈ F src=10 dst=11 −→
a7 40 Z7 := {1011} yes

f8 ∈ F src=11 dst=00 −→
a8 30 Z8 := {1100} no

f9 ∈ F src=** dst=** ctrl() 0 Z9 := {0000, . . . , 1111} no

3.2.4 Rule Conflict Problem

In general, it is not possible to perform aggregation solely based on the cover set re-
lationship because of the so-called rule conflict problem which can lead to incorrect
packet processing. Simply put, a rule conflict occurs if packet processing with respect
to a set of flow rules for some packet z leads to a different result with and without flow
delegation, i.e., wrong actions are executed for some packets z ∈ Z . The formal rule
conflict definition is as follows:
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Definition 3.5: Rule Conflict

Fs,t is a set of flow rules ordered by priority. Ms,t is a set that contains the matches
of all flow rules in Fs,t .

−−→
magg /∈ Ms,t is an aggregation match and M C

s,t is the cover

set of −−→magg with respect to Ms,t . Finally, F C
s,t := { fi ∈ Fs,t |mi ∈ M C

s,t} is the set of

flow rules associated with cover set M C
s,t , also ordered by priority. −−→magg now leads

to a rule conflict with respect to Fs,t if

(1) there exists a packet z that should be processed by a rule in F C
s,t but is

processed by a rule in Fs,t \ F C
s,t or

(2) there exists a packet z that should be processed by a rule in Fs,t \ F C
s,t but is

processed by a rule in F C
s,t .

Consider the following example to better understand the rule conflict problem. The
left-hand table ( 1©) shows the situation in delegation switch s without flow delegation.
The two right-hand tables ( a© and b©) also show the situation in the delegation switch,
but with flow delegation, i.e., the three flow rules f5, f6, f7 are relocated to the remote
switch and aggregation rule f5,6,7 is installed. There are two different tables on the right
side because there are two different options that need to be considered. The flow table in
the remote switch with f ∗5 , f ∗6 , f ∗7 is not shown here again – is exactly the same as in the
example in Sec. 3.2.2. Rules involved with flow delegation are highlighted in orange.

1© Delegation switch s without flow delegation

Rule Match Action Priority

f5 src=10 dst=0* −→
a5 60

fx src=*0 dst=** −→
ax 55

f6 src=10 dst=10 −→
a6 50

f7 src=10 dst=11 −→
a7 40

s with flow delegation, case a©

Rule Match −→mi Action Priority

f5,6,7 src=10 dst=** fwd(r) >55

fx src=*0 dst=** −→
ax 55

s with flow delegation, case b©

Rule Match Action Priority

fx src=*0 dst=** −→
ax 55

f5,6,7 src=10 dst=** fwd(r) <55

The main difference to the example from Sec. 3.2.2 is that the three rules covered by
aggregation rule f5,6,7 are not aligned in one block with respect to priorities because of
rule fx . In this case, there are only two different options for setting the priority of f5,6,7:
it can be set to a value higher than that of fx (shown in case a©) or to value lower than
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that of fx (shown in case b©). However, both options suffer from a rule conflict. To
illustrate the conflict, consider the processing of two selected example packets z1 and z2:

z1 = 1000 z2 = 1010

Case 1©: Processing for packet zi without flow delegation.
This is the expected and correct processing as defined by the
network application.

−→
a5

−→
ax

Case b©: Processing for packet zi if f5,6,7 is installed with a
higher priority than fx

−→
a5

−→
a6 →Wrong!

Case b©: Processing for packet zi if f5,6,7 is installed with a
lower priority than fx

−→
ax →Wrong! −→

ax

The first row (case 1©) shows the expected behavior without flow delegation. Packet
z1 is matched by the highest priority flow rule ( f5) so that action −→a5 is executed. Packet
z2 is matched by the rule with second highest priority ( fx) so that action −→ax is executed.
This processing behavior must not change if flow delegation is used. But this is not the
case as illustrated by the two other rows:

• In case a©, processing of packet z2 is incorrect. Because z2 matches on f5,6,7, the
packet is forwarded to the remote switch where it will match on rule f ∗6 . This will
execute action −→a6 , because rule fx (which also matches z2 and has a higher priority)
is not present at the remote switch.

• In case b©, processing of packet z1 is incorrect. Because z1 matches on fx , the
packet is processed in the delegation switch so that action −→ax is executed. Rule
f5 (which also matches z1 and has a higher priority) was relocated to the remote
switch. But because the aggregation rule is installed with a lower priority as fx ,
the lower priority rule fx is incorrectly triggered first.

This problem occurs because there is a dependency between fx and f5,6,7 that is not
reflected in the cover set relationship in Def. 3.4. The conflict-free cover set relationship
discussed in the next section will address this problem.

3.2.5 Conflict-free Cover Set

Rule conflicts as described in the previous section are caused by dependencies between
flow rules. These dependencies are not yet considered in the cover set relationship. This
section will extend the definition from Sec. 3.2.3 into a conflict-free cover set.
The first (and simpler) dependency is a direct dependency between two flow rules f1 and
f2 where a packet can be matched by both rules. This can be modeled as an intersection
between the symbolic sets of f1 and f2 as shown in the example below.
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Rule Match (−→mi) Action Priority Symbolic set Zi for match −→mi Zi ∩ Z5,6,7

f5,6,7 src=10 dst=** fwd(RS) 60 Z5,6,7 := {1000,1001, 1010,1011} -

f1 ∈ F src=11 dst=*1 −→
a1 100 Z1 := {1101, 1111} ;

f2 ∈ F src=*0 dst=10 −→
a2 90 Z2 := {0010, 1010} 1010

f3 ∈ F src=00 dst=10 −→
a3 80 Z3 := {0010} ;

f4 ∈ F src=** dst=10 −→
a4 70 Z4 := {0010, 0110,1010, 1110} {1010}

f5 ∈ F src=10 dst=0* −→
a5 60 Z5 := {1000,1001} {1000,1001}

f6 ∈ F src=10 dst=10 −→
a6 50 Z6 := {1010} {1010}

f7 ∈ F src=10 dst=11 −→
a7 40 Z7 := {1011} {1011}

f8 ∈ F src=11 dst=00 −→
a8 30 Z8 := {1100} ;

f9 ∈ F src=** dst=** ctrl() 0 Z9 := {0000, . . . , 1111} Z5,6,7

The three rules in grey ( f5, f6, f7) are rules with Zi ⊆ Z5,6,7, i.e., every packet matched by
Zi is also matched by Z5,6,7 (the original cover set relationship from Def. 3.4). The two
orange rules f2 and f4 do not fulfill this condition, but they intersect with the symbolic
set of the aggregation rule (Z5,6,7). These intersections can cause rule conflicts. Consider
flow rule f2 and packet z = 1010 ∈ Z2 ∩ Z5,6,7. If the aggregation rule f5,6,7 is installed
with a higher priority as f2, packet z is incorrectly matched by the aggregation rule and
detoured to the remote switch (where it is incorrectly processed by remote rule f ∗6 , not
shown here).

This problem can (only) be solved by adding all flow rules to the cover set that can
cause rule conflicts (except for the default rule2). At first glance, this can be achieved by
defining the cover set for match −−→magg with respect to a set of matches M as follows:

M C :=
¦−→

mi ∈ M
�

� Zi ∩ Zagg 6= ;, i = 1, . . . , n
©

(3.1)

This will include both, the gray and orange rules from the above example. However,
it does not take all possible dependencies into account. In the example, flow rule f3 –
which does not intersect with f5,6,7 – can also cause a rule conflict, because it is possible
to craft a packet z = 0010 that is matched by f3 and one of the rules in the set defined by
Eq. 3.1 (here: f2). Assume the aggregation rule f5,6,7 is installed with a lower priority
than f2. In this case, packet z = 0010 is incorrectly matched by rule f3 because the higher
priority rule ( f2) which also matches the packet was relocated to the remote switch. This
is referred to as an indirect dependency.

2The default rule ( f9 in the example) intersects with all rules by design and has to be explicitly excluded –
which makes sense because using the default rule for aggregation will detour all traffic.
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Based on this observation, the cover set relationship can be updated to a conflict-free
version. Note that the new conflict-free cover set is not only defined based on an
aggregation match and a set of matches but explicitly includes the set of flow rules Fs,t .
This is important because efficient countermeasures for the rule conflict problem utilize
the priority (flow rules do have a priority, matches do not).

Definition 3.6: Conflict-free Cover Set

The conflict-free cover set for a match −−→magg with respect to a set of flow rules Fs,t

is (recursively) defined as F CS

s,t :=
�
−→

mi,
−→
ai ,prioi

�

∈ Fs,t

	

so that the following two
conditions are fulfilled:

(1) every rule with −→mi ∈ M C
s,t is included in F CS

s,t

(2) every rule fi ∈ Fs,t that has a conflict with a rule f ∈ F CS

s,t is included in F CS

s,t

M C
s,t is the cover set of −−→magg with respect to Ms,t where Ms,t consists of all matches

in Fs,t (see Def. 3.4). The final set F CS

s,t is sorted in descending order by prioi.

3.2.6 Calculating the Conflict-free Cover Set

One option to calculate the conflict-free cover set for aggregation rules with arbitrary
priority is shown in Alg. 1. This algorithm is based on the dependency graph algorithm
presented in [Kat+14a]. It takes a set of flow rules Fs,t , an aggregation match −−→magg and a
priority value prioagg as input and returns the conflict-free cover set for −−→magg with respect
to Fs,t . Note that this algorithm is only shown here to illustrate how the conflict-free cover
set can be constructed from a conceptual point of view. The authors in [Kat+14a], for
example, present several sophisticated algorithms to solve this problem more efficiently.

The basic idea of the algorithm is as follows. It first sorts the rules in Fs,t according to
priority to avoid a recursive formulation (line 3). It then goes through all flow rules fi in
the sorted set and checks whether the aggregation match and the match of −→mi intersect
(i.e., Zintersect is not empty, see line 9). This check has to be executed for all rules if the
aggregation priority is higher than the priority of fi. If this is not the case, fi will be
”above“ the newly created aggregation rule fagg (from a priority perspective) so it does
not has to be included in the conflict-free cover set. In case the two matches intersect,
the current flow rule fi is added to F CS

s,t . Afterwards, the symbolic set of −−→magg is updated
as follows (see line 11):

• The packets that are matched by both, −−→magg and−→mi (which is all packets in Zintersect)
are removed before the next iteration, because every such packet will be processed
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Algorithm 1: Calculation of conflict-free cover set (based on [Kat+14a])

Data: aggregation match −−→magg, aggregation priority prioagg, set of flow rules Fs,t

Result: conflict-free cover set F CS

s,t for −−→magg with respect to Fs,t

1 Function get_conflict_free_cover_set(
−−→
magg, Fs,t , prioagg ← highest):

2 F CS

s,t ← {}
/* Remove default rule and sort flow rules by prio in descending order */

3 F sorted← sort
�

Fs,t \
�

fdefault
	�

4 Zagg← all packets matched by −−→magg (symbolic set)

5 for fi =

−→
mi,
−→
ai ,prioi

�

∈ F sorted do

6 if prioagg ≥ prioi then

7 Zi ← all packets matched by −→mi (symbolic set)
/* Helper set: all packets matched by

−−→
magg and

−→
mi */

8 Zintersect← Zagg ∩ Zi

9 if Zintersect 6= ; then
/* Add current flow rule to cover set */

10 F CS

s,t ← F CS

s,t ∪ { fi}
/* Packets in both sets can be removed because they are now

covered by a rule in FCS
s,t. On the other hand, packets matched

by fi that are not yet covered by FCS
s,t have to be added. */

11 Zagg←
�

Zagg \ Zintersect

�

∪
�

Zi \ Zintersect

�

12 end

13 end

14 end

15 return F CS

s,t

16 end

by fi (any other rule that could be added later on will have a lower priority because
the input set is sorted in descending priority order).

• To account for potential indirect dependencies, all packets matched by −→mi that are
not yet covered by any rule in the conflict-free cover set (which is all packets in
Zi \ Zintersect) are added to the symbolic set of −−→magg.

The following table illustrates Alg. 1 executed on the example from Sec. 3.2.2. Shown
are the first five iterations of the algorithm together with the two important sets Zintersect

and Zi \ Zintersect.
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Step Rule Match −→mi Zi (symbolic set of −→mi) Zintersect Zi \ Zintersect

1© fagg 10** Zagg := {1000, 1001,1010, 1011} - -

2© f1 11*1 Z1 := {1101,1111} ; ;

→ nothing to do

3© f2 *010 Z2 := {0010,1010} {1010} {0010}

→ FCS
s,t = { f2}

→ remove 1010, add 0010

Zagg := {1000, 1001,1011, 0010}

4© f3 0010 Z3 := {0010} {0010} ;

→ FCS
s,t = { f2, f3}

→ remove 0010

Zagg := {1000, 1001,1011}

5© f4 **10 Z4 := {0010,0110, 1010,1110} ; ;

→ nothing to do

6© f5 100* Z5 := {1000,1001} {1000, 1001} ;

→ FCS
s,t = { f2, f3, f5}

→ remove 1000, 1001

Zagg := {1011}

7© f6 . . . . . . . . . . . .

It can be seen that f2 is correctly added in step 3© because of the direct dependency with
fagg. And f3 is correctly added as well in step 4© because the conflicting packet z = 0010
was added to the symbolic set of −−→magg in the end of step 3©. Another interesting part is
that f4 is not added which is different from the example before (note that −→m4 and −−→magg

in their original form have a non-empty intersection set because of packet z = 0010).
This optimization can be done here because the priorities are taken into account. The
algorithm knows that packet z = 0010 can never match rule f4 because it will be matched
by f3 which has a higher priority. This packet was thus removed from the symbolic set of
−−→
magg in the end of step 4©.

3.2.7 Delegation Templates

The last sections explained in detail why rule conflicts are a critical problem for flow
delegation. This section will now introduce the term delegation template, the core
abstractions for this work. In essence, a delegation template represents a set of flow
rules that can be relocated to a remote switch without rule conflicts. More precisely, it is
guaranteed that no rule conflicts occur if all flow rules associated with the delegation
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template are kept together, i.e., all of them are either installed in the remote switch or in
the delegation switch.

Definition 3.7: Delegation Template

A delegation template d ∈ Ds,t for a set of flow rules Fs,t is a tuple

−−→
magg, F CS

s,t

�

where−−→magg is an aggregation match according to Def. 3.1 and F CS

s,t is the conflict-free

cover set for −−→magg with respect to Fs,t . For brevity, the above tuple is also written
as

−→
md, Fd,t

�

when appropriate where index d represents the delegation template
(see Fig. 3.3 for example).

So a delegation template is basically a single3 aggregation match together with the
corresponding conflict-free cover set. It is therefore said that a rule belongs to a delegation
template or is covered by a delegation template.

A visual explanation of this definition – and its application – is given in Fig 3.3. Assume
a flow table with capacity cTable

s
= 9 as shown in the bottom left of the figure. Further

assume that nine flow rules f1 to f9 are installed in this flow table in time slot t, i.e., it is
fully utilized. To mitigate the bottleneck, flow delegation has to relocate some of the flow
rules in Fs,t to a remote switch. The delegation templates now represent the different

available options how this can be achieved without rule conflicts.

In this example, there are three different delegation templates given as set Ds,t in the
top of the figure. The first delegation template d1 ∈ Ds,t consists of aggregation match
−→
ma and the conflict-free cover set Fa = { f1, f2, f3}. Fa is a placeholder for F CS

s,t a
and can be

calculated by Alg. 1, for example. The flow table in the middle labeled as 1© shows what
happens if delegation template d1 is used for flow delegation. First, the flow rules f1, f2,
and f3 are relocated to the remote switch (not shown). Afterwards, a new aggregation
rule with aggregation match −→ma is installed that forwards the traffic for f1, f2, and f3 to
the remote switch. This aggregation rule is shown here in black. At the same time, the
three rules f1, f2, and f3 are removed and the utilization of the flow table is reduced by
|Fa| − 1= 2 (backflow rules are omitted for simplicity).

The other delegation templates d2 and d3 represent two more options. The flow table
in the right labeled as 2© depicts the situation if d2 and d3 are selected instead of d1.
In this case, there are two aggregation rules: one for d2 with aggregation match −→mb

and another one for d3 with aggregation match −→mc (again shown in black). With this
selection, utilization of the flow table is reduced by |Fb|+ |Fc| − 2 = 4 (the −2 represents
the two required aggregation rules).

3Dependent on the aggregation scheme, a delegation template could require multiple aggregation matches.
This is not considered here because no such scheme is discussed in the thesis.
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Figure 3.3: Delegation template example

The example above shows only two valid possible selections (out of seven in this scenarios).
The basic behavior, however, remains the same. If the delegation template is not selected,
nothing happens. In case the delegation template is selected, an aggregation rule is
created and installed into the delegation switch and the flow table utilization will be
decreased by the cardinality of the cover set. The major benefit of the delegation template
abstraction is separation of concerns. It allows it, for example, to develop the rule
aggregation scheme completely independent from the delegation algorithm. This, in
turn, makes it easy to benefit from existing algorithms for rule aggregation.

3.3 Conclusion

This chapter introduced the architecture of the flow delegation system that consists of
five building blocks: monitoring system, rule aggregation scheme, delegation algorithm,
detour procedure and control message interception. It is also shown how aggregation
rules are used in the context of flow delegation and why rule conflicts lead to wrong
packet processing. To deal with rule conflicts on a conceptual level, a new abstraction –
the so called delegation template – is introduced. A delegation template di ∈ Ds,t consists
of a match −→mi and a set of flow rules Fi,t . This can be used as a ”template“ to create



76 3 Architecture and Abstractions

a new aggregation rule (by installing a rule with match −→mi). Doing so will guarantee
two important properties: The aggregation rule will match on every packet that would
also be matched by one of the rules in Fi,t and all rules in Fi,t can be relocated to the
remote switch without rule conflicts between a rule in Fi,t and other rules not in Fi,t . The
delegation templates are used as an interface between the rule aggregation scheme, the
delegation algorithm and the other building blocks so that all mechanisms are decoupled
from each other.
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The monitoring system continuously gathers information about the current state of the
infrastructure and provides monitored parameters to other building blocks. The high
level view is shown in Fig. 4.1.
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Figure 4.1: Monitoring System Building Block

The “pieces of information” or data points acquired by the monitoring system are referred
to as (monitored) parameters in the following. They are shown here as green boxes.
Most parameters required for flow delegation can be collected passively by inspecting
control messages exchanged between controller and switches (with the help of the
control message interception building block which will be discussed in Chapter 7). Only

77
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parameters related to individual flow rules require periodic monitoring. If the network
already performs such periodic monitoring, this information can be utilized with no
additional overhead. If no such monitoring is performed, the monitoring system has to
carry out periodic monitoring on its own.

This chapter briefly elaborates what information is required for flow delegation and how it
can be collected. Sec. 4.1 provides an overview of all relevant monitored parameters. Sec.
4.2 introduces the monitoring approach. This includes the translation from timestamp
based monitoring data to time slots in Sec. 4.2.1. It also introduces the so-called lambda
notation in Sec. 4.2.2 that is used as an abstraction for monitored flow rule parameters
in subsequent chapters.

4.1 Overview

A comprehensive overview of all relevant monitored parameters is given in Fig. 4.2. It
shows an example topology with five switches, two of which are presented with additional
details (switch s on the left side and switch r on the right side of the figure).
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Figure 4.2: Overview of all monitored parameters
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Each of the green boxes represent one parameter (or set of parameters) gathered or
calculated by the monitoring system. Green boxes with a clock symbol represent param-
eters updated in every time slot. Green boxes without a clock symbol represent static
parameters, i.e., they do not change over time.

It can be seen in the figure that the required information is organized in two categories.
The first category 1© consists of static infrastructure parameters. These parameters are
given as a set of switches S and coefficients to indicate whether a switch is connected to
one of the other switches in S (ys→r = 1 means there is a direct physical link between
switch s and switch r). The second category 2© consists of information that is updated
in each time slot t. This is primarily the set Fs,t that contains all flow rules installed in
the flow table of switch s in time slot t and parameters that further describe the flow
rules in Fs,t . The individual parameters are listed in Table 4.1 and will be explained in
the following two sub-sections.

Param Range Type Description

S
�

s1, . . . , sq

	

1© Set of all switches in the infrastructure

Ps

�

p1, . . . , pn

	

1© Physical ports of switch s

cTable

s
N (rules) 1© Flow table capacity of switch s

cLink

s→r
N (bits/s) 1© Link capacity of physical link between s and r

ys→r

�

0, 1
	

1© 1 if a direct physical link exists between s and r

Fs,t

�

f1, . . . , fk

	

2© Set of flow rules installed in switch s in time slot t

λa
f ,t

�

0, 1
	

2© 1 if flow rule f is active in time slot t

λi
f ,t

�

0, 1
	

2© 1 if flow rule f was installed in time slot t

δ f ,t N (bits/s) 2© Processed bits by flow rule f in time slot t

uTable

s,t N (rules) 2© Flow table utilization of switch s in time slot t

uLink

s→r,t N (bits/s) 2© Link utilization between s and r in time slot t

Param = monitored parameter, 1© = static parameter, 2© = time slot dependent parameter

Table 4.1: Monitored parameters for flow delegation (see Fig. 4.2)

4.1.1 Static Parameters

The static parameters are shown in the top of Table 4.1, labeled as type 1©. The first four
parameters are self-explanatory.
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• S represents the set of all active switches. This set can be acquired via the
northbound interface or by intercepting control messages of type feature_rsp

(explained in more detail below in Sec. 4.2).

• Ps represents the set of physical ports of switch s. This can be acquired in the
same way as set S. It could also be manually configured if the number of different
switch models in the network is low.

• cTable

s
represents the flow table capacity of switch s. Can be acquired in the same

way as Ps.

• cLink

s→r
represents the link capacity of a physical link between switch s and switch r.

Can be acquired in the same way as Ps.

It is assumed that these four parameters do not change over time, i.e., the topology is
static and switches as well as links cannot fail. This is only a small simplification that does
not affect the discussed concepts. Flow delegation can work with dynamic topologies
and could also be extended to deal with link or switch failures.
The last static parameter (ys,r) is based on the assumption that delegation switch and
remote switch must have a direct physical link to each other. This prevents flow delegation
over more than one hop, i.e., restricts the set of potential remote switches to neighboring
switches. Binary coefficients ys,r are defined as follows:

∀r∈S\{s} ys→r :=

(

1, if s ∈ S has a direct physical link to r ∈ S

0, otherwise
(4.1)

In total, there are |S|−1 of the ys,r -coefficients for each switch. The necessary information
to create the coefficients can be acquired via the northbound interface or by intercepting
control messages used for topology discovery. The latter is usually automatically initial-
ized by the controller based on the link layer discovery protocol and a combination of
packet_in and packet_out control messages.

In summary, all parameters of type 1© in Table 4.1 can be easily acquired with either the
northbound interface or the control message interception building block. And except for
ys→r where a set of coefficients has to be calculated, no further processing is required
from the monitoring system.

4.1.2 Time Slot Dependent Parameters

The time slot dependent parameters are shown in the bottom of Table 4.1, labeled as type
2©. From a monitoring perspective, these six parameters can be distinguished into three
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sub-categories: structural parameters (match, action and priority), life cycle parameters
(e.g., the amount of traffic processed so far or whether a rule is currently installed or not)
and utilization parameters.

Structural Parameters:

• Fs,t represents the set of all flow rules associated with switch s in time slot t. This
includes all flow rules present in the flow table for any amount of time during the
begin and the end of the time slot. For each flow rule, three structural parameters
are recorded: match −→m , action −→a and priority value prio.

Life cycle Parameters:

• λa
f ,t is a binary coefficient that indicates whether flow rule f is active in time slot t

or not. Active means the rule is present in the flow table for any amount of time
during begin and end of the time slot (can be derived directly from Fs,t).

• λi
f ,t is a binary coefficient that indicates whether flow rule f was installed in time

slot t or not. This is different from λa
f ,t because it includes knowledge about the

previous time slot t−1 ( f is installed in time slot t implies f is not active in time
slot t−1). So this coefficient cannot be derived directly from Fs,t .

• δ f ,t is a non-negative integer coefficient that represents the average amount of
bits/s processed by flow rule f in time slot t.

Utilization Parameters:

• uTable

s,t represents the flow table utilization of switch s in time slot t (number of rules
stored in the flow table). Can be derived with the help of λa

f ,t .

• uLink

s→r,t represents the link utilization of the physical link between switch s and switch
r in time slot t (given in bits/s). Can be derived with the help of δ f ,t .

To acquire all six parameters, a hybrid monitoring approach is required, i.e. event-based
and periodic techniques have to be combined. Pure periodic monitoring – e.g., at the end
of a time slot – is not sufficient because short-lived flow rules that are created and deleted
in-between the monitoring interval remain unrecognized. Pure event-based monitoring
is also not sufficient because in this case, the number of processed bits is only available
after the rule is removed and the lifetime of a flow rule can be much larger than the
duration of a time slot. A suitable monitoring approach is presented in the next section.
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4.2 Monitoring Approach

The monitoring approach presented here uses the control message interception building
block to acquire relevant parameters in an event-based fashion (each control message is
considered an event) and only uses additional polling if necessary. The idea is to intercept
the following control messages exchanged between controller and switches to update
relevant parameters. The control messages are defined in Sec. 2.2.4.5.

• feature_rsp(): Switch s reports its capabilities to the controller. Static parameters
S, Ps and cTable

s
are updated accordingly.

• install( f ): A new flow rule f is installed into the flow table of switch s. Fs,t

is updated (−→m , −→a and prio are encoded in the control message). A timestamp
τinstall is recorded as the install time of the flow rule.

• delete( f ): Flow rule f is deleted. Fs,t is updated. A timestamp τremoved is recorded
as the removal time of the flow rule.

• counters_rsp( f ): Number of processed bits of flow rule f are reported. A value
δτ1,τ2

is recorded that stores the number of processed bits between a stored times-
tamp τ1 (last event of this type) and a new timestamp τ1 (this event).

Each of the above control messages is sent over a dedicated TCP or TLS connection. The
reference to switch s can be derived from this connection. In addition to intercepting the
above control messages, the monitoring system will also periodically send a monitoring
request to all switches s ∈ S using the counters_req control message. This serves two
purposes: It ensures that the switches answer with a counters_rsp( f ) control message
that is required to record the number of processed bits. And it ensures that the monitoring
system can detect flow rules that were removed from the flow table because of a timeout
(in order to update Fs,t).

Following this simplified approach1, the monitoring system will gather the parameters
listed in Table 4.2 for each flow rule. The first six parameters in the table are recorded
only once per flow rule. The last parameter (δτ1,τ2

) is recorded periodically. The following
sections will now explain how these timestamp-based parameters can be converted into
the parameters from Table 4.1, i.e., into their time slot based counterpart.

1There are several challenges that need to be addressed in a real system, e.g., gathering the initial state
if the flow delegation system was not active from the beginning. The use of periodic monitoring to
determine removed flow rules and processed bits is also not necessarily the best option with respect to
performance. However, efficient monitoring in software-defined networks is a complex research area
on its own (not considered here further).
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Param Description
−→
m Match of the flow rule
−→
a Action of the flow rule

prio ∈ N Priority of the flow rule

s ∈ S Switch associated with the flow rule

τinstall ∈ R Recorded timestamp at which the flow rule is in-
stalled in the flow table of switch s

τremoved ∈ R Recorded timestamp at which the flow rule is re-
moved from the flow table of switch s

δτ1,τ2
∈ N Average number of bits processed by the flow rule

between two consecutive timestamps τ1 and τ2

Param: monitored parameter, E = event-based, P = periodically

Table 4.2: Actual parameters recorded by the monitoring approach (per flow rule)

4.2.1 Translation from Timestamps to Time Slots

The flow rule specific parameters gathered in the previous section are based on timestamps
derived from the clock of the monitoring system – which is the natural way how such data
is acquired and stored. The parameters presented in Fig. 4.2 and Table 4.1, however, are
based on time slots. The time slot based notation – introduced in Sec. 2.1.1 – is required
for all problem formulations and algorithms that are discussed later in this document.

Timestamp based parameters can be easily “translated” to their time slot based counter-
part. The crucial condition is whether the flow rule is active in a given time slot or not
(for λa

f ,t) and whether the flow rule is installed in a given time slot or not (for λi
f ,t):

Definition 4.1: Active and Installed Flow Rules

A flow rule f ∈ Fs,t is active in time slot t if it is present in the flow table of switch
s at least once in the time window between τ−1 and τ (the orange area in Fig. 4.3).
The flow rule is installed in time slot t, if it is active in t and not active in t−1.

Fig. 4.3 shows an example using a single flow rule f . Recall that time slot t is defined as
the time window that begins at τ−1 and ends at τ which is shown here as the orange
area in the middle. The four lines represent four flow rules that are installed at time
τinstall and removed at time τremoved .
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τinstall τremove 

Case 1 

t t-1 

τ
-1

 < 𝝉 < τ 

 

𝛕 < τ
-1

 𝝉 > τ 

 

Case 2 

Case 3 

Case 4 

τ is a placeholder for τinstall or  τremove  

(see translation table) 

t-2 t+1 

Case 5 Case 6 𝝉 > τ
+1

 𝛕 < τ
-2 

 

t+2 

τ
-3 

τ
-2 

τ
-1 

τ
 

τ
+1 

τ
+2 

Figure 4.3: Translation between timestamps and time slots

Condition 1 Condition 2 f is active in t f is installed in t

Case 1 τinstall < τ−1 τ−1 < τ
removed < τ Yes No

Case 2 τinstall < τ−1 τremoved > τ Yes No

Case 3 τ−1 < τ
install < τ τ−1 < τ

removed < τ Yes Yes

Case 4 τ−1 < τ
install < τ τremoved > τ Yes Yes

The flow rule is not active/installed in all other cases, for example:

Case 5 τinstall < τ−2 τremoved < τ−2 No No

Case 6 τinstall > τ+1 τremoved > τ+1 No No

Table 4.3: Translation table (from timestamps to time slots)

To translate this into the form of λa
f ,t and λi

f ,t , the monitoring system has to decide whether
flow rule f is active in a certain time slot and whether the flow rule was installed in
a certain time slot. To decide this, the first four cases shown in Table 4.3 have to be
considered. If one of the first four cases is fulfilled (which means condition 1 for and
condition 2 for will both evaluate to true), the flow rule is active in time slot t. And
in case 3 and case 4, the flow rule is also installed in time slot t. If none of the first four
cases is fulfilled (e.g., case 5 with τinstall < τremoved < τ−2), the flow rule is neither active
nor was is installed in time slot t.
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Note that the time slot based notation is a theoretical construct to simplify problem
formulations and algorithms. Timestamp level granularity is not required for these
conceptual discussions and using time slots is far superior in terms of readability.

4.2.2 Lambda Notation

The translation approach from the previous section is now used to define parameters λa
f ,t

and λi
f ,t (referred to as the lambda notation). All following sections will exclusively use

this lambda notation2.

Definition 4.2: Lambda Notation

The lambda notation models the life cycle of a flow rule with time slots. It
consists of binary coefficients λ with indices f and t. f represents a flow rule and
t represents a time slot. There are two coefficient λa

f ,t and λi
f ,t per flow rule and

time slot. λa
f ,t and λi

f ,t are defined as follows:

λa
f ,t :=

(

1, flow rule f is active in time slot t

0, otherwise
(4.2)

λi
f ,t :=

(

1, flow rule f was installed in time slot t

0, otherwise
(4.3)

Whether a flow rule is active or installed in time slot t is calculated based on Def.
4.1 and the conditions in Table 4.3. For t < t1, both coefficients are defined as 0.

The two binary coefficients are intuitive to use. λa
f ,t ∈ {0, 1} is set to 1 for all time slots

where flow rule f is active in the flow table and λi
f ,t ∈ {0,1} is set to 1 only for the

one time slot where the flow rule is installed. λi
f ,t is required for many equations in

subsequent chapters where it is important to differentiate between the case that a flow
rule was already active in the previous time slot (i.e., λi

f ,t = 0) or not (λi
f ,t = 1). This

could be expressed as λi
f ,t = (1 − λ

a
f ,t−1
) ∗ λa

f ,t (for example) but this would severely
reduce readability in larger equations. Further note that the switch is not specified as
an index here, because each flow rule f ∈ Fs,t is always implicitly associated with one
switch.

2As a result, the timestamp variables (τinstall, τremoved and δτ1,τ2
) are rarely used, only here and in parts

of the evaluation. However, it is important to understand where the lambda notation comes from and
how it can be derived from real monitoring data.



86 4 Monitoring System

t1 t2 t3 t4 t5 t6 

f1 

f2 

0 0 1 1 1 0 0 

0 0 1 0 0 0 0 

1 1 1 1 1 0 

1 0 0 0 0 0 0 

 𝝀𝒂𝒇,𝒕  𝝀𝒊𝒇,𝒕 

t7 

 𝝀𝒂𝒇,𝒕  𝝀𝒊𝒇,𝒕 

1 

Example 1
 

Example 2
 

 𝝀𝒊𝒇𝟐,𝒕𝟑 = 1  Flow rule f2 is installed in time slot t3 

 𝝀𝒂𝒇𝟏,𝒕𝟒 = 1  Flow rule f1 is active in time slot t4 τinstall τremove 

1 flow rule active / installed 

flow rule not active / not installed 0 

Figure 4.4: Example for the lambda notation

Because the lambda notation is used extensively, Fig. 4.4 shows two examples for two
flow rules f1 and f2 to consolidate the idea. The two lines represent the exact time where
f1 and f2 are present in the flow table of the switch (between timestamps τinstall and
τremoved). In the lambda notation, this information is abstracted with two coefficients per
time slot. Consider example 1 in Fig. 4.4. Given that there are seven time slots in the
example, there will be 14 coefficients per flow rule. Seven for λa

f ,t and seven for λi
f ,t .

The first λa
f ,t coefficient for the first time slot is set to 1 because the flow rule is active

(case 2 in Table 4.3). The second coefficient for the second time slot is also set to 1 (case
3 in Table 4.3). This continues for each time slot.

4.2.3 Further Translations

The number of processed bits (δτ1,τ2
in Table 4.2) is translated to time slot notation in a

similar way. Here, it is assumed that the counters in the flow table are queried at the end
of each time slot and at the time the flow is removed from the flow table (τremoved). The
former can be done by periodically sending a counters_req() control message to each
switch as proposed above in the monitoring approach. The latter can be done by sending
a status message from the switch to the controller if a flow rule is removed from the flow
table (not discussed here further).

The actual translation is done based on the returned counters and a process very similar
to the process described in Sec. 4.2.1 – not shown here in detail (trivial). The number of
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t1 t2 t3 t4 t5 t6 

f1 

f2 

0 0 30 100 20 0 0 

100 100 100 100 55 0  𝜹𝒇,𝒕 

t7 

60 

Example 1
 

Example 2
 

Amount of bits processed by f2 in time slot t3 

Counter value for f1 returned by periodic 

monitoring at the end of time slot t4 τinstall τremove 

x flow rule processed x bits in this time slot 

flow rule not active (= no processed bits) 0 

60 160 260 360 460 515 

30 130 150 

 𝜹𝒇,𝒕 

Figure 4.5: Usage of δ f ,t

bits processed by a flow rule f in one time slot t is then defined analogous to the lambda
notation:

δ f ,t :=

(

x ∈ N, amount of bits processed by f between τ−1 and τ

0, flow rule f is not active in time slot t (i.e., λa
f ,t = 0)

(4.4)

Fig. 4.5 illustrates the usage of δ f ,t using the same two example flow rules from above.
There are seven non-negative integer coefficients δ f ,t per flow rule (one per time slot)
that represent the amount of processed bits.

Given λa
f ,t and δ f ,t , the utilization parameters can be defined as follows. The flow table

utilization of switch s in time slot t is given as the number of flows that are active in the
flow table in time slot t (which is |Fs,t |). This can be expressed as:

uTable

s,t := |Fs,t |=
∑

f ∈Fs,t

λa
f ,t (4.5)

The link utilization for a physical link between switch s and switch r is slightly more
complex because it depends not only on δ f ,t but also on the action of the flow rules (only
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a subset of the flow rules will forward traffic towards switch r). The following helper
coefficient extracts the required information from existing parameters (Fs,t and S):

∀ f ∈Fs,t , r∈S\{s} : φ f ,r :=

(

1, Action −→a of flow rule f contains fwd(r)

0, otherwise
(4.6)

This will result in |S| − 1 coefficients for each flow rule in f ∈ Fs,t . These coefficients
indicate whether the bits processed by f are transmitted towards switch r ∈ S \{s} or not
(recall that match and action are considered static and this coefficient does not change).
With these coefficients, the utilization for a physical link between switch s and switch r

can be expressed as:

uLink

s→r,t :=
∑

f ∈Fs,t

δ f ,t ∗φ f ,r (4.7)

4.3 Conclusion

This section introduces relevant parameters to be monitored in order to realize flow
delegation. It is furthermore explained how timestamp based monitoring data is translated
into a time slot counterpart and how the important lambda notation is used. All concepts
and algorithms in the following are based on the parameters in this chapter.
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The rule aggregation scheme takes a set of flow rules Fs,t active in switch s in time slot
t and calculates a set of delegation templates Ds,t . Each element in Ds,t represents one
“delegation option” which may or may not be considered by the delegation algorithm in
the next step (third building block). The high level view is shown in Fig. 5.1.

Get monitored 

parameters 

for all switches 

in time slot t 

Ds5,t 

Ds1,t 
Fs1,t 

Aggregation 
Scheme 

2 

Monitoring 
System 

1 

... 

Fs5,t 

Get delegation 

templates for all 
(bottlenecked) 

switches in time slot t 

 

Fs,t 

Ds,t 

Flow rules active in switch s in time slot t 

Delegation templates for switch s in time slot t 

Discussed in this chapter 

... 

Figure 5.1: Rule aggregation scheme building block
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Sec. 5.1 briefly discusses three conceptual approaches to realize the rule aggregation
scheme. Sec. 5.2 then introduces the novel concept of indirect rule aggregation that is
applied for flow delegation. The chapter concludes with a remark on aggregation priority
in Sec. 5.3 and a short summary.

5.1 Different Approaches for the Rule Aggregation Scheme

This section briefly discusses different approaches to realize the rule delegation scheme:
As a new functionality of the controller (Sec. 5.1.1), based on monitored parameters
(Sec. 5.1.2) and indirectly with the help of additional context information (Sec. 5.1.3).

5.1.1 New Controller Functionality

One way to create delegation templates is based on explicit support from the controller.
Potential rule conflicts are considered while flow rules are created and the controller
exposes a list of delegation templates via the northbound interface. This approach
works especially well if there are already conflict-free sets of flow rules in the network.
Assume a system such as FlowVisor [She+09] or Covisor [Jin+15] that creates isolated
slices for different controllers or network applications. Because of the inherent isolation
requirement, delegation templates can be easily constructed based on the individual
slices (rule conflicts across slices would violate the isolation requirement). This approach
does not work with arbitrary network applications and requires changes in the controller.
The general idea of exploiting existing conflict-free sets, however, is promising. It is
picked up by the tagging scheme introduced later in Sec. 5.2.2.1.

5.1.2 Based on Monitored Parameters

Another (more general) approach is it to calculate delegation templates outside of the
controller based on monitored parameters, e.g., for a set of flow rules Fs,t that was
provided by the monitoring system. This can be performed on-demand (e.g., when a
bottleneck is detected) and deterministically for arbitrary flow rule sets and does not
require changes in the controller. A generic algorithm for delegation template calculation
is shown in Alg. 2.

It consists of two steps. In the first step (line 3) a set of aggregation matches Magg is
calculated via get_aggregation_matches(). A naive approach, for example, can iterate
over all possible wildcard matches to calculate candidates for Magg. This can be improved
by using concepts such as the H-distance from [LYL15] or schemes based on traffic
entropy [Wan+17] to calculate the most relevant aggregation matches for a given set of
flow rules. Most caching algorithms for software offloading from Sec. 2.4.2.3 can also be
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Algorithm 2: Generic rule aggregation scheme algorithm

Data: set of flow rules Fs,t

Result: set of delegation templates Ds,t

1 Function rule_aggregation_scheme(Fs,t):

2 Ds,t ← {}
/* Part 1: calculate potential aggregation match */

3 Magg← get_aggregation_matches( Fs,t )
/* Part 2: calculate conflict-free cover set for each aggregation match */

4 for
−−→
magg ∈ Magg do

5 F CS

s,t = get_conflict_free_cover_set(−−→magg, Fs,t )

6 d =

−−→
magg, F CS

s,t

�

7 Ds,t ← Ds,t ∪ {d}

8 end

9 return Ds,t

10 end

used. The dependency graph based algorithms in [Kat+14a], for example, can be use for
get_aggregation_matches() without any modifications. This was successfully shown
in the context of a master thesis. Other approaches such as [Yan+14; SC16; Wan+17;
Din+17; Yan+18a] can also be used with small changes (from a conceptual point of view,
this was not validated in practice).

To account for the rule conflict problem, a second step (lines 4 to 8) is required if
get_aggregation_matches() does not already ensure that calculated matches form a
conflict-free cover set with respect to Fs,t (the algorithms in [Kat+14a], for example,
ensure this automatically and this step could be simplified). It consists of a for loop that
iterates over all matches in Magg and uses Alg. 1 to determine the conflict-free cover set.

5.1.3 Inferred from Context

A third approach is inferring delegation templates with the help of additional context
information, e.g., based on the topology of the network or the history of flow rules that
were installed in the past. This is different from the approach in the last section in the
sense that the set of delegation templates Ds,t is not derived on-demand from the current
set of installed flow rules Fs,t . Instead, Ds,t is build ”indirectly“ based on assumptions
about the topology of the network (for example). These approaches are here referred to
as indirect rule aggregation schemes.
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The main benefit of such an approach is that – based on the design – delegation templates
can be defined in a static way without complex calculations. To the best of my knowledge,
the first indirect rule aggregation scheme proposed in the context of flow table capacity
bottlenecks is the so-called flow-to-ingress-port mapping presented by the author of this
thesis in [BZ16]. The ingress port scheme is explained further below. Prior to that, the
general concept of indirect rule aggregation is introduced in the next section.

5.2 Indirect Rule Aggregation Schemes

An indirect rule aggregation scheme returns an independent set of n delegation templates
that will automatically fulfill the delegation template requirements from Def. 3.7, i.e.,
there can be no rule conflicts by design.

Definition 5.1: Indirect Rule Aggregation Scheme

An indirect rule aggregation scheme provides an independent set of n delegation
templates Ds,t = {d1, . . . , dn} for a set of flow rules Fs,t . Independent means the
delegation templates do not depend directly on Fs,t . The properties of a delegation
template must be fulfilled, i.e., for each di =


−→
mi, Fi,t

�

∈ Ds,t , set Fi,t = F CS

s,t i
is a

conflict-free cover set of aggregation match −→mi.

This is fundamentally different from existing approaches because there will be always
n delegation templates regardless of the currently installed flow rules in the delegation
switch (Fs,t can contain arbitrary flow rules). Note that n is usually static (but this is not
a hard requirement).

Given that indirect rule aggregation is used, not only the number of delegation templates
stays the same but the templates in Ds,t have the exact same aggregation match that will
not change over time as long as the context information stays the same. Let d =


−→
md , Fd,t1

�

and d ′ =

−→
m′

d
, Fd ′,t2

�

be two delegation templates calculated from the same context
information (e.g., the same ingress port) for two consecutive time slots t1 and t2. In

this case, the aggregation matches −→md and
−→
m′

d
will be identical and the associated

aggregation rule is also identical if the same remote switch is used for both time slots
(Fd,t1

and Fd ′,t2
can be different if flow rules are added or removed between t1 and t2).

This means the maximum number of different aggregation rules – and the maximum
overhead (aggregation rules are overhead) – is limited by n, which is desirable if n is
a reasonable low number as it is in the ingress port case. This is the reason why the
delegation algorithm discussed in the next chapter can simply iterate over the ”same“ set
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of delegation templates for multiple time slots1. It is also very useful for the multi period
case where a set of time slots t ∈ T has to be considered (can be modeled more easily).

Indirect rule aggregation schemes, however, can only be used if certain prerequisites are
fulfilled. These prerequisites are explained in Sec. 5.2.1. Afterwards, three examples
of different indirect rule aggregation schemes are proposed in Sec. 5.2.2. Finally, Sec.
5.2.3 presents a generic algorithm to implement such schemes.

5.2.1 Prerequisites

Indirect rule aggregation schemes as defined in Def. 5.1 only work conflict-free if certain
prerequisites are fulfilled. These are generic in the sense that they can be applied to any
indirect scheme that maps on Def. 5.1. They abstract from specific example schemes
such as the ingress port scheme. The four key prerequisites are:

(R1) A set of n delegation templates Ds,t := {d1, . . . , dn} can be defined independently of
the set of installed flow rules Fs,t

(R2) Each packet z ∈ Z can be linked to exactly one delegation template and the
delegation template for all packets z ∈ Z can be inferred from packet z using the
same set of packet header fields

(R3) Each rule in f ∈ Fs,t can be linked to exactly one delegation template and the
delegation template for all rules f ∈ Fs,t can be inferred from rule f

(R4) A packet z ∈ Z linked to delegation template di is always processed by a rule f that
is also linked to delegation template di

The following shows that no rule conflicts can occur if an aggregation scheme fulfills
the above prerequisites. R1 first ensures there are n delegation templates. R2 ensures a
packet can only belong to a single delegation template. This means the set of all packets
Z is divided into n disjoint sets Z1, . . . , Zn (one for each delegation template) and each
packet can only belong to one of these sets. R2 further ensures that, for one set of
packet header fields K = {k1, . . . km}, there are n different sets of values {V1, . . . , Vn} with
Vi = {v1, . . . , vm} which can unambiguously identify one of the n delegation templates.

This means there is a match −→mi =
�


k j, v j

�
�

�

� j = i, . . . , m, k j ∈ K , v j ∈ Vi

�

for each of

the delegation templates and the symbolic set for −→mi is Zi (follows directly from R2 and
the definition of the symbolic set). Furthermore, R3 says the set of all flow rules Fs,t

1It is also the reason why it is possible to use Ds instead of Ds,t to describe all available delegation
templates in the ingress port scheme (the templates are time independent)
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can be divided into n disjoint sets F1, . . . , Fn where Fi represents all flow rules linked to
delegation template di.
What is left, is to show Fi is actually the conflict-free cover set of match −→mi with respect
to the set of flow rules Fs,t . According to Def. 3.7, a conflict-free cover set requires two
properties:

i) Fi is a cover set of match −→mi with respect to Fs,t

ii) every rule f ∈ Fs,t that has a rule conflict with a rule in Fi is included in Fi

Say Fi consists of r flow rules f1, . . . , fr . Then define ZFi
:=

⋃

j=1,...,r Z j as the united
symbolic set of Fi (here, Z j is the symbolic set of rule f j). For the first property, recall
from above that the symbolic set of match −→mi is Zi. So it must be shown that ZFi

⊆ Zi.
This, however, follows directly from R4 which ensures that a packet z ∈ Zi is always
processed by a rule in Fi and a packet z /∈ Zi is not processed by a rule in Fi. And for the
second property: It can be derived from Def. 3.5 that, for a conflict to occur, there has
to be a flow rule f /∈ Fi so that Z f ∩ ZFi

6= ;. However, from f /∈ Fi follows Z f ⊆ Z \ Zi

and it was already shown that ZFi
⊆ Zi. And because

�

Z \ Zi

�

∩ Zi = ;, it can be followed
that Z f ∩ ZFi

= ; (if the intersection of two super sets is empty, the intersection of two
subsets has to be empty as well). This shows that no such flow rule f /∈ Fi can exist and
the second property is fulfilled.

5.2.2 Scheme Examples

The following proposes three different indirect rule aggregation schemes that use context
information to infer delegation templates. Recall from the previous section that this can
only work if certain prerequisites are met.

5.2.2.1 Tagging Scheme

This first proposed scheme for indirect rule aggregation can be applied if all packets
in the network are tagged with an explicit identifier. Assume, for example, a network
that manages only VLAN encapsulated traffic (IEEE 802.1Q). Or a network where user
applications tag their own traffic with an application identifier (e.g., in the ToS bits).
Under the assumption that all flow rules are tag-specific (matches use an exact value to
match on a tag and not a wildcard value), a set of delegation templates can be defined
where each delegation template represents one tag.
In this case, R1 (see prerequisites from Sec. 5.2.1) is fulfilled because the number of
delegation templates does not depend on the set of installed flow rules. R2 is also fulfilled
because the information is directly encoded in the packet. R3 is fulfilled as long as no
wildcard matches on the tags are allowed. And R4 is fulfilled if there are no untagged
packets in the network.
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These are obviously strong assumptions, but they make up for a very easy aggregation
scheme if they are fulfilled. Also note that this scheme can be extended to support
networks where only a portion of the traffic is tagged or wildcard matching on tags is
allowed. Given the number of tag-specific flow rules is large compared to the number of
wildcard flow rules, for example, the rule conflict problem could be avoided by simply
adding a copy of all wildcard flow rules into each delegation template (or by using Alg.
1). These and other possible optimizations, however, are not discussed here in detail.

5.2.2.2 Slicing Scheme

The second proposed scheme picks up the network slicing idea that was already briefly
discussed in Sec. 5.1.1. If the network is virtualized into n different slices, the isolation
mechanism of the slicing approach – such as FlowVisor [She+09] – ensures that traffic
of slice i can only be processed by a set of flow rules Fi that are associated with slice i.
In the original version of FlowVisor, for example, isolation is ensured by assigning each
slice a dedicated portion of the so-called flowspace. This means a slice can only work
on specific packets defined as set Zi ⊂ Z and this set is not allowed to overlap with any
other set Z j ⊂ Z for all j 6= i. In other words: all flow rules in Fi are forced to have a
match −→m j with symbolic set Z−→m j

⊆ Zi.

Now assume the aggregation scheme uses one delegation template to represent one slice.
This already fulfills two of the four prerequisites from Sec. 5.2.1. R1 is given by the
number of currently active slices which is not necessarily static over time but independent
from the set of installed flow rules. And R4 follows directly from the isolation mechanism.
R2 and R3 are not fulfilled directly. R3 demands that each rule f ∈ Fs,t can be linked to
exactly one delegation template and the delegation template for all rules f ∈ Fs,t can be
inferred from rule f . The first part is fulfilled because each rule is part of a slice i and the
isolation mechanism ensures that

⋃

f ∈Fi
Z fi
⊆ Zi for each slice (same argument for R2).

The second part, however, is not fulfilled. Because the rule aggregation scheme does not
know how the individual slices are constructed by the slicing approach, it cannot infer
the correct delegation template from flow rule f (or from a packet header of packet z in
case of R2).

This can be solved in two ways: i) The slicing approach exposes the way how slices are
defined (e.g., by providing a list of slices together with the packet header fields that are
used for isolation). In this case, R2 and R4 are fulfilled and the rule aggregation scheme
can be used without conflicts. ii) The behavior of the isolation mechanism is inferred
automatically, e.g., with the help of machine learning (cluster analysis on Z to identify
the clusters Zi).
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5.2.2.3 Ingress Port Scheme

The third proposed scheme uses the ingress port identifier for aggregation (this approach
is used in the remainder of this document). The key idea is as follows: each physical
port pi ∈ Ps of switch s defines a delegation template di ∈ Ds,t and flow rules processing
traffic that arrives at port pi are associated with delegation template di. This is the
flow-to-ingress-port mapping from [BZ16] mentioned above.

In this scheme, R1 is fulfilled because the delegation templates can be derived from the
number of physical ingress ports of a switch. R2 is fulfilled because a single packet z

can only arrive at one ingress port2. The two challenging prerequisites are R3 (each rule
can be linked to exactly one delegation template) and R4 (a packet linked to delegation
template di is actually processed by a rule that is linked to delegation template di). Main
problem: While the ingress port can be used in a match, the controller and the network
applications are not forced to do so, i.e., the match for in_port can also be set to a
wildcard (the two other schemes above suffered from a similar problem). Such rules
will violate prerequisite R3 because it is not possible to determine the corresponding
delegation template. It also violates R4 because a packet with ingress port pi might be
processed by a higher priority rule with a wildcard match for in_port.

This issue cannot be easily solved3 but it is possible to mitigate the effects to a large
extend using information from context – in this case, from the packet_in(z, pi) control
messages. The scheme distinguishes between three cases:

(1) Rules that do match on a single in_port pi are linked to delegation template di

(2) For reactively installed flow rules that do not match on in_port the delegation
template is inferred from the ingress port specified in the packet_in(z, pi) control
message that was sent to the controller.

(3) For proactive rules and reactive rules where the match on in_port is explicitly set
to a wildcard, an additional delegation template d0 is introduced that represents
rules that cannot be relocated.

Note that this cannot guarantee R4 and R5 because i) there can be rule conflicts between
d0 and one of the other delegation templates d1 to dn and ii) inferring the delegation
template for reactively installed flow rules is not necessarily 100% accurate. So it is still
required to make use of rule conflict detection (which would not be necessary if R4 and

2Note that multiple packets of the same flow can arrive at different ports but a single packet can not. The
former case has to be covered by R4 (is not guarantee by R2)

3At least not without (minor) changes in the controller or the applications (which could be a viable
approach in practice)
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R5 are guaranteed). However, this will not change the main benefit of the approach –
which is the static number of delegation templates that are independent from Fs,t .

5.2.2.4 Summary

Table 5.1 summarizes the three indirect rule aggregation schemes proposed above with
respect to the prerequisites R1 to R4 introduced in Sec. 5.2.1.

Tagging scheme

(Sec. 5.2.2.1)
Slicing scheme

(Sec. 5.2.2.2)
Ingress port scheme

(Sec. 5.2.2.3)

R1 one delegation template for
each tag

one delegation template for
each network slice

one delegation template for
each physical ingress port

R2
fulfilled because the neces-
sary information is encoded
directly in the packet

fulfilled by the isolation
mechanism of the slicing ap-
proach

fulfilled by the restriction
that a single packet can only
arrive at one ingress port

R3
fulfilled for flow rules with
exact match on tag (no wild-
cards)

can be provided by slicing
mechanism or has to be in-
ferred automatically

fulfilled for rules that match
on in_port, can be inferred
for reactive rules

R4 fulfilled if all packets are
tagged

fulfilled by isolation mecha-
nism / slicing approach

fulfilled because of R2 but
only if R3 is also fulfilled

Table 5.1: Indirect rule aggregation schemes proposed in this work

Note that none of the three schemes can guarantee all four prerequisites without making
assumptions about the flow rules and packets used in the network. While this may
seem unfortunate at first glance, it does not diminish the main advantage of the indirect
approach – which is delegation templates are calculated independently of Fs,t . It only
means some additional countermeasures (such as using Alg. 1 on the inferred templates)
are necessary to deal with potential rule conflicts that can arise if prerequisites are
violated. A general algorithm that takes this into account is presented in the next section.

5.2.3 Algorithm for Indirect Rule Aggregation

Alg. 3 shows a generic algorithm for indirect rule aggregation schemes. It is highly
simplified and uses helper functions that are not explained here in detail (the concrete
implementation depends on the applied indirect aggregation scheme, the southbound
protocol and potentially also context parameters such as topology or used switches). How-
ever, it shows the conceptual differences between the indirect approach and aggregation
schemes that are calculated based on Fs,t (see Sec. 5.1.2).
The input and output is identical to Alg. 2. The first difference is that the number of
delegation templates is calculated independently of Fs,t in line 3. It can depend on context
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Algorithm 3: Generic indirect rule aggregation scheme algorithm

Data: set of flow rules Fs,t

Result: set of delegation templates Ds,t

1 Function indirect_rule_aggregation_scheme():

2 Ds,t ← {}
/* Part 1: determine the number of delegation templates */

3 n← get_number_of_delegation_templates()

4 for i ∈ {1, . . . , n} do
/* Part 2: build aggregation matches from context */

5 Ki, Vi = get_packet_header_fields_and_values(i)

6
−→
mi ←

�


k j, v j

� �

� k j ∈ Ki, v j ∈ Vi

�

/* Part 3: deal with rule conflicts if necessary */

7 if conflicts_possible(i, Fs,t) then

8 F CS

s,t = get_conflict_free_cover_set(−→mi, Fs,t )

9 else

10 F CS

s,t = get_cover_set(−→mi, Fs,t )

11 end

12 d =

−→
mi, F CS

s,t

�

13 Ds,t ← Ds,t ∪ {d}

14 end

15 end

parameters, though (such as number of ports of a switch in the ingress port scheme).
The second difference is the helper function in line 5. This function takes a reference to a
delegation template (represented as index variable i ∈ N) and provides the aggregation
scheme with two ordered sets Ki and Vi. Ki contains the packet header fields for the
aggregation match of the i-th delegation template and Vi contains the corresponding
values. The content of the sets depend on the scheme:

• The tagging scheme may return Ki = {vlan_id} and Vi = {207} if tagging is
realized with VLAN encapsulation (207 is one out of n used VLAN tags)

• The slicing scheme may return Ki = {ip_src,ip_dst} and Vi = {10.0.0.0/8,
10.0.0.0/8} if isolation is based on IP sub nets and the i-th out of n slices is
only allowed to use subnet 10.0.0.0/8.

• The ingress port scheme may return Ki = {in_port} and Vi = {pi} where pi is the
i-th out of n physical ingress port of the switch

Based on Ki and Vi, the aggregation match for the delegation template is created in line
6, also independent from the rules in Fs,t . The third and last difference is the additional
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check whether rule conflicts can occur or not in lines 7 to 11. The first branch where
the conflict-free cover set is constructed is only required if one or more of the four
prerequisites from Sec. 5.2.1 are not fulfilled (and it is possible to optimize this step).
If the aggregation scheme guarantees that no rule conflicts can occur, is is sufficient to
calculate the normal cover set that consists of all flow rules in Fs,t that are matched by
−→
mi (which is much easier).

5.3 Remarks on Aggregation Priority

Delegation templates consists of an aggregation match and a conflict-free cover set (see
Def. 3.7). Both aspects are discussed in detail above. Action and priority, however, are
not intensively discussed in this chapter beside the fact that they are also required if a new
aggregation rule is created. In case of the action, this is perfectly reasonable. The action
of an aggregation rule primarily consists of a forwarding instruction that will redirect
matched packets to the remote switch (which is selected by the delegation algorithm). So
this decision is completely independent from the rule aggregation scheme. The priority
of the aggregation rule, on the other hand, is indeed important here which was shown in
the example in Sec. 3.2.2 and the discussions on the rule conflict problem. However, the
priority is still not included in the delegation template.

The reason for this is simple: it is assumed that the aggregation priority is static. There
are two options for the static priority: highest possible priority (priohighest

agg
) or lowest

possible priority (priolowest
agg

, higher than the default rule but lower than all other rules).
In the first case, all rules in the conflict-free cover set are relocated. In the second case,
only new flow rules installed after the aggregation rule are relocated. Both options have
benefits and drawbacks.

priohighest
agg

: Easy to implement because the delegation template abstraction guar-
antees that no rule conflicts can occur. However, using the high priority option
leads to massive control overhead if the conflict-free cover set of a delegation
template is large because every single rule has to be relocated to the remote switch
– which requires a large amount of control messages. This is especially problematic
in the case of indirect rule aggregation schemes where the number of delegation
templates is static (e.g., equal to the number of physical ingress ports in the case
of the ingress port scheme) and the expected size of the conflict-free cover sets is
large.

priolowest
agg

: More efficient compared to the high priority option because the number
of relocated flow rules is small in the beginning and increases slowly over time
when new flow rules are installed. The obvious drawback is that it is not longer
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guaranteed that no rule conflicts can occur. Recall that the delegation template
abstraction does only guarantee there are no rule conflicts with other delegation
templates. So within a single delegation template, rules can still depend on each
other. It is therefore not possible to relocate only a subset of the rules in one
delegation template, at least not without additional rule conflict detection.

This thesis uses the second, low priority option. There are three reasons that lead to this
decision. First, low priority aggregation rules are more efficient and not as disruptive as
high priority delegation rules from the perspective of the packets in the network. Secondly,
it is much easier to translate the algorithms for the low priority case into the high priority
case as opposed to the other way round (the high priority case is simpler). The thesis
will therefore only discuss the more complex case. And thirdly, the main drawback of the
low priority option (rule conflicts) is not as critical as it seems. Recall from Sec. 5.2.2.4
that indirect rule aggregation schemes already require additional countermeasures for
rule conflicts to deal with cases where some of the prerequisites R1 to R4 from Sec. 5.2.1
are violated. So in practice, there is no additional overhead (rule conflict detection is
required anyway).

Flow rule delegation with an indirect aggregation scheme and low priority aggregation
rules works as follows: for each flow rule installed after the aggregation rule, it is first
checked whether this rule has a rule conflict with one of the rules in the associated
delegation template (R3 ensures that it is possible to link each flow rule to one delegation
template). If there is no conflict, the rule is relocated to the remote switch. In case of a
conflict, all conflicted rules are also moved the remote switch or the rule is installed in
the delegation switch. This can be easily decided individually for each flow rule (more
details on this are given in Chapter 7).

5.4 Conclusion

Based on the delegation template abstraction, the concept of indirect rule aggregation is
proposed. This is a novel way to calculate delegation templates independently of the flow
rules currently installed in the flow table of a switch. To achieve this, the indirect scheme
exploits knowledge about the context of the network, i.e., the fact that the network is
organized in slices or that it is possible to create a mapping between flow rules and
ingress ports. The benefit here is that an indirect scheme will always return n delegation
templates regardless of the flow rules installed in the switches. n only depends on context
parameters, e.g., number of slices or number of physical ingress ports per switch. This
is a desirable property in the flow delegation context because the same n delegation
templates are used over time (only the conflict-free cover set changes, the aggregation
match stays the same).
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It is shown what kind of prerequisites have to be fulfilled in order to guarantee the
delegation template properties for indirect rule aggregation. Furthermore, three different
examples for indirect rule aggregation are presented based on tagging, slicing and ingress
ports. Note that indirect rule aggregation is not only useful for flow delegation but
could also be used in the context of software offloading (see Sec. 2.4.2.3) or flow rule
distribution (Sec. 2.4.2.4).
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The detour procedure takes a set of selected and assigned delegation templates D∗∗
t

from the delegation algorithm and translates this to sets of control messages to be
installed in the switches. The high level view is shown in Fig. 6.1. It shows two sets of
control messages calculated for one element




d, r
�

∈ D∗∗
t

(d is the delegation template
for delegation switch sd and r is the remote switch allocated to this template). Cs on the
left side contains the aggregation and backflow rules that are installed (or removed) from
delegation switch sd . And Cr contains the remote rules that are installed (or removed)
from remote switch r.

This chapter is structured as follows. Sec. 6.1 first gives a brief summary of the different
flow rule types. Sec. 6.2 discusses the problem of metadata transport between delegation
and remote switch. Sec. 6.3 explains how the detour procedure works and how the
different flow rule types interact with each other. Sec. 6.4 deals with control messages
generation in more detail. Finally, the chapter is concluded in Sec. 6.5.
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Figure 6.1: Detour procedure building block
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6.1 Flow Rule Terminology

Table 6.1 briefly summarizes the (already established) terminology with respect to flow
rules. The small boxes on the left show the color codes that are associated with the
individual rule types (used in the examples).

Rule Description

Regular rule A rule that was installed by the controller or the net-
work applications, not the flow delegation system.

Aggregation rule

An aggregation rule fd =

−→
md
−→
ad , priod

�

is used to
relocate the traffic for remote rules to the remote
switch. d represents the delegation template. Ex-
plained in detail in Sec. 3.2.1.

Remote rule

A rule that was relocated from the delegation
switch to the remote switch. Is given as f ∗

i
=


−→
m∗

i
,
−→
a∗

i
, prioi

�

. The asterisk used with match and
action indicate that those two parts are changed by
the detour procedure before the rule is installed in
the remote switch.

Backflow rule

A rule that is (proactively) installed in the delegation
switch to handle the return traffic sent back from the
relocated rule. In scenarios without multicast, each
port of the delegation switch has its own backflow
rule.

Table 6.1: Overview of flow rules and color codes

6.2 Packet-level Metadata

One important aspect of the detour procedure is transport of packet-level metadata
between delegation switch and remote switch. Packet-level metadata means some addi-
tional information is added to each packet z that is detoured from delegation switch to
remote switch or vice versa. This is required to ensure correct packet processing. More
precisely, packet-level metadata is required because:

• It is necessary to distinguish between remote rules of different delegation switches
and between regular rules and remote rules in the remote switch
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• It is necessary to attach the in_port information to packets detoured to the remote
switch

• It is necessary to attach the forwarding decision of regular rules to packets sent
back from the remote switch to the delegation switch

6.2.1 Flow Delegation Indicators

This section introduces the concept of so-called indicators that are used by the detour
procedure to transport metadata between delegation and remote switch.

Definition 6.1: Flow Delegation Indicators

A flow delegation indicator is an integer value v ∈ N representing the metadata
information to be transported in packet z between delegation and remote switch
or vice versa. In the context of flow delegation, there are three different indicators
used to encode information about packet z which are not available otherwise:

• remote_rule_indicator ( rri ): A value of v means that packet z is a
relocated packet from delegation switch v and has to be processed by a
remote rule.

• inport_indicator ( ipi ): A value of v means packet z was received at
ingress port v at the delegation switch before it was relocated to the remote
switch.

• backflow_indicator ( bfi ): A value of v means packet z was sent back
from the remote switch and has to be forwarded via port v

Before transport of indicators and the overall workflow is explained, the following sub-
sections briefly discuss the three indicators from Def. 6.1.

6.2.1.1 Remote Rule Indicator

This indicator is required for two reasons: First, distinction between regular rules and
remote rules is required to avoid rule conflicts. And second, it is possible that delegation
templates from multiple different delegation switches are allocated to the same remote
switch. And while no distinction is required for all remote rules relocated from one
delegation switch, rules from other delegation switches can obviously lead to rule conflicts
if not taken into account.
To do so, the detour procedure has to ensure that the symbolic sets (see Def. 3.3) of the
regular rules in the remote switch and the remote rules of different delegation switches
do not intersect (intersections will lead to incorrect packet processing). Assume a remote
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rule f ∗
x

installed in the remote switch (symbolic set Zx∗). Now think of a regular rule f y

(or a rule that was relocated from another delegation switch) also installed in the remote
switch with a symbolic set Zy that intersects with Zx∗ . This will lead to incorrect packet
processing for a packet z ∈ Zx∗ ∩ Zy . The following example illustrates the problem if no
remote rule indicator is used:

Flow table remote switch

Rule Match Action Priority Comment

. . . . . . . . . . . .

f90 src=10 dst=0* −→
a90 90

. . . . . . . . . . . .

f ∗5 src=10 dst=0* −→
a5
∗, fwd(s1) 60 relocated from s1

f ∗6 src=10 dst=10 −→
a6
∗, fwd(s1) 50 relocated from s1

f ∗2 src=10 dst=10 −→
a2
∗, fwd(s2) 40 relocated from s2

. . . . . . . . . . . .

f30 src=10 dst=10 −→
a30 30

. . . . . . . . . . . .

f ∗5 , f ∗6 , and f ∗2 are remote rules. f ∗5 and f ∗6 are associated with delegation switch s1 and
f ∗2 is associated with delegation switch s2. Note that priorities 60, 50, and 40 are not
defined by the flow delegation system. They are derived from the relocated regular rules
in the associated delegation switch ( f5, f6, f2) and cannot be changed.

Given that f ∗2 and f ∗6 have the exact same match, it is obvious that a packet relocated
from s2 (should be processed by f ∗2 ) is processed by f ∗6 here, which is wrong. So the
rules from different delegation switches have to be distinguished. And a distinction is
also required between the relocated rules and the regular rules installed in the remote
switch (for the same reason). Look at regular rules f90 and f30 in this example. Now
consider packet z1 = 1000 ∈ Z90 ∩ Z5∗ that was relocated from delegation switch s1

(should be processed by f ∗5 ). This packet will be incorrectly processed by f90. Another
packet z2 = 1010 ∈ Z30∩Z6∗∩Z2∗ that is not detoured from the delegation switch (should
be processed by regular rule f30) is incorrectly processed by f ∗6 . In addition, it could be
required that two identical flow rules have to be stored in the flow table of the remote
switch with different priorities (e.g., if −→a2

∗ and −→a30 are identical and f30 also happens to
have s2 as a forwarding target) which is not possible.

The remote rule indicator rri solves all the above problems because an identifier for
the delegation switch is encoded in every relocated packet. Given that only relocated
packets – i.e., packets forwarded by an aggregation rule – will have the rri bits in their



108 6 Detour Procedure

packet headers set to a value different from 0 and none of the regular rules is allowed to
match on rri, this simple modification will solve the problem (the match of f ∗5 , f ∗6 , and
f ∗2 is extended to also include a match on rri). This requires n bits so that 2n ≥ |S − 1|
(worst case if n− 1 delegation switches use the same remote switch). If flow delegation
is restricted to one hop, this is reduced to 2n ≥ |Pr | (the remote switch can only be
connected to one delegation switch per port). In practice, however, it is assumed that the
number of delegation switches that use the same remote switch is much smaller (< 10)
which can be realized with 4 bits.

6.2.1.2 Ingress Port Indicator

A match is usually based on information extracted from one or multiple packet header
fields, i.e., on information that comes directly from the packet. There is, however, one
notable exception which is the ingress port information (in_port in Table 2.2). in_port
is the switch ingress port where the packet was received. This information is lost if a
packet is relocated to a remote switch because the ingress port at the remote switch is
the port connected to the delegation switch (and not the port where the packet originally
arrived). If relocated flow rules match on in_port, information about the ingress port
has to be attached to all relocated packets. This is done with the ipi indicator. Note this
is only required if at least one relocated flow rule matches on the ingress port. If this
is not required, the ipi indicator can be omitted. This indicator requires n bits so that
2n ≥ |Ps| where Ps is the set of ports of the delegation switch.

6.2.1.3 Backflow Indicator

The backflow indicator (bfi) is required because the forwarding decision of remote

rules would be lost otherwise. Assume flow rule f ∗5 :=

−→
m∗5,
−→
a∗5 , prio5

�

from the above
example is defined with action fwd(p15) with p15 ∈ Ps1

(the network application has
decided the traffic should be forwarded via port p15 at switch s1). Recall that this rule
was relocated from switch s1 and p15 identifies a port of switch s1 and not switch r. So
just using the original action (−→a5) is not possible, because p15 on switch r will forward
the packet to a wrong destination (if the port does even exist). Instead, the forwarding
action has to be replaced with fwd(s1). To save the information that a packet processed
by rule f ∗5 is forwarded via port p15 after it was sent back to the delegation switch, the
backflow indicator with value v = p15 is attached to the packet (this is why the above

table uses
−→
a∗5 and not only −→a5). The backflow rule for v = p15 installed in the delegation

switch will then forward the packet to its correct destination which is p15 of switch s1.

There are two basic cases. In the simple case, all flow rules have only a single forwarding
action (no multicast) which results in a maximum of |Ps| backflow rules for delegation
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switch s, one for each port. Here, v can be represented as the index of set Ps , i.e.,
as an integer value between 1 and |Ps|. This requires n bits for the indicator so that
2n ≥ |Ps|+ x where x represents special forwarding actions such as flooding (x < 10
for OpenFlow-based networks). In the more complex case where flow rules can have
multiple forwarding actions (multicast), the number of required backflow rules can be
higher because each unique combination of forwarding targets has to be represented
with a new backflow rule (if done naively). Efficient multicast in software-based network
with flow delegation, however, is not in the scope of this work.

6.2.2 Transport Packet Header Fields

Given that metadata transport has to work with existing southbound interface protocols
such as OpenFlow, an existing packet header field is required to store indicators in packet
z. These are called transport packet header fields in the following. An indicator is
“written” into a transport packet header field by one rule (with the set(k, v) action where
k is the transport packet header field and v is the value of the indicator) and “read” by
another rule by matching on the transport header field. This is a common strategy not
only used here but also in various related approaches [Kat+14b; Aga+14].

Definition 6.2: Transport Packet Header Field

A transport packet header field is a packet header field according to Def. see 9.16
that can be overwritten by the flow delegation system without affecting regular
packet processing. That is, none of the existing flow rules in Fs,t and Fr,t matches
on the transport packet header field if it is used to transport metadata between
switch s and switch r (or vice versa).

Transport packet header fields are shown as white rectangles in the following: rri

is the transport packet header field used for remote_rule_indicator. ipi is the

transport packet header field used for inport_indicator. And bfi is the transport
packet header field used for backflow_indicator.

6.2.2.1 Index function

One important helper construct that is required in the following is a function to encode
the information required for the indicators so that they can be used in a transport packet
header field. This encoding is done by mapping information from a delegation template
(for example) to an integer value:
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Definition 6.3: index()

index() realizes one of the following mappings to an integer value v ∈ N that is
used inside a transport packet header field:

• index(d) : maps a delegation template d ∈ Ds to the port number of the
ingress port used in aggregation match −→md ∈ d (ingress port scheme).

• index(pi) : maps a single port pi ∈ Ps to its port number (its index i).

• index(s) maps a switch s ∈ S to a unique identifier, e.g., by iterating over all
switches in the infrastructure from 1 to |S|.

This function is used here to be consistent with already established definitions. It would
not be clear, for example, what is meant if a delegation template (say d4 ∈ Ds) is added
to a packet header field with the set packet processing instruction, i.e., set( ipi , d4).

Given the above definition, this can be defined as set( ipi , index(d4))where index(d4)

is a well-defined integer that can be easily encoded into an existing packet header field
(as long as this field provides a sufficient amount of bits, of course). Because it is always
clear from context which mapping is required, the same function name is used.

6.2.2.2 Transport Options

There are different options available for the specific packet header fields that can be
used for metadata transport. Table 6.2 provides a brief summary of the most relevant
options. It is assumed that few software-defined networks will utilize all packet header
fields in Table 6.2 in parallel. If this is the case, however, changes to the infrastructure
are required in order to use flow delegation, e.g., introduce an additional layer of encap-
sulation for metadata support or utilize more advanced packet processing capabilities of
programmable switches.

The first prototype of the flow delegation system presented in [BZ16] used the ToS bits
for metadata transport. The second prototype presented in [BDZ19] was also successfully
tested with VLAN encapsulation. Further note that multiple indicators might be encoded
in the same transport packet header field which is not discussed here in detail but was
investigated in a master thesis from David Körver entitled “Generic and Transparent
Attribute Tagging for Software-defined Networks”. This work also presents an advanced
approach to automatically utilize packet header fields that are not actively used in the
network. In this context, it is further shown that source and destination addresses can
be used for metadata transport under certain conditions (if the addresses are restored
after relocation). This can be realized with control message interception, i.e., without
changing the network applications.
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Packet Header Field Available bits Comment

Ethernet addresses up to 96
Suitable if the network only works on
layer 3 and above. MAC filtering on end
systems has to be considered.

IPv4 / IPv6 addresses up to 64 / 256

Due to support of partial wildcards, parts
of the address fields could be used if the
original addresses are restored after re-
location

ToS bits (IPv4) / Flow
Label (IPv6)

up to 6 / 20

Suitable if the ToS bits or the flow label
bits are not used otherwise. Note that
even the 6 bits from the ToS field alone
can be sufficient.

MPLS / VLAN encapsu-
lation

up to 20 / 12

Encapsulation can be used if no other
alternative is available. This will induce
additional overhead and is not available
in all networks (depends on hardware
support)

Table 6.2: Transport packet header field options

6.3 Detour Procedure

The high level interaction between aggregation, remote and backflow rules was already
explained in the introduction (Sec. see 9.16). This section presents the workflow of
the detour procedure in more detail based on the terminology introduced above. It is
important to mention that this workflow was specifically designed for the ingress port
rule aggregation scheme presented in Sec. 5.2.2.3. In this aggregation scheme, each
ingress port pi ∈ Ps defines exactly one delegation template di ∈ Ds. This means the
ingress port of a packet z that is matched by an aggregation rule with aggregation match
−→
mi ∈ di is – by design – given as pi. This is different for other rule aggregation schemes.

Fig. 6.2 now illustrates the workflow of the detour procedure (same example that was
used in the introduction). The red switch in the left is a delegation switch (s), the green
switch in the right is a remote switch (r). The circled numbers and the path in grey
illustrate a single packet z detoured from s to r and back to s. The part in the bottom
shows z “on the wire” after it was sent back from r to s. Further consider the following
two flow tables that show the flow rules from Fig. 6.2 in more detail (the circled numbers
correspond to the steps in the figure):
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Figure 6.2: Metadata transport workflow

Flow table of delegation switch s

Rule Match −→mi Action −→ai Priority

4© fb f1
bfi = v1 set( bfi , 0), set( rri , 0), set( ipi , 0), fwd(p7) highest

4© fb f2
bfi = v2 set( bfi , 0), set( rri , 0), set( ipi , 0), fwd(p4) highest

. . . . . . . . . . . .

2© fd
−→
md set( rri ,index(s)), set( ipi ,index(d)), fwd(r) 1

Flow table of remote switch r

Rule Match −→mi Action −→ai Priority

. . . . . . . . . . . .

3© f ∗1 rri = index(s)
−→
m1
∗ −→

a1
∗, set( bfi , v1), fwd(s) prio1

. . . . . . . . . . . .

3© f ∗2 rri = index(s) ipi = 17 −→
m2
∗ −→

a2
∗, set( bfi , v2), fwd(s) prio2

. . . . . . . . . . . .
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The upper table shows the relevant flow rules installed in delegation switch s. The lower
table shows the relevant flow rules installed in remote switch r. The transport packet
header fields are given as rri , bfi , and ipi . The matches are defined in such a
way that packet z is matched by the aggregation rule fd as well as one of the remote rules
f ∗1 or f ∗2 (there are two rules to explain two different cases). The forwarding decision of
rule f1 (before relocation) was fwd(p7). The forwarding decision of rule f2 was fwd(p4).
The individual steps and interactions between the indicators and transport packet header
fields is now explained step by step.

1© Packet z arrives at the delegation switch where it is matched against all flow rules
in the flow table.

2© Packet z is matched by aggregation rule fd and has to be relocated to remote
switch r. Assume this aggregation rule is created from delegation template d17 that
contains aggregation match −→m17 =

�


in_port, 17
��⊺

, i.e., matches an all packets
that arrive at ingress port number 17. This information is added to z by setting
transport packet header field ipi to index(d) = 17. In addition, the rri

transport packet header field is set to index(s) so that the remote switch knows
the packet was relocated from s.

3© Packet z arrives at the remote switch. The additional match on rri ensures that
no rule conflicts can occur with any of the regular rules in r. Remote rule f ∗1 does
not match on in_port and no further changes were made to the match part of this
rule by the detour procedure. Remote rule f ∗2 , on the other hand, does match on
in_port. In this case, the match of the remote rule was changed accordingly: the
original match for port 17 was replaced with a match on 17 using ipi instead
of in_port. The action part of both rules was changed as well to make sure the
forwarding decision is not lost. The forwarding decision is encoded in the bfi

transport packet header field. And the original forwarding action is replaced with
fwd(s). Any other actions (like changes to a packet header field) are not changed.
If z is matched by f ∗1 , bfi is set to v1 = index(p7). If z is matched by f ∗2 , it is set
to v2 = index(p4).

4© Packet z – successfully processed by the remote rule – arrives at the delegation
switch a second time. Using a match on the bfi transport packet header field,
the corresponding backflow rule is identified. In case of f ∗1 ( f ∗2 ), this is rule fb f1

( fb f2
). It is easy to see that the packet is forwarded correctly. The three additional

actions are required to delete the indicators. Note that ipi and rri (set in
step 2©) are still present in packet z and have to be deleted as well. In this design,
the priority of the backflow rules has to be set to the maximum priority, above
the aggregation rules. Otherwise, any wildcard rules matching on z with higher
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priority would interfere with the process. It can help to also match on in_port = r

in the backflow rules to make sure that only (!) rules sent back from the remote
switch are processed by these rules (e.g., if end systems or switches overwrite some
of the packet header fields used for flow delegation by mistake). This is omitted in
the table because of space constraints.

5© The packet is forwarded to its original destination. At this time, packet z has taken
a detour via the remote switch and flow rule processing was done in the remote
switch instead of the delegation switch.

6.4 Control Message Generation

The detour procedure is executed periodically once per time slot. In each time slot t,
it receives a set of selected and allocated delegation templates D∗∗

t
from the delegation

algorithm and generates the necessary control messages to “realize” the decisions in D∗∗
t

(the decisions have to be installed as flow rules in the network which requires control
messages). The problem of generating a single control message always consists of three
basics steps.

(1) The switch where the control message is executed is determined. This is either the
delegation switch s associated with the delegation template or the remote switch r

that was allocated to the delegation template.

(2) The flow rule to be used in the control message is determined, i.e., a fully parame-
terized flow rule f =


−→
m , −→a , prio

�

with match −→m , action −→a and priority prio

(see Def. 2.8). There are three types of flow rules to consider: backflow rules,
aggregation rules and remote rules.

(3) The determined flow rule is wrapped in a control message of type install() (if
the rule is added to the flow table), delete() (if the rule is removed from the flow
table), or update() (if the rule is updated).

The generated control messages – the output of the detour procedure – can be distin-
guished into two classes: Cs (control messages for delegation switches) and Cr (control
messages for remote switches). First recall from Sec. 2.1.2 that a switch can only take
one of two roles at a time (delegation switch or remote switch). As a result, Cs can only

consist of backflow and aggregation rules and Cr can only consist of remote rules.
The following will now explain how these two sets are calculated. First, the necessary
state kept by the detour procedure between time slots is discussed in Sec. 6.4.1. After
that, the discussion is split into three blocks based on the three types of rules used by the
flow delegation system: handling of backflow rules (Sec. 6.4.2), handling of aggregation
rules (Sec. 6.4.3) and handling of remote rules (Sec. 6.4.4).
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6.4.1 State Management

State management is required because control message generation depends on the status
of the previous time slot. One obvious example: aggregation rules only have to be
installed if the associated delegation template was not selected in the previous time
slot (in the other case, the aggregation rule is already installed). This is very similar to
the history definition in the context of periodic optimization discussed in Sec. see 9.16
(DT-Select) and in Sec. see 9.16 (RS-Alloc) – which is why the state variables are named
accordingly. The detour procedure has to manage the following four state variables:

• HX
d

: Binary variable that indicates whether delegation template d was selected in
the previous time slot or not. This is also used in Def. 10.2 with the exact same
meaning.

• H r
d
: Represents the remote switch r ∈ S that is allocated to delegation template d

in the previous time slot. Only defined if HX
d
= 1. This is very similar to H r

j
in Def.

11.4 except that the detour procedure does not work with allocation jobs (however,
there is a 1:1 mapping between allocation job j and delegation template d).

• HD: Set of selected and allocated delegation templates from the previous time slot.
This set is required to detect delegation templates that are not selected any more.

• Hbf

s
: Set of all backflow rules installed in delegation switch s in the previous time

slot. This set is required to determine whether a new backflow rule is required
which cannot be derived from HX

d
(as it is done for aggregation rules).

6.4.2 Handling of Backflow Rules

If backflow rules are installed proactively, a static set of all possible backflow rules is
installed in the delegation switch once (one rule for each port in Ps). This simple case is
not shown here. Instead, Alg. 4 shows the more interesting case when backflow rules can
also be added reactively, i.e., only if they are really required by one of the remote rules.

Alg. 4 returns a set Cs with control messages for all backflow rules that are currently
required and not already installed (for each delegation switch). It first determines all
forwarding actions used by any of the remote rules. This is represented here as set V fwd

s

which is built in lines 3-11, separately for each delegation switch. Note that D∗∗
t

can
contain multiple delegation templates associated with delegation switch s. sd represents
the delegation switch associated with template d. Fd is the conflict free cover set from
template d. The algorithm iterates over all flow rules in Fd and adds all forwarding
actions to V fwd

s
. And in the second step (line 13-24), the collected forwarding targets

in V fwd

s
are used to install new backflow rules for each delegation switch if they are not



116 6 Detour Procedure

Algorithm 4: Handling of backflow rules

1 Function backflow_rule_handling():

2 V fwd← {}
3 for




d, r
�

∈ D∗∗
t

do
/* Step 1: identify all forwarding targets */

4 s← sd

5 for fi =

−→
mi,
−→
ai ,prioi

�

∈ Fd do

6 for a j ∈
−→
ai do

7 if a j(v) = fwd(v) then
/* v is the forwarding target (output port of the fwd packet

processing instruction) */

8 V fwd

s
← V fwd

s
∪ {v}

9 end

10 end

11 end

12 end

/* Step 2: install backflow rules */

13 for s ∈ S do

14 Cs ← {}

15 for v ∈ V fwd

s
do

16
−→
mbf←

�


bfi , index(v)
��

17
−→
abf←













set
�

bfi , 0
�

set
�

rri , 0
�

set
�

ipi , 0
�

fwd
�

v
�













18 fbf←

−→
mbf,

−→
abf, highest

�

19 if fbf /∈ Hbf

s
then

20 Hbf

s
← Hbf

s
∪ { fbf}

21 Cs ← Cs ∪
�

install( fbf)
	

22 end

23 end

24 end

25 end

already present in Hbf

s
(the already installed backflow rules from previous time slots).

The backflow rules are created according to Sec. 6.3, i.e., use the index(v) function to
match on the transport packet header field with the backflow indicator (line 16) and
reset all indicators before the packet is forwarded to port v (line 17).
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Note that Alg. 4 is only shown here to discuss the basic idea of backflow rule handling.
It does not consider all corner cases. First, the algorithm does not take into account
that flow rules with multiple forwarding actions require special treatment (a separate
backflow rule per unique combination of forwarding targets). And second, it considers all
flow rules from the conflict free cover set of all selected delegation templates, regardless
of whether these rules are actually relocated or not. This could be optimized further, e.g.,
if flow delegation is used with low aggregation priority and there are flow rules installed
before the template was selected (can be excluded).

6.4.3 Handling of Aggregation Rules

Aggregation rule handling is shown in Alg. 5. There are three different cases to consider.
If the aggregation rule is associated with a delegation template that was not selected
in the previous time slot (HX

d
= 0), a new aggregation rule has to be installed. This is

shown here as case 1 in lines 7-10. The aggregation rule is created according to Sec.
6.3, i.e., the forwarding action is set to fwd(r) to relocate packets to the remote switch.
The rri and the ipi transport header fields are set to index(s) and index(d). The
aggregation priority is a global constant set to priolowest

agg
in line 2 and the aggregation

match −→md (which is part of the delegation template) will match on all packets that arrive
at a certain ingress port because the ingress port scheme from Sec. 5.2.2.3 is used here.
This newly created rule is then used with the install() control message in line 10.

If the aggregation rule was selected in the previous time slot (HX
d
= 1), the detour

procedure only needs to perform an update on this rule if the allocated remote switch
has changed (all other parts of the rule are statically defined by the delegation template).
This is shown here as case 2 in lines 12-17. The remote switch allocated in the last time
slot is given as H r

d
. If this value is different from the current remote switch (r), the old

aggregation rule is replaced with a new aggregation rule using the new remote switch
as forwarding target. The three dots are used in line 13 to indicate that the first two
instructions (set rri and ipi ) are identical to line 8. Only the forwarding target is
different (H r

d
is replaced by r). In this case, the update() control message is used (line

16).

The third case in Alg. 5 deals with delegation templates that were selected in the previous
time slot (HX

d
= 1) but are not selected any more in the current time slot. This is shown

in lines 20-26. In this case, the aggregation rule is removed from the flow table with the
delete() control message.
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Algorithm 5: Handling of aggregation rules

1 Function aggregation_rule_handling():

2 prioagg← priolowest
agg

3 ∀s∈S : Cs ← {}

4 for



d, r
�

∈ D∗∗
t

do

5 s← sd

6
−−→
magg =

−→
md ←

�


in_port, index(d)
��⊺

/* Case 1: add new aggregation rules */

7 if HX
d
= 0 then

8
−−→
aagg←







set
�

rri , index(s)
�

set
�

ipi , index(d)
�

fwd
�

r
�







9 fagg←

−−→
magg,

−−→
aagg, prioagg

�

10 Cs ← Cs ∪
�

install( fagg)
	

11 else
/* Case 2: update existing aggregation rules */

12 if H r
d
6= r then

13
−−→
aold←







. . .

. . .

fwd
�

H r
d

�







−−→
anew←







. . .

. . .

fwd
�

r
�







14 fagg_old←

−−→
magg,

−−→
aold, prioagg

�

15 fagg_new←

−−→
magg,

−−→
anew, prioagg

�

16 Cs ← Cs ∪
�

update( fagg_old, fagg_new)
	

17 end

18 end

19 end

/* Case 3: remove obsolete aggregation rules */

20 for



d, r
�

∈ HD \ D∗∗ do

21 s← sd

22
−−→
magg =

−→
md ←

�


in_port, index(d)
��⊺

23
−−→
aold←

�

. . . , . . . , fwd
�

H r
d

��⊺

24 fagg_old←

−−→
magg,

−−→
aold, prioagg

�

25 Cs ← Cs ∪
�

delete( fagg_old)
	

26 end

27 end
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6.4.4 Handling of Remote Rules

Handling of remote rules depend on the aggregation priority (see discussion in Sec.
5.3). If all aggregation rules are installed with the highest possible priority (priohighest

agg
),

all flow rules in the conflict-free cover set are installed as remote rules (if not already
installed in previous time slots). In addition, the detour procedure has to make sure that
all future flow rules – those installed after the aggregation rule – are relocated to the
remote switch as well. If the lowest priority is used (priolowest

agg
), only new flow rules are

installed as remote rules, i.e., the first part is not required. In total, there are three cases
to consider:

• Relocate flow rules in the conflict free cover set of newly selected delegation
templates if high aggregation priority is used

• For all selected delegation templates, relocate all new flow rules that are installed
after the aggregation rule

• Relocate flow rules to a new remote switch if remote switch allocation is changed

Because the cases are very similar, the following illustrates the basic idea behind remote
rule handling using the last case (remote switch allocation is changed). This case is
handled in Alg. 6. The main loop over all selected and allocated delegation templates
in line 2 has the same structure as above in Alg. 5 (the two algorithms are usually
executed together and can be merged easily). If the delegation template was selected in
the previous time slot (HX

d
= 1) and the remote switch was changed from H r

d
to r, the

relocated rules in the conflict-free cover set are moved to the new remote switch. This
is done by the inner for loop in lines 4-8. If low aggregation priority is used (i.e., not
all rules in the conflict-free cover set Fd are necessarily relocated), an additional check
( fi ∈ H F

d
) is required inside the inner for loop to ensure that only relocated flow rules are

selected which is omitted here due to space constraints. Further note that the rules from
the inner for loop have to be removed from the old remote switch per delete() control
message (also not shown, an example is is given in line 25 of Alg. 5).

What is more important in this context are the two helper functions shown in the bottom
of Alg. 6. These functions are required because match and action of a rule from Fd are
changed by the detour procedure (see line 5 and 6). create_remote_action(−→ai , s) takes
the original action −→ai from a rule in Fd and the delegation switch s (sd is the delegation
switch associated with delegation template d). If action −→ai contains a forwarding packet
processing instruction (fwd), this instruction is replaced with fwd(s) to sent traffic back
to the delegation switch. In addition, the original forwarding target (variable v in line
15 and 16) is added to a helper set vfwd. This is required to create the proper index to be
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Algorithm 6: Handling of remote rules

1 Function remote_rule_handling():

2 for



d, r
�

∈ D∗∗
t

do

3 if HX
d
= 1 and H r

d
6= r then

4 for fi =

−→
mi,
−→
ai ,prioi

�

∈ Fd do

5
−→
m∗

i
← create_remote_match(

−→
mi, sd) // see step 1 below

6
−→
a∗

i
← create_remote_action(

−→
ai , sd) // see step 2 below

7 Cr ← Cr ∪
�

install(

−→
m∗

i
,
−→
a∗

i
, prioi

�

)
	

8 end

9 end

10 end

11 end

/* Step 1: Forwarding action has to be replaced */

12 Function create_remote_action(
−→
ai , s):

13
−→
a∗

i
← () vfwd← {}

14 for a j ∈
−→
ai do

15 if a j(v) = fwd then

16 vfwd← vfwd ∪ {v} // v is the forwarding target

17 else

18
−→
a∗

i
←
−→
a∗

i
∪ a j // no modification required

19 end

20 end

21 return
−→
a∗

i
←
−→
a∗

i
∪
�

set
�

bfi , index(vfwd)
�

, fwd
�

s
� �

22 end

/* Step 2: match on in_port has to be replaced */

23 Function create_remote_match(
−→
mi, s):

24
−→
m∗

i
← ()

25 for



k, v
�

∈ −→mi do

26 if k = in_port then

27
−→
m∗

i
←
−→
m∗

i
∪
�


ipi ,index(v)
��

// v is a matched port number

28 else

29
−→
m∗

i
←
−→
m∗

i
∪



k, v
�

// no modification required

30 end

31 end

32 return
−→
m∗

i
∪
�


rri ,index(s)
��

33 end
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used in the bfi transport packet header field in line 21 (to select the correct backflow
rule).

The second helper function create_remote_match(−→mi, s) takes the original match −→mi

from a rule in Fd and the delegation switch s. If this match contains the packet header
field k = in_port (line 26), the associated value v (the port the flow rule wants to match
on) cannot be used with in_port (because this field now points to the port that connects
the remote switch with the delegation switch). Instead, the information from the ipi

transport packet header field has to be used where the original ingress port is encoded.
This important transformation is done in line 27. The second transformation in the match
is done in line 32. This is required because the remote rules have to be distinguished
from remote rules relocated from other delegation switches which is done by adding a
new match on the rri transport packet header field.

6.5 Conclusion

This chapter introduces the detour procedure that translates allocated delegation tem-
plates to concrete flow rules and control messages. It is explained how aggregation,
backflow and remote rules interact with each other and how metadata transport between
delegation and remote switch is handled. For the latter, three flow delegation indicators
are defined to distinguish between remote rules of different delegation switches (remote
rule indicator) and to make sure that the ingress port information from the delegation
switch as well as the forwarding decision from the remote switch are not lost if packets
are relocated (ingress port and backflow indicator).

The detour procedure, however, does not install the necessary flow rules directly. Instead,
sets of control messages Cs and Cr are created and passed over to the control message
interception building block. This is because flow delegation has to be hidden from the
controller.
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Control Message Interception
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Aggregation, remote and backflow rules are “hidden” from the network applications, i.e.,
a network application is not aware that some of the flow rules in the delegation switch
may be relocated to a remote switch. This is necessary to not interfere with the network
application’s internal logic (functionality) which in turn allows it to use existing network
applications without modifications.

Control message interception is responsible to detect and resolve conflicts with respect
to relocated flow rules and consists of two parts (Fig. 7.1). The periodic part is respon-
sible for handling control messages calculated by the detour procedure. This happens
periodically every time the delegation algorithm and the detour procedure generate new
input, i.e., once per time slot. And the asynchronous part is responsible for intercepting
control messages exchanged between controller and switches which can lead to conflicts
if the view of the controller and the actual view with flow delegation differ from each
other. Both parts are realized with a TCP/TLS proxy layer that intercepts and modifies
control messages exchanged between controller and switches.

This chapter is structured as follows. The proxy layer design is explained in Sec. 7.1
together with the basic functionality of the periodic and the asynchronous part. The
remainder of the section will then discuss the concrete interception logic required for
flow delegation (Sec. 7.3).
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Figure 7.1: Control message interception building block
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7.1 Proxy Layer

Control message interception is realized as a TCP/TLS proxy between the controller and
the switches. Instead of a direct connection to the controller, the switches are connected
to the lower layer endpoint of the proxy which is a TCP or TLS socket created by the
control message building block. This can be achieved by changing the configuration
of the switches1. And the controller is connected to the upper layer endpoint of the
proxy. This connection is initiated by the proxy component as soon as a new switch is
connected to the lower layer endpoint. With such a design, control messages sent from
the controller and the switches can be intercepted and processed inside the proxy layer
without changing the controller or the network applications.

Fig. 7.2 shows an example with three switches s1, s4, and s7 connected to the proxy layer.
There are three TCP connections between the switches and lower layer endpoints of the
proxy. And there are also three TCP connections between upper layer endpoints and
the controller. The connections are not explicitly shown in the figure, only the control
messages that are exchanged via the connections.

If a new control message is received at an upper layer endpoint (controller to switch,
downstream direction), it is first associated with a context identified by the TCP con-
nection in step 1©. This context represents the switch s ∈ S the controller wants to
communicate with. In step 2©, the control message is examined by the downstream filter
component. The filter component determines the type of the control message (install,
delete, etc.) and executes the corresponding control message processor. Control
messages of type install, for example, are processed with the handle_install proces-
sor. Control messages of type delete are processed with the handle_delete processor.
And so on.

The control message processors are shown as yellow boxes in Fig. 7.2. They check
the content of the control messages and update them if necessary. After that, the –
potentially updated – control messages are forwarded according to the selected context.
In the example, the control message with context 1 (sent to s1) is forwarded without
modifications 3©. The control messages with context 7 and 4 (sent to s7 and s4), on the
other hand, are modified 4©. It is also possible to select a different context inside the
proxy layer, i.e., a control message can be sent to a different switch as originally intended.
This is crucial for flow delegation where flow rules have to be relocated from delegation
to remote switch. The unmodified control messages are shown here as c . The term
unmodified expresses that a control message was not yet checked or modified by the

1SDN switches are configured with one or multiple controller IP addresses. These can be replaced with
the IP address of the lower layer proxy.



126 7 Control Message Interception

Data Plane 

NA 1 

Control 

message sent 

from 

controller to 

s4 is checked 

and  modified 

NA 2 ... 

SDN Controller 

Northbound Interface 

Southbound Interface 

Proxy (upper layer endpoints) 

Downstream 
filter 

C C C C* C 

Upstream 
filter Periodic part 

Asynchronous 
part 

handle_install 

handle_delete 

... 

C* C* 

SDN 

Switches 

C C 

Network applications (NA) 

Control Plane 

Application Plane 

Control message 
intercepton building 
block 

C C 

1 7 4 

1 4 7 

s1 s7 s4 

4 

Context 

(here s1) 

Cs Cr 

Input 

detour 

procedure 

Control 

message 

processor 

for type 

install 

C 

Proxy (lower layer endpoints) 

1 

2 

3 4 

Figure 7.2: Proxy layer design of the control message interception building block

proxy. Modified control messages are shown as c∗ . The upstream direction is handled in
the exact same way using the upstream filter component and a different set of processors.

7.1.1 Periodic Part

The periodic part processes the input of the detour procedure. It basically takes the control
messages calculated by the detour procedure (Cs, Cr) and “executes” them. Execution
means the control messages are sent to the switches using the lower layer endpoints of
the proxy. This is required because all aspects of flow delegation should be hidden from
the controller and the network applications. So the flow rules associated with the control
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messages in Cs and Cr cannot be installed or updated directly by the SDN controller2.
Instead, these rules are managed by the periodic part of the control message interception
component.

The periodic part is rather simple. It is important to mention, however, that the control
message interception building block has to keep track of the rules in Cs or Cr to make sure
that no “unexpected” events are forwarded to the controller. Assume a flow rule from
Cs or Cr installed by the proxy is removed because of a timeout and triggers a removed

control message. This control message has to be processed inside the proxy layer and
should not be forwarded to he controller. Such cases are covered by the asynchronous
part below.

7.1.2 Asynchronous Part

The asynchronous part deals with events from switches that are associated with a flow
rule installed by the periodic part. It also deals with control messages sent from a network
application while the flow delegation system is active, i.e. when at least one flow rule is
relocated. It is called “asynchronous” because events from a switch or control messages
sent from the network applications can arrive at random times. Both aforementioned
cases can cause conflicts because the view without flow delegation and the actual view
with flow delegation differ from each other.

Assume a flow rule f is currently relocated from switch s to switch r. Further assume the
network application has decided that flow rule f should be removed and communicates
this decision to the controller. In response, the controller will eventually send a delete(f)
control message. However, the controller does not know that f was relocated to switch r,
i.e., it still assumes the rule is present in switch s. So the control message is sent to switch
s. This, however, will lead to an error if the flow rule does not exist. The asynchronous
part is responsible to prevent such errors. It will therefore intercept all control messages
and resolve potential conflicts. To achieve this, control messages are changed in such a
way that the delegation process remains hidden from the controller. The translation is
realized with control message processors which are introduced in the next section.

7.2 Control Message Processors

The required logic for control message interception is defined in so-called processors –
the yellow boxes inside the asynchronous part in Fig. 7.2. Such a processor is executed if
a control message with specific type (install, update, . . . ) is intercepted by the proxy. This

2If the controller is used to install an aggregation rule, for example, this rule is obviously visible to the
controller
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section will briefly introduce the interface used inside the control message processors
and explain how transaction identifiers are managed. The logic for flow delegation is
discussed afterwards in the next section.

7.2.1 Interface

Control message processors use so-called context object to access, manipulate and
forward control messages. These objects are the main interface to controller and switches
and are injected into the selected processor together with control messages. They abstract
from specific implementation details of the southbound interface protocol.

Each time a control message is intercepted, the proxy layer will automatically create a con-
text object with pointers to the downstream and upstream connection of the unmodified
control message.

• context.s is a pointer to the downstream connection and identifies the switch
s to which the unmodified control message is to be forwarded as decided by the
controller. If the control message was created by the detour procedure (periodic
part), s was determined by the delegation algorithm.

• context.controller is a pointer to the upstream connection and identifies the
controller to which the unmodified control message is to be forwarded as decided
by the switch. It is assumed here that a single controller is used, i.e., this pointer is
the same for all control messages received at a lower layer endpoint.

Besides the two pointers to upstream and downstream connections, a context object
also contains two important primitives:

• context.fwd_to_switch(s, c) takes a control message c and forwards it via
the downstream connection towards the switch identified by s. Note that s and
context.s are not necessarily identical if the proxy decides to forward the message
to a different switch.

• context.fwd_to_controller(s, c) takes a control message c and forwards it via
an upstream connection towards the controller. Because we assume a network
with a single controller, the pointer to the controller is not explicitly included.
Instead, switch s denotes the upstream connection to be used. This is important, for
example, if an asynchronous event from a remote switch has to be forwarded using
the upstream connection of a delegation switch (because the controller expects
that this control message is received via the TCP connection established with the
delegation switch).
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7.2.2 XID Management

Transaction identifiers (XIDs) are used for the mapping between control messages (re-
quests and replies). Assume a series of control messages (c1, c2, ...) from the controller
that are intercepted in the proxy. Further assume that (x1, x2, ...) are the XIDs used in
the OpenFlow header for these control messages, assigned by the controller. Because
the periodic part will create new control messages independently from the controller –
i.e., messages (k1, k2, ...) with XIDs (y1, y2, ...) – a mechanism is required to make sure
that the two XID spaces do not overlap (x i 6= y j ∀i, j). Special caution is also required to
assure that no control messages are forwarded to the controller with an XID unknown
to the controller which would result in a protocol error. To achieve this, three separate
XID name spaces are used: All messages created within the proxy are automatically
associated with an internal name space NSI . Similarly, all messages exchanged with the
controller (upstream direction) are associated with NSU and all messages exchanged
with the switches (downstream) are associated with NSD. Every time a message has to
switch into another name space (e.g., from NSU → NSI → NSD), the proxy will create a
new XID in the target name space and remember the mapping towards the old XID.

Example: The controller sends a control message with xU = 50 that is intercepted by the
proxy. It creates a new internal XID x I = 100 and overwrites xU . It also stores the tuple
(xU , x I) in a database. The control message provided to a control message processor thus
show 100 as XID. After processing, another XID xD = 200 is created together with a new
mapping (x I , xD). The message forwarded downstream to the switches will then contain
xD instead of x I . If a reply with xD is intercepted in upstream direction, the proxy can
use the stored mapping (x I , xD) to restore the internal XID (x I = 100). Finally, if the
message is forwarded back to the controller, the first mapping (xU , x I) is used to restore
the original XID. This assures that no XID collisions can occur.

Note that this process is completely hidden from the control message processor. The
processors use the primitives provided in the context object, they do not manually
interact with the XIDs.

7.3 Processor Logic for Flow Delegation

This section introduces the logic for three important and conceptually different tasks in
the flow delegation context:

• A network application adds a new flow rule to delegation switch s. If the match
field of the new flow rule is covered by a currently used aggregation rule, the new
flow rule must be installed into the remote switch instead of the delegation switch.
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This has to be resolved by creating a new remote rule that is then installed into the
remote switch. This case is discussed in Sec. 7.3.3.

• A network application changes an existing flow rule in the delegation switch that
was relocated to the remote switch. Because neither the network application nor the
controller are aware of the fact that the flow rule was relocated, the corresponding
control message for updating the flow rule is directed to the delegation switch.
This has to be resolved by directing a modified version of the control message to
the remote switch. Discussed in Sec. 7.3.4.

• A remote rule installed by the periodic part is automatically removed from the

flow table after a timeout. The flow rule was configured to send a control message
with a “rule was removed event” towards the controller. However, the removed
flow rule was installed in the wrong switch from the perspective of the controller.
This has to be resolved by changing the control message so that the expectations of
the controller are met. Discussed in Sec. 7.3.5.

There are other tasks – e.g., related to monitoring requests – but they all use the exact
same mechanisms that are required for the three tasks above. The following explains
how potential conflicts are resolved in general, discusses the required state and presents
the logic for the three above tasks.

7.3.1 Conflict Resolution

Recall that the delegation templates only guarantee that no rule conflicts occur if all
flow rules associated with the delegation template are kept together, i.e., all of them
are either installed in the remote switch or in the delegation switch. So within a single
delegation template, rules can still depend on each other. It was already explained in
Sec. 5.3 that this requires continuous rule conflict detection because flow delegation will
not just relocate all flow rules in the conflict-free cover set. Instead, the approach only
relocates new flow rules, i.e., those installed after the aggregation rule.

In general, rule conflict detection works as follows: for each flow rule installed after
the aggregation rule, it is checked whether this rule has a rule conflict with one of the
rules in the associated delegation template. This can be done with Alg. 1 except that the
conflict-free cover set of the delegation template is used as the set of input flow rules
together with the match from the to be checked flow rule. The output of this step is called
conflict set in the following. Note that this operation is cheap because the conflict-free
cover set is small compared to a whole flow table. There is a conflict if not all rules in the
calculated conflict set are either stored in the delegation or the remote switch. If there is
no conflict, the rule is relocated to the remote switch. And in case of a conflict, there are
two different options how the flow delegation system can continue:
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(1) In the first case, all flow rules in the conflict set are moved to the delegation switch.
If this affects a relocated rule, this rule is moved back to the delegation switch.

(2) In the second case, all flow rules in the conflict set are moved to the remote switch.
If this affects a rule in the delegation switch, this rule is also relocated to the remote
switch.

The flow delegation system will select the cheaper option where less flow rules have to
be moved. For the following algorithms, however, we assume that always the second
approach is chosen where the conflict set is moved to the remote switch (for simplicity).

7.3.2 Required State

The control message interception part has to manage some state, similar to the detour
procedure. The following state variables are used in the remainder of this section:

• HX
d

: Binary variable that indicates whether delegation template d was selected in
the previous time slot or not. This is also used in Def. 10.2 with the exact same
meaning.

• H r
d
: Represents the remote switch r ∈ S that is allocated to delegation template d

in the previous time slot. Only defined if HX
d
= 1.

• H F
d
: Represents the set of flow rules currently relocated to switch H r

d

7.3.3 Installation of a New Flow Rule

The control message processor discussed in this section is used for all control messages
of type install that are sent from the controller. This happens if a network application
makes a new decision such as updating a route. It is assumed the flow rule to be installed
is given as fc =


−→
mc,
−→
ac ,prioc

�

.

Alg. 7 shows how the control message processor for this case is realized. The first step in
line 2 extracts flow rule fc from the control message. The second step in line 3 calculates
the delegation template3 associated with fc. It depends on the used aggregation scheme
how this is done. The procedure for the ingress port scheme used in this work is specified
in Sec. 5.2.2.3. Next step is the calculation of the conflict set F Conflicts

d
in line 4. After

that, there are two basic cases to consider:

3Recall that requirement (R3) for indirect rule aggregation in Sec. 5.2.1 ensures that each rule can be
linked to exactly one delegation template and the delegation template can be inferred from the rule.
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Algorithm 7: Asynchronous installation of a new flow rule

1 Function handle_install( c , context):

2 fc =

−→
mc,
−→
ac ,prioc

�

← get_flow_rule_from_control_message( c )

3 d ← get_delegation_template( fc)

4 F Conflicts

d
← detect_conflict(d, fc)

5 if HX
d
= 1 then

/* Template d is selected */

6 if F Conflicts

d
\ { fc} 6⊆ H F

d
then

7 resolve_conflict(F Conflicts

d
)

8 end

9 install_in_remote_switch(−→mc,
−→
ac , prioc, context)

10 else
/* Template d is not selected */

11 if F Conflicts

d
∩ H F

d
= ; then

12 context.fwd_to_switch(context.s, c )

13 else

14 resolve_conflict(F Conflicts

d
)

15 install_in_remote_switch(−→mc,
−→
ac , prioc, context)

16 end

17 end

18 end

/* Helper function to install a rule in the remote switch */

19 Function install_in_remote_switch(
−→
m , −→a , prio, context):

20
−→
m∗← create_remote_match(

−→
m , context.s) // see Alg. 6

21
−→
a∗ ← create_remote_action(

−→
a , context.s) // see Alg. 6

22 c∗ ← install(

−→
m∗,
−→
a∗ , prio

�

)

23 context.fwd_to_switch(H r
d
, c∗ )

24 end

/* Helper function to resolve conflicts */

25 Function resolve_conflict(F Conflicts

d
):

26 for fi =

−→
mi,
−→
ai ,prioi

�

∈ F Conflicts

d
do

27 if fi /∈ H F
d

then

28 install_in_remote_switch(−→mi,
−→
ai , prioi, context)

29 end

30 end

31 end
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(1) Delegation template d is selected (HX
d
= 1). This means there is an aggregation

rule in the delegation switch that covers the match of the new flow rule fc. In order
to install fc in the remote switch, it has to be checked whether there is at least one
rule in the conflict set that is not installed in the remote switch. Note that fc is new
and has to be excluded for this check, see line 6. If this is the case, the conflict
resolution mechanism is triggered before the new rule is installed – shown here as
helper function resolve_conflict in line 25. This will relocate all flow rules in
the conflict set to the remote switch.

(2) Delegation template d is not selected (HX
d
= 0). This means there is no aggregation

rule and the new flow rule should be installed in the delegation switch. However,
the new rule could still introduce conflicts with rules that are currently relocated.
It is therefore required to ensure that all rules in the conflict set are stored in the
delegation switch. This check is performed in line 11. If all rules in F Conflicts

d
are in

the delegation switch, it is safe to install the rule (line 12). If not, conflict resolution
is required again before the new rule is installed. This happens in lines 14 and 15.

It is further important to notice that relocated flow rules are modified before installation.
This is done in lines 20 and 21. It is explained in detail in Sec. 6.4.4 why this is necessary.

7.3.4 Update of an Existing Flow Rule

The control message processor discussed in this section is used for all control messages
of type update that are sent from the controller. It is assumed the old flow rule (the one
to be changed) is given as fold and the updated flow rule is given as fnew. The helper
functions are the same as in Alg. 7.

The overall process is similar to the case discussed in Sec. 7.3.3. The first step extracts
the old and the new flow rule from the control message and the second step calculates
the associated delegation template. It is important to mention that the two delegation
templates d and dnew are always identical if the ingress port scheme is used because the
network application can not change the ingress port. This, however, could be different
for other indirect schemes which is not discussed here further. The major difference to
Alg. 7 is that the conflict set does not only include the updated flow rule but also the
old flow rule, see line 7. This is done to ensure a proper transition from the old to the
new state in case the update is not performed as one atomic operation. The rest of the
algorithm in lines 8-20 is identical to the two basic cases discussed above.
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Algorithm 8: Asynchronous update of an existing flow rule

1 Function handle_update( c , context):

2 fold =

−−→
mold,

−−→
aold,prioold

�

← get_from_control_message( c )

3 fnew =

−−→
mnew,

−−→
anew,prionew

�

← get_from_control_message( c )

4 d ← get_delegation_template( fold)

5 dnew← get_delegation_template( fnew)

6 assert(d = dnew)

7 F Conflicts

d
← detect_conflict(d, fold)∪ detect_conflict(d, fnew)

8 if HX
d
= 1 then

9 if F Conflicts

d
6⊆ H F

d
then

10 resolve_conflict(F Conflicts

d
)

11 end

12 install_in_remote_switch(−−→mnew,
−−→
anew, prionew, context)

13 else

14 if F Conflicts

d
∩ H F

d
= ; then

15 context.fwd_to_switch(context.s, c )

16 else

17 resolve_conflict(F Conflicts

d
)

18 install_in_remote_switch(−→mc,
−→
ac , prioc, context)

19 end

20 end

21 end

7.3.5 Asynchronous Event from a Switch

The control message processor discussed in this section deals with so-called “flow removed”
events. A flow removed event is a control message of type removed used to signal that
a flow rule fremoved was deleted from the flow table. Note that such events can also be
triggered for aggregation and backflow rules which is not considered here because these
cases are simple (the control message is discarded in the proxy layer). In case of a remote
rule, however, the control message must be forwarded to the controller. Problem is that
the event is triggered at the “wrong” switch. The controller expects the removed messages
from the delegation switch and not the remote switch.

Alg. 9 shows the processor logic. The first two steps are identical to above: extraction
of the removed flow rule from the control message and determination of the delegation
template. The rest of the algorithm, however, is different. The major difference is that the
original version of the control message has to be reconstructed so that the reconstructed
message matches the expectations of the controller. This reconstruction consists of two
steps:
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Algorithm 9: Asynchronous event from a switch

1 Function handle_update( c , context):

2 fremoved =

−→

m ,−→a ,prio
�

← get_from_control_message( c )

3 d ← get_delegation_template( fremoved)

4 if fremoved /∈ H F
d

then
/* Case 1: flow rule was not relocated, no changes required */

5 context.fwd_to_controller(context.s, c )

6 else
/* Case 2: flow rule was relocated and the “original” control message

(as expected by the controller) has to be restored */

7
−→
m∗← ()

−→
a∗ ← ()

8 for



k, v
�

∈ −→m do

9 if k = ipi then

10 do nothing // this match was added by flow delegation system

11 else if k = rri then

12 do nothing // this match was added by flow delegation system

13 else

14
−→
m∗

i
←
−→
m∗

i
∪



k, v
�

// no modification required

15 end

16 end

17 for ai ∈
−→
a do

18 if ai = fwd(v) then

19 do nothing // was overwritten by flow delegation system

20 else if ai = set( bfi , v) then

21
−→
a∗ ←

−→
a∗ ∪

�

fwd(v)
	

// restored from backflow indicator

22 else

23
−→
a∗

i
←
−→
a∗

i
∪ ai // no modification required

24 end

25 end

26 fremoved =

−→
m∗,
−→
a∗ , prio

�

// restored flow rule

27 sremoved← index(d) // delegation switch (for upstream connection)

28 c∗ ← removed( fremoved) // restored control message

29 context.fwd_to_controller(sremoved, c∗ )

30 end

31 end
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(1) The changes made to the rule by the detour procedure are reverted. That is,
the matches for the different indicators (ingress port indicator and remote rule
indicator) are removed and the original forwarding action is restored.

(2) The control message is forwarded to the controller via the upstream connection
identified by the delegation switch and not the remote switch.

The first step is realized in lines 7-25. The first for-loop iterates over all matches and
removes the indicators. The second for-loop iterates over all actions and replaces the
forwarding action. The second part in lines 26-28 creates the new flow rule that is sent
to the controller. Note that the delegation switch can be determined from the delegation
template. Further note that the whole process could also be realized with a database that
stores the original version of a relocated rule.

7.4 Conclusion

This section introduced control message interception based on a proxy layer placed
between switches and controller. Control message interception intercepts all exchanged
control messages and runs a pre-defined control message processor for each intercepted
message. This processor implements the logic necessary to hide flow delegation from the
control plane without changing the controller or the network applications – one of the
key design goals of the approach. It is explained how rule conflicts are resolved and how
issues such as XID management are handled. The section further explains the required
logic on the example of three concrete tasks (controller installs new rule, controller
updates existing rule, switch sends a flow removed event).



Chapter 8

Prototype Implementations

The previous chapters showed that – despite the simple core idea – flow delegation
is associated with a range of practical challenges, especially with respect to metadata
transport in the detour procedure and transparency towards the control plane. This
chapter demonstrates that the designed architecture and the five involved building blocks
do actually work when used in a real software-based network, i.e., bottlenecks are
detected and mitigated automatically without disturbance of network application logic.

For this purpose, two prototype implementations of the flow delegation system were
developed and functionally evaluated in an emulated OpenFlow network (using mininet
[LHM10]). The functional evaluation covers all five building blocks: monitoring system,
rule aggregation scheme, delegation algorithm, detour procedure and (in case of the
second prototype) control message interception. And there is more prototypical work
created in the context of student thesises that also shows the practical feasibility of the
flow delegation approach.

Note that this chapter focuses primarily on functionality and practical aspects. A compre-
hensive investigation on performance, overhead, and scalability is conducted later in the
evaluation part in chapters 12 to 16. Sec. 8.1 introduces the two prototypes mentioned
above and other prototypical work. Sec. 8.2 shows that the prototype implementations
work as expected and can mitigate flow table capacity bottlenecks. Sec. 8.3 investigates
the overhead for monitoring in terms of required CPU resources and control channel
bandwidth. And Sec. 8.4 shows that relocated packets experience an additional end-
to-end delay of only 0.1ms on average which is considered acceptable for many use
cases.

137



138 8 Prototype Implementations

8.1 Existing Prototypes

The following two prototypes for flow delegation are investigated in this chapter: an
early implementation of the flow delegation system that was created in 2016 (written
in Python) and a complete re-implementation from 2019 (written in Java). The early
version already implements monitoring, detour procedure, rule aggregation scheme, and
a simple version of the delegation algorithm. However, it is directly integrated into the
controller. This requires (small) changes in the network applications which is not fully
transparent. The second prototype from 2019 is fully transparent. It is realized inside
a proxy layer and uses control message interception to hide flow delegation from the
controller and the network applications.

Because the version from 2016 works like a middleware inside the controller, this proto-
type is referred to here as middleware prototype. The version with proxy-based control
message interception from 2019 is called proxy prototype. Note that it may be perfectly
reasonable to integrate flow delegation into the controller – as it is done in the middle-
ware prototype – under certain circumstances1. For example, if full transparency is not
required in a very simple network that runs only a small set of network applications
(which can be changed easily).

A fully transparent approach, however, has the benefit that the flow delegation system is
completely independent from the network applications and the controller. This allows it
to update the controller independently from the flow delegation system (which happens
frequently with respect to security updates, for example). It also allows it to completely
replace the controller if the new controller uses the same southbound interface.

An overview of the two prototypes is given in Table 8.1. Some more details are introduced
in the two subsequent sections, followed by a brief summary of other prototypical work.

Middleware Prototype
(from 2016)

Proxy Prototype
(from 2019)

More details in [BZ16] [BDZ19]

Language Python 2.7 Java 8

OpenFlow v1.3 v1.3

SLOC 2 9.463 13.342

1Note that conflict resolution is still required, it is just implemented in the middleware and not in a
separate proxy layer.

2Source lines of code in the prototype repository as reported by sloccount, see http://manpages.ubunt

u.com/manpages/precise/man1/compute_all.1.html (last accessed 2020-03-17)

http://manpages.ubuntu.com/manpages/precise/man1/compute_all.1.html
http://manpages.ubuntu.com/manpages/precise/man1/compute_all.1.html
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Transparency
No transparency: this early pro-
totype was directly integrated
into the controller

Full transparency: realized with
control message interception,
i.e., inside a proxy layer

Contributors
Robert Bauer,
Ioannis Papamanoglou

Robert Bauer,
Simon Herter,
Addis Dittebrandt

Code access (1) (2), (3)

(1) https://git.scc.kit.edu/work/sdn-pbce

(2) https://github.com/kit-tm/gcmi

(3) https://github.com/kit-tm/gcmi-exp

Table 8.1: Key characteristics of the two investigated prototypes

8.1.1 Middleware Prototype

The middleware prototype was created in the context of [BZ16]3. It implements the
monitoring system as described in Chapter 4, the ingress-port based aggregation scheme as
described in Sec. 5.2.2.3 and the detour procedure as described in Chapter 6. Monitoring
is done via the REST interface of the controller. Metadata transport between delegation
and remote switch uses the differentiated services codepoint of the differentiated services
field inside the IPv4 header which is sufficient for small networks with less than 64
switches.

The delegation algorithm is realized as a simplified version of the greedy strategy described
in Sec. 10.4. Simplified means only a single delegation template can be selected or
unselected per time slot and the algorithm does not include knowledge about the future.
Whether a template is selected or unselected is controlled with two simple thresholds:
Threshold 1 is set to a value slightly below the capacity of the switch, i.e., a new delegation
template is selected if the current utilization exceeds 90% of the capacity (for example).
And a selected delegation template is unselected if the utilization falls below threshold 2
which is set to a lower value than threshold 1 (explained in more detail in [BZ16]).

Control message interception is not included in this version. The whole system is instead
integrated into the application execution environment of the Ryu controller [Ryu19].
This is a middleware approach where all internal communication between controller
and network applications is supervised and possibly altered directly inside the controller.
More precisely, a small wrapper class around app_manager.RyuApp intercepts important

3Note that the notation in the original paper and this document are different. The core concept, however,
is the same. Selection of EvPorts in [BZ16] represent delegation template selection. Selection of DPorts
represents remote switch allocation.

https://git.scc.kit.edu/work/sdn-pbce
https://github.com/kit-tm/gcmi
https://github.com/kit-tm/gcmi-exp
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callbacks like the packet_in handler function. This requires alterations to the core
functionality of the controller and individual network applications have to change their
super class to the middleware wrapper. It is therefore not transparent to the control
plane which is addressed by the proxy prototype in the next section.

8.1.2 Proxy Prototype

The proxy prototype is a different implementation of the flow delegation system. It uses
the same concepts as the middleware prototype but not the same code. It is implemented
in Java4 while the middleware prototype was implemented in Python. This was done to
demonstrate that flow delegation can be realized with different programming languages.

Because the same concepts are applied, the majority of the functionality is identical to the
middleware prototype which includes monitoring, rule aggregation, delegation algorithm,
and detour procedure. The major difference is that this version is not integrated into the
controller. Instead, the control message interception approach described in Chapter 7 is
used to hide the flow delegation system from the control plane. The used framework for
control message interception was developed by Simon Herter in his master thesis entitled
“Transparent Intermediate Layers for Software Defined Networks” in 2017. The proxy
prototype was then integrated into this framework.

8.1.3 Other Prototypical Work

Other prototypical work in the context of flow delegation conducted by several students is
briefly summarized below. All mentioned student thesises were supervised by the author
of this thesis.

A very early and limited prototype for flow delegation was created in the bachelor
thesis from Florian Schweizer in 2015 entitled “Implementierung und Evaluierung eines
Ansatzes für Flowtable-Skalierbarkeit im SDN-Kontext”. This version was integrated
into the ONOS controller5 and did only support a single switch and static delegation,
i.e., relocation of flow rules was triggered manually. Another more flexible version was
developed by Ioannis Papamanoglou in his bachelor thesis entitled “Flowtable-Delegation
in Multi-Switch-Topologien” in 2016. This work focused primarily on support for multiple
switches and first simple heuristics for the delegation algorithm.

4The core functionality is implemented in https://github.com/kit-tm/gcmi/blob/master/compose

r/src/main/java/com/github/sherter/jcon/composer/Pbce2Layer.java (last accessed 2020-03-
16)

5Open Network Operating System, see https://www.opennetworking.org/onos/, last accessed 2020-
03-16

https://github.com/kit-tm/gcmi/blob/master/composer/src/main/java/com/github/sherter/jcon/composer/Pbce2Layer.java
https://github.com/kit-tm/gcmi/blob/master/composer/src/main/java/com/github/sherter/jcon/composer/Pbce2Layer.java
https://www.opennetworking.org/onos/
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There are also two simulator-based prototypes. The first one was created by Addis
Dittebrandt in his bachelor thesis entitled “Konzeption und Evaluation einer Heuristik
für Flow Table Delegation”. This work introduced important metrics such as over- and
underutilization that are also used in this thesis. It evaluated the approach with a custom
discrete event simulator written in Python using a three-tier data center topology with
realistic traffic workloads based on [Kan+09] and [BAM10b]. It was shown here that flow
delegation does also work in structured topologies with data center traffic characteristics.
The second simulator-based prototype (using ns-3) was created by Eric Sallermann in his
master thesis “Implementation and Evaluation of a Flow Delegation Algorithm”. This
work primarily showed that existing algorithms for software offloading such as [Kat+14a]
can be used in the rule aggregation scheme.

The ideas presented in [BZ16] were further successfully reproduced in the context of
a practical course called ”Projektpraktikum: Softwarebasierte Netze“ held at Karlsruhe
Institute of Technology6. As part of this course, small groups of students re-implement
and re-evaluate existing SDN concepts. It was shown in this context by one of the groups
in 2019 that metadata transport can be successfully realized with VLAN tags7.

8.2 Functional Evaluation of the Prototypes

This sections shows that flow delegation can mitigate flow table capacity bottlenecks in a
real (emulated) network. The results are taken from [BZ16] and [BDZ19]. They were
obtained with mininet [LHM10], a widely used network emulator in the SDN context.
Sec. 8.2.1 introduces the setup of the experiment. Sec. 8.2.2 discusses the results.

8.2.1 Setup

The setup for the functional evaluation is shown in Fig. 8.1. It consists of three physical
servers, each equipped with an Intel(R) Xeon(R) L5420 processor (2.50 GHz, 2 sockets,
4 cores/socket) and separate physical 1Gbit/s networks for control and data plane traffic.
Server 1 on the left runs a single delegation switch (Open vSwitch v2.4.0) shown in red.
It also runs a set of virtual hosts inside mininet that are attached to an auxiliary switch
shown here in blue. This auxiliary switch is connected to the delegation switch with n

links and forwards TCP traffic from one virtual host to the delegation switch using one of
these n links. The used link is determined by the networking application running inside
the controller on server 3 (based on TCP ports). The remote switch – with unlimited

6see http://telematics.tm.kit.edu/english/ppsdn.php, last accessed 2020-03-16
7Results are stored in a private repository and can be provided upon request, see https://git.scc.kit.

edu/tm-praktika/ppsdn-2019/g2, last accessed 2020-03-16

http://telematics.tm.kit.edu/english/ppsdn.php
https://git.scc.kit.edu/tm-praktika/ppsdn-2019/g2
https://git.scc.kit.edu/tm-praktika/ppsdn-2019/g2
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flow table capacity – is represented by another Open vSwitch placed on server 2. The
controller and the flow delegation system are placed on a dedicated control server.

Delegation 
switch s 
(OVS) 

Remote 
switch r 
(OVS) 

Server 1 (delegation switch and mininet) 

Server 2 (running a single OVS) 

Direct physical 

connection 

(cable) 

NIC = Network interface card (1G) 

OVS = Open vSwitch (virtual switch) 

SDN 
Controller 

NIC NIC 

Control server 

(running Ryu controller and flow delegation system) 

NIC NIC 

NIC 
Mininet  

n links to 

DS 

m iperf sessions running 

on mininet virtual hosts 

Flow Delegation 
System 

Figure 8.1: Setup for the functional evaluation

This simplified setup was chosen because i) we are primarily interested in overall feasibility
of the flow delegation approach and ii) the setup allows it to scale the number of iperf
sessions without changing the port count of the delegation switch. The latter means that
traffic of multiple virtual hosts can be sent over the same link to the delegation switch.
This is required because a high number of iperf sessions is needed to create high flow
table utilization. However, if 300+ virtual hosts are directly connected to the delegation
switch, this switch has 300+ ports which is not realistic – and also problematic because
the number of ports is equal to the number of delegation templates in the ingress port
based aggregation scheme. Using the setup described in Fig. 8.1, the 300+ virtual hosts
are attached to the blue auxiliary switch while flow delegation does only consider the
red delegation switch and the green remote switch.

8.2.2 Result

Findings: Both implementations of the flow delegation system – the middleware
and the proxy prototype – work as expected when applied to an emulated software-
based network, i.e., flow table capacity bottlenecks are mitigated.
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Figure 8.2: Mitigation of a severe bottleneck situation with the middleware prototype

Fig. 8.2 shows a single experiment with the middleware prototype where the flow table
capacity of the delegation switch is set to 200 flow rules. The upper part of the figure
shows the amount of flow rules currently stored in the flow table of the delegation (blue
curve) and the remote switch (yellow curve). The lower part shows the amount of
selected delegation templates. At t=12 seconds, the flow table of the delegation switch
contains more than 200 rules, i.e., threshold 1 is exceeded8. The first delegation template
d1 is selected and the associated aggregation rule is installed. As a result, all flow rules
associated with d1 installed after the aggregation rule are automatically relocated to the
remote switch.

Because the delegation algorithm only selects one delegation template per time slot (see
Sec. 8.1.1), it takes six consecutive time slots t=6 to t=11 to select enough delegation
templates in order to fully mitigate the bottleneck. As soon as enough delegation templates
are selected at t=12, flow delegation is able to keep the utilization below the capacity
without selecting additional delegation templates – until the utilization increases again at
t=102 and a new delegation template is selected. It can further be seen in the rest of the
experiment that delegation templates are selected and unselected in such a way that the
bottleneck is mitigated. It was further confirmed that all packets were forwarded correctly

8In this experiment, threshold 1 is set to 100% of the capacity and threshold 2 is set to 50% of the capacity.
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Figure 8.3: Mitigation examples with the middleware prototype
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Figure 8.4: Mitigation examples with the proxy prototype

(no packet loss). It can be concluded that the interplay between the four9 involved
building blocks – monitoring system, aggregation scheme, delegation algorithm and
detour procedure – works as expected when applied to a real (emulated) software-

based network.

It can further be seen the simple threshold-based delegation algorithm does not perform
particularly well here. The delayed selection of new delegation templates between t=6
and t=12 leads to a period with overutilization i.e., the amount of flow rules stored in
the flow table of the delegation switch exceed the capacity. This shows a sophisticated

delegation algorithm is required that can select multiple delegation templates at a time
and include anticipated future knowledge to proactively deal with bottlenecks – which is
the main motivation for the designed algorithms in chapter 9 to 11.

Fig. 8.3 shows the approach can deal with bottlenecks of different severity. The leftmost
plot shows the flow table utilization with enough capacity and without flow delegation.
The three other plots show the same scenario, except that the capacity of the flow table
is reduced to 600, 400 or 200 flow rules and flow delegation is used. It can be seen that,
in all cases, the bottlenecks are mitigated in a similar way as discussed above. Fig. 8.4
finally shows the exact same experiments with the proxy prototype, taken from [BDZ19].
Recall that the proxy prototype is not integrated into the controller but uses a TCP proxy

9The middleware proxy does not use control message interception
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to intercept control messages while the other four building blocks are realized in the same
way as before. It can be seen that the outcome is identical from a conceptual perspective
which is the desired result. The small differences can be explained with randomization
and timing effects in the conducted experiments.

The remainder of this chapter will now investigate two kinds of overhead associated
with the flow delegation system that are important in practice: monitoring overhead and
detour overhead. Overhead and runtime characteristics of the delegation algorithm are
also important but this is discussed in detail in Chapter 15 and Chapter 16. All presented
overhead values were obtained with the middleware prototype.

8.3 Monitoring Overhead

Findings: Monitoring – if not already done by the controller – can increase the
amount of required CPU resources on the control sever by 5% to 28% and the traffic
on the control channel between controller and switch by up to 87% (measured for
a scenario with one bottlenecked switch).

The different building blocks of the flow delegation system induce overhead. In case of
the monitoring system, it is required to continuously collect parameters for bottleneck
detection and for comparison of delegation templates. The most expensive part in this
context is gathering the average amount of bits/s processed by a flow rule f in time slot
t (δ f ,t). This information requires periodic polling of all bottlenecked switches which
causes two kinds of overhead:

• Control message overhead: additional control messages of type counters_req( f )

and counters_rsp( f ) are exchanged between controller and switch to perform
monitoring, i.e., more bandwidth is required for the control channel

• Computational overhead: processing of these additional control messages re-
quires CPU resources in the flow delegation system and in the switch CPU

Note that such additional monitoring is only required if the information for δ f ,t is not
already available. It is assumed that most software-defined networks will perform some
kind of monitoring – e.g., for QoS, load balancing or other purposes – so that no or little
additional monitoring is required by the flow delegation system. However, if this is not
the case, it is important to keep in mind that gathering the required information can be
expensive.

The two kinds of overhead mentioned above (control message and computational over-
head) are investigated in [BZ16] with a series of mininet experiments under worst case
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assumptions, i.e., all monitoring has to be done by the flow delegation system. It is
shown in [BZ16] that the computational overhead is below 5% for ”moderate“ bottleneck
scenarios. Moderate means the maximum flow table utilization does not exceed 110% of
the capacity (uTable

max
< 1.1 ∗ cTable

s
). 5% overhead means that a baseline setup running only

the controller without monitoring required 5% less CPU time compared to a setup with
flow delegation enabled and polling of all flow rules every 3 seconds. In extreme cases
with uTable

max
> 5 ∗ cTable

s
, the overhead is below 18.75% in 99% of the cases if the switch is

polled every six seconds and below 27.85% if the switch is polled every three seconds.
Control message overhead is at 86.91% in extreme cases, i.e., the amount of traffic on
the control channel is almost doubled compared to a baseline setup without monitoring.
The values represent a scenario with a single bottlenecked switch, i.e., there is more
overhead if multiple switches experience a bottleneck at the same time.

8.4 Detour Overhead

An important overhead parameter with respect to the detour procedure is additional delay
of relocated packets. Packets that are matched by an aggregation rule are sent to the
remote switch, processed by the remote switch, and sent back to the delegation switch.
This takes additional time compared to a packet that is not relocated. The presented
results are taken from [BZ16]. The setup for the experiment is explained in Sec. see 9.16.
The results are discussed in Sec. see 9.16.

8.4.1 Setup

The setup for the delay experiment is shown in Fig. 8.5. It consists of three physical
servers, each equipped with an Intel(R) Xeon(R) L5420 processor (2.50 GHz, 2 sockets,
4 cores/socket) and separate physical 1Gbit/s networks for control and data plane traffic.
The sever on the left runs the mininet tool [LHM10] with delegation switch (OVS, Open
vSwitch v2.4.0). The server on the right runs a stand-alone OVS used as a remote switch.
The Distributed Internet Traffic Generator (D-ITG, [AP12]) is used in this experiment
to provide accurate delay statistics on packet level granularity. The tool is configured
as follows: 300 consecutive D-ITG flows (using the TCP profile with a constant packet
rate of 30Mbit/s) are created between two virtual hosts A (executes ITG-Send) and B
(executes ITG-Recv) where every D-ITG flow lasts for one second before the next one is
started.
The Ryu controller [Ryu19] in the control server runs a reactive network application
that installs two new flow rules f1 and f2 for each generated D-ITG flow10. f1 forwards

10In addition, this network application also installs the necessary flow rules to handle the D-ITG signalling
traffic between ITG-Send and ITG-Recv (done proactively before the experiment is started)
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Figure 8.5: Setup for the delay experiment

packets sent from A to B and f2 forwards packets sent from B to A. The rule aggregation
scheme returns a single static delegation template d and all flow rules of type f1 are
associated with this delegation template. The delegation algorithm is executed once per
second. It is statically configured to “toggle” the selection status of delegation template
d every 10 seconds, i.e., the template is selected if it was not selected in the last 10
seconds and vice versa. This is done to compare the measured delay based on whether
the delegation template is selected (i.e., packets are relocated) or not.

8.4.2 Result

Findings: The average end-to-end delay for relocated packets is increased by
approx. 0.1ms compared to the end-to-end delay of packets that are not relocated.

Fig. 8.6 shows the average delay measured by D-ITG for each of the 300 generated flows.
Each flow is represented here as an index on the x-axis: x = 0 is the first flow started
after 0 seconds, x = 1 is the second flow started after 1 second, and so on.
If the delegation template is not selected (no relocation), the average end-to-end delay is
measured as 0.058 milliseconds, which is reasonable, because the forwarding is handled
locally inside the OVS. This delay is increased to a value between 0.15 and 0.2 milliseconds
if the delegation template is selected. Note that, in the latter case, packets are transmitted
via a physical link to the OVS on server 2 and then back via the same link to the delegation
switch (on server 1). The same experiment was also conducted with a physical SDN
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Figure 8.6: Average delay measured for 300 flows

switch (Brocade ICX 6610) replacing server 2. In this case, the delay is even smaller (less
than 0.13ms of total end-to-end delay for all relocated packets) because the forwarding
in the remote switch is done in hardware and not in software.

0.1ms of additional delay is acceptable for many scenarios given the alternative of an
unresolved capacity bottleneck. However, this might not be applicable in scenarios where
ultra low delays are required. In this case, the delay-sensitive flows have to be excluded
from flow delegation which is not discussed here further.

8.5 Conclusion

This chapter introduced two different prototypes of the flow delegation system: a mid-
dleware prototype written in Python which is integrated directly into the Ryu controller
and a proxy prototype written in Java which uses control message interception to hide
flow delegation from the control plane. It is shown that both prototypes can mitigate
flow table capacity bottlenecks in an emulated software-based network. It is further
shown that monitoring can be expensive in terms of required CPU resources as well
as control channel bandwidth and that packets of relocated flows have a slightly in-
creased end-to-end delay (+0.1ms). Finally, the prototypical results show that the simple
threshold-based delegation algorithm introduced in [BZ16] does not perform particularly
well with respect to overutilization which motivates the more sophisticated design that is
discussed in the next three chapters.
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Chapter 9

Decomposition and Problem Formulations
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The algorithms part of the thesis – which consists of chapters 9 to 11 – investigates
the so-called delegation algorithm. The delegation algorithm decides how flow table
capacity bottlenecks are resolved based on discrete combinatorial optimization. The
algorithms part makes the following contributions:

(1) Chapter 9 models flow table capacity bottleneck mitigation as a two-step opti-

mization approach with two independent sub-problems: a switch-local problem to
select delegation templates (DT-Select) and a global problem to select an appropri-
ate remote switch for each selected delegation template (RS-Alloc). Single-period
and multi-period problem formulations are introduced for both sub-problems.

(2) Chapter 10 presents three algorithms for the multi period DT-Select problem

that take predicted future network situations into account and proactively mitigate
anticipated bottlenecks. Select-Opt and Select-CopyFirst use integer programming.
The third algorithm (Select-Greedy) uses a simple greedy strategy.

(3) Chapter 11 presents an algorithm for the multi period RS-Alloc problem. The
algorithm uses integer programming and reduce the search space with a pre-
processing step that removes unfavorable allocation options (for better scalability).

151
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Figure 9.1: Delegation algorithm building block

The high level idea of the delegation algorithm is shown in Fig. 9.1. It takes two types
of inputs: a set of delegation templates Ds,t calculated by the aggregation scheme for
each switch with a flow table capacity bottleneck, shown in purple boxes. And several
monitored parameters from the monitoring system with information about relevant
flow rules (such as processed bits), shown in green boxes. Based on these inputs, the
algorithm has to make two decisions:

• Given switch s suffers from a flow table capacity bottleneck in time slot t, which of
the delegation templates d ∈ Ds,t are selected in order to mitigate the bottleneck?
This is called delegation template selection in the following (DT-Select).

• For each of the selected delegation templates in time slot t, which remote switch r

is allocated to the delegation template so that the available free resources (flow
table capacity, link bandwidth) are utilized best? This is called remote switch
allocation in the following (RS-Alloc).

In the example in Fig. 9.1, there are five switches s1 to s5 but only two of them – s1 and
s4 are suffering from a flow table capacity bottleneck in time slot t (the figure depicts
only a single time slot). Based on the information from the monitoring system (building
block 1 ), the rule aggregation scheme (building block 2 ) has calculated two sets of
delegation templates Ds1,t and Ds4,t . Here, both sets consists of three delegation templates.
These are ds1,1 to ds1,3 in case of switch s1 and ds4,1 to ds4,3 in case of switch s4. The
delegation algorithm uses the conflict-free cover sets in the delegation templates and
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parameters provided by the monitoring system – shown here as ... – to make its decision.

A possible output of the delegation algorithm is shown in the right of Fig. 9.1:

• It has decided that one delegation template for s1 is sufficient to mitigate the
bottleneck (selection of ds1,1). The flow rules in the conflict-free cover set of ds1,1

are relocated to remote switch r2 (r2 is allocated to delegation template ds1,1).

• It has decided that two delegation templates are required for s4 (selection of ds4,1

and ds4,2). The flow rules in the conflict-free cover set of ds4,1 are relocated to
remote switch r3 (r3 is allocated to ds4,1) and the flow rules in the conflict-free
cover set of ds4,2 are relocated to remote switch r2 (r2 is allocated to ds4,2).

The remainder of this chapter explains how the two above decisions – selection and
allocation – can be modeled as a two-step optimization approach using a 0-1 knapsack
problem for the selection part (DT-Select) and a capacitated facility location problem for
the allocation part (RS-Alloc). Sec. 9.1 summarizes the requirements for the delegation
algorithm. Sec. 9.2 repeats important concepts and variables from previous chapters that
are used here. Sec. 9.3 explains the decomposition and interplay of the two sub-problems
DT-Select and RS-Alloc. The two following sections then discuss the sub-problems in
detail: Sec. 9.4 discusses the DT-Select sub-problem and Sec. 9.5 discusses the RS-Alloc
sub-problem. Both sections explain the modeling approach, the used decision variables,
the coefficients and introduce a single period (considering only a single time slot) as well
as a multi period problem formulation (multiple time slots are considered). In addition,
the main challenge of both sub-problems is analyzed which will then be addressed in
the subsequent chapters where algorithms are presented for the multi period case. The
chapter concludes with a short summary in Sec. 9.6.

9.1 Requirements

This section briefly summarizes the most important requirements for the delegation
algorithm.

(1) Prediction of future network situations has to be taken into account. To achieve
this, the delegation algorithm must work on multiple time slots which requires a
multi period problem formulation.

(2) Support for different objectives. The goal to not exceed the flow table capacity
is only one (key) objective. There are several other objectives with respect to
utilization of available resources (flow table capacity, link bandwidth, number of
required control messages). This leads to a multi-objective optimization problem.
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(3) High performance and scalability. The delegation algorithm has to be executed
frequently, for a potentially large number of SDN switches. It is therefore essential
to develop a fast and scalable optimization approach that can be solved in a few mil-
liseconds. This led to the decision to design a two-step optimization approach that
consists of two sub-problems (instead of using a single more complex optimization
problem).

9.2 Preliminaries

The problems introduced below depend on concepts from previous chapters. The most
important concepts and the associated variables are briefly summarized here (contains
no new information, can be skipped if the concepts are already known).

• Time is represented in time slots. Time slot t ∈ T is defined as the time window
that begins at τ−1 and ends at τ. Multiple time slots are given as a set T :=
{t1, t2, . . . , t−1, t, t+1, . . . , tm−1, tm}. t−1 represents the time slot before t, t−2 the
time slot before t−1 and so on. t1 is defined as the first time slot in T and tm is
defined as the last time slot. Details can be found in Sec. 2.1.1 (definition) and
Sec. 4.2.1 (translation from timestamps to time slots).

• A delegation switch is represented with variable s (and s j), a remote switch is
represented with variable r. Details can be found in Def. 2.2.

• uTable

s,t denotes the current flow table utilization from the perspective of the controller
and the network applications in switch s in time slot t without flow delegation (see
Sec. 2.12).

• Coefficients are represented in lambda notation. This notation models the life
cycle of a flow rule with time slots. λa

f ,t ∈ {0, 1} is set to 1 for all time slots where

the flow rule is present in the flow table. λi
f ,t ∈ {0,1} is set to 1 only for the one

time slots where the flow rule was installed. Details can be found in Sec. 4.2.2.

• Options to mitigate a bottleneck are modeled as delegation templates. A delega-
tion template d ∈ Ds,t is a tuple


−→
md , Fd,t

�

where −→md is an aggregation match and

Fd,t is the conflict-free cover set of −→md . Details can be found in Sec. 3.2.7.

– An aggregation match is a special wildcard match that covers a set of other
matches M . If a packet is matched by a match in M , it is also matched by the
aggregation match (see Sec. 3.2.1).

– The conflict-free cover set Fd,t represents a set of flow rules that can be
relocated to a remote switch without rule conflicts (see Sec. 3.2.5).
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– Delegation templates are only calculated for delegation switches (not for
switches without a bottleneck). A delegation template d ∈ Ds,t is always
associated with delegation switch s. Selecting a delegation template d means
an aggregation rule with match −→md is installed in delegation switch s in the
beginning of time slot t and flow rules from Fd,t are relocated to a remote
switch (which reduces the flow table utilization in the delegation switches
= bottleneck mitigation). It can be concluded that at least one delegation
template has to be selected for each delegation switch.

• Utilization and cost coefficients are calculated differently for different aggregation

priorities (prioagg, a global parameter). If aggregation rules are installed with
highest priority (priohighest

agg
), all flow rules in the conflict-free cover set are relocated.

If aggregation rules are installed with lowest priority (priolowest
agg

), only “new” flow
rules that were installed after the beginning of time slot t are relocated. The
problems below focus on low aggregation priority. Details can be found in Sec.
3.2.1 (definition) and Sec. 5.3 (discussion).

9.3 Problem Decomposition

The two basic decisions mentioned above – selection of delegation templates and al-
location of remote switches – could be handled as one unified optimization problem.
Because indirect rule aggregation is used, the amount of delegation templates per switch
(|Ds,t |) is expected to be small – in the range of 20 to 200 (number of physical ports)
for the ingress port scheme, see Sec. 5.2.2.3. However, the number of switches affected
from a bottleneck may be arbitrarily large which can result in a (too) large number of
coefficients in the unified problem. This is especially problematic if multiple time slots
are considered. It is shown later that the calculation of the decomposed problem – which
is smaller and simpler – can take several milliseconds per switch in the worst case. And
even if a very fast heuristic would be available: the time to prepare the input data for the
unified problem alone would lead to scalability problems.

Fortunately, the flow table capacity bottleneck mitigation problem an also be modeled
as two independent sub-problems. The problem decomposition is explained in Fig. 9.2.
The top of the figure shows the first sub-problem which is called Delegation Template

Selection (DT-Select) 3.1 . The DT-Select problem is solved independently for each
bottlenecked switch and selects a subset of the delegation templates to mitigate the
bottleneck of this single switch. So the three boxes labeled as a© represent individual
optimization problems with individual inputs and outputs. This step, however, will not
yet allocate the remote switches to the templates. It simply returns the subset of the
selected delegation templates D∗

s,t for each bottlenecked switch. The single asterisk
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Figure 9.2: Problem Decomposition

(upper index) indicates that the first step of the delegation algorithm was executed and
the set contains delegation templates suitable to mitigate the bottleneck.

The second step – the allocation part – is referred to as Remote Switch Allocation (RS-

Alloc) 3.2 . The RS-Alloc problem takes the set of selected delegation templates D∗
s,t (for

all bottlenecked switches) and assigns each of it a remote switch based on flow table
utilization and utilization of the links in the infrastructure. This step is executed only
once per time slot and returns a set of selected and assigned delegation templates D∗∗

t
. In

contrast to the first step, the RS-Alloc problem is modeled as one global problem (shown
in the box labeled as b©). The output of RS-Alloc represents a solution for all bottlenecks
in the network in time slot t. The double asterisk (upper index) indicates that both steps
of the delegation algorithm were executed.

It can be seen in Fig. 9.2 that both sub-problems require input from the monitoring
system. DT-Select primarily requires information about the flow rules contained in the
conflict-free cover set that comes with each delegation template (λ,δ). RS-Alloc primarily
requires information about flow table and link utilization of all switches / links in the
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network and the number of flow rules and packets that must be relocated. All relevant
monitored parameters are defined in Sec. 4.1.

9.4 Delegation Template Selection (DT-Select)

Delegation template selection (DT-Select) selects a subset D∗
s,t ⊆ Ds,t out of n delegation

templates for switch s in time slot t so that i) the utilization of the flow table of switch s

does not exceed its capacity and ii) overhead caused by flow delegation is minimized.

Sec. 9.4.1 first explains the general modeling approach. Afterwards, the decision variables
and the required coefficients are explained (Sec. 9.4.2 to Sec. 9.4.4), followed by the
definition of the single period DT-Select problem in Sec. 9.4.5 and its multi period
extension in Sec. 9.4.6. Finally, the main challenge of the multi period DT-Select problem
is discussed in Sec. 9.4.7.

9.4.1 Modeling Approach

The basic idea is to model DT-Select as a 0-1 knapsack problem. Selection-related knapsack
problems are commonly used in the networking domain, e.g., for energy aware routing
(select devices [SLX10]), delay tolerant forwarding (select relays [Gao+09]) or content
caching (select caching locations [BGW10]. And there are also various related problems
outside of the networking domain, e.g., project selection, budget control or cargo loading
[SK75]. The 0-1 knapsack problem considers n different items. If formulated as a
minimization problem (as it will be done here), each of the items is assigned a cost and a
weight and the objective is to select items so that the sum of the costs is minimized and
the sum of the weights does not exceed the capacity of the knapsack.

In DT-Select, the knapsack is the flow table of delegation switch s and the items are the
delegation templates d ∈ Ds,t . The knapsack capacity is modeled as a negative value that
represents the amount of flow rules that have to be relocated in order to mitigate the
bottleneck. The weight of each template is given as a utilization coefficient uTable

d,t that
represents the amount of rules that will be relocated if template d is selected (i.e., added
to the knapsack). And the cost of each template is given as a cost coefficient wd,t that
represents the overhead associated with the template, e.g., how much traffic is processed
by the relocated flow rules (= more traffic is added to the link between delegation and
remote switch). Goal is then to add delegation templates to the knapsack so that the
cost is minimal and the capacity is non-negative. The time slot indices indicate that the
variables may change between time slots.
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9.4.2 Decision Variables

The decision variables in DT-Select are defined as follows:

Definition 9.1: Decision Variables for DT-Select

Selection of a delegation template d ∈ Ds,t for delegation switch s in time slot t is
based on the following decision variables:

Xd,t :=

(

1, delegation template d is selected in time slot t

0, delegation template d is not selected in time slot t
(9.1)

These decision variables are defined for each delegation template d ∈ Ds,t in time
slot t. Undefined variables are interpreted as 0.

Xd,t = 1 means delegation template d is selected for bottleneck mitigation in time slot
t (template is added to the knapsack). Xd,t = 0 means delegation template d is not
selected in time slot t and thus not required for bottleneck mitigation (not added to the
knapsack). If a delegation template is selected, the aggregation rule associated with the
delegation template is installed at the beginning of time slot t (if the template with the
same aggregation match was not already selected in a previous time slot). If Xd,t−1

is
set to 1 and Xd,t is set to 0, a previously installed aggregation rule is removed at the
beginning of time slot t to stop flow delegation.

9.4.3 Utilization Coefficients

The utilization coefficients uTable

d,t for a single delegation template d ∈ Ds,t represent the
amount of flow rules that will be relocated to the remote switch if delegation template d

is selected. This means uTable

d,t rules are removed from the flow table of switch s, i.e., this
variable basically quantifies the “mitigation performance” of template d (in time slot t).
The utilization coefficients are the weights in the knapsack terminology. Basic idea is
it to select the subset D∗

s,t ⊆ Ds,t of delegation templates in such a way that the current
utilization minus the sum of the utilization of the selected templates is smaller than the
flow table capacity of the delegation switch1:

uTable

s,t −
∑

d∈D∗s,t

uTable

d,t ≤ cTable

s
(9.2)

Recall that the current utilization uTable

s,t does not consider flow delegation. Further recall
that the delegation algorithm is only required if switch s is suffering from a flow table

1Eq. (9.2) is equivalent to
∑

d∈D∗s,t
uTable

d,t ≤ uTable
s,t − cTable

s
where uTable

s,t − cTable
s

is the negative knapsack capacity
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capacity bottleneck in time slot t, i.e., the current utilization exceeds the capacity (uTable

s,t >

cTable

s
). So DT-Select has to select at least one delegation template with a non-negative

utilization coefficient to satisfy Eq. (9.2). If uTable

d,t is large compared to uTable

s,t − cTable

s
, it

might be sufficient to select a single or only a few delegation templates to mitigate the
bottleneck. If uTable

d,t is small, more delegation templates might be required.

The utilization is calculated based on the amount of flow rules that can be relocated to
the remote switch (relocatedd,t) reduced by the overhead caused by the aggregation
and backflow rules (overheadd,t):

uTable

d,t := relocatedd,t − overheadd,t (9.3)

The first part (relocatedd,t) depends on the selected aggregation priority. If aggregation
rules are installed with highest priority (priohighest

agg
), all flow rules in the conflict-free cover

set Fd,t are relocated. If aggregation rules are installed with lowest priority (priolowest
agg

),
only new flow rules installed after the beginning of time slot t are relocated. Using the
lambda notation, relocatedd,t is defined as follows:

relocatedd,t :=











∑

f ∈Fd,t

λa
f ,t = |Fd,t | , if priohighest

agg

∑

f ∈Fd,t

λi
f ,t ≤ |Fd,t | , if priolowest

agg

(9.4)

Eq. (9.4), however, can only be used in the single period case where only a single time
slot is considered. In the multi period case, the calculations for priolowest

agg
are more

complex because a flow rule could have been relocated in one of the previous time slots
which has to be taken into account.

The second part (overheadd,t) is defined as the amount of additional flow rules that
are only required for flow delegation. overheadd,t consists of two parts. First, the
aggregation rule obviously contributes to the flow table utilization of the delegation
switch if delegation template d is selected. And secondly, there is additional flow table
overhead due to the backflow rules that are required to handle the return traffic from
the remote switch (depends on the forwarding action of the flow rules in Fd,t). This can
be modeled in the following way:

overheadd,t := 1+
�

�

�

¦

s
�

� φ f ,s == 1 , f ∈ Fd,t

©
�

�

� (9.5)

φ f ,s is defined in Sec. 4.2.3. It is a binary coefficient indicating flow rule f has a
forwarding action that forwards packets to switch s ∈ S. The +1 in Eq. (9.5) represents
the aggregation rule. The second addend is calculated as the cardinality of a helper set
that contains all switches used in a forwarding action (each switch can only occur once).
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This represents an upper bound2 for the amount of backflow rules (one backflow rule
for each unique forwarding action). Because both parts – aggregation rules as well as
backflow rules – are by design limited by a maximum value of |Ds,t | (ingress port scheme),
it can be a valid approach to replace Eq. (9.5) with a static expression equal to 2∗|Ds,t |, as
it was done, for example, in [BD17]. Note that a static overhead could be compensated by
artificially reducing the capacity of the flow table accordingly, so it is possible to optimize
this one step further and ignored the overhead-related part altogether. However, in case
where |Ds,t | is very high (e.g., > 100), it is important to include the overhead into the
decision process which does not allow for such a simplification.

9.4.4 Cost Coefficients

The cost coefficients wd,t for a single delegation template d ∈ Ds,t represent the overhead
associated with selecting the template. This overhead consists of the amount of required
aggregation and backflow rules (wTable

d,t ), the amount of relocated packets (wLink

d,t) and the
amount of required control messages (wCtrl

d,t). Basic idea is it to select the subset D∗
s,t ⊆ Ds,t

of delegation templates in such a way that Eq. (9.2) from the previous section is satisfied
(knapsack constraint that ensures the bottleneck is mitigated) and, at the same time, the
cost of the selection is minimized:

minimize :
∑

d∈D∗s,t

wd,t (9.6)

The three cost coefficients wTable

d,t , wLink

d,t , and wCtrl

d,t mentioned above are explained in more
detail below.

9.4.4.1 Table Overhead

The table overhead cost coefficients wTable

d,t define the amount of flow rules in the flow table
of the delegation switch that are only required for flow delegation, i.e., the number of
installed aggregation and backflow rules. In this work, the table overhead per delegation
template is set to 1, i.e., only the aggregation rules are considered. The overhead could
be greater than 1 – in case new backflow rules are required – but this is simplified here by
assuming that all backflow rules are installed when the flow delegation system is started
(could be included by replacing the static value 1 with Eq. (9.5)).

wTable

d,t = 1 (9.7)

Considering the table overhead in the minimization problem will prefer delegation
templates with a large conflict-free cover set, because this will reduce the number of

2It is only an upper bound because backflow rules are shared across delegation templates
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selected templates in total (and thus minimize the number of aggregation rules which is
the table overhead).

9.4.4.2 Link Overhead

The link overhead cost coefficients wLink

d,t take the amount of relocated packets into account
(in bits/s). These are the packets matched by the aggregation rule that have to be sent to
the remote switch which is additional overhead for the infrastructure. These coefficients
are calculated as follows:

wLink

d,t :=











∑

f ∈Fd,t

δ f ,t , if priohighest
agg

∑

f ∈Fd,t

δ f ,t ∗λ
i
f ,t , if priolowest

agg

(9.8)

Similar to relocatedd,t in Eq. (9.4), the link overhead cost coefficients also depend on the
aggregation priority. If aggregation rules are installed with highest priority (priohighest

agg
),

all flow rules in the conflict-free cover set (Fd,t) are relocated. The link overhead in this
case is

∑

f ∈Fd,t
δ f ,t where δ f ,t represents the bits/s processed by flow rule f in time slot

t. If aggregation rules are installed with lowest priority (priolowest
agg

), only new flow rules
that were installed after the beginning of time slot t are relocated. If only one time slot
is considered (single period problem), the link overhead for the low aggregation priority
case is given as

∑

f ∈Fd,t
δ f ,t ∗λ

i
f ,t where λi

f ,t selects the new flow rules (this coefficient is
set to 1 if the rule was installed in time slot t). In the multi period case, however, this
cost coefficient cannot be calculated so easily because flow rules from previous time slots
could also contribute to the link overhead (this problem will be discussed later).

9.4.4.3 Control Message Overhead

The control message overhead cost coefficients wCtrl

d,t consider the amount of control
messages necessary if delegation template d is selected in time slot t. In case of the single
period problem, this is equal to the amount of flow rules relocated to the remote switch
(each remote rule requires one control message) together with the control messages for
aggregation and backflow rules. The latter is not included because this is covered already
by the table overhead cost coefficients. And the former is identical to the utilization
coefficients (in the single period case):

wCtrl

d,t := relocatedd,t =











∑

f ∈Fd,t

λa
f ,t , if priohighest

agg

∑

f ∈Fd,t

λi
f ,t , if priolowest

agg

(9.9)
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The control message overhead cost coefficients have the same problem as relocatedd,t

and the link overhead cost coefficients (calculation is more complex for the multi period
case).

9.4.5 Single Period Problem

Based on the variables introduced in the previous sections, the single period DT-Select
problem can be defined as an integer linear program in the following way (single period
means only a single time slot is considered):

Definition 9.2: Single Period Delegation Template Selection (DT-Select)

Inputs: A single switch s ∈ S, flow table capacity cTable

s
, flow table utilization

uTable

s,t , a set of delegation templates Ds,t , utilization coefficients uTable

d,t and overhead
coefficients wd,t for each d ∈ Ds,t

Output: Set of selected delegation templates D∗
s,t ⊆ Ds,t for time slot t

Problem Formulation:

min
Xd,t

∑

d∈Ds,t

Xd,t ∗wd,t (9.10)

s.t. uTable

s,t −
∑

d∈Ds,t

Xd,t ∗ uTable

d,t ≤ cTable

s
(9.11)

Xd,t ∈ {0, 1} ∀
d∈Ds,t

(9.12)

This is a well-defined 0-1 knapsack problem and solving the above ILP will result in an
optimal solution for DT-Select. The knapsack constraint in Eq. (9.11) ensures that the
flow table capacity is not exceeded while the objective function in Eq. (9.10) ensures
that the total cost (total overhead) is minimized. Eq. (9.12) ensures that each template
can either be included in the knapsack or not.

The objective function uses a placeholder variable wd,t to represent a mixture of the cost
coefficients, i.e., this is a multi-objective formulation. This mixture consists of three parts
explained in detail in Sec. 9.4.4 (the non-negative ω

DTS
-weights balance the different cost

coefficients against each other):

wd,t :=ωTable

DTS
wTable

d,t +ω
Ctrl

DTS
wCtrl

d,t +ω
Link

DTS
wLink

d,t (9.13)
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The optimal selection D∗
s,t ⊆ Ds,t – referred to as the set of selected delegation templates –

is calculated as follows (X ∗
d,t represent the optimal decision variables after the problem is

solved):

D∗
s,t :=

¦

d ∈ Ds,t

�

� X ∗
d,t = 1

©

(9.14)
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Figure 9.3: Single Period Delegation Template Selection

Fig. 9.3 visualizes the single period DT-Select problem and shows how the different
coefficients are calculated. The utilization coefficients uTable

d,t are derived from the delegation
templates, more precisely, from the conflict-free cover set Fd,t within each template
according to Eq. (9.3) - (9.5). The overhead coefficients wd,t are also derived from Fd,t .
In case of the link overhead cost coefficients, additional information about the processed
bits (δ f ,t) is utilized as shown in Eq. (9.8).

Note that the 0-1 knapsack problem is known to be NP-hard [Kar72; Pap81]. However,
there is a polynomial-time approximation scheme available [GJ78]. So at least the single
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period problem can be solved easily. This changes if multiple time slots have to be
considered which is discussed in the next section.

9.4.6 Multi Period Problem

The following updates the single period problem from Sec. 9.4.5 to a multi period
problem. Only difference is that not a single time slot but a set of consecutive time slots
T is considered. So the problem is to find optimal selections D∗

s,t ⊆ Ds,t for each t ∈ T

so that the flow table utilization uTable

s,t in each time slot t ∈ T is below cTable

s
while the

overhead for flow delegation is minimized. This extended problem is defined as follows:

Definition 9.3: Multi Period Delegation Template Selection

Inputs: A single switch s ∈ S, flow table capacity cTable

s
, set of consecutive time

slots T , flow table utilization uTable

s,t for each time slot, sets of delegation templates
Ds,t for each t ∈ T , utilization coefficients uTable

d,t and overhead coefficients wd,t for
t ∈ T, d ∈ Ds,t

Output: Set of selected delegation templates D∗
s,t for each t ∈ T

Problem Formulation:

min
Xd,t

∑

d∈Ds,t

∑

t∈T

Xd,t ∗wd,t (9.15)

s.t. uTable

s,t −
∑

d∈Ds,t

Xd,t ∗ uTable

d,t ≤ cTable

s ∀
t∈T

(9.16)

Xd,t ∈ {0, 1} ∀
d∈Ds,t

∀
t∈T

(9.17)

At first glance, this is still a 0-1 knapsack problem. The objective function in Eq. 9.15
ensures that the cost is minimized for the specified set of time slots. And the knapsack
constraints in Eq. 9.16 are identical to the knapsack constraint in the single period
problem except that there are |T | of them (the constraint has to be fulfilled for each
individual time slot).

However, the 0-1 knapsack problem requires that the items in the knapsack can be added
and removed independently from each other. This means the utilization coefficients
(uTable

d,t ) and cost coefficients (wd,t) can be computed independently from the value of the
decision variables. Unfortunately, it is shown in the next section that this is not possible.
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9.4.7 Problem Analysis for DT-Select

Main challenge with respect to the multi period formulation of the DT-Select problem are
the coefficients for cost and utilization. It was already mentioned this is more complex if
multiple time slots are considered and the aggregation priority is set to low (priolowest

agg
).

The reason is the coefficients cannot be calculated independently in this case, i.e., the
utilization and the costs for the current time slot depend on decisions from previous time
slots. This however, cannot be modeled as a linear problem. This is illustrated in Fig. 9.4
using the utilization coefficients as an example.

Problem: Value of ud2,t4 depends on selection 

decision from previous time slots 

f1 
f2 

f3 
f4 

t1 

f5 
f6 

f7 
f8 

f9 

t2 t3 t4 
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Xd2,t4 = 1 

0 0 0 1 

0 0 1 1 
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0 1 1 1 

1 1 1 1 

ud2,t4 = 3 

ud2,t4 = 5 

ud2,t4 = 7 
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d2 
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Delegation templates 
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1 DT-Select decision variable Xd,t 
0 
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templates (input 

for DT-Select) 

Ds,t1 Ds,t2 Ds,t3 Ds,t4 

Sets of delegation 

templates for  

T={t1, t2, t3, t4}  

(also denoted as Ds,T ) 

Figure 9.4: Problem DT-Select

The example shows a multi period scenario with four time slots. The large purple block
in the middle depicts a set of delegation templates Ds,t where template d2 is highlighted.
Flow rule f1 to f9 represent nine flow rules from the conflict-free cover set (Fd2,t) of d2.
The lines in the large purple block indicate the time when the flow rules in Fd2,t are
installed and active. Flow rule f1, for example, is installed in time slot t1 (i.e., λi

f1,t1
= 1

in lambda notation) and active in all four time slots (λa
f1,t = 1 , t = t1, . . . , t4).

The bottom of the figure (the 4x4 grid with 0s and 1s) represent decision variables for
DT-Select with respect to delegation template d2 and the four time slots. The first row
of the 4x4 grid labeled as a© represents one possible outcome of the DT-select problem
for this delegation template, i.e., the template was only selected in time slot t4 and not
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selected in all the other time slots. In this case , the utilization coefficient uTable

d,t for time
slot t4 can be calculated as follows (the overhead part from Eq. (9.3) is ignored here for
simplicity):

Case a© in Fig. 9.4 : ud2,t4
=











∑

f ∈Fd2,t4

λa
f ,t4
= 7 , if priohighest

agg

∑

f ∈Fd2,t4

λi
f ,t4
= 1 , if priolowest

agg

It is easy to see that the conflict-free cover set for template d2 and time slot t4 consists
of seven rules (shown as Fd2,t4

in the top right of the figure), so the utilization for the
high priority case is calculated as

∑

f ∈Fd2,t4
λa

f ,t4
= |Fd2,t4

| = 7, which makes sense because

all seven rules in the cover set will be relocated to the remote switch and the flow table
utilization of the delegation switch is reduced by 7. In the low priority case (priolowest

agg
),

only new flow rules installed after the beginning of time slot t4 are relocated. This is
modeled as

∑

f ∈Fd2,t4
λi

f ,t4
which calculates to 1 here because only one flow rule ( f6) is

installed in time slot t4.

Now consider case b© in the second row of the grid. In this case, delegation template d2

was already selected in time slot t3 (i.e., Xd2,t3
= 1). The utilization coefficient for ud2,t4

(the same coefficient as in case a©) is then calculated as:

Case b© in Fig. 9.4 : ud2,t4
=











∑

f ∈Fd2,t4

λa
f ,t4
= 7 , if priohighest

agg

∑

f ∈Fd2,t4

λi
f ,t4
+

∑

f ∈Fd2,t3

λi
f ,t3
λa

f ,t4
= 3 , if priolowest

agg

The high priority case (priohighest
agg

) is obviously identical to before because all flow rules
are relocated. The low priority case, however, is different. The first part (

∑

f ∈Fd2,t4
λi

f ,t4
)

is identical to case a© because flow rule f6 is still relocated. However, there are also
three flow rules installed in time slot t3 (the previous time slot) and two of them are still
active in time slot t4. Note that flow rule f5 is installed and removed in t3 and is not
active – and thus not relevant – in time slot t4. The flow rules that are still active ( f7 and
f9) must obviously be included in the utilization coefficient ud2,t4

. One way to model this
is
∑

f ∈Fd2,t3
λi

f ,t3
λa

f ,t4
. This will select all flow rules installed in time slot t3 (λi

f ,t3
) that are

still active in time slot t4 (λa
f ,t4

).

This pattern continues. In case c©, delegation template d2 is selected in three time slots
(t2 to t4). There are two flow rules installed in time slot t2 that are still active in time
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slot t4 which are f4 and f8. These have to be added to the utilization coefficient (the
high priority case is not shown any more, is identical in all four cases):

Case c© in Fig. 9.4 : ud2,t4
=

∑

f ∈Fd2,t4

λi
f ,t4
+

∑

f ∈Fd2,t3

λi
f ,t3
λa

f ,t4
+

∑

f ∈Fd2,t2

λi
f ,t2
λa

f ,t4
= 5

In general: to calculate the utilization for delegation template d in time slot t, it is not
enough to look at the situation at t. Assume T := {t1, t2, . . . , t−2, t−1, t}. t−1 represents
the time slot before t, t−2 the time slot before t−1 and so on. t1 is defined as the first
time slot in T . If d is selected in time slot t−1, the utilization coefficient has to consider
all flow rules that were installed at t−1 and are still active at time slot t. And if d is also
selected in time slot t−2, the utilization coefficient has to consider all flow rules that
were installed at t−2 and are still active at time slot t. And so on. This continues for
all previous time slots where d was selected. This can be modeled with the DT-Select
decision variables as follows:

uTable

d,t :=
�
∑

f ∈Fd,t

λi
f ,t Xd,t

�

+

� t1∑

q=t−1

∑

f ∈Fd,q

λi
f ,q ∗λ

a
f ,t ∗

t
∏

v=q

Xd,v

�

(9.18)

The first (linear) part of this formula counts the flow rules installed in time slot t if
template d is selected. The second part keeps track of flow rules installed in previous
time slots. q and v are iterator variables representing time slots. The easiest way to see
that this formula properly models the utilization is to unroll the outer sum (

∑t1

q=t−1
):

uTable

d,t :=
�
∑

f ∈Fd,t

λi
f ,t Xd,t

�

+

� t1∑

q=t−1

∑

f ∈Fd,q

λi
f ,q ∗λ

a
f ,t ∗

t
∏

v=q

Xd,v

�

=

�
∑

f ∈Fd,t

λi
f ,t Xd,t

�

+
∑

f ∈Fd,t−1

λi
f ,t−1
∗λa

f ,t ∗
�

Xd,t−1
Xd,t

�

// q = t−1

+
∑

f ∈Fd,t−2

λi
f ,t−2
∗λa

f ,t ∗
�

Xd,t−2
Xd,t−1

Xd,t

�

// q = t−2

+
∑

f ∈Fd,t−3

λi
f ,t−3
∗λa

f ,t ∗
�

Xd,t−3
Xd,t−2

Xd,t−1
Xd,t

�

// q = t−3

+ . . . // q = . . .

+
∑

f ∈Fd,t1

λi
f ,t1
∗λa

f ,t ∗
�

Xd,t1
∗ . . . ∗ Xd,t−2

Xd,t−1
Xd,t

�

// q = t1
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It is easy to see that this maps to the example discussed above.
∏t

v=q
Xd,v will only

evaluate to 1 if all decision variables in the product are set to 1. This ensures that not
all previous time slots are considered but only those where the delegation template is
selected continuously (for all time slots up to t).

This forms a polynomial of degree |T | which requires non-linear programming to be
solved – which is not in line with the requirements for the delegation algorithm. Instead,
chapter see 9.16 introduces a modified approach for DT-Select that makes use of Eq. 9.18
in a different way (pre calculation of coefficients for a fixed assignments of the decision
variables).

9.5 Remote Switch Allocation (RS-Alloc)

Remote Switch Allocation (RS-Alloc) is the second sub-problem of the delegation algo-
rithm. It takes the output from DT-Select – which is a set of selected delegation templates
D∗

s,t for all switches s ∈ S that suffer from a flow table capacity bottleneck – and allocates
a remote switch for each selected delegation template based on the available free flow
table capacity and link bandwidth in the network.

The discussion of RS-Alloc is structured in the same way as the previous section. First,
Sec. 9.5.1 explains the general modeling approach (and introduces some additional
terminology). Afterwards, the decision variables and the required coefficients are ex-
plained (Sec. 9.5.2 to Sec. 9.5.4), followed by the definition of the single period RS-Alloc
problem in Sec. 9.5.5, and its multi period extension in Sec. 9.5.6. Finally, the main
problem with the multi period RS-Alloc problem is discussed in Sec. 9.5.7.

9.5.1 Modeling Approach and Additional Terminology

The basic idea is to model RS-Alloc as a capacitated facility location problem. This
well-known class of optimization problems has customers, each with an individual service
demand that has to be serviced by one facility. Optimization goal is to decide which
service demand is fulfilled by which facility so that the cost for servicing is minimized and
the total amount of service a facility can provide is limited by its maximum capacity. This
is a pretty good match to the RS-Alloc problem. Think of each delegation template as a
customer while the remote switches (the switches with free capacity) are the facilities. A
remote switch (facility) with spare flow table capacity (capacity of the facility) has to be
allocated for each delegation template (customer).

There is, however, one important difference that has to be taken into account: the classical
facility location problem models both, location and allocation decisions, i.e., there are two



9.5 Remote Switch Allocation (RS-Alloc) 169

different decision variables. The allocation decision is responsible for mapping customers
to facilities. This has a direct counterpart in the RS-Alloc problem (allocating remote
switches). The location decision, on the other hand, decides whether a facility at a specific
location is open or not. In the case of RS-Alloc, this is not necessarily an active decision.
One remote switch might be available (“open”) for one delegation switch but unavailable
for another due to the topology of the network (recall that flow delegation will only
consider remote switches in a 1-hop neighborhood). This is a conceptual difference in
the sense that the location problem can be modeled as a constraint rather than a decision.
This is possible because there is no explicit activation or setup cost for the remote switches
(different for other problems where it is costly to open a new facility).

Before discussing this in more detail, the following two sub-sections define additional
terminology for RS-Alloc. This is required to reduce the complexity in the problem
formulation (e.g., avoid iterating over sets of selected delegation templates).

9.5.1.1 Allocation Job

RS-Alloc includes all switches with a bottleneck, i.e., there are multiple sets of selected
delegation templates D∗

s,t that have to be included in the problem formulation. To make
this easier, allocation jobs are introduced as follows:

Definition 9.4: Allocation Job

An allocation job j ∈ Jt represents one single delegation template d ∈ D∗
s,t . This

is a simple 1:1 mapping, except that the set Jt is not restricted to a single switch
but contains all delegation templates of all bottlenecked switches:

Jt :=
⋃

s∈S

D∗
s,t =

�

. . . , d j,t , . . .
	

(9.19)

The following new variables are defined for working with allocation jobs:

• d j,t represents the delegation template from the 1:1 mapping, i.e., one of the
elements in Jt

• s j represents the delegation switch associated with j

• −→m j represents the aggregation match from d j,t

• F j,t represents the conflict-free cover set from d j,t , i.e., the flow rules that
have to be relocated to the remote switch

Fig. 9.5 explains this definition. There are five switches with bottlenecks in the example
and DT-Select has calculated five sets of selected delegation templates D∗

s1,t to D∗
s5,t for
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the given time slot t (shown in the top). The set of all allocation jobs Jt is defined as
the union of these five sets. The union operator is visualized here with the black arrows
that select every single delegation template from all five sets (34 allocation jobs in total
in the example). The rest of the figure shows how the new helper variables from Def.
9.4 are used. Each variable represents a specific information associated with one single
allocation job. s j represents the delegation switch, i.e., s1 for all allocation jobs created
from D∗

s1,t , s2 for all allocation jobs created from D∗
s2,t , and so on. d j,t represents the

delegation template itself, together with −→m j and F j,t . The remote set R j,t is defined in
the next section. It basically contains all remote switches that could be allocated to this
allocation job (in this time slot).

D*s1,t D*s5,t D*… 

ds1,1 ds1,… ds1,2 … ds5,1 ds5,14 ds5,… 

Set of 

selected 

delegation 

templates 

(output of 

DT-Select) 

= j1 = j2 = j34 = j... = j... = j... 

Delegation switch this 

allocation job is 

associated with (static) 

Delegation template this allocation job is 

associated with (mj is an aggregation match 

and Fj,t is a conflict-free cover set)   

Jt 

Single delegation 

template that is 

part of D*s5,t 

Allocation job (1:1 

derived from delegation 

template  ds1,1)  

Set of all 

allocation 

jobs in 

time slot t 

Remote set, contains all 

available remote switch 

options for j in this time 

slot (i.e., s7, s8 and s13 

could be used as a 

remote switch) 

= j20 

sj = s5  Rj,t = { s7, s8, s13 } dj,t = ds5,1 

Information associated 

with delegation template 

from j20 

 

Information associated with  

allocation job j20 

< mj , Fj,t ={ f1,f2, ..., f7 } > 

Figure 9.5: Allocation jobs and additional terminology
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9.5.1.2 Remote Set

One important helper construct is the so-called remote set. This set defines the switches
that can be used as a remote switch for one specific allocation job. More precisely: it
contains all potential remote switches for allocation job j in time slot t.

Definition 9.5: Remote Set

A remote set R j,t ⊂ S is a set of possible remote switches for allocation job j. It
only includes a remote switch r when i) there is a link between s j and r, ii) r has
enough free flow table capacity at time slot t to store the flow rules associated
with allocation job j and iii) the link between s j and r has enough free bandwidth
at time slot t to handle the redirected traffic (in both directions). These three
conditions are modeled as follows:

R j,t := {sB} ∪
⋃

r∈S

{r}

�

�

�

�

�

�

�

�

�

�

�

�

γs j→r = γr→s j
= 1 and

cTable

r
− uTable

r,t ≥ uTable

j,t and

cLink

r→s j
− uLink

r→s j ,t
≥ uLink

j,t and

cLink

s j→r
− uLink

s j→r,t ≥ uLink

j,t

(9.20)

sB represents a backup switch with unlimited capacity and no restrictions but
disproportionately high cost. This is required to ensure that the problem remains
feasible if there is no optimal solution because of insufficient spare capacity.

s j is the delegation switch associated with the allocation job (static). r is the index
variable that iterates over all possible remote switches. γs j→r is a monitored parameter
set to 1 if a link exists between switch s j and r. uTable

j,t and uLink

j,t represent the “utilization
demand” of job j with respect to flow table capacity and link bandwidth – these variables
are defined similar to the utilization coefficients in DT-Select. cTable

r
− uTable

r,t is the free flow
table capacity of switch r. cLink

s j→r
− uLink

s j→r,t and cLink

r→s j
− uLink

r→s j ,t
represent the available free

link bandwidth between switch s j and r (in both directions).

If one of the conditions from Eq. (9.20) is not fulfilled, switch r cannot be used as a
remote switch in time slot t and will thus not be included in the remote set. Please note
that the backup switch (sB) is always included in the remote set and this switch is never
constrained by flow table or link capacities. If an allocation job is allocated to the backup
switch, the problem without the backup switch is infeasible. However, this might only
affect a small portion of the allocation jobs which is why the backup switch concept is
used here (otherwise, the solver would return infeasible and all allocations – which can
still be valuable – are lost).
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9.5.2 Decision Variables

Decision variables in RS-Alloc have to allocate a remote switch to each allocation job.
Each job has to be allocated to exactly one remote switch r ∈ R j,t . The remote set R j,t is
used here because this set contains all possible allocation options (switches not in the
remote set cannot be used because they are not connected to the delegation switch or
they cannot provide the necessary resources).

Definition 9.6: Decision Variables for RS-Alloc

Remote switch allocation for allocation job j in time slot t is based on the following
decision variables:

Yj։r,t :=

(

1, switch r ∈ R j,t is allocated to job j in time slot t

0, switch r ∈ R j,t is not allocated to job j in time slot t
(9.21)

These decision variables are defined for each allocation job j ∈ Jt in time slot t and
all remote switch options in the remote set R j,t . Undefined variables are interpreted
as 0. The arrow symbol (։) is used to emphasize the allocation process: j։ r is
read as “r is allocated to j” or “ j is using remote switch r”).

Recall that each allocation job represents one delegation template d j,t and each delegation
template belongs to one delegation switch s j. Yj։r,t = 0 says switch r is not used for this
allocation job. Yj։r,t = 1 says switch r is used. The latter means flow rules from F j,t (the
conflict-free cover set of d j,t) are relocated to remote switch r and all packets matched by
aggregation match −→m j are forwarded from s j to r (and back from r to s j after they were
processed). This allocation will “demand” two kinds of resources: flow table capacity of
the remote switch r and bandwidth of the link between s j and r. It is discussed in the
next section how this utilization demand can be calculated.

9.5.3 Utilization Coefficients

The utilization coefficients u j,t represent the “to be fulfilled utilization demand”3 of
allocation job j in time slot t. The term utilization demand fits well here because the
allocation problem has to find remote switches so that i) the switch provides enough free
flow table capacity for all relocated flow rules from delegation template d j,t and ii) the
link to the remote switch has enough free bandwidth for all packets that are relocated.

3The same notation as in DT-Select is used here (instead of a new “demand” notation) to be consistent
with the terminology from the DT-Select problem and to avoid ambiguity with the notation of delegation
templates (which use variable d)
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Both can be interpreted as a demand that has to be fulfilled. Given the RS-Alloc decision
variables, this can be modeled with three simple constraints (for one remote switch r):

uTable

r,t +
∑

j∈Jt

uTable

j,t Yj։r,t ≤ cTable

r
(9.22)

uLink

s j→r,t +
∑

j∈Jt

uLink

j,t Yj։r,t ≤ cLink

s j→r
(9.23)

uLink

r→s j ,t
+
∑

j∈Jt

uLink

j,t Yj։r,t ≤ cLink

r→s j
(9.24)

Set Jt contains all allocation jobs for time slot t. Decision variable Yj։r,t is only set to 1 if
remote switch r is allocated to job j in time slot t. So the sum in all three equations will
only consider those jobs that have remote switch r allocated to them.

Eq. (9.22) now ensures that the normal utilization of the remote switch (uTable

r,t ) together
with all relocated flow rules (

∑

uTable

j,t for all jobs that are allocated to r) is below the
capacity of the remote switch (cTable

r
). The two other equations follow the exact same logic

and ensure that there is enough free link bandwidth. Eq. (9.23) covers the relocated
packets sent from delegation switch s j to remote switch r and Eq. (9.24) covers the
return path from remote to delegation switch.

It can be seen that two utilization coefficients are required, one for flow table utilization
(uTable

j,t ) and one for link bandwidth (uLink

j,t ). These can be calculated in a similar way as the
utilization coefficients for DT-Select (see Sec. 9.4.3). The first coefficient, uTable

j,t , depends
on the selected aggregation priority. If aggregation rules are installed with highest priority
(priohighest

agg
), all flow rules in the conflict-free cover set of d j,t are relocated. The cover

set is here given as F j,t . If aggregation rules are installed with lowest priority (priolowest
agg

),
only new flow rules that were installed after the beginning of time slot t are relocated.

uTable

j,t :=











∑

f ∈F j,t

λa
f ,t , if priohighest

agg

∑

f ∈F j,t

λi
f ,t , if priolowest

agg

(9.25)

And the second coefficient, uLink

j,t , is defined as the number of bits relocated from the
delegation switch to the remote switch (and vice versa). This is also calculated from the
conflict-free cover set F j,t:
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uLink

j,t =
∑

f ∈F j,t

δ f ,t (9.26)

Recall that λa
f ,t is only set to 1 if flow rule f is active in time slot t and λi

f ,t is only set to
1 if flow rule f is installed in time slot t. δ f ,t represents the number of bits processed by
flow rule f in time slot t.

9.5.4 Cost Coefficients

The cost coefficients w j։r,t represent the costs to be paid for allocating remote switch
r to allocation job j in time slot t. This is equivalent to the costs that arise when flow
rules of delegation template d j,t are relocate to remote switch r. Basic idea is it to assign
each allocation job a remote switch in such a way that the overall cost of all allocations
is minimized:

minimize :
∑

j∈Jt

w j։r,t (9.27)

In the allocation problem, there are four important cost factors to be considered: i)
free flow table capacity of the remote switch (wTable

j։r,t), ii) free link bandwidth between
delegation and remote switch (wLink

j։r,t), iii) amount of control messages required (wCtrl

j։r,t),
and iv) static costs associated with remote switches (wStatic

r,t ). All four cost factors are
defined and explained in the following sections.

9.5.4.1 Flow Table Capacity

This cost factor takes the available free flow table capacity at the remote switch into
account. It basically takes the capacity of the remote switch at time slot t and subtracts
the additional rules that would be added by allocation job j (number of remote rules
in F j,t that are relocated). The idea is that remote switches with higher spare capacity
should be preferred.

wTable

j։r,t := −
�

cTable

r
− uTable

r,t − uTable

j,t

�

(9.28)

The available flow table capacity of the remote switch in time slot t is given as cTable

r
−uTable

r,t .
The additional rules are given as uTable

j,t . And because the allocation problem is modeled as
a minimization problem, the cost factor is multiplied by −1.
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9.5.4.2 Link Capacity

This cost factor takes the available free link bandwidth between delegation switch s j

and remote switch r into account. This link is burdened with all packets matched by
the aggregation match −→m j. First, the packets are sent from s j to remote switch r, i.e.,
utilization uLink

r→s j ,t
increases. And after processing in the remote switch, the packets are

sent back by the remote rules, i.e., utilization uLink

s j→r,t increases. The idea is to prefer links
with higher spare bandwidth.

wLink

j։r,t := −
�

min
�

cLink

s j→r
− uLink

s j→r,t , cLink

r→s j
− uLink

r→s j ,t

�

− uLink

j,t

�

(9.29)

cLink

s j→r
− uLink

s j→r,t is the free link bandwidth between s j and r in time slot t and cLink

r→s j
− uLink

r→s j ,t

is the free link bandwidth between r and s j. Here, the minimum bandwidth of the two
involved links is considered as the effective bandwidth (both directions are burdened
with the same amount of additional packets). uLink

j,t is the amount of bits associated with
the allocation job. Multiplication by −1 is required because the allocation problem is
modeled as a minimization problem.

9.5.4.3 Control Messages

This cost factor considers the amount of control messages necessary if remote switch r is
allocated to allocation job j in time slot t. In case of the single period problem (only a
single time slot is considered), this is equal to the amount of flow rules that are installed
in the remote switch:

wCtrl

j։r,t := uTable

j,t (9.30)

This seems to be different from the above cost factors because it is independent from
r, i.e., the factor is the same for all remote switches. However, this is only true in the
single period case. In the multi period case, the allocation of the remote switch might
change over time. Then, it makes a big difference whether consecutive time slots have
the same allocation (no additional control messages required) or not (flow rules have
to be relocated to another remote switch which results in additional control messages).
This is what makes the multi period problem difficult.

9.5.4.4 Static Cost

The last cost factor reflects that different switches can have different characteristics, e.g.,
supported hardware features. It is also possible that different roles for switches exist such
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as a top-of-rack switch, core switch or edge switch. To include this into the allocation
problem, a static cost factor wStatic

r,t is defined that only depends on the switch. This is used
here primarily to distinguish between regular hardware switches (switches in S) and the
backup switch (sB) that was introduced above in Sec. 9.5.1.2. Because the optimization
problem should never use the backup switch (if feasible), this switch is assigned a very
high static cost (10000 represents a high value that was found empirically with respect
to all the other parameters):

wStatic

r,t :=

(

10000, if r = sB

0, otherwise (r ∈ S)
(9.31)

Note that this example does not depend on time slot t. In theory, however, it could
also be possible to change static values based on the current time (not considered here
further). The static cost coefficients can also be used to exclude arbitrary switches from
the allocation problem – just as done above for the backup switch – by setting its static
cost to a high value. In the remainder of this work, all switches in S are considered equal
with a static cost coefficient of 0.

9.5.5 Single Period Problem

Based on the variables introduced in the previous sections, the single period RA-Alloc
problem can be defined as an integer linear program in the following way (single period
means only a single time slot is considered):
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Definition 9.7: Single Period Remote Switch Allocation Problem (RS-Alloc)

Inputs: Set of switches S, set of allocation jobs Jt derived from DT-Select output,
flow table capacity cTable

r
for each switch, flow table utilization uTable

r,t for each switch,
link capacity cLink

s j→r
for each link, utilization coefficients u j,t , overhead coefficients

w j։r,t , and remote sets R j,t for each j ∈ Jt

Output: A set of selected and allocated delegation templates D∗∗
t

for time slot t

Problem Formulation:

min
Yj։r,t

∑

j∈Jt

∑

r∈R j,t

w j։r,t Yj։r,t (9.32)

s.t.
∑

r∈R j,t

Yj։r,t = 1 ∀
j∈Jt

(9.33)

uTable

r,t +
∑

j∈Jt

uTable

j,t Yj։r,t ≤ cTable

r ∀
r∈S

(see 9.22)

uLink

s j→r,t +
∑

j∈Jt

uLink

j,t Yj։r,t ≤ cLink

s j→r ∀
r∈S

(see 9.23)

uLink

r→s j ,t
+
∑

j∈Jt

uLink

j,t Yj։r,t ≤ cLink

r→s j
∀

r∈S
(see 9.24)

Yj։r,t ∈ {0, 1} ∀
r∈S

∀
j∈Jt

(9.34)

This is a well-defined capacitated facility location problem (facility location is modeled as
a constraint) and solving the above ILP will result in an optimal solution for the RS-Alloc
problem. Eq. (9.33) ensures that each delegation template (customer) j ∈ J is served by
exactly one remote switch (facility). The utilization constraints were already explained in
Sec. 9.5.3. Eq. (9.22) ensures that the flow table capacity of the remote switches is not
exceeded. Eq. (9.23) and (9.24) ensures that the link between delegation and remote
switch has enough free bandwidth. And Eq. (9.34) enforces binary decision variables.

The objective function uses a placeholder variable w j։r,t to represent a mixture of the
cost coefficients, i.e., this is a multi-objective formulation. This mixture consists of four
parts explained in detail in Sec. 9.5.4:

w j։r,t :=ωTable

RSA
wTable

j։r,t +ω
Ctrl

RSA
wCtrl

j։r,t +ω
Link

RSA
wLink

j։r,t +ω
Static

RSA
wStatic

r,t (9.35)
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The non-negative ω
RSA

-weights balance the different cost coefficients against each other.
To this regard, it is important to keep in mind that the values for wTable

j։r,t and wLink

j։r,t , for
example, can be several orders of magnitude apart (if not normalized). The optimal
allocation D∗∗

t
– referred to as the set of selected and allocated delegation templates – is

calculated as follows (the Y ∗
j։r,t variables represent the optimal decision variables after

the problem is solved):

D∗∗
t

:=
¦


d j,t , r
� �

� Y ∗
j։r,t = 1

©

(9.36)

Each tuple



d j,t , r
�

contains one delegation template and the allocated remote switch.
Note that RS-Alloc assigns remote switches r to allocation jobs. The output however,
contains delegation templates (there is a 1:1 mapping between delegation templates and
allocation jobs). This is done because only the RS-Alloc problem works with allocation
jobs, all other building blocks work with delegation templates.

Coefficients  

Remote Switch Allocation (RS-Alloc) 3.2 
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 wj34↠s5,t

 

… 

Monitored 
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Figure 9.6: Single Period Remote Switch Allocation

Fig. 9.6 visualizes the single period RS-Alloc problem and shows how the different coeffi-
cients are used. The utilization coefficients u j,t are shown in blue. The cost coefficients
are shown in orange. Monitored parameters are shown in green.
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9.5.6 Multi Period Problem

The following updates the single period problem from Sec. 9.5.5 to a multi period
problem. The only difference is that the constraints are specified for each time slot and
the objective function minimizes over the sum of all time slots.

Definition 9.8: Multi Period Remote Switch Allocation Problem

Inputs: A set of switches S, set of consecutive time slots T , set of allocation jobs
Jt derived from the output of DT-Select for each t ∈ T , flow table capacity cTable

r
for

each switch, link capacity cLink

s j→r
for each link, utilization coefficients u j,t , overhead

coefficients w j։r,t , and remote sets R j,t for each j ∈ Jt and each t ∈ T

Output: Sets of selected and allocated delegation templates D∗∗
t

for each t ∈ T

Problem Formulation:

min
Yj։r,t

∑

t∈T

∑

j∈Jt

∑

r∈R j,t

w j։r,t Yj։r,t (9.37)

s.t.
∑

r∈R j,t

Yj։r,t = 1 ∀
t∈T

∀
j∈Jt

(9.38)

uTable

r,t +
∑

j∈Jt

uTable

j,t Yj։r,t ≤ cTable

r ∀
t∈T

∀
r∈S

(9.39)

uLink

s j→r,t +
∑

j∈Jt

uLink

j,t Yj։r,t ≤ cLink

s j→r ∀
t∈T

∀
r∈S

(9.40)

uLink

r→s j ,t
+
∑

j∈Jt

uLink

j,t Yj։r,t ≤ cLink

r→s j
∀

t∈T
∀

r∈S
(9.41)

Yj։r,t ∈ {0, 1} ∀
t∈T

∀
r∈S

∀
j∈Jt

(9.42)

The structure of the multi period problem is very similar to the single period one. In fact,
the multi period problem could be decomposed into |T | individual single period problems
that are solved in parallel (one problem instance per time slot), if the cost coefficients
w j։r,t could be calculated independently. However, the next section explains why this is
not possible.

9.5.7 Problem Analysis for RS-Alloc

Main challenge with respect to the multi period RS-Alloc problem is that the allocation
can change between time slots which introduces quadratic complexity for wCtrl

j։r,t . Recall
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that this cost coefficient considers the amount of control messages necessary if remote
switch r is allocated to allocation job j in time slot t (see Sec. 9.5.4.3).

Assume an allocation job with the same aggregation match (−→m j) and delegation switch
(s j) is defined for two time slots t1 and t2. Further assume there are two remote switch
options r1 and r2 in both time slots (R j,t1

= R j,t2
= {r1, r2}). If remote switch r1 (or r2) is

allocated to j in both time slots, the amount of flow rules that are installed and removed
in the process of flow delegation is minimal and can be (for example) derived from d j,t1

and d j,t2
. But what if r1 is chosen for time slot t1 and r2 for t2? In this case, the flow

rules are removed from r1 at the end of the first time slot and installed again in r2, which
is obviously more expensive in terms of control messages than using the same remote
switch allocation for both time slots.

It can be concluded that wCtrl

j։r,t has to be calculated in such a way that keeping the same
remote switch allocation over multiple time slots is rewarded and changing the allocation
between two consecutive time slots is penalized. Let us first assume a simple case where
the control message cost is set to 0 if the allocation is not changed. This could be modeled
as follows:

wCtrl

j։r,t :=

(

uTable

j,t ,
�

1− Yj։r,t−1

�

Yj։r,t = 1

0, otherwise

wCtrl

j։r,t will now evaluate to the amount of to be installed flow rules if remote switch r

was not allocated to allocation job j in the previous time slot. In case r was already
allocated, the cost is set to 0. It is easy to see that this requires a quadratic expression in
the objective function:

min
Yj։r,t

∑

t∈T

∑

j∈Jt

∑

r∈R j,t

Yj։r,t

�

ωTable

RSA
wTable

j։r,t +ω
Link

RSA
wLink

j։r,t +ω
Static

RSA
wStatic

r,t

�

(9.43)

+
∑

t∈T

∑

j∈Jt

∑

r∈R j,t

�

1− Yj։r,t−1

�

Yj։r,t ω
Ctrl

RSA
wCtrl

j։r,t

Note that the other cost coefficients introduced in Sec. 9.5.4 do not suffer from this
problem, i.e., these parts remain linear (first line of the equation).
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9.6 Conclusion

This chapter shows how the delegation algorithm can be realized as a two-step optimiza-
tion approach and introduces the two relevant sub-problems: DT-Select for delegation
template selection and RS-Alloc for remote switch allocation.

• DT-Select is modeled as a 0-1 knapsack problem and calculated individually for each
switch. It takes a set of delegation templates Ds,t provided by the rule aggregation
scheme and returns a set of selected delegation templates D∗

s,t ⊆ Ds,t . DT-Select
ensures that i) the utilization of the flow table of switch s does not exceed its
capacity and ii) overhead caused by flow delegation is minimized.

• RS-Alloc is modeled as a capacitated facility location problem and calculated
globally, once per time slot. It takes the output from DT-Select and allocates a
remote switch for each selected delegation template based on the available free
flow table capacity and link bandwidth in the network. It then returns a set of
selected and allocated delegation templates D∗∗

t
which are provided to the detour

procedure.

The chapter presents a single period and a multi period problem formulation for both
sub-problems. It also explains how the relevant variables – decision variables, utilization
coefficients and cost coefficients – are defined and calculated. In addition, the problems
of the multi period formulations are discussed. For the multi period DT-Select problem,
it is shown that the coefficients introduce non-linear dependencies. And for the multi
period RS-Alloc problem it is shown that the control message cost coefficients lead to an
objective function with a high number of quadratic terms. These problems are addressed
by the multi period algorithms for DT-Select and RS-Alloc in the following two chapters.
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This chapter introduces three algorithms for multi period delegation template selection
(DT-Select). The first two algorithms (Select-Opt and Select-CopyFirst) use discrete
optimization and exploit the flexibility of ILP modeling and the efficiency of modern ILP
solvers. This is complemented with a simpler greedy algorithm for comparison.

• Select-Opt in Sec. 10.2 uses two key concepts to approach the multi period DT-
Select problem. The problem is first linearized by pre-calculating all possible
combinations of decisions for a fixed (small) amount of time slots which are then
used in a multi-dimensional multiple-choice knapsack formulation. And a periodic
optimization approach is introduced to solve the problem periodically with a limited
future horizon of L time slots.

• Select-CopyFirst in Sec. 10.3 is a heuristic for Select-Opt that also uses the pe-
riodic approach but is based on a two-dimensional knapsack formulation which
significantly reduces the problem space. The key idea is to only make a decision for
the first time slot (select delegation template or not) and then “copy” this decision
for all following time slots.

183
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• Select-Greedy in Sec. 10.4 finally introduces a simple greedy heuristic for Select-
CopyFirst which is very fast (below 0.25ms in all investigated cases) but less flexible
and also less performant.

10.1 Problem

The multi period DT-Select problem is defined in Sec. 9.4.6. It can be written as an
integer linear program in the following way:

Recap: Multi Period Delegation Template Selection (see Def. 9.3)

Inputs: A single switch s ∈ S, flow table capacity cTable

s
, flow table utilization uTable

s,t ,
set of consecutive time slots T , set of delegation templates Ds,t for each time slot,
utilization coefficients ud,t and overhead coefficients wd,t for each d ∈ Ds,t and
each time slot t ∈ T

Output: Set of selected delegation templates D∗
s,t ⊆ Ds,t for each time slot t ∈ T

Problem Formulation:

min
Xd,t

∑

d∈Ds,t

∑

t∈T

Xd,t ∗wd,t (see 9.15)

s.t. uTable

s,t −
∑

d∈Ds,t

Xd,t ∗ ud,t ≤ cTable

s ∀
t∈T

(see 9.16)

Xd,t ∈ {0, 1} ∀
d∈Ds,t

∀
t∈T

(see 9.17)

The problem associated with the above formulation was discussed in detail in Sec. 9.4.7.
In a nutshell: the coefficients cannot be calculated independently from the decisions
in different time slots which leads to a non-linear problem. This is true for both, the
utilization coefficients uTable

d,t which are required for the constraints in Eq. (9.16) and the
cost coefficients wd,t which are required in the objective function in Eq. (9.15). The
utilization coefficients, for example, are calculated according to the following (non-linear)
formula:

uTable

d,t :=
�
∑

f ∈Fd,t

λi
f ,t Xd,t

�

+

� t1∑

q=t−1

∑

f ∈Fd,q

λi
f ,q ∗λ

a
f ,t ∗

t
∏

v=q

Xd,v

�

(see 9.18)

The first (linear) part of this formula counts the flow rules installed in time slot t if
template d is selected. The second (non-linear) part keeps track of flow rules installed in
previous time slots. q and v are iterator variables representing time slots.
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10.2 DT-Select with Assignments (Select-Opt)

This section presents a periodic algorithm for the multi period DT-Select problem called
Select-Opt. It is based on the multi-dimensional multiple-choice knapsack problem which
is a generalization of the 0-1 knapsack problem. It uses the suffix “Opt” because an
optimal result is returned for each individual optimization period (optimality is not
guaranteed across different optimization periods).

10.2.1 General Idea

Select-Opt addresses the problem outlined in Sec. 10.1 with two concepts: assignment-
based decision variables and periodic optimization.

Assignment-based decision variables use the fact that coefficients can be pre-calculated
for all possible combinations of decisions if the amount of decisions is small (< 10).
DT-Select makes one decision per time slot t ∈ T for each delegation template d ∈ Ds,t

– which is whether template d is selected in time slot t or not. Instead of having a
non-linear term such as uTable

d,t = ... ∗
∏tm

t=t1
Xd,t (a polynomial of degree |T |), the 2|T |

possible combinations of all uTable

d,t values are pre-calculated – called assignments in this

work – and combined with 2|T | new decision variables that will select exactly one of the
pre-calculated assignments. This concept is explained in more detail below.

The use of assignment-based decision variables linearizes the problem but the input size
grows exponentially with |T | which makes it impracticable for larger problems (already
1000 different assignments per delegation template for |T | = 10). In practice, however, it
is usually not required to solve the problem for a large amount of time slots1. Instead, a
practical algorithm for DT-Select can make use of periodic optimization. With periodic
optimization, the problem is solved periodically once per time slot and in each of these
optimization periods, a limited future horizon of L time slots is considered together with
the status from the last optimization period. This is also explained in more detail below.

10.2.1.1 Assignment-based Decision Variables

The main idea behind assignments is it to calculate coefficients for all combinations of
decisions for a set of fixed time slots T = {t1, . . . , tm} and define a new problem based on
assignments. Instead of using one decision variable per time slot (Xd,t), decisions are
defined over a set of assignments where each element in the set represents one concrete
“assignment” of Xd,t1

, . . . , Xd,tm
. The concept becomes clear when looking at an example.

1This can be useful in certain cases, though. For example if the problem has to be executed on historical
data to generate training input for machine learning.
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Assume a single delegation template d and T = {t1, t2}, i.e., the problem has to consider
two time slots. In the original problem (Def. 9.3), this case is modeled with two binary
decision variables Xd,t1

and Xd,t2
, each of which can either take the value 0 or the value

1 . The decisions are represented here as a small rectangles ( 0 and 1 ) to support
readability. 0 means the template is not selected in time slot t and 1 means the template
is selected. So in total, there are four different “outcomes” when considering two time
slots:

Xd,t1
= 0 and Xd,t2

= 0 ⇒ case 0 0 ⇒ assignment A1

Xd,t1
= 0 and Xd,t2

= 1 ⇒ case 0 1 ⇒ assignment A2

Xd,t1
= 1 and Xd,t2

= 0 ⇒ case 1 0 ⇒ assignment A3

Xd,t1
= 1 and Xd,t2

= 1 ⇒ case 1 1 ⇒ assignment A4

Each of the four different outcomes above represents one assignment. In the first as-
signment (A1), delegation template d is not selected in both time slots. The second
assignment (A2) represents the case where the template is selected in the second time
slot only. The two remaining assignments (A3 and A4) represent the cases where the
template is only selected in the first time slot and in both time slots. In general, there are
2m different assignments with respect to whether a delegation template d is selected or
not when m time slots are considered. A formal definition of assignments and assignment
sets is given below.

Definition 10.1: Assignment Set

An assignment set Ad,T for a single delegation template d ∈ Ds and a set of
consecutive time slots T = {t1, . . . , tm} is defined as:

Ad,T :=
¦

Ai =< a1, . . . , am >
�

� at = i2[t], i = 1, . . . , 2m
©

(10.1)

i is a counting variable and i2[t] represents the t-th position of the bit-
representation of the counting variable. So the set Ad,T has 2m entries and each entry
Ai is called an assignment. Each assignment consists of m values at ∈ { 0 , 1 }.
And each value at represent a fixed decision for one time slot in T (d is selected or
not).

An example with 4 time slot is shown in Fig. 10.1. This is the same scenario that was
already used in Fig. 9.4.
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Figure 10.1: Example for assignments

The left part shows one set of delegation templates for switch s (note that there are
four sets in this example, Ds,t1

to Ds,t4
that are not explicitly shown). The middle part

shows the 2|T | = 16 assignments for one of the delegation templates. The first assignment
represents the case where the template is not selected in all four time slots ( 0 0 0 0 ).
The second assignment represents the case where the template is only selected in the last
time slot ( 0 0 0 1 ). And so on.

More importantly, the blue part on the right side shows that it is now possible to calculate
coefficients for each assignment without dependencies – here on the example of utilization
coefficients. Consider the fourth time slot t4 of the fourth assignment A4. The utilization
coefficient for this time slot is given as ud,t4,A4

, i.e., the utilization of delegation template

d in the fourth time slot of assignment A4 :=



a1 = 0 , a2 = 0 , a3 = 1 , a4 = 1
�

.

Because all “decisions” within this assignment are fixed, the utilization coefficients can
be calculated with Eq. (9.18) where the decision variables Xd,t1

, . . . , Xd,t4
are replaced

with the values in the assignment, i.e., with a1, . . . , a4. ud,t4,A4
can therefore be calculated

as follows:
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ud,t4,A2
=

 

∑

f ∈Fd,t4

λi
f ,t4

a4

!

+

 

t1∑

q=t3

∑

f ∈Fd,q

�

λi
f ,q ∗λ

a
f ,t4
∗

t4∏

v=q

av

�!

=

 

∑

f ∈Fd,t4

λi
f ,t4

a4

!

+

 

∑

f ∈Fd,t3

λi
f ,t3
∗λa

f ,t4
∗

t4∏

v=t3

av

!

+

 

∑

f ∈Fd,t2

λi
f ,t2
∗λa

f ,t4
∗

t4∏

v=t2

av

!

+

 

∑

f ∈Fd,t1

λi
f ,t1
∗λa

f ,t4
∗

t4∏

v=t2

av

!

=

�
∑

f ∈Fd,t4

λi
f ,t4

a4

�

+

�
∑

f ∈Fd,t3

λi
f ,t3
λa

f ,t4
a3a4

�

+

�
∑

f ∈Fd,t2

λi
f ,t2
λa

f ,t4
a2a3a4

�

+

�
∑

f ∈Fd,t1

λi
f ,t1
λa

f ,t4
a1a2a3a4

�

=

�
∑

f ∈Fd,t4

λi
f ,t4

1
�

+

�
∑

f ∈Fd,t3

λi
f ,t3
λa

f ,t4
1 1

�

+

�
∑

f ∈Fd,t2

λi
f ,t2
λa

f ,t4
0 1 1

�

+

�
∑

f ∈Fd,t1

λi
f ,t1
λa

f ,t4
0 0 1 1

�

=
∑

f ∈Fd,t4

λi
f ,t4
+
∑

f ∈Fd,t3

λi
f ,t3
λa

f ,t4

This is the expected result: The first sum represents the flow rules installed in time slot
t4 and the the second sum represents all flow rules installed in time slot t3 that are still
active in time slot t4. This way, it is possible to pre-calculate all coefficients for all time
slots in all assignments.

Important remark: Coefficients for different delegation templates can be calculated
independently from each other because the delegation templates are disjoint by definition.
This is important, because dependencies between the delegation templates would increase
the total amount of available assignments to 2|T |∗|D| instead of |D| ∗ 2|T |.

10.2.1.2 Periodic Optimization

Periodic optimization means the optimization is executed periodically in the beginning
of each time slot. The individual executions are called optimization periods. In each
optimization period, a limited future horizon of L time slots is considered together with
the status from the last optimization period (referred to as history Hs). L is called look
ahead factor.
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Figure 10.2: Periodic optimization



190 10 Multi Period Delegation Template Selection

The periodic optimization approach is explained in Fig. 10.2. The example shows the
execution for a single switch s (DT-Select is executed individually per switch) and the
look ahead factor is set to L = 2, i.e., two time slots have to be considered. The three
boxes in the left labeled as 1©, 2© and 3© are three subsequent optimization periods.
The plot within each box represents the flow table utilization over time of switch s. This
switch suffers from a flow table capacity bottleneck when the utilization (uTable

s,t ) is above
the dashed black line (capacity cTable

s
).

In box 1© of the example, T is given as {t1, t2} and the optimization is executed in the
beginning of time slot t1 which is indicated here with a small black arrow. Note that uTable

s,t1

represents the utilization at the end of time slot t1. This means the optimization works
with anticipated values, not with actually monitored values. Monitored values are only
available for t0, i.e., for the history. The periodic approach now takes two inputs which
are shown in the right of the figure:

a© Delegation templates Ds,t from the rule aggregation scheme for all time slots that are
included in the look ahead. In this case (L = 2), delegation templates for two time
slots are required: Ds,t1

and Ds,t2
. Note that the ingress port scheme described in Sec.

5.2.2.3 will always return the “same” delegation templates, i.e., the aggregation
match of d1 ∈ Ds,t1

and d1 ∈ Ds,t2
are identical. Only the conflict-free cover sets

Fd1,t1
and Fd1,t2

will be different if new flow rules are installed or existing flow rules
are removed between the end of t1 and the end of t2. The information from Ds,t1

and Ds,t2
are used to create an assignment set Ad,T = {A1, . . . , A4} with four entries.

This set represents all possible decisions for the considered time slots:

– A1: The delegation template is not selected at all ( 0 0 )

– A2: The delegation template is selected only in time slot t2 ( 0 1 )

– A3: The delegation template is selected only in time slot t1 ( 1 0 )

– A3: The delegation template is selected in both time slots ( 1 1 )

b© Information about the history of the last optimization period Hs. This is required
because the utilization and cost coefficients are calculated differently if a delegation
template was selected in the last optimization period. Take assignment A3 as
an example with a1 = 1 and a2 = 0 . If the template was selected in the last
optimization period, the utilization for the first time slot t1 would include all
flow rules installed in the previous time slot (from the last period) that are still
active. The same is true for A4. To consider this in the optimization, two pieces of
information are required: the selection decision for the given delegation template
in the last optimization period (HX

d
) and the set of flow rules that are relocated at

the end of the last optimization period (H F
d
).
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Note that the information in Ds,t1
and Ds,t2

depend on information about the future, i.e.,
this part will work with predicted monitoring information in a real system. After the
first optimization period, subsets D∗

s,T = {D
∗
s,t1

, D∗
s,t2
} represent the optimal selections for

both time slots. This is the input for the multi period remote switch allocation (RS-Alloc)
problem which calculates optimal allocations for each selected delegation template.

In addition, the history for this switch (Hs) is updated with the optimal result of the
first time slot (D∗

s,t1
). Note that the results for subsequent time slots (here: D∗

s,t2
) are

still required as input for the multi period RS-Alloc problem. The history, however, will
only include the decision that is actually implemented with help of the detour procedure
which is only the first time slot. If the algorithm is not executed in every time slot, this
could of course be changed to include more than only the first time slot, but this is not
considered here (the necessary changes would be minimal, though). In the context of
delegation template selection, the history information in Hs is defined as follows:

Definition 10.2: History of a DT-Select optimization period

Assume the current optimization period starts with t1 and t0 is the time slot prior
to t1. The history Hs of a DT-Select optimization period for switch s is then
defined as a tuple




HX
d

, H F
d

�

for each delegation template d ∈ Ds where HX
d
∈ {0, 1}

represents the decision whether delegation template d was selected in time slot t0

and H F
d
⊆ Fs,t0

is a set of all flow rules that are active and relocated to the remote
switch at the end of time slot t0.

∀
d∈Ds

: HX
d

:=

(

1, d ∈ D∗
s,t0

0, d /∈ D∗
s,t0

(10.2)

∀
d∈Ds

: H F
d
:=
¦

f
�

� f ∈ Fs,t0
and f is relocated

©

(10.3)

Eq. (10.3) can be calculated recursively between optimization periods using the
following formula and H F

d
[Period=0]

:= ; (each period starts with t1 as first time slot):

H F
d

[Period=n]

:=









¦

f ∈ Fs,t0

�

� λi
f ,t0
= 1

©

∪
¦

f ∈ H F
d

[Period=n− 1]

�

� λa
f ,t0
= 1

©

, HX
d

[Period=n− 1]

= 1

;, HX
d

[Period=n− 1]

= 0
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Periodic optimization continues as long as there is a flow table capacity bottleneck. This
approach is well-suited for flow delegation where the situation in the network changes
continuously (reflected by changes in the conflict-free cover sets Fd,t). And because L

can be kept small – it is shown later that L = 3 works best for many scenarios –, the
problem of exponentially growing input length that comes with the assignment concept
is avoided.

Furthermore, the approach could also be used to calculate the DT-Select problem for
historical data by iterating over a large set of time slots T in small chunks of size L.
In this case, no prediction is necessary because perfect future knowledge is available.
However, this will not necessarily return the overall optimal result because sub optimal
selections from previous optimization periods cannot be corrected. Instead, optimality is
only ensured within the individual optimization periods. Nevertheless, it allows solving
DT-Select iteratively for arbitrary sizes of T which is not possible otherwise.

10.2.2 Decision Variables

Decision variables for Select-Opt are defined on assignments instead of time slots:

Definition 10.3: Decision Variables for Select-Opt

Given a delegation template d and an assignment set Ad,T , the decision variables

for Select-Opt are defined as:

Xd,A :=

(

1, Assignment A is the selected assignment

0, Assignment A is not the selected assignment
(10.4)

These decision variables are defined for each delegation template d ∈ Ds and all
assignments in Ad,T . Undefined variables are interpreted as 0.

The idea is to select exactly one out of the available 2|T | assignments in the assignment
set Ad,T instead of selecting individual delegation templates for all time slots in T . This
can be achieved with the following simple constraint:

∑

A∈Ad,T

Xd,A = 1 ∀
d∈Ds

(10.5)

As a consequence, the utilization and cost coefficients have to be remodeled to work with
assignments and the periodic optimization approach. It is explained in the following two
sections how this is done.
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10.2.3 Utilization Coefficients

Recall from Sec. 9.4.3 that the utilization coefficients for a single delegation template
d ∈ Ds,t represent the amount of flow rules that will be relocated to the remote switch
in time slot t. This is basically the “weight” of a delegation template in the knapsack
terminology. Further recall that the utilization constraint in the multi period DT-Select
problem is explicitly defined per time slot (see Sec. 9.4.6). The idea is to select subsets
D∗

s,t for each t ∈ T so that the current utilization minus the sum of the utilization of the
selected templates is smaller than the flow table capacity of the delegation switch in that
time slot:

uTable

s,t −
∑

d∈D∗s,t

uTable

d,t ≤ cTable

s ∀
t∈T

(10.6)

So it is not sufficient to calculate the utilization per assignment A∈ Ad,T because each
A represents the sum of all time slots in T , i.e., information about the utilization at the
individual time slots would be lost. Instead, utilization coefficients for each time slot in
assignment A are required so that it is possible to remodel the constraint from above into
the following assignment-based constraint:

uTable

s,t −
∑

d∈D∗s

∑

A∈A∗
d,T

uTable

d,t, A
≤ cTable

s ∀
t∈T

(10.7)

It is easy to see that this assignment-based formula is equivalent to Eq. (10.6) because
A∗

d,T can only contain a single item according to the constraint in Eq. (11.7) – which is
the selected optimal assignment. And it was already explained above in Sec. 10.2.1.1
how the utilization coefficients uTable

d,t, A
are calculated:

uTable

d,t, A
:=

 

∑

f ∈Fd,t

λi
f ,t at

!

+

 

t1∑

q=t−1

∑

f ∈Fd,q

λi
f ,q ∗λ

a
f ,t ∗

t
∏

v=q

av

!

(10.8)

A=



a1, . . . , at , . . . , am

�

is one of the 2|T | assignments in Ad,T for delegation template d.
And variable at ∈ { 0 , 1 } represents the selection decision in time slot t, i.e., this is not
a decision variable but a static input for this specific assignment set (created according
to Def. 10.1). So the first part of the formula counts the flow rules installed in time slot
t if at is set to 1 . The second part is required to keep track of flow rules installed in
previous time slots. Assume the assignment set is A=




a1 = 0 , a2 = 0 , a3 = 1 , a4 = 1
�

(taken from the example in Sec. 10.2.1.1) and the utilization coefficient for time slot t4

has to be calculated. This includes all flow rules installed in t4 but also the flow rules
installed in t3 that are still active. This is what

∑t1

q=t−1

∑

f ∈Fd,q
λi

f ,q ∗ λ
a
f ,t ∗

∏t

v=q
av =
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∑

f ∈Fd,t4
λi

f ,t4
+
∑

f ∈Fd,t3
λi

f ,t3
λa

f ,t4
calculates (t−1 = t3 in this example, q and v are iterator

variables representing time slots).

What is left is to include the history of the last optimization period (see Def. 10.2).
Note that the above formula makes no difference between the case where delegation
template d is selected in the last optimization period and the case where d is not selected.
However, this makes a difference. Consider the following example where the first value
in grey represents the decision of the last optimization period (the history) and the four
subsequent values belong to an assignment set A=




a1 = 1 , a2 = 1 , a3 = 0 , a4 = 1
�

.

t0 t1 t2 t3 t4

↓ ↓ ↓ ↓ ↓
1 1 1 0 1

HX
d

a1 a2 a3 a4

In this case, Eq. (10.8) will not return the correct utilization because there might be flow
rules that were relocated in one of the last optimization periods which are still active.
Consider a flow rule f installed in time slot t0 (λi

f ,t0
= 1) that is still active in time slot t1

(λa
f ,t1
= 1). This flow rule was relocated because the delegation template was selected in

the last optimization period (HX
d
= 1 ). However, this rule is currently not covered by Eq.

(10.8). The following extended formula for uTable

d,t, A
corrects this:

uTable

d,t, A
:=

 

∑

f ∈Fd,t

λi
f ,t at

!

+

 

t1∑

q=t−1

∑

f ∈Fd,q

λi
f ,q ∗λ

a
f ,t ∗

t
∏

v=q

av

!

(10.9)

+



HX
d
∗

t1∏

q=t

aq ∗
∑

f ∈H F
d

λa
f ,t





This equation is structured in three parts (the brackets). The first two parts prior to
HX

d
are identical to Eq. (10.8). The new third part with HX

d
takes care of flow rules

from previous optimization periods. Note that this part is only included if HX
d
= 1, i.e.,

the delegation template was selected in the previous period. In this case, all relocated
flow rules from the previous period (given as set H F

d
) that are still active in time slot

t (λa
f ,t = 1) are also considered for this utilization coefficient.

∏t1

q=t
aq is required to

make sure that the history is still relevant. Consider the fourth time slot from the above
example. Because a3 = 0 , all relocated flow rules were removed from the remote switch
at the end of time slot t2. So from the beginning of time slot t3, the history is not relevant
any more.



10.2 DT-Select with Assignments (Select-Opt) 195

To see that the extended formula works as expected, consider the example from before
with T = {t1, . . . , t4} and assignment A =




a1 = 1 , a2 = 1 , a3 = 0 , a4 = 1
�

. For
this assignment, the four utilization coefficients ud,t1,A, . . . , ud,t4,A are calculated with Eq.
(10.9) as:

ud,t1, A :=
∑

f ∈Fd,t1

λi
f ,t1
+
∑

f ∈H F
d

λa
f ,t1

ud,t2, A :=
∑

f ∈Fd,t2

λi
f ,t2
+
∑

f ∈Fd,t2

λi
f ,t1
λa

f ,t2
+
∑

f ∈H F
d

λa
f ,t2

ud,t3, A := 0

ud,t4, A :=
∑

f ∈Fd,t4

λi
f ,t4

And this is indeed the expected result:

• For ud,t1, A in time slot t1, all newly installed flow rules are relocated (
∑

f ∈Fd,t1
λi

f ,t1
)

and pre-existing relocated flow rules from previous optimization periods (the rules
in H F

d
) are also considered if they are still active in time slot t1 (

∑

f ∈H F
d
λa

f ,t1
).

• For ud,t2, A in time slot t2, all newly installed flow rules are relocated (
∑

f ∈Fd,t2
λi

f ,t2
).

And because a1 is also set to 1 , the second part of the formula will count all flow
rules installed in time slot t1 that are still active in time slot t2 (

∑

f ∈Fd,t2
λi

f ,t1
λa

f ,t2
).

In addition, all pre-existing relocated flow rules from previous optimization periods
are considered as well if they are still active in time slot t2 (

∑

f ∈H F
d
λa

f ,t2
).

• For ud,t3, A in time slot t3, the utilization is 0 because the delegation template is not
selected. Note that the history part – third part in Eq. (10.9) – is not considered
because of a3 = 0 . This is the reason why

∏t1

q=t
aq is required and why the lower

index starts with t and not with t−1 as it is in the second part of Eq. (10.9).

• For ud,t4, A in time slot t4, only the newly installed flow rules in time slot t4 are
considered (

∑

f ∈Fd,t4
λi

f ,t4
). The second and the third part of Eq. (10.9) are not

considered because of a3 = 0 .

10.2.4 Cost Coefficients

Recall from Sec. 9.4.4 that the cost coefficients represent the overhead associated
with selecting a delegation template. This overhead consists of the amount of required
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aggregation and backflow rules (wTable

d,t ), the amount of relocated packets (wLink

d,t) and the
amount of required control messages (wCtrl

d,t). Further recall these three coefficients are
used in the objective function to minimize the cost of the optimal template selections for
all t ∈ T :

min
Xd,t

∑

t∈T

∑

d∈Ds,t

Xd,t

�

ωTable

DTS
wTable

d,t +ω
Ctrl

DTS
wCtrl

d,t +ω
Link

DTS
wLink

d,t

�

(see 9.15)

This is a multi-objective formulation and the non-negative ω
DTS

-weights balance the
different cost coefficients against each other. The following re-models this into an
objective function for Select-Opt that works with assignments and periodic optimization:

min
Xd,A

∑

d∈Ds

∑

A∈Ad,T

Xd,A ∗
�

ωTable

DTS
wTable

d, A
+ωCtrl

DTS
wCtrl

d, A
+ωLink

DTS
wLink

d, A

�

(10.10)

First, the new objective function uses the decision variables Xd,A for Select-Opt from Def.
10.3. The outer sum iterates over all delegation templates and the inner sum iterates over
all assignments in the assignment set Ad,T of the currently selected delegation template.
And finally all three cost coefficients are defined per assignment, i.e., independently of
individual time slots (which is different from the utilization coefficients discussed in the
previous section!). This is possible here because the minimization in Eq. (9.15) is done
over all time slots in T which maps perfectly to the definition of an assignment which
represents all time slots in T .

Before the individual cost coefficients for Select-Opt are explained in more detail, it is
important to have a quick look at how these coefficients are calculated in general. The
first problem is that a cost coefficient for time slot t may depend on all previous time
slots in the considered assignment and the history of the last optimization period (see
Def. 10.2). This is very similar to the utilization coefficients and can be addressed with
similar modeling techniques.

The second problem is more difficult. Unlike the utilization coefficients, the calculation
of some cost coefficients can be different based on different preconditions (wLink

d, A
suffers

from this and there are other possible cost coefficients not discussed here with the same
problem). Consider an example with T = {t1, . . . , t5} and assignment A=




a1 = 1 , a2 =

0 , a3 = 0 , a4 = 1 , a5 = 1
�

. Now assume the control message overhead cost has to
be calculated for this assignment. To do so, four different cases 1© to 4© have to be
considered:

1© With a2 set to 0 and a3 also set to 0 , no control messages are required in time
slot t3 and the cost is 0.
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2© With a3 set to 0 and a4 set to 1 , a new aggregation rule is required in t4 and all
newly installed flow rules in t4 are relocated.

3© With a1 set to 1 and a2 set to 0 , all flow rules relocated in t1 have to be moved
back to the delegation switch. The history of the last optimization period has to be
considered as well here.

4© With a4 set to 1 and a5 set to 1 , only the newly installed flow rules in t5 have to
be considered. The aggregation rule is already installed.

Such differentiations cannot be modeled with one simple formula as it was possible for
the utilization coefficients. To account for this, the cost coefficients are modeled with
four different helper variables that map to the four cases above:























w
0 0
d,t,A := Cost if at = 0 and at+1

= 0 case 1©

w
0 1
d,t,A := Cost if at = 0 and at+1

= 1 case 2©

w
1 0
d,t,A := Cost if at = 1 and at+1

= 1 case 3©

w
1 1
d,t,A := Cost if at = 1 and at+1

= 1 case 4©























(10.11)

Each case models one of four possible transitions. at represents the value of the assign-
ment in time slot t. at+1

represents the value of the assignment in time slot t+1. at0
is set

to HX
d

(the decision from the previous optimization period) or to 0 if HX
d

is undefined.
What is important here is that the calculated cost is always associated with the second
time slot (t+1) while time slot t is considered as a precondition. The first case above
could be read as “cost for not selecting the delegation template if it was not selected in
the previous time slot”. To emphasise this, the first upper index is shown in grey. Using
this, it is now possible to determine the cost for assignment A in the following way:

wd,A :=
tm−1∑

t=t0

(1− at) ∗ (1− at+1
) ∗w

0 0
d,t,A + (1− at) ∗ at+1

∗w
0 1
d,t,A (10.12)

+ at ∗ (1− at+1
) ∗w

1 0
d,t,A + at ∗ at+1

∗w
1 1
d,t,A

The formula iterates over all time slots in T and looks at two time slots per iteration.
Note that the iteration starts at t0 and terminates at tm−1 which is important. In each
iteration, the four cases discussed above are modeled with the helper variables from Eq.
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(10.11). The four boxes are added to emphasize this and to support readability. The
first box models case 1© where two consecutive values in the assignment are set to 0 0 .
The second box models case 2© where two consecutive values in the assignment are set
to 0 1 . And so on. For A=




a1 = 1 , a2 = 0 , a3 = 1 , a4 = 1
�

and HX
d
= 1 , the four

iterations look like this (this also illustrates why the calculated cost is always associated
with the second time slot of each iteration):

t0 t1 t1 t2 t2 t3 t3 t4

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
1 1 ⇒ 1 0 ⇒ 0 1 ⇒ 1 1

HX
d

a1 a1 a2 a2 a3 a3 a4

The beauty of this notation is that all cost coefficients can be displayed compactly with a
set of helper variables according to Eq. (10.11) and the formula defined in Eq. (10.12)
– as it is done now in the following sub-sections where the three cost coefficients for
Select-Opt are defined.

10.2.4.1 Rule Overhead

The rule overhead cost coefficients wTable

d, A
depend on the number of installed aggregation

and backflow rules in the delegation switch. In this work, only the aggregation rules are
considered while backflow rules are pre-installed in every switch (see Sec. 9.4.4.1). The
translation to Select-Opt in this case is therefore very simple:



















w
0 0 Table

d,t, A
:= 0 case 1©

w
0 1 Table

d,t, A
:= 1 case 2©

w
1 0 Table

d,t, A
:= 0 case 3©

w
1 1 Table

d,t, A
:= 1 case 4©



















(10.13)

The only relevant cases are case 2© where a new delegation template is selected in time
slot t+1 and case 4© where an already selected delegation template is selected again in
time slot t+1. Cost coefficients wTable

d, A
for an assignment A are then calculated as follows:

wTable

d, A
:=

tm−1∑

t=t0

(1− at) ∗ at+1
∗w

0 1 Table

d,t, A
+ at ∗ at+1

∗w
1 1 Table

d,t, A
(10.14)
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=

tm−1∑

t=t0

(1− at) ∗ at+1
+ at ∗ at+1

10.2.4.2 Link Overhead

The link overhead cost coefficients wLink

d, A
take the amount of relocated packets into account.

These are the packets matched by the aggregation rule that have to be sent to the
remote switch which is additional overhead for the infrastructure. For Select-Opt, these
coefficients are calculated as follows:











































w
0 0 Link

d,t, A
:= 0 case 1©

w
0 1 Link

d,t, A
:=

∑

f ∈Fd,t

δ f ,tλ
i
f ,t case 2©

w
1 0 Link

d,t, A
:= 0 case 3©

w
1 1 Link

d,t, A
:=

�
∑

f ∈Fd,t

δ f ,t λ
i
f ,t

�

+

� t1∑

q=t−1

∑

f ∈Fd,q

δ f ,t λ
i
f ,q λ

a
f ,t

t
∏

v=q

av

�

+

�

HX
d

t1∏

q=t

aq

∑

f ∈H F
d

δ f ,t λ
a
f ,t

� case 4©











































(10.15)

In case 1© and case 3©, the link overhead is 0 because the delegation template is not
selected (recall that the cost is always defined for the second time slot of each iteration).
In case 2©, the template is selected in t+1 and was not selected in the previous time slot
t. This means only the newly installed flow rules are relocated to the remote switch
which in turn means that only these rules contribute to the link overhead. Case 4© is
more complex because the delegation template was already selected in the previous time
slot. The given formula has the exact same structure as Eq. (10.9). The first part (first
bracket) counts the bits/s for all flow rules installed in time slot t because at is set to 1 .
The second part is required to keep track of flow rules installed in previous time slots –
which is relevant here because the previous time slot is set to 1 (because this is case 4©).
The third part with HX

d
includes the flow rules from previous optimization periods. This
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is only required if HX
d

and all time slots between t and t1 are set to 1 (modeled with
∏t1

q=t
aq). The cost coefficient wLink

d, A
for an assignment A is then calculated as follows:

wLink

d, A
:=

tm−1∑

t=t0

(1− at) ∗ at+1
∗w

0 1 Link

d,t, A
+ at ∗ at+1

∗w
1 1 Link

d,t, A
(10.16)

10.2.4.3 Control Message Overhead

The control message overhead cost coefficients wCtrl

d, A
consider the amount of control

messages necessary if delegation template d is selected in time slot t. The different cases
for this cost coefficient were already discussed in the introduction to this section. The
formal representation is as follows:















































w
0 0 Ctrl

d,t, A
:= 0 case 1©

w
0 1 Ctrl

d,t, A
:= mt + 1+

∑

f ∈Fd,t

λi
f ,t case 2©

w
1 0 Ctrl

d,t, A
:=

1+ 2 ∗
�� t1∑

q=t−1

∑

f ∈Fd,q

λi
f ,q λ

a
f ,t

t
∏

v=q

av

�

+

�

HX
d

t1∏

q=t

aq

∑

f ∈H F
d

λa
f ,t

�� case 3©

w
1 1 Ctrl

d,t, A
:= mt +

∑

f ∈Fd,t

λi
f ,t case 4©















































(10.17)

mt is a penalty factor to ensure that it is more expensive to add (case 2©) or keep (case
4©) a delegation template selected if there is currently no flow table capacity bottleneck.

To achieve this, the penalty factor is defined as follows:

mt :=

(

> 0, if uTable

s,t > cTable

s

0, otherwise
(10.18)

Without such a penalty factor, the cost to “stop” flow delegation (which requires case 3©:
not selecting a delegation template that was previously selected) is high if the number
of relocated flows is high. This can lead to the effect that some delegation templates
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are selected longer than necessary. The cost coefficient wCtrl

d, A
for an assignment A is then

calculated as follows:

wCtrl

d, A
:=

tm−1∑

t=t0

(1− at) ∗ at+1
∗w

0 1 Ctrl

d,t, A
(10.19)

+ at ∗ (1− at+1
) ∗w

1 0 Ctrl

d,t, A
+ at ∗ at+1

∗w
1 1 Ctrl

d,t, A

10.2.5 Problem Formulation for Select-Opt

Based on the variables introduced in the previous sections, the Select-Opt problem (which
is a multi period DT-Select problem with assignments that can be used with periodic
optimization) is defined as an integer linear program in the following way:

Definition 10.4: Select-Opt Problem

Inputs: A single switch s ∈ S, flow table capacity cTable

s
, flow table utilization uTable

s,t ,
set of consecutive time slots T , set of delegation templates Ds,t for each time slot,
set of assignments Ad,T for each d ∈ Ds, pre-processed utilization coefficients ud,t,A

for each d ∈ Ds,t , t ∈ T , and A∈ Ad,T , pre-processed overhead coefficients wd,A for
each d ∈ Ds and A∈ Ad,T

Output: Set of selected delegation templates D∗
s,t ⊆ Ds,t for each time slot t ∈ T

Problem Formulation:

min
Xd,A

∑

d∈Ds

∑

A∈Ad,T

Xd,A ∗
�

ωTable

DTS
wTable

d, A
+ωCtrl

DTS
wCtrl

d, A
+ωLink

DTS
wLink

d, A

�

(10.20)

s.t. uTable

s,t −
∑

d∈Ds

∑

A∈Ad,T

Xd,A ∗ uTable

d,t, A
≤ cTable

s ∀
t∈T

(10.21)

∑

A∈Ad,T

Xd,A = 1 ∀
d∈Ds

(10.22)

Xd,A ∈ {0, 1} ∀
d∈Ds

∀
A∈Ad,T

(10.23)

This is an instance of the multi-dimensional multiple-choice knapsack problem. There
are n different mutually disjoint classes Ad,T = {A1, . . . , An} called assignment sets. Each
delegation template d ∈ Ds defines one assignment set and each of these sets contains
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exactly 2m items called assignments. For each assignment A ∈ Ad,T and each time slot
t ∈ T , there is a utilization coefficient uTable

d,t, A
. And there is a cost coefficient wd,A for each

assignment A ∈ Ad,T . Goal is to choose exactly one item out of each assignment set so
that the costs are minimized while the utilization is below the capacity in all time slots.
Eq. (10.20) ensures that the objective function is minimized. Eq. (10.21) models the
capacity constraint. This is done for each time slot separately, i.e., there are m = |T |
capacity constraints. The multiple-choice constraints in Eq. (10.22) makes sure that
exactly one out of 2m assignments is chosen. And Eq. (10.23) ensures that the decision
variables are binary.

Technically, this falls into the same complexity class as the multi period DT-Select prob-
lem introduced in Def. 9.3 (both are NP-hard). Select-Opt, however, is much more
difficult to solve in practice. This is because i) the input length as well as the number
of decision variables grow exponentially with m and ii) the multidimensional multiple
choice knapsack problem is one of the hardest members of the knapsack family [HLS10;
Sho+13]. An empirical study from Han et. al [HLS10] on hard multidimensional multiple
choice knapsack problems has found that this is especially true if the weights and profits
(utilization and costs) are strongly correlated and the profits (costs) across the different
classes (assignment sets) are similar – both is true for Select-Opt.

This is why the above problem should only be used with periodic optimization where
the input length is restricted by look ahead factor L. The following section presents the
Select-Opt algorithm that uses the Select-Opt problem in such a way.

10.2.6 Algorithm for Select-Opt

The Select-Opt algorithm is shown in Alg. 10. Goal, input and output are defined
analogously to the Select-Opt problem from Def. 10.4. In addition, the periodic approach
described in Sec. 10.2.1.2 is applied. The algorithm is structured into four steps that are
executed once per optimization period. In the first step, the assignment sets Ad,T for each
time slot and each delegation template of switch s are created, together with all required
coefficients (lines 7-18).

In the second step, the Select-Opt problem is solved for the current optimization period
based on the inputs and the calculations from step 1 (lines 20-23). If the problem is
feasible, this returns a set of selected delegation templates for each time slot t ∈ T that
is shown here as D∗

s,T . Note that the problem can get infeasible because Select-Opt only
considers L time slots of the current optimization period. This happens if the flow table
utilization is close to the capacity and develops unfavourably. Consider the following
example. Assume a switch with cTable

s
= 100 and a look ahead factor of L = 2. Further

assume that the expected utilization is 85 flow rules for t1, 96 for t2, 98 for t3 and 150
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Algorithm 10: Select-Opt Algorithm
Data: Same input as Select-Opt problem from Def. 10.4, Look ahead factor L

Result: For each optimization period: set of selected delegation templates
D∗

s,t ⊆ Ds,t for each time slot t ∈ T with |T |= L

1 Function select_opt_algorithm():

2 for d ∈ Ds do

3 HX
d
← 0 H F

d
← ;

4 end

5 if uTable

s,t > cTable

s
or
∑

d∈Ds
HX

d
> 0 then

6 for T =
�

t1, . . . , tm

	

do
/* Step 1: Initialize assignments and calculate coefficients */

7 for d ∈ Ds do

8 Ad,T ← {}
9 for i ∈ {1, . . . , 2|T |} do

10 A← new_assignment() // Def. 10.1

11 for t ∈ T do
/* i2 represents integer value i in binary form */

12 A[t] = at ← i2[t]

13 uTable

d,t, A
← utilization_coefficient(d, t, A) // Sec. 10.2.3

14 end

15 Ad,T ← Ad,T ∪ {A}
16 end

17 wd,A← cost_coefficient(d, A) // Sec. 10.2.4

18 end

19 end

/* Step 2: solve Select-Opt (will return a set of selected delegation

templates D∗
s,t for each time slot in T) */

20 D∗
s,T =

�

D∗
s,t1

, . . . , D∗
s,tm

	

← solve_select_opt() // Def. 10.4

21 if D∗
s,T = ; then

22 D∗
s,T =

�

D∗
s,t1

, . . . , D∗
s,tm

	

← fallback()

23 end

/* Step 3: update history and wait for next optimization period */

24 for d ∈ Ds,t do

25




HX
d

, H F
d

�

← update_history() // Def. 10.2

26 end

27 wait until next optimization period and start again from line 5
28 end

29 end
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for t4. Because the utilization peak in t4 is not “visible” (L is too small), the algorithm
decides that no delegation template is selected in t1. In the next optimization period,
the utilization has increased to 96 and the expected utilization in t4 is included into
the calculation. The problem is now infeasible, if more than 4 delegation templates are
required to make sure that the utilization does not exceed the capacity in t4 because the
capacity does only allow 4 more aggregation rules and each newly selected template
requires an aggregation rule.

There are two options to cope with this problem, defining a safety margin (i.e., artificially
reduce cTable

s
) or install a fallback option to make sure that the problem becomes feasible

again in future optimization periods. Because the first option introduces static overhead
and the problem occurs rarely for look ahead values ≥ 3, the second options is applied
here (an empty result set in line 21 shows the problem was infeasible). Select-Greedy
introduced in Sec. 10.4 is a good candidate for the fallback algorithm. The last step
(lines 24-27) after calculation of D∗

s,T is updating the history and waiting for the next
optimization period.

10.2.7 Summary

The Select-Opt algorithm calculates the multi period DT-Select problem using assignments
to avoid that coefficients cannot be calculated independently from the decisions in
different time slots and periodic optimization to avoid exponentially growing input
length. The number of decision variables in the underlying ILP for a single optimization
period is n ∗ 2L where n is the number of delegation templates and L is the look ahead
factor. This allows for solving times in the millisecond range if L is sufficiently small.
However, Select-Opt still requires costly pre-calculations (create assignment sets with 2L

elements each, create n∗2L decision variables, calculate n∗ L ∗2L utilization coefficients).

10.3 DT-Select with Restricted Assignments

(Select-CopyFirst)

This sections proposes a heuristic for Select-Opt that also uses periodic optimization with
look ahead factor L but avoids the overhead of looking at all 2L possible assignments
per delegation template. The idea is to use a different problem formulation that only
makes a decision for the first time slot in T which significantly reduces the problem size.
However, there are still multiple time slots per optimization period. To address this, the
heuristic simply “copies” the decision of the first time slot to all subsequent time slots.
This is why the approach is called Select-CopyFirst.
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10.3.1 General Idea

Similar to Select-Opt, optimization is done periodically with a look ahead factor of L,
i.e., L time slots t1, . . . , tm (with m = L) are considered in each optimization period. The
key difference is that delegation template selection is restricted to the first time slot t1

while the remaining time slots t2, . . . , tm copy the decision from t1. In other words: if
delegation template d is selected in t1, this template is selected for all t ∈ T (and vice
versa if the template is not selected). The utilization and cost coefficients, however, are
still calculated for all time slots, i.e., the utilization constraints must be fulfilled in all
time slots and the cost is also minimized over all time slots.

Primary benefit of this restriction is the problem can be modeled as a 0-1 knapsack
problem with two independent binary decision variables. There are only four cases for
the selection of one delegation template d based on the history of the last optimization
period (given as




HX
d

, H F
d

�

, see Def. 10.2) if selection decisions are restricted to t1:























HX
d
= 0 and Xd,t1

= 0 case 1©

HX
d
= 0 and Xd,t1

= 1 case 2©

HX
d
= 1 and Xd,t1

= 0 case 3©

HX
d
= 1 and Xd,t1

= 1 case 4©























(10.24)

If HX
d

is set to 0 (template d was not selected in the previous optimization period), the
decision variable for time slot t1 (called Xd,t1

in Eq. (10.24)) can either be 0 or 1 . And
the same two options exist for HX

d
= 1 . Note that the value of HX

d
is displayed in grey

because this value represents the history of the last optimization period. This is very
similar to the Select-Opt problem with a look ahead factor of L = 1 with two important
differences: the amount of choices in Select-CopyFirst is always limited to 4 and the
coefficients can be calculated much easier.

10.3.2 Decision Variables

Decision variables for Select-CopyFirst are defined based on the value of HX
d

:
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Definition 10.5: Decision Variables for Select-CopyFirst

Given a single delegation template d and the delegation template selection decision
HX

d
from the previous optimization period, the decision variables for Select-

CopyFirst are defined as:

X
0

d
:=

(

1, if HX
d
= 0 and template d is selected in time slot t1

0, if HX
d
= 0 and template d is not selected in time slot t1

and

X
1

d
:=

(

1, if HX
d
= 1 and template d is selected in time slot t1

0, if HX
d
= 1 and template d is not selected in time slot t1

These decision variables are defined for each delegation template d ∈ Ds. Undefined
variables are interpreted as 0.

Note that these decision variables do not have a time slot index because they are by
design only associated with the first time slot in T .

10.3.3 Utilization Coefficients

The utilization coefficients for a single delegation template d ∈ Ds,t represent the amount
of flow rules that will be relocated to the remote switch in time slot t (“weight” in the
knapsack terminology). For Select-CopyFirst, four different utilization coefficient are
required, one for each case in Eq. (10.24). These are defined as follows:






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



u
0 0
d,t := 0 case 1©

u
0 1
d,t :=

t
∑

q=t1

∑

Fd,q

λi
f ,t case 2©

u
1 0
d,t := 0 case 3©

u
1 1
d,t :=

t
∑

q=t1

�∑

Fd,q
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f ,t +

∑

f ∈H F
d

λa
f ,t
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case 4©
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










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






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


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These coefficients are much easier to calculate than the utilization coefficients from
Select-Opt (see Sec. 10.2.3). In case 1© and case 3©, the delegation template is not
selected in time slot t1 and the utilization is 0. Note that the delegation template is not
selected for all time slots because of the decision from the first time slot ( 0 ).
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Similarly, in case 2© and 4©, the delegation template is selected in all time slots. In the
former case, the delegation template was not selected in the previous optimization period

(HX
d
= 0 ), i.e., utilization coefficient u

0 1
d,t must only consider newly installed flow rules

between time slot t1 and time slot t (
∑t

q=t1

∑

Fd,q
λi

f ,t). In the latter case, the delegation

template was selected in the previous optimization period (HX
d
= 1 ) and the flow rules

in H F
d

that are still active in time slot t must be considered as well.

Using the above coefficients, it is possible to model the utilization constraint for Select-
CopyFirst as follows:

uTable

s,t −
∑

d∈Ds

�

(1− HX
d
) ∗ X

0
d
∗ u

0 1
d,t + HX

d
∗ X

1
d
∗ u

1 1
d,t

�

≤ cTable

s ∀
t∈T

(10.26)

10.3.4 Cost Coefficients

The cost coefficients represent the overhead associated with selecting a delegation tem-
plate. This overhead consists of the amount of required aggregation and backflow rules
(wTable

d,t ), the amount of relocated bits (wLink

d,t) and the amount of required control messages
(wCtrl

d,t).

10.3.4.1 Rule Overhead

The rule overhead cost coefficients depend on the number of installed aggregation and
backflow rules in the delegation switch. For Select-CopyFirst, these coefficients are
calculated as follows:
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(10.27)

10.3.4.2 Link Overhead

The link overhead cost coefficients take the amount of relocated packets into account.
These are the packets matched by the aggregation rule that have to be sent to the remote
switch which is additional overhead for the infrastructure. For Select-CopyFirst, these
coefficients are calculated as follows:
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10.3.4.3 Control Message Overhead

The control message overhead cost coefficients consider the amount of control messages
necessary if delegation template d is selected in time slot t. For Select-CopyFirst, these
coefficients are calculated as follows:
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10.3.5 Problem Formulation for Select-CopyFirst

Based on the variables introduced in the previous sections, the Select-CopyFirst problem
(which is restricted version of the Select-Opt problem) is defined as an integer linear
program in the following way:
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Definition 10.6: Select-CopyFirst Problem

Inputs: A single switch s ∈ S, flow table capacity cTable

s
, flow table utilization uTable

s,t ,
set of consecutive time slots T , pre-processed utilization coefficients ud,t for each
d ∈ Ds and t ∈ T , pre-processed cost coefficients wd for each d ∈ Ds

Output: Set of selected delegation templates D∗
s,t ⊆ Ds,t for each time slot t ∈ T

Problem Formulation:

min
X

0

d
,X

1

d

∑

d∈Ds

�

(1− HX
d
) ∗ X

0
d
∗
�

w
0 1 Table

d
+ w

0 1 Link

d
+ w

0 1 Ctrl

d

�

(10.30)

+ HX
d
∗ X

1
d
∗
�

w
1 1 Link

d
+ w

1 1 Ctrl

d

�

+ HX
d
∗ (1− X

1
d
) ∗w

1 0 Ctrl

d

�

(10.31)

s.t. uTable

s,t −
∑

d∈Ds

�

(1− HX
d
) ∗ X

0
d
∗ u

0 1
d,t

+ HX
d
∗ X

1
d
∗ u

1 1
d,t

�

≤ cTable

s ∀
t∈T

(10.32)

X
0

d
, X

1
d
∈ {0, 1} ∀

d∈Ds

(10.33)

This is a well-defined 0-1 knapsack formulation (more precisely, a two-dimensional

multiple-choice knapsack problem) with two independent decision variables X
0

d
and X

1
d

.

Independent means that either X
0

d
or X

1
d

are used based on the history of the previous
optimization period (HX

d
). This problem is much easier to solve compared to Select-Opt.

There are only n = |Ds| decision variables and 2∗n∗ L coefficient per optimization period.

10.3.6 Algorithm for Select-CopyFirst

The algorithm for Select-CopyFirst is identical to Alg. 10. Only difference is the coeffi-
cients in step 1 can be calculated more easily (as described above) and the optimization
problem is changed from Select-Opt to Select-CopyFirst.
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10.3.7 Summary

Select-CopyFirst is a heuristic for Select-Opt with a restricted solving space. The number
of decision variables in the ILP is reduced from n ∗ 2L to n per optimization period where
n is the number of delegation templates and L is the look ahead factor. The number of
coefficients is reduced to 2∗n∗ L. This allows for faster solving times and for much faster
model construction times.

10.4 DT-Select with Greedy Strategy (Select-Greedy)

This section proposes a heuristic for Select-CopyFirst that uses a greedy selection strategy.
This third algorithm is included here for two reasons. First, the previous algorithms
Select-Opt and Select-CopyFirst fail if the problem gets infeasible, e.g., if the look ahead
factor is too small. This requires a fallback solution that works with every scenario, i.e., is
guaranteed to be feasible. And secondly, a greedy approach is a good baseline to evaluate
the performance of the two other algorithms.

10.4.1 General Idea

Select-Greedy was first discussed in [BZ16]. This section presents an updated version of
that algorithm based on delegation templates, utilization coefficients, and cost coefficients
but the basic idea is still the same. Select-Greedy works very similar to Select-CopyFirst,
i.e., is executed periodically and the decision for the first time slot is “copied” to all other
time slots in T . As a result, the same coefficients can be used. For each optimization
period2 the algorithm distinguishes between two simple states:

(1) If the current flow table utilization uTable

s,t minus the utilization of all currently selected
delegation templates is above the capacity cTable

s
, additional delegation templates

are selected until the bottleneck is mitigated.

(2) And if uTable

s,t minus the utilization of all currently selected delegation templates is
below capacity cTable

s
, Select-Greedy tries to unselect delegation templates as long as

the capacity is not exceeded.

To include the costs, the delegation templates for both cases are sorted according to the
cost coefficients. This is a much simpler scheme compared to Select-CopyFirst because
the greedy algorithm can only take one of two actions: select or unselect. It will never
select and unselect delegation templates in the same optimization period – which is

2The iterations of Select-Greedy are also called optimization periods here for simplicity, despite the fact
that no real optimization takes place. This is easier because Def. 10.2 and the same notation as in
Select-Opt and Select-CopyFirst can be used.
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possible with the ILP-based algorithms if “switching” to another optimal selection leads
to smaller costs.

10.4.2 Utilization Coefficients

The utilization coefficients for Select-Greedy are calculated in the same way as the
utilization coefficients for Select-CopyFirst. However, it is not required to distinguish
between different coefficients because Select-Greedy only needs the utilization if a
previously unselected delegation template is selected or a selected delegation template is
unselected. So there is only a single choice based on whether the delegation template
was selected in the previous optimization period or not.

Algorithm 11: Utilization and cost coefficients for Select-Greedy

1 Function calculate_coefficients():

2 for t ∈ T do

3 for d ∈ Ds,t do

4 if HX
d
= 1 then

5 ud,t ← u
1 1
d,t

6 else

7 ud,t ← u
0 1
d,t

8 end

9 end

10 end

11 for d ∈ Ds do

12 if HX
d
= 1 then

13 wd ← ωTable

DTS
w

1 1 Table

d
+ωLink

DTS
w

1 1 Link

d
+ωCtrl

DTS
w

1 1 Ctrl

d

14 else

15 wd ← ωTable

DTS
w

0 1 Table

d
+ωLink

DTS
w

0 1 Link

d
+ωCtrl

DTS
w

0 1 Ctrl

d

16 end

17 end

18 end

The concrete calculations are shown in Alg. 11. If a delegation template d was selected
in the previous optimization period (HX

d
= 1), the value for ud,t is calculated according

to Eq. (10.25) case 4© which is u
1 1
d,t . And if the delegation template was not selected

(HX
d
= 0), the utilization is calculated according to Eq. (10.25) case 2© which is u

0 1
d,t .
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10.4.3 Cost Coefficients

The cost coefficients for Select-Greedy are also calculated in the exact same way as the
cost coefficients for Select-CopyFirst and will thus not be explained again in all details.
The concrete calculations are shown in Alg. 11.

If a delegation template d was selected in the previous optimization period (HX
d
= 1),

the cost is only relevant if the greedy algorithm should unselect the template. In this
case, the cost coefficients are used to prioritize templates with high costs (these should

be unselected first). This is w
1 1
d

, i.e., the cost to be expected if the delegation template
is selected again (= not unselected). And if the delegation template was not selected
(HX

d
= 0), the cost coefficients are used to prioritize templates with lowest cost (these

should be selected first). This is w
0 1
d

, i.e., the cost to be expected if the delegation
template is selected. The non-negativeω

DTS
-weights balance the different cost coefficients

against each other.

10.4.4 Algorithm for Select-Greedy

The details for Select-Greedy are given in Alg. 12. Goal, input and output are similar to
Select-CopyFirst. The inner structure, however, is different. The algorithm is structured
into five steps that are executed once per optimization period. In the first step (lines 6-7),
the algorithm is initialized with the selections of the last period based on HX

d
. This means

that, if no delegation templates are selected or unselected in the current optimization
period, all selections from the previous optimization period (D∗

s,t) are used again. This is
fundamentally different from the ILP-based approaches above where D∗

s,t is a direct result
of the respective optimization problem.

In the second step (lines 8-9) the algorithm explicitly calculates whether there is a
bottleneck and a new delegation template must be selected (∆ > 0) or whether already
selected delegation templates are unselected because the delegation switch has free flow
table capacity (∆ < 0). This is also different from Select-Opt and Select-CopyFirst where
bottleneck mitigation is modeled as a capacity constraint in the optimization problem
which is not possible here. Variables tmax and umax represent the time slot where the
maximum utilization occurred within the set of considered time slots T . This is how
the greedy algorithm accounts for the multi period nature of the problem. Delegation
templates are selected in such a way that the worst case situation across all considered
time slots is taken into account.

The third step is based on the value of ∆. In case 3a with ∆ > 0 (lines 11-16), the
algorithm only works with the delegation templates that are currently not selected, i.e..
with Ds,t \ D∗

s,t . These templates are sorted according to the cost coefficients so that the
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Algorithm 12: Select-Greedy
Data: Same input as Select-CopyFirst problem (Def. 10.6), Look ahead factor L

Result: For each optimization period: set of selected delegation templates
D∗

s,t ⊆ Ds,t for each time slot t ∈ T with |T |= L

1 Function select_greedy():

2 for d ∈ Ds do

3 HX
d
← 0 H F

d
← ;

4 end

5 if uTable

s,t > cTable

s
or
∑

d∈Ds
HX

d
> 0 then

/* Step 1: calculate coefficients and initiate D∗
s,t */

6 ud,t , wd ← calculate_coefficients() // Alg. 11

7 D∗
s,t ← {d | HX

d
= 1, d ∈ Ds,t}

/* Step 2: case differentiation based on utilization */

8 umax, tmax← maxt∈T

�


uTable

s,t , t
��

9 ∆ = umax − cTable

s
−
∑

d∈D∗s,t
ud,tmax

10 if ∆ > 0 then
/* Step 3a: select new delegation templates as required */

11 sort Ds,t \ D∗
s,t according to wd

12 for d ∈ Ds,t \ D∗
s,t do

13 if ∆− ud,tmax
> 0 then

14 D∗
s,t ← D∗

s,t ∪ {d} HX
d
← 1 ∆← ∆− ud,tmax

15 end

16 end

17 else
/* Step 3b: unselect as many delegation templates as possible */

18 sort D∗
s,t according to wd

19 for d ∈ D∗
s,t do

20 if ∆+ ud,tmax
< 0 then

21 D∗
s,t ← D∗

s,t \ {d} HX
d
← 0 ∆← ∆+ ud,tmax

22 end

23 end

24 end

/* Step 4: update history and continue periodic optimization */

25 for d ∈ Ds,t do

26




HX
d

, H F
d

�

← update_history() // Def. 10.2

27 end

28 wait until next optimization period and start again in line 5
29 end

30 end
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template with lowest cost is selected first. Selection continues until the utilization with
flow delegation is below the capacity. In case 3b with ∆ < 0 (lines 18-23), the algorithm
only works with delegation templates that are already selected, i.e., with D∗

s,t (note that
D∗

s,t was prepared in step 1 with data from the previous optimization period). These
templates are sorted according to the cost coefficients so that the template with highest
cost is selected first. The algorithm continues to unselect delegation templates as long as
the utilization is below the capacity.

Step 4 is again identical to the previous algorithms: the history variables are updated (in
this case only H F

d
because HX

d
was already updated in line 14 or 21) and the algorithm

continues processing in the next optimization period.

10.5 Conclusion

This chapter introduces three algorithms for the multi period DT-Select problem. All
three use the periodic approach introduced in Sec. 10.2.1.2.

• Select-Opt pre-calculates all possible combinations of decisions for a fixed (small)
amount of time slots (so-called assignments) and is based on a multi-dimensional
multiple-choice knapsack formulation.

• Select-CopyFirst is a heuristic for Select-Opt based on a two-dimensional knapsack
formulation which significantly reduces the problem space. The algorithm only
make a decision for the first time slot and then “copies” this decision for all following
time slots.

• Select-Greedy is a greedy heuristic for Select-CopyFirst that considers only two
simple states: above capacity (select new delegation templates) and below capacity
(unselect existing delegation templates).
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This chapter introduces an algorithm for multi period remote switch allocation. And
because only a single algorithm for remote switch allocation is discussed here, this
algorithm is simply called RS-Alloc. It uses a linear assignment-based knapsack problem
with pre-calculation of all possible remote switch allocations for each allocation job,
similar to the approach used in the last chapter.

The chapter is structured as follows. Sec. 11.1 summarizes the multi period RS-Alloc.
The proposed algorithm to address this problem is then discussed in Sec. 11.2. Sec. 11.3
presents a pre-processing step to reduce the number of considered allocation assignments
in order to improve scalability.

11.1 Problem

The multi period remote switch allocation problem can be written as an integer linear
program in the following way:

215
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Recap: Multi Period Remote Switch Allocation Problem (see Def. 9.8)

Inputs: A set of switches S, set of consecutive time slots T , set of allocation jobs
Jt derived from the output of DT-Select for each t ∈ T , flow table capacity cTable

r
for

each switch, link capacity cLink

s j→r
for each link, utilization coefficients u j,t , overhead

coefficients w j։r,t , and remote sets R j,t for each j ∈ Jt and each t ∈ T

Output: A set of selected and allocated delegation templates D∗∗
t

for each t ∈ T

Problem Formulation:

min
Yj։r,t

∑

t∈T

∑

j∈Jt

∑

r∈R j,t

w j։r,t Yj։r,t (see 9.37)

s.t.
∑

r∈R j,t

Yj։r,t = 1 ∀
t∈T

∀
j∈Jt

(see 9.38)

uTable

r,t +
∑

j∈Jt

uTable

j,t Yj։r,t ≤ cTable

r ∀
t∈T

∀
r∈S

(see 9.39)

uLink

s j→r,t +
∑

j∈Jt

uLink

j,t Yj։r,t ≤ cLink

s j→r ∀
t∈T

∀
r∈S

(see 9.40)

uLink

r→s j ,t
+
∑

j∈Jt

uLink

j,t Yj։r,t ≤ cLink

r→s j
∀

t∈T
∀

r∈S
(see 9.41)

Yj։r,t ∈ {0, 1} ∀
t∈T

∀
r∈S

∀
j∈Jt

(see 9.42 )

The challenge associated with the above formulation is that the allocation of a remote
switch to one delegation template d ∈ Ds can change between time slots (see Sec.
9.5.7). This results in quadratic complexity because of the control message overhead cost
coefficients wCtrl

j։r,t which are the most important coefficient in this context. A realistic
objective function for the above problem would look like this:

min
Yj։r,t

∑

t∈T

∑

j∈Jt

∑

r∈R j,t

Yj։r,t

�

ωTable

RSA
wTable

j։r,t +ω
Link

RSA
wLink

j։r,t +ω
Static

RSA
wStatic

r,t

�

(see 9.43)

+
∑

t∈T

∑

j∈Jt

∑

r∈R j,t

�

1− Yj։r,t−1

�

Yj։r,t ω
Ctrl

RSA
wCtrl

j։r,t

Eq. (9.43) requires |J | ∗ |T | ∗ |R| quadratic terms where |J | is the number of all allocation
jobs per time slot, |T | is the number of considered time slots and |R| is the number of
remote switch options for one allocation job. This is a scalability problem because |R|
and |J | can both be large, even if only a small number of time slots is considered.
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11.2 RS-Alloc with Assignments

RS-Alloc uses the same periodic optimization approach that was used for the multi-
period DT-Select algorithms. This means an optimal result is returned for each individual
optimization period but optimality is not guaranteed across different optimization periods.

11.2.1 General Idea

RS-Alloc translates the quadratic facility location problem shown above in Sec. 11.1 into
a linear assignment-based knapsack problem. The general idea is very similar to the
approach described in Sec. 10.2.1: RS-Alloc pre-calculates sets of all possible remote
switch allocations for each allocation job. Before it is explained how assignments and
periodic optimization work in the context of RS-Alloc, the next section first introduces
some additional terminology.

11.2.1.1 Additional Terminology

The definition of allocation jobs in Sec. see 9.16 only considers a single time slot. Recall
from that definition, that every job in set Jt represents one delegation template d j,t for
one delegation switch s j in time slot t. Delegation template d j,t consists of an aggregation
match −→m j and a conflict-free cover set F j,t .

Because of the ingress port scheme, there is a fixed set of n aggregation matches – one
per ingress port – which means that delegation templates with the same aggregation
match can and will be selected by DT-Select in different time slots. For RS-Alloc, it is
important to know whether the same delegation template (same aggregation match,
same delegation switch) is selected by DT-Select in multiple consecutive time slots. This
is expressed with a new construct called T j:

Definition 11.1: Set T j

T j ⊆ T is a set of consecutive time slot so that allocation job j is active in all time
slots in T j. Allocation job j is active in time slot t if Jt (see Def. 9.4) contains a
delegation template with aggregation match −→m j that is associated with delegation
switch s j.

The first time slot in T j is identical to the first time slot in T where a delegation template
d ∈ Ds is selected. And the same delegation template is also selected in all other time
slots in T j. This concept is illustrated in Fig. 11.1 with an example.
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Figure 11.1: Illustration of set T j

The example shows three time slots T = {t1, t2, t3} that are considered by DT-Select and
RS-Alloc. The result of DT-Select for all three time slots is shown in the top. It consists
of multiple sets of selected delegation templates (D∗

s,t). RS-Alloc takes these inputs and
creates one set of allocation jobs per time slot (Jt). The bottom of the figure shows the
Jt -sets in detail. There are two allocation jobs in each set ( j1 and j2 in t1 and j1 and

j3 in t2 and t3). The three small boxes next to j refer to the delegation switch (s j),

the delegation template (ds,t =

−→
m j, F j,t

�

), and the remote set (R j,t) associated with this
allocation job.

T j now indicates in which time slot allocation job j is active. Allocation job j1, for example,
is part of Jt1

, Jt2
and Jt3

, i.e. this job is active in T j1
= {t1, t2, t3}. Allocation job j2 is only

part of Jt1
, i.e., is active in T j2

= {t1}. And allocation job j3 is part of Jt2
and Jt3

, i.e.,
is active in T j2

= {t2, t3}. It is assumed here for simplicity that all time slots in T j are
consecutive. If the same delegation template is used again later (e.g., if j2 is used again
in time slot t3), there would be two different sets of T j.

Important: the time slots in T j use the same notation like before, i.e., t1 ∈ T j will be
referred to as the first time slot in T j and tm will be referred to as the last time slot in T j

(even if the first / last time slot in T j refers to a different time slot with respect to set T !).
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In addition to T j, a second helper construct is needed that collects all the different
allocation jobs for a set of time slots T (without duplicates):

Definition 11.2: Set JT

The set JT for a set of consecutive time slots T contains all allocation jobs that are
active in one of the time slots in T :

JT :=
⋃

t∈T

Jt (11.1)

Allocation jobs with the same delegation switch (s j) and aggregation match (−→m j)
that are active in multiple time slots in T are only added once.

11.2.1.2 Allocation Assignments

Instead of modeling the allocations in direct dependence of decision variables Yj։r,t ,
they are defined over a set of allocation assignments where each allocation assignment
contains a fixed series of remote switches with exactly one remote switch to be used in
each time slot.

Definition 11.3: Allocation Assignment Set

An allocation assignment set A j,T j
for a single allocation job j ∈ JT and a set of

consecutive time slots T j = {t1, . . . , tm} is defined as:

A j,T j
:= R j,t1

× R j,t2
× . . .× R j,tm

(11.2)

T j is specified in Def. 11.1 above. R j,t is the remote set of allocation job j in time
slot t. The set of allocation assignments is calculated as the Cartesian power of the
R j,t , i.e., the set of all ordered pairs that can be build with the |T j| involved remote
sets. Each entry Ai :=

�

r1, . . . , rm

�

in A j,T j
is called an allocation assignment that

consists of |T j| = m remote switches, i.e., one specific remote switch allocation
option for each time slot in |T j|.

This definition is applied to each allocation job in JT . Fig. 11.2 gives an example. The
top of the figure shows one single allocation job j that is active in three time slots
T j = {t1, t2, t3}.

The three smaller boxes (such as r2, r3 ) represent allocation options from the remote set
R j,t in the given time slot. At time slot t1, r2 and r3 can be selected as a remote switch,
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Figure 11.2: Assignment concept for RS-Alloc

i.e., both switches provide the necessary free flow table capacity and the link between
s j and either of the two options in R j,t1

has enough free capacity. The second time slot
is identical to the first. In the third time slot, only a single remote switch option (r3)
remains. The backup switch that would usually be present in each set R j,t (see Def. 9.5)
is omitted here.

The bottom of the figure then illustrates the conceptual difference between the quadratic
approach 1© and the linearized approach with allocation assignments 2©. The quadratic
approach considers all pairs of remote switch options for two consecutive time slots to
calculate cost coefficients. In this example, there are six cases to consider in total. There
are four cases for t1→ t2 because of R j,t1

× R j,t2
= {(r2, r2), (r2, r3), (r3, r2), (r3, r3)}. And

there are two cases for t2→ t3 because of R j,t2
×R j,t3

= {(r2, r3), (r3, r3)}. With respect to
this one job, this will result in 6 quadratic terms for the control message cost coefficients
and 3 ∗

∑

t∈T j
|R j,t |= 15 linear terms for the other cost coefficients.

The assignment-based approach on the right side first creates a set of allocation assign-
ments A j,T j

for allocation job j. This set represents all the possible allocations of remote
switches that can occur for t ∈ T j. According to Def. 11.3, the assignment set is calculated
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as the Cartesian power of the R j,t which results in four individual allocation assignments
here:

A j,T j
= R j,t1

× R j,t2
× R j,t3

= {r2, r3} × {r2, r3} × {r3}

= {(r2, r2, r3), (r2, r3, r3), (r3, r2, r3), (r3, r3, r3)}

Allocation assignment (r2, r2, r3) represents the case where job j is served by remote
switch r2 in the first two time slots of T j and by r3 in the final time slot (because there are
no other options for t3). The three other elements from the assignment follow the same
logic. A2 = (r2, r3, r3) and A3 = (r3, r2, r3) represent the cases where the remote switch is
changed between t1 and t2. A4 = (r3, r3, r3) represents the case where j is served by r3

in all three time slots.

The benefits of the second approach are twofold. First, the assignment-based formulation
results in a linear problem which is easier to solve in general. In addition, it can not only
include quadratic dependencies, but basically all kinds of non-linear dependencies that
are restricted to a single allocation job. Secondly, it is easier to rate different remote
switch allocation options because the whole job (all time slots) is considered as one
unit. This allows for easy and intuitive cost formulations. The major drawback, on the
other hand, is the increased number of overall terms and constraints. While this example
actually leads to less terms for the assignment-based approach, the situation for larger
problem instances is quite different. Both approaches scale with the number of jobs |J |,
the number of time slots |T j| where the job is active and the amount of remote switch
options |R j,t |. The number of terms needed for the quadratic approach is

∑

j∈J

∑

t∈T j
|R j,t |

2

while the number of terms for the assignment-based approach is
∑

j∈J

∏

t∈T j
|R j,t |, i.e.,

quadratic vs. exponential growth. This problem can be addressed with a pre processing
step to only include the most promising assignments, which is shown later in Sec. see
9.16.

11.2.1.3 Periodic Optimization

Periodic optimization for RS-Alloc works similar as periodic optimization for DT-Select
which was described in detail in Sec. 10.2.1.2. In each optimization period, a limited
future horizon of L time slots is considered together with the status from the last opti-
mization period (referred to as history H j). Main difference is that the history is defined
for individual allocation jobs instead of all delegation templates.
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Definition 11.4: History of an RS-Alloc optimization period

Let t0 be the time slot of the previous optimization period, i.e., the time slot prior
to t1 ∈ T . The history H j of an RS-Alloc optimization period for allocation job
j is then defined as a triple




HX
j
, H F

j
, H r

j

�

where HX
j
∈ {0,1} indicates whether

delegation template d j,t0
was selected in time slot t0, H F

j
⊆ Fs j ,t0

is a set of all active
flow rules that are relocated at the end of time slot t0 and H r

j
∈ R j,t0

is the remote
switch that was allocated to d j,t0

(this variable is only defined if HX
j
= 1).

∀
j∈JT

: HX
j
:=







1, d j,t0
∈ D∗

s j ,t0

0, d j,t0
/∈ D∗

s j ,t0

(11.3)

∀
j∈JT

: H F
j
:=
¦

f
�

� f ∈ Fs j ,t0
and f is relocated

©

(11.4)

∀
j∈JT

: H r
j
:=

(

r, < d j,t0
, r > ∈ D∗∗

t0

undefined, < d j,t0
, r > /∈ D∗∗

t0

(11.5)

Eq. (11.3) and Eq. (11.5) can be extracted directly from the result sets of time slot t0

(D∗
s j ,t0

and D∗∗
t0

). Eq. (11.4) can be calculated recursively between optimization periods

using the formula from Def. 10.2.

It is important to note that t0 in the above definition always refers to the previous
optimization period, i.e., the time slot prior to t1 ∈ T and not the time slot prior to
t1 ∈ T j. In other words: the history is only defined for those allocation jobs that were
already active in the previous optimization period. Further note that d j,t0

and all d j,t for
t ∈ T j refer to the same delegation template, i.e., they all have the same aggregation
match −→m j and the same delegation switch s j.

11.2.2 Decision Variables

Decision variables for RS-Alloc are defined with respect to allocation assignments instead
of time slots:
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Definition 11.5: Decision Variables for RS-Alloc

Given an allocation job j and an allocation assignment set A j,T j
(see Def. 11.3), the

decision variables for Select-Opt are defined as:

Yj,A :=

(

1, A is the selected allocation assignment

0, A is not the selected allocation assignment
(11.6)

These decision variables are defined for each allocation job j ∈ JT (see Def. 11.2)
and all allocation assignments in A j,T j

. Undefined variables are interpreted as 0.

There are
∏

t∈T j
|R j,t | allocation assignments per allocation job, one for each combination

of remote switch options for all time slots where j is active. The idea is to select exactly
one out of all these allocation assignments to make a decision for all remote switch
allocations in T j. This can be achieved with the following simple constraint:

∑

A∈A j,Tj

Yj,A = 1 ∀
j∈JT

(11.7)

As a consequence, the utilization and cost coefficients have to be remodeled to work with
allocation assignments (and the periodic optimization approach). It is explained in the
following two sections how this is done.

11.2.3 Utilization Coefficients

The utilization coefficients u j,t represent the “to be fulfilled utilization demand” of al-
location job j in time slot t. This means the remote switch provides enough free flow
table capacity for all relocated flow rules from delegation template d j,t and the link to
the remote switch has enough free bandwidth for all packets that are relocated.

The utilization coefficients for RS-Alloc (uTable

j,t and uLink

j,t ) can be calculated easily because
allocation assignments always represent a consecutive set of selected delegation templates
(by definition). If job j was active in T j = {t1, . . . , t4}, all four corresponding delegation
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templates d j,t1
, . . . , d j,t4

were selected by DT-Select (the previous step in the delegation
algorithm). Because of this, the two utilization coefficients are calculated as follows:

uTable

j,t :=





t1∑

q=t

∑

f ∈Fd j ,q

λi
f ,q ∗λ

a
f ,t



+



HX
j
∗
∑

f ∈H F
j

λa
f ,t



 (11.8)

uLink

j,t :=





t1∑

q=t

∑

f ∈Fd j ,q

λi
f ,q δ f ,t



+



HX
j
∗
∑

f ∈H F
j

δ f ,t



 (11.9)

Eq. (11.8) calculates the flow table utilization coefficients. The first bracket represents
all newly installed flow rules that are relocated to the remote switch between t1 and
tm (possible because d j,t is selected in all time slots). The second bracket takes care of
flow rules from previous optimization periods. Note that this part is only included if
HX

j
= 1, i.e., the allocation job was already active in the previous period. In this case,

all relocated flow rules from the previous period (given as set H F
j
) that are still active in

time slot t (λa
f ,t = 1) are also considered for this utilization coefficient. This is basically

a simplified version of the extended utilization formula from Eq. (10.9) that was used
by the assignment-based DT-Select algorithm. Eq. (11.9) is identical except that λa

f ,t is
replaced with δ f ,t .

Note that the two above coefficients are defined independently of the allocation assign-
ment because the different remote switch allocation options do not change the utilization
(neither the number of flow rules nor the number of bits to be relocated does depend
on the used remote switch). This is a fundamental difference to the assignments used
with DT-Select (Def. 10.1) where the assignment value for a specific time slot t inside an
assignment could be set to 0 which did change the utilization. For RS-Alloc, however,
this is not relevant because delegation template d j was selected in all time slots in T j.

The utilization constraints, however, do depend on the allocation assignments. This is
because the constraints are checked for each remote switch r independently and it makes
a difference whether r is allocated to a certain delegation template or not: the flow table
utilization in r is higher in the first case and unchanged in the second case. Because
allocation assignments represent a set of remote switches and not a set of binary variables
(as it was the case with DT-Select), an additional helper construct is required to make
use of the assignments:
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Definition 11.6: Helper Variable α

Given is an allocation assignment A∈ A j,T j
with A=

�

a1, . . . , at , . . . , am

�

and at ∈
R j,t . The binary helper variable α j։r,t is then defined as:

α j։r,t :=

(

1, at = r

0, otherwise
(11.10)

This variable is set to 1 if remote switch r is used in time slot t of allocation
assignment A. The variable is defined for all allocation jobs j ∈ JT , all time
slots t ∈ T j and all remote switches in remote set R j,t . Undefined variables are
interpreted as 0.

The values for α j։r,t can be directly deducted from the assignments. The following table
shows an example mapping for T j = {t1, t2} and R j,t1

= R j,t2
= {r1, r2}:

A1 = (r1, r1) A2 = (r1, r2) A3 = (r2, r1) A4 = (r2, r2)

α j։r1,t1
= 1 α j։r1,t1

= 1 α j։r1,t1
= 0 α j։r1,t1

= 0

α j։r2,t1
= 0 α j։r2,t1

= 0 α j։r2,t1
= 1 α j։r2,t1

= 1

α j։r1,t2
= 1 α j։r1,t2

= 0 α j։r1,t2
= 1 α j։r1,t2

= 0

α j։r2,t2
= 0 α j։r2,t2

= 1 α j։r2,t2
= 0 α j։r2,t2

= 1

Given this helper variable, the three utilization constraints for RS-Alloc are defined as
follows:

uTable

r,t +
∑

j∈Jt

∑

A∈A j,Tj

α j։r,t uTable

j,t Yj,A ≤ cTable

r ∀
t∈T

∀
r∈S

(11.11)

uLink

s j→r,t +
∑

j∈Jt

∑

A∈A j,Tj

α j։r,t uLink

j,t Yj,A ≤ cLink

s j→r ∀
t∈T

∀
r∈S

(11.12)

uLink

r→s j ,t
+
∑

j∈Jt

∑

A∈A j,Tj

α j։r,t uLink

j,t Yj,A ≤ cLink

r→s j
∀

t∈T
∀

r∈S
(11.13)

This is very similar to the constraints used in Eq. (9.39) to Eq. (9.41). The only difference
is that

∑

j∈Jt
uTable

j,t Yj։r,t is replaced with
∑

j∈Jt

∑

A∈A j,Tj

α j։r,t uTable

j,t Yj,A. The helper variable

α makes sure that only those utilization coefficients are considered that are relevant for
the given allocation assignment A (only set to 1 if the remote switch from the assignment
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is set to r and to 0 in all other cases). The two other cases for the link utilization are
handled in the same way.

11.2.4 Cost Coefficients

The cost coefficients w j,A represent the costs to be paid for using a certain allocation
assignment. There are four important cost factors to consider: i) free flow table capacity
of the remote switch (wTable

j,A ), ii) free link bandwidth between delegation and remote switch
(wLink

j,A), iii) amount of control messages required (wCtrl

j,A), and iv) static costs associated
with remote switches (wStatic

A
).

All four cost coefficients are explained in detail in Sec. 9.5.4. This section only describes
the translation to the assignment-based formulations for RS-Alloc which is straightforward.
Given an assignment A ∈ A j,T j

, the cost coefficients can simply be calculated as w j,A =
∑

t∈T j
w j։at ,t

in most cases where at denotes the t-th element (remote switch) of the
allocation assignment.

wTable

j,A :=
∑

t∈T j

wTable

j։at ,t
=
∑

t∈T j

−
�

cTable

at
− uTable

at ,t
− uTable

j,t

�

(11.14)

wLink

j,A :=
∑

t∈T j

wLink

j։at ,t
=
∑

t∈T j

−
�

min
�

cLink

s j→at
− uLink

s j→at ,t
, cLink

at→s j
− uLink

at→s j ,t

�

− uLink

j,t

�

(11.15)

wCtrl

j,A :=
�

HX
j
∗ get_cost( j, H r

j
, at1

, t1)
�

+

tm−1∑

t=t1

get_cost
�

j, at , at+1
, t+1

�

(11.16)

wStatic

A
:=

∑

t∈T j

wStatic

at ,t
(11.17)

Note that Eq. (11.16) – the control message cost coefficient – required a quadratic
expression in the original problem. The assignment based formulation, however, can be
calculated in a similar way as the other cost coefficients because all remote switches in
the allocation assignment are fixed. One difference is that this coefficient has to include
the history of the previous optimization period which is given as




HX
j
, H F

j
, H r

j

�

. In case
allocation job j was active in the previous period (HX

j
= 1), the cost for changing from

remote switch H r
j

(allocated in the previous period) to remote switch at1
(allocated in

the first time slot of the currently active period) is included here in the first bracket.
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11.2.5 Problem Formulation for RS-Alloc

Based on the variables introduced in the previous sections, the RS-Alloc problem (which
is a multi period RS-Alloc problem with allocation assignments that can be used with
periodic optimization) is defined as an integer linear program in the following way:

Definition 11.7: RS-Alloc

Inputs: A set of switches S, set of consecutive time slots T , set of allocation jobs
JT (and Jt for all t ∈ T), flow table capacity cTable

r
for each switch, link capacity

cLink

s j→r
for each link, flow table utilization uTable

r,t for each switch, link utilization uLink

s j→r,t

for each link, pre-computed allocation assignments A j,T j
for each j ∈ JT , t ∈ T j,

utilization coefficients u j,t for each j ∈ JT , t ∈ T j and cost coefficients w j,A for each
j ∈ JT , A∈ A j,T j

Output: A set of selected and allocated delegation templates D∗∗
T

for a set of
consecutive time slots T

Problem Formulation:

min
Yj։r,t

∑

j∈JT

∑

A∈A j,Tj

w j,A Yj,A (11.18)

s.t.
∑

A∈A j,Tj

Yj,A = 1 ∀
j∈JT

(11.19)

uTable

r,t +
∑

j∈Jt

∑

A∈A j,Tj

α j։r,t uTable

j,t Yj,A ≤ cTable

r ∀
t∈T
∀

r∈S
(11.20)

uLink

s j→r,t +
∑

j∈Jt

∑

A∈A j,Tj

α j։r,t uLink

j,t Yj,A ≤ cLink

s j→r ∀
t∈T
∀

r∈S
(11.21)

uLink

r→s j ,t
+
∑

j∈Jt

∑

A∈A j,Tj

α j։r,t uLink

j,t Yj,A ≤ cLink

r→s j
∀

t∈T
∀

r∈S
(11.22)

Yj։r,t ∈ {0, 1} ∀
j∈JT

∀
t∈T j

∀
r∈S

(11.23)

This is a multi-dimensional multiple-choice knapsack problem. There are |JT | different
mutually disjoint classes A j,T j

= {A1, . . . , An} called allocation assignment sets. Each
allocation job j ∈ JT defines one allocation assignment set and each of these sets contains
∏

t∈T j
|R j,t | items called allocation assignments. For each allocation job j ∈ JT and each

time slot t ∈ T j, there is a utilization coefficient uTable

j,t . And there is a cost coefficient
w j,A for each allocation assignment A∈ A j,T j

. Goal is to choose exactly one item out of
each allocation assignment set so that the costs are minimized while the utilization is
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below the capacity in all time slots. Eq. (11.18) ensures that the objective function is
minimized. The multiple-choice constraints in Eq. (11.19) make sure that exactly one
allocation assignment is chosen for each allocation job. Eq. (11.20) models the flow
table capacity constraints for the remote switches. Eq. (11.21) and Eq. (11.22) model
the link capacity constraints for the links between delegation and remote switches. All
capacity constraints are defined separately for each time slot and each remote switch,
i.e., there are |S| ∗ |T | capacity constraints (at most). And Eq. (11.23) ensures that the
decision variables are binary.

The objective function uses a placeholder variable w j,A to represent a mixture of the cost
coefficients, i.e., this is a multi-objective formulation. This mixture consists of four parts
as introduced above:

w j,A =
�

ωTable

RSA
wTable

j,A +ω
Link

RSA
wLink

j,A +ω
Ctrl

RSA
wCtrl

j,A+ω
Static

RSA
wStatic

A

�

(11.24)

The non-negative ω
RSA

-weights balance the different cost coefficients against each other.
The optimal allocation D∗∗

T
– referred to as the set of selected and allocated delegation

templates for all time slots in T – is calculated as follows:

D∗∗
T

:=
¦


d j,t , at

� �

� at ∈ A with Y ∗
j,A = 1, t ∈ T j, j ∈ JT

©

(11.25)

The Y ∗
j,A variables represent the optimal decision variables after the problem is solved.

Each tuple



d j,t , at

�

contains one delegation template and the allocated remote switch.

11.2.6 Algorithm for RS-Alloc

The RS-Alloc algorithm is shown in Alg. 13. Goal, input and output are defined anal-
ogously to the RS-Alloc problem from Def. 11.7. In addition, the periodic approach
described in Sec. 10.2.1.2 is applied.

The algorithm is structured into three steps that are executed once per optimization
period. In the first step, the allocation assignment sets A j,T j

for each allocation job j ∈ JT

are created, together with all required coefficients (lines 3-11). In the second step, the
RS-Alloc problem is solved for the current optimization period based on the inputs and
the calculations from step 1 (line 12). Because each remote set contains a backup switch
(sB, see Sec. 9.5.1.2) with unlimited capacity and no restrictions that be used with high
cost, it is ensured that the problem is always feasible. The last step (lines 13-16) after
calculation of D∗∗

T
is updating the history (note that only the first time slot of T is used

here) and waiting for the next optimization period.
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Algorithm 13: RS-Alloc Algorithm
Data: Same input as RS-Alloc problem from Def. 11.7, Look ahead factor L

Result: For each optimization period: set of selected and allocated delegation
templates D∗∗

T
for each time slot t ∈ T with |T |= L

1 Function alloc_opt_algorithm():

2 if JT 6= ; then

3 for j ∈ JT do
/* Step 1: Initialize allocation assignments and coefficients */

4 A j,T j
← R j,1 × . . .× R j,|T j | // Def. 11.3

5 for A∈ A j,T j
do

6 for t ∈ T j do

7 uTable

j,t , uLink

j,t ← calculate_utilization() // Sec. 11.2.3

8 end

9 w j,A← calculate_cost() // Sec. 11.2.4

10 end

11 end

/* Step 2: solve RS-Alloc (will return a set of selected and assigned

delegation templates D∗∗
T
) */

12 D∗∗
T
← solve_alloc_opt() // Def. 11.7

/* Step 3: update history and wait for next optimization period */

13 for d j,t ∈ D∗∗
t1

do

14




HX
j
, H F

j
, H r

j

�

← update_history() // Def. 11.4

15 end

16 wait until next optimization period and start again from line 2
17 end

18 end

11.3 Pre-processing for Allocation Assignments

The RS-Alloc problem formulation in Def. 11.7 does not scale towards larger instances
because the number of required allocation assignments is

∏

t∈T j
|R j,t | per allocation job.

However, this problem can be addressed with a pre-processing step in order to reduce
the number of considered allocation assignments.

First, the general idea of pre-processing is explained in Sec. 11.3.1. Afterwards, two
required concepts are introduced: allocation intervals in Sec. 11.3.2 and a stability metric
for allocation intervals in Sec. 11.3.3. Sec. 11.3.4 finally introduces the pre-processing
algorithm used in this thesis.
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11.3.1 General Idea

The idea is to exploit the observation that the vast majority of the allocation assignments
will never be considered by the solver and could thus be removed before the optimization.
This will not change the problem formulation or the algorithm. The only thing that is
updated is the way how the allocation assignment set for allocation job j is calculated.

Consider an allocation job that is active for three consecutive time slots T j = {t1, t2, t3}
and the same three remote switch options are available in all three time slots, i.e.,
R j,t1

= R j,t2
= R j,t3

= {r1, r2, r3}. This will result in 3 ∗ 3 ∗ 3 = 27 different allocation
assignments in A j,T j

:

A1 = (r1, r1, r1)

A2 = (r1, r1, r2)

. . .

A26 = (r3, r3, r2)

A27 = (r3, r3, r3)

However, based on the available free flow table capacity and link bandwidth in the
network, not all 27 allocation assignments have the same relevance with respect to the
optimization. Assume the flow table utilization for remote switch r1 and r2 (uTable

r,t ) is low
in all three time slots (lots of free capacity) while the flow table utilization of r3 is high
(almost no free capacity). In this case, all assignments with r3 have a very high cost
and are less important because the solver will presumably prefer solutions with r1 and
r2 (because of how the cost coefficients are calculated, see Sec. 11.2.4). And because
of wCtrl

j,A, assignments that use the same remote switch in consecutive time slots – such
as (r1, r1, r1) and (r2, r2, r2) – are preferred over assignments where the remote switch
is changed frequently, e.g., (r2, r1, r2). The former assignment is assumed to be “more
stable” then the latter one.

Removing less important allocation assignments prior to the optimization will reduce
the number of objective terms and coefficients significantly. This cannot guarantee that
a fully optimal result is found because the removed assignments are not included in
the search space. However, experiments have shown that the approach with reduced
assignments achieves very promising results in practice.
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11.3.2 Allocation Interval

To realise the above idea, it is first necessary to split the consecutive time slots in T j into
multiple disjoint sets of consecutive time slots. These smaller sets are called allocation
intervals for allocation job j in the following:

Definition 11.8: Allocation Interval

An allocation interval T̂i, j is a subset of set T j. The set of allocation intervals T̂ j

for a set of consecutive time slots T j is defined as follows:

T̂ j := {T̂1, j, . . . , T̂n, j}

�

�

�

�

�

�

�

�

T̂i, j ⊆ T j, i = 1, . . . , n and
⋃n

i=1 T̂i, j = T j ,
⋂n

i=1 T̂i, j = ; and

all Ti, j are ordered

(11.26)

T j represents all time slots where allocation job j is active (see Def. 11.1).

An allocation job with T j = {t1, . . . , t4}, for example, can be split into T̂ j = {T̂1, j, T̂2, j}=
{{t1, t2}, {t3, t4}} or T̂ j = {T̂1, j, T̂2, j}= {{t1}, {t2, t3, t4}} or any other valid combination
of allocation intervals. In addition, a new operator

d
for allocation intervals is defined

as follows:

l

t∈T̂i, j

R j,t :=

(

(r, r, . . . , r)

�

�

�

�

�

�

r ∈
⋂

t∈T̂i, j

R j,t and |(r, r, . . . , r)|= |T̂i, j|

)

(11.27)

This is similar to calculating the intersections of R j,t for all t ∈ T̂i, j except that each
resulting element in the intersection set is “expanded” into a tuple of size |T̂i, j|. In other
words: the new operator takes a set of time slots t ∈ T̂i, j and a set of remote switch
options R j,t for each time slot and creates a set of tuples of length |T̂i, j| for each element
in the intersection of all R j,t . Assume a job with R j,t = {r1, r2} for all time slots, i.e.,
the intersection will contain both switches in all cases. In this example, the

d
operator

returns the following results:

l

t∈{t1}

R j,t := {(r1), (r2)}

l

t∈{t1,t2}

R j,t := {(r1, r1), (r2, r2)}



232 11 Multi Period Remote Switch Allocation

l

t∈{t1,t2,t3}

R j,t := {(r1, r1, r1), (r2, r2, r2)}

. . .

l

t∈{t1,t2,t3,...,tn}

R j,t := {(r1, r1, r1, . . . , r1), (r2, r2, r2, . . . , r2)}

The following table contains some additional examples to clarify the idea. The first
column shows the allocation interval, the second column the remote sets for each time
slot from the allocation interval and the two remaining columns show the result of the
normal intersection operator and the

d
operator from Eq. (11.27):

T̂i, j R j,t

⋂

t∈T̂i, j
R j,t

d
t∈T̂i, j

R j,t

{t1} R j,t1
= {r1, r2} {r1, r2} {(r1), (r2)}

{t1, t2}
R j,t1

= {r1, r2}
R j,t2

= {r1, r3}
{r1} {(r1, r1)}

{t1, t2, t3}
R j,t1

= {r1, r2, r3}
R j,t2

= {r1, r3}
R j,t3

= {r1, r3}

{r1, r3} {(r1, r1, r1), (r3, r3, r3)}

{t1, t2, t3, t4}

R j,t1
= {r1, r2, r3}

R j,t2
= {r1, r3}

R j,t3
= {r1, r3}

R j,t4
= {r1, r2}

{r1} {(r1, r1, r1, r1)}

11.3.3 Stability Metric

For pre-processing, it is required to compare different allocation intervals with each other.
Basic idea is it to transform T j into a set of n allocation intervals T̂ j := {T̂1, j, . . . , T̂n, j} so
that allocation job j is most likely allocated to a single remote switch for all time slots
in all the n allocation intervals (i.e., the remote switch is not changed within one single
allocation interval). This property is referred to as allocation interval stability:
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Definition 11.9: Allocation Interval Stability

The allocation interval stability ŵi, j for an allocation interval T̂i, j is defined as:

ŵi, j := get_stability
�

T̂i, j

�

(11.28)

= |T̂i, j| ∗min
t∈T̂i, j

�

� ∑

r∈
⋂

t∈T̂i, j
R j,t

m̂r,t

�

∗
�

∑

r∈
⋂

t∈T̂i, j
R j,t

uTable

r,t − uTable

j,t

�

�

with helper variable m̂r,t defined as:

m̂r,t :=

(

1, if uTable

r,t > uTable

j,t

0, otherwise

The stability metric in Eq. (11.28) was found empirically (can be seen as an example). It
is based on the assumption that the control message cost coefficient (wCtrl

j,A) is the dominant
factor when calculating the minimum cost for an allocation assignment. To take this into
consideration, the stability metric returns higher (better, more stable) values if more free
flow table capacity is available (more free capacity means higher chances that the same
remote switch can be used) and scales this value with the number of different remote
switches that are available for the currently selected delegation job. The metric consists
of three conceptual parts:

• |T̂i, j|∗mint∈T̂i, j
(. . .): The main part of the formula consists of the minimum operator

that compares the score (more free capacity = better score) for each individual
time slot in the allocation interval. It uses the minimum of all scores because this
will be the bottleneck the optimization algorithm has to deal with. It is further
multiplied by the number of time slots in T̂i, j to make sure that “longer” allocation
intervals with high stability are preferred.

•
�∑

r∈
⋂

t∈T̂i, j
R j,t

uTable

r,t − uTable

j,t

�

: This calculates the individual score for one time slot.

It iterates over all remote switch options that are present in all time slots of the
allocation interval (intersection) and compares the utilization demand (uTable

j,t ) with
the current flow table utilization of the remote switch (uTable

r,t ). The higher this value,
the more free flow table capacity is available. If the value is negative, at least one
remote switch in the allocation interval does not provide enough free flow table
capacity.

•
�∑

r∈
⋂

t∈T̂i, j
R j,t

m̂r,t

�

: This represents the number of remote switches that can provide

enough free capacity for allocation job j in time slot t. This value is multiplied to
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the individual score from above because the chances for using the same remote
switch is higher if there are multiple alternatives.

11.3.4 Pre processing Algorithm

Given the concepts introduced above (allocation interval and stability), the goal of
the pre-processing step can be described as follows: Find allocation intervals that are
most stable and use these intervals to calculate the allocation assignment set A j,T j

. If n

allocation intervals were found (n can be different for every allocation job), the allocation
assignment set is calculated as follows:

A j,T j
:=

l

t∈T̂1, j

R j,t ×
l

t∈T̂2, j

R j,t × . . .×
l

t∈T̂n, j

R j,t (11.29)

The challenge is to select the allocation intervals T̂i, j in such a way, that the search space
is not too restricted and the solver can still make relevant decisions. This is done by Alg.
14 that will recursively split T j into allocation intervals based on the stability metric from
Sec. 11.3.3.

Fig. 11.3 illustrates the general process. The example in the figure consists of a single
allocation job j that is active in nine time slots T j = {t1, . . . , t9}. For most of the time
slots – all except t5 and t6 – there are two remote switch options R j,t = {r2, r3}. For t5

and t6, there is only a single remote switch (r2) available. The backup switch that is
usually included in R j,t is omitted here to keep the example simple. Pre-processing now
works as follows (the numbers match the circled numbers in the figure):

(1) The algorithm starts with n = 1, i.e., with a single allocation interval T̂1, j = T j. This
is the initialization step (line 3 in Alg. 14). If the number of allocation assignments
in the result set (pre-defined value, e.g., 100) is not yet reached, the algorithm starts.
In the first step, it updates the final result set (the allocation assignment set A j,T j

)

based on the n elements currently stored in T̂ j. In this case, T̂ j contains only a single
allocation interval which results in one allocation assignment A1 = (r2, . . . , r2).

(2) The next step of the algorithm consists of three parts: interval selection (2a), split
index selection (2b) and split execution (2c). In the first part, the process iterates
over all current allocation intervals in T̂ j and selects the one with lowest stability.
In the second part, the selected allocation interval is split into two smaller intervals
(if possible). And in the third part, the two new allocation intervals replace the old
one and the algorithm starts over.
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Algorithm 14: Pre-processing for RS-Alloc

1 Function preprocess_assignments(depth = 1):

2 if depth= 1 then

3 T̂ j = {T̂1, j}= {T j}= {{t1, . . . , tm}} A j,T j
← {} // Initialize

4 end

5 if |A j,T j
| < required number of allocation assignments then

/* Step 1: update allocation assignments in the final result set based

on the n elements currently stored in T̂ j */

6 A j,T j
←

d
t∈T̂1, j

R j,t × . . .×
d

t∈T̂n, j
R j,t , n= |T̂ j| // Eq. (11.27)

/* Step 2a: select allocation interval with minimum stability */

7 ŵMin

i, j , T̂ Min

i, j ←



∞,;
�

8 for T̂i, j ∈ T̂ j do

9 if |T̂i, j|> 1 then

10 ŵi, j ← get_stability(T̂i, j) //see Def. 11.9

11 if ŵi, j < ŵMin

i, j then

12 ŵMin

i, j , T̂ Min

i, j ←



ŵi, j, T̂i, j

�

13 end

14 end

15 end

16 if T̂ Min

i, j 6= ; then

/* Step 2b: split index selection */

17 ŵMin

i, j , T̂ Left

i, j , T̂
Right

i, j ←



−∞,;,;
�

18 for t ∈ T̂ Min

i, j do

19 T̂ Left

i, j ← {t1, . . . , t} T̂
Right

i, j ← {t+1, . . . , tm}

20 ŵLeft

i, j ← get_stability(T̂ Left

i, j ) ŵ
Right

i, j ← get_stability(T̂
Right

i, j )

21 if ŵLeft

i, j + ŵ
Right

i, j > ŵMin

i, j then

22 ŵMin

i, j , T̂ Left

i, j , T̂
Right

i, j ←



ŵLeft

i, j + ŵLeft

i, j , T̂ Left

i, j , T̂
Right

i, j

�

23 end

24 end

/* Step 2c: Replace T̂ Min
i, j with the splitted allocation interval

(number of elements in T̂ j increases from n to n+ 1) */

25 T̂ j = {. . . ,
✚
✚✚❩
❩❩

T̂ Min

i, j , T̂
Right

i, j , T̂
Right

i, j , . . .}
26 preprocess_assignments(depth+1) // start next iteration

27 end

28 end

29 end
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t6 t2 t3 t4 
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Figure 11.3: Pre-processing algorithm for RS-Alloc

a) Basic idea of step 2a is to select the interval that will most probably have
different remote switches after optimization. Allocation intervals the solver
can handle as one unit (the most stable intervals) should not be selected.
Because of n= 1, the decision is trivial in the first step (T̂1, j is selected).

b) Basic idea of step 2b is to select a split index for the selected allocation interval
in such a way that one of the resulting new intervals (left or right) will be stable,
i.e., the chance that the interval is split in the next iteration of the algorithm
is small. In the example it is assumed that the first four time slots form the
most stable interval. Therefore, the split is executed between t4 and t5 which
will result in two intervals T̂ Left

1, j = {t1, . . . , t4} and T̂
Right

1, j = {t5, . . . , t9}.

c) In step 2c, the old allocation interval (T̂1, j) is replaced by the two new ones
(T̂ Left

1, j and T̂
Right

1, j ). n is increased to 2 and the function calls itself with
depth=2.

(3) Repetition of step (1). Set T̂ j now consists of two items T̂1, j and T̂2, j (left and
right from above), i.e., n = 2. The algorithm updates the final result set via
A j,T j

←
d

t∈T̂1, j
R j,t ×

d
t∈T̂2, j

R j,t with
d

t∈T̂1, j
R j,t = {(r2, r2, r2, r2), (r3, r3, r3, r3)} andd

t∈T̂2, j
R j,t = {(r2, r2, r2, r2, r2)}. This results in two new allocation assignment to

be added to A j,T j
, i.e., A1 = (r2, . . . , r2) and A2 = (r3, r3, r3, r3, r2, . . . , r2). Note that
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allocation assignment A1 was already calculated in step (1). This can be handled
more efficiently by calculating the final result set A j,T j

only in the last step (the
number of allocation assignments for the check in line 5 can be calculated by
multiplication of the cardinality of the allocation intervals).

(4) Repetition of step (2). Because there are now two allocation intervals, one has to be
selected for splitting. As mentioned earlier, the first interval (t1 to t4) is considered
the most stable in this example and will thus not be selected. Instead, the second
allocation interval is split into two new allocation intervals between t6 and t7. This
results in two new allocation intervals T̂ Left

2, j = {t5, t6} and T̂
Right

2, j = {t7, t8, t9}. The

old interval T̂2, j is replaced by the two new ones. n is increased to 3, i.e., there are
now three allocation intervals in set T̂ j.

(5) Repetition of step (1) for n = 3 which results in four allocation assignments in total.
The two steps will now continue in turns until a termination criteria is met, e.g.,
the number of allocation assignments in the final set A j,T j

is larger than a threshold.

This process will create a set of allocation assignments that contains the most relevant
assignments for the optimization step. Bad allocation assignments are avoided because
the most stable allocation intervals are not splitted. Consider the first allocation interval
in the example in Fig. 11.3. Simply put, most stable means that one or both options (r2

and r3) have plentiful free resources between t1 and t4 while less stable intervals have
less resources. The chances that the first allocation interval can be handled as a whole is
thus much higher. Splitting the allocation interval will only result in a potentially huge
number of inferior assignments with high costs that are ignored by the solver.

11.4 Conclusion

This chapter introduces an ILP-based algorithm for the multi period RS-Alloc problem
based on a linear assignment-based knapsack formulation. The algorithm calculates
coefficients for all combinations of possible remote switch allocations for each allocation
job. To reduce the number of allocation assignments, a pre-processing step removes
assignments that will probably never be considered by the solver.
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Chapter 12

Preliminaries and Methodology

The evaluation part – which consists of Chapters 12 to 16 – investigates feasibility,
performance, overhead, and scalability of the flow delegation approach based on a wide
range of different scenarios. It is structured as follows:

(1) Chapter 12 (this chapter) defines assumptions, terminology and the evaluation

methodology. This includes central definitions such as capacity reduction factor,
failure rate, and flow delegation performance. It also explains in detail how the
synthetic scenarios for evaluation are generated.

(2) Chapter 13 conducts a small case study to demonstrate that the approach is feasible.
This is done for four conceptually different scenarios including a worst case example,
a best case example and two examples in between.

(3) Chapter 14 investigates the expected performance of the approach for 5000 differ-
ent scenarios based on capacity reduction factor (bottleneck severity) and failure
rate. It also investigates the performance with respect to over- and underutilization.

(4) Chapter 15 investigates the overhead associated with the algorithms developed in
the thesis which includes table overhead, link overhead and control overhead.

(5) Chapter 16 investigates runtime and scalability. This includes the modeling and
solving time of the developed algorithms. It also investigates how the approach
scales with number of delegation templates and number of switches.

241
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12.1 Network Model and Assumptions

The network model used for evaluation consists of a set of switches S and a set of hosts H

where each host h ∈ H is attached to exactly one switch s ∈ S. All switches are connected
to the same controller. All connection between hosts and switches are bidirectional and
static, i.e., do not change over time. All switches have the same flow table capacity cTable

and all links have the same link capacity cLink. Links between switches and hosts have
unlimited capacity in both directions. The following additional assumptions are made to
simplify scenario generation and the overall evaluation process1.

First, it is assumed that each flow in the network has a single source hsrc ∈ H and a
single destination hdst ∈ H and traffic is always forwarded on the shortest path between
hsrc and hdst. hsrc starts sending traffic at a certain point in time given as τstart. It is
assigned a fixed bit rate b and a fixed amount of bits δ that have to be transferred to
hdst. The bit rate is defined as a constant rate that does not change over time, i.e., effects
such as slow start of a TCP connection are not considered. hsrc stops sending traffic at
τstop = τstart + δ

b
.

Regarding the flow rules, it is assumed that a new flow rule f is installed in each switch
on the path from hsrc to hdst at τinstall = τstart. Propagation delays and processing
delays of the controller are ignored. Communication is defined unidirectional, i.e.,
acknowledgements sent in the return direction are not considered and no flow rules
are installed in the return direction by default. Flow rules have a minimum lifetime
nlifetime which is set to a value between 1 and 5 seconds. The point in time the flow rule
is removed is then calculated as τremove =max

�

τstop,τinstall + nlifetime

�

.

Each flow rule performs an exact match on a certain set of packet header fields such as
IP or MAC addresses, i.e., no wildcard matches are used. The distance between two time
slots is set to one second, i.e., the delegation algorithm is executed once per second. It
is assumed that the monitoring system can provide all necessary monitored parameters
as defined in Table 4.1. Estimations about future time slots which are required for look-
ahead factors L > 1 are based on perfect knowledge, not on a prediction mechanism.
With respect to the aggregation scheme, it is assumed that the ingress port based scheme
from Sec. 5.2.2.3 is used. This means there is one delegation template per physical port
in each time slot.

1These simplifications can be made because we are here only interested in the general behavior and
performance of the flow delegation approach and the involved algorithms, e.g., with respect to the
number of flow rules, the parameterization of the algorithms or other higher level parameters – and
not in the exact behavior expected from a real network. Also note that the flow delegation approach
was successfully tested in an emulated setting without these simplifications (Chapter 8).
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Given the above assumptions, it is now possible to specify a single flow rule for the
evaluation as a nine-tuple




s f , hsrc, hdst, SP, τinstall, τremoved, δ, b, nlifetime

�

. The
nine values in the tuple are explained in Table 12.1. A set of flow rules following this
specification together with a topology form a scenario which is explained in the next
section. Note that match, action and priority are defined implicitly in this model, i.e., are
not included in the nine-tuple.

Flow rule definition:



s f , hsrc, hdst, SP, τinstall, τremoved, δ, b, nlifetime

�

Parameter Description

s f
The switch this flow rule is installed at. Can be
identical to ssrc and/or sdst (see below).

hsrc
The host that generates the traffic processed by this
flow rule

hdst
The host that receives the traffic processed by this
flow rule

SP=
�

ssrc, . . . , s f , . . . , sdst
� The path between hsrc and hdst where hsrc is at-

tached to ssrc and hdst is attached to sdst

τinstall Point in time at which the flow rule is installed in
the flow table of switch s f

τremoved Point in time at which the flow rule is removed from
the flow table of switch s f

δ Total number of bits sent by hsrc and thus also the
number of bits processed by this flow rule

b Constant bit rate of hsrc in bits/s

nlifetime
Minimum lifetime of the flow rule. Static value,
identical for all flow rules in the network.

−→
m Not required, is implicitly given by hsrc and hdst

−→
a

Not required, is implicitly given by the path between
hsrc and hdst and the position of s f in this path

prio Not required, has no impact

Table 12.1: Flow rule definition for the evaluation. The three variables in the bottom which

are part of the original flow rule definition (Def. 2.8) are specified implicitly,

i.e., are not included in the nine-tuple.
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12.2 Important Terminology

This section introduces important definitions required in the following chapters. Sec.
12.2.1 and Sec. 12.2.2 define the terms scenario and scenario set. Sec. 12.2.3 defines the
capacity reduction factor which is used here to model bottleneck situations of different
severity. Sec. 12.2.4 defines the failure rate which is used to specify whether flow
delegation can successfully handle a specific situation or not. Sec. 12.2.5 defines how
flow delegation performance is measured in this thesis. Sec. 12.2.6 defines the flow table
utilization ratio that is used here to distinguish scenarios based on their available free
capacity. Sec. 12.2.7 summarizes other important terms.

12.2.1 Scenario

Core idea of the performed evaluation is it to created different scenarios with a wide
range of characteristics – with respect to number of flow rules, traffic volume etc. – and
investigate how the flow delegation approach deals with these characteristics.

Definition 12.1: Scenario

A scenario is a quadruple



S, H, Y, F
�

where S is a set of switches, H is a set of
hosts, Y is a set of links connecting switches / hosts and F is a set of flow rules
where each flow rule is defined as a nine-tuple according to Table 12.1.

There are two other important parameters for a scenario: cLink and cTable. cLink defines the
link capacity between switches and is set to a constant value of 1Gbit/s. cTable represents
the flow table capacity of the switches. This value is set to the maximum flow table
utilization in the scenario and will be later modified with the capacity reduction factor:

cTable = uTable

max
= max

s∈S,t∈T
(uTable

s,t ) (12.1)

Set T is the set of all considered time slots where at least one flow rule is installed in
the network. uTable

s,t is the flow table utilization without flow delegation in switch s in time
slot t. Note that all switches have the same flow table capacity cTable, according to the
assumptions in Sec. 12.1.

The generation process for creating scenarios is explained in detail below in Sec. 12.3.1.
All scenarios considered in this work span over a time period of 400 seconds and consider
up to 600.000 individual flow rules installed during this time period.
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12.2.2 Scenario Set

Goal is it to investigate how flow delegation performs in different scenarios, i.e., without
introducing bias by only selecting scenarios where the approach can work in its “comfort
zone”. To support this idea and still allow reproducibility, the investigated scenarios are
“bundled” in so-called scenario sets with well documented characteristics that are made
available to the public (see Appendix D).

Definition 12.2: Scenario Set

A scenario set is a collection of n different scenarios created with random pa-
rameters in such a way that a) the contained scenarios cover a range of different
characteristics and b) the different scenario sets are comparable to each other. The
latter means the cumulative distribution function of certain key characteristics has
to follow a pre-determined pattern.

The second part – comparability across scenario sets – is only required because some
experiments do not allow for large scenario sets. An example for this is given in Appendix
A.3.1. In this case, there are 729 different combinations of experiments to be executed
for each single scenario which does not scale in terms of experiment execution time if
n is too large. However, because the results of these experiments were also used with
larger scenario sets, it is required that the two sets are somehow comparable to justify
the outcome of those experiments.

12.2.3 Capacity Reduction Factor

Next, it is important to define a way to distinguish scenarios with respect to “bottleneck
severity”. One obvious candidate for such a distinction would be the number of flow rules
that need to be relocated over the course of an experiment. However, this value cannot
be easily used as an input parameter because it depends on too many other variables. A
much simpler way to distinguish the severity of different bottleneck situations (which can
be easily controlled from an experiment point of view) is the so-called capacity reduction
factor.

Definition 12.3: Capacity Reduction Factor

The capacity reduction factor (capacity reduction for short) is given as a per-
centage value between 0% and 100% and specifies the size of the flow table
compared to the maximum flow table utilization uTable

max
. If the capacity reduction

factor is set to 40%, for example, the flow table capacity of all switches is set to
uTable

max
− 40

100 ∗ uTable

max
= 0.6 ∗ uTable

max
.
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This is a simple and intuitive way to describe bottleneck severity because higher factors
will automatically result in more flow rules that need to be relocated over the course of
an experiment, regardless of how the scenario is generated. Fig. 12.1 gives an example.
It shows the flow table utilization over time for one switch of one scenario. The red
dashed line marks the maximum flow table utilization uTable

max
, which is 2352 flow rules in

this example. The blue line represents the capacity of the flow table for different capacity
reduction factors.
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Figure 12.1: Illustration of capacity reduction

In the leftmost plot, the capacity reduction factor is set to 20% which results in a flow
table capacity of 1881 flow rules. The two other plots show the same scenario with higher
capacity reduction factors, i.e., with less capacity and thus more severe bottlenecks. Flow
rules that need to be relocated over the course of an experiment are shown in red. It is
easy to see that there is a direct correlation between capacity reduction and bottleneck
severity, i.e., the number of flow rules that need to be relocated over the course of an
experiment (the red area gets larger for higher factors).

And the above definition has another important benefit: it can be used as a performance
metric for flow delegation. Take the three example plots in Fig. 12.1 that show the same
scenario with different capacity reduction factors. We can now ask the following question
to evaluate the performance: “How high can we set the capacity reduction factor before
flow delegation is unable to mitigate the bottleneck?”. If the answer is 20%, only the
situation in the leftmost plot of Fig. 12.1 can be handled2. If the answer is 40%, the
performance is obviously better because the situation in the middle can be handled as
well – and all situations in between.

However, it is not yet clear what it means that a situation can be handled by flow
delegation. This is addressed first with the failure rate definition in the next section. The
term flow delegation performance is formally introduced afterwards.

2And all situations with factors below 20%
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12.2.4 Failure Rate

We say that flow delegation can “handle” a situation – i.e., a combination of scenario and
capacity reduction factor as described in Fig. 12.1 – if all flow rules in the red area can
be relocated to a remote switch. This, however, is only possible if remote switches with
enough spare flow table capacity are available. If this is not the case, flow delegation will
use a so-called backup switch (BS) (see Def. 9.5) to store relocated flow rules that do
not fit in one of the remote switches. The backup switch is a fake remote switch without
capacity constraints but disproportionately high cost that is only used if the RS-Alloc
problem is getting infeasible otherwise.

The failure rate is now defined as the fraction of the flow rules that are not handled by
a remote switch in hardware over the course of an experiment. This is an important
performance metric for flow delegation. If the failure rate for a scenario with a specific
capacity reduction factor is 0%, flow delegation can handle this specific situation without
the help of the backup switch, i.e., all flow rules are handled in hardware. If the failure
rate is above 0%, some flow rules are relocated to the backup switch and the situation
cannot be handled, at least not without limitations. A more formal definition of the
failure rate is shown below.

Definition 12.4: Failure Rate

The failure rate counts the amount of flow rules allocated to the backup switch
over the course of an experiment. This value is multiplied with a normalization
factor (denominator) that represents all used flow rules over the course of the
experiment to get a percentage value:







∑

t∈T

uBS

t

∑

s∈S

∑

t∈T

uTable

s,t





 ∗ 100 (12.2)

uBS

t
represents the flow rules allocated to the backup switch BS in time slot t.

Note that the above definition explicitly includes the time domain. Assume a trivial
scenario with one hardware switch s1 and only a single flow rule that is installed in s1

for 100 consecutive time slots. A 0% failure rate means the flow rule is installed in s1

the whole time and the backup switch is never used. A 10% failure rate means the flow
rule is relocated to the backup switch for 10 time slots because of a bottleneck (and the
fact that there is no remote switch available). A 100% failure rate means the flow rule is
relocated to the backup switch in all 100 time slots, i.e., over the course of the complete
experiment.
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12.2.5 Flow Delegation Performance

Flow delegation performance indicates “how well” flow delegation can deal with a specific
situation. This is primarily determined by the failure rate, i.e., the amount of flow rules
that cannot be relocated to another hardware switch – which should be close to 0%.
However, the failure rate largely depends on the capacity reduction factor: it is much
easier to achieve a 0% failure rate for lower capacity reduction factors. The term flow
delegation performance brings these two aspects together:

Definition 12.5: Flow Delegation Performance

The flow delegation performance is defined as the maximum capacity reduction
factor that can be applied to a scenario so that, when flow delegation is used with
this scenario, the failure rate does not exceed a specified maximum. The maximum
accepted failure rate is a configurable parameter that must be specified by the
network operator. Acceptable maximum failure rates investigated in this thesis
are 0% (no failures), 0.1%, and 1%. Failure rates higher than 1% are considered
impracticable.

Note that flow delegation performance is always defined with respect to a specific scenario.
For the following example of how to use this definition, assume the maximum accepted
failure rate is 0%, i.e., all excess flow rules must be relocated to a remote switch. In other
words: there is a “failure” if only a single flow rule has to be allocated to the backup
switch3.

The performance of flow delegation with respect to a scenario can now be described as
follows: A performance of XYZ% means flow delegation can handle the scenario with a
maximum applied capacity reduction factor of XYZ% while still achieving a 0% failure
rate. This implies two important statements:

• The scenario can be handled with 0% failure rate for all capacity reduction factors
up to XYZ%

• If a higher capacity reduction factor is applied, the failure rate is above 0%.

And because the flow delegation approach should be tested against scenario sets rather
than individual scenarios, the performance is usually specified for a percentile of multiple
investigated scenarios. A typical performance result would be: “flow delegation can
achieve a 0% failure rate for all capacity reduction factors up to XYZ% for 90% of the
investigated scenarios”. The key performance value here is XYZ% because this value

3Note that the flow delegation approach does not really fail in the sense of an error / exception. It
only means some flow rules are allocated to the backup switch because the network can not provide
sufficient spare resources.
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represents the bottleneck severity. But it is important to keep in mind that this value
always has to be interpreted with respect to the percentile of the investigated scenarios
and the maximum accepted failure rate.

12.2.6 Flow Table Utilization Ratio

It is expected – and will be shown later – that the available free capacity in the network
correlates with flow delegation performance. To distinguish between scenarios with large
and small amount of free flow table capacity, the following definition is introduced:

Definition 12.6: Flow Table Utilization Ratio

The flow table utilization ratio for a scenario is defined as the ratio between
average flow table utilization of all switches in the scenario and the maximum flow
table utilization of all switches. The latter is given as uTable

max
. In lambda notation,

the ratio is calculated as follows:

1
|S|

∑

s∈S

∑

t∈Ts

1
|Ts|

∑

f ∈Fs,t
λa

f ,t

uTable
max

(12.3)

In the above definition, Ts is the set of all time slots for switch s with at least one active
flow rule. Time slots where no rules are installed are not considered. This new terminus
is introduced here because the flow table utilization ratio is a good indicator for the
available free flow table capacity in the network – which is a key parameter for flow
delegation performance. In addition, it is easy to derive the flow table utilization ratio
from basic monitoring data in an existing network. This is important because a measured
ratio provides network operators with a first estimate on the potential performance to be
expected from flow delegation.

12.2.7 Other Terminology

Bottleneck Situation: The term (bottleneck) situation refers to a specific scenario in
combination with a capacity reduction factor. Recall the example in Fig. 12.1. The three
plots show the same scenario but three different situations. The plot in the left shows
the situation with a capacity reduction factor of 20%. The plot in the middle shows the
same scenario but a more severe situation with a capacity reduction factor of 40%.

Experiment: An experiment is a single scenario applied to a specific parameterization of
the flow delegation approach – e.g., using a specific algorithm for delegation template
selection with specific weights and a specific look-ahead factor. The same scenario can
be used in multiple experiments if different parameters are used.
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Experiment Series: A series of experiments conducted to investigate a certain aspect of
the flow delegation approach. Most experiment series represent a scenario set evaluated
against a specific parameterization, i.e., flow delegation is used for each scenario in the
scenario set with one or multiple parameterizations.

Samples: A single execution of DT-Select or RS-Alloc. Because the flow delegation
algorithm is executed in multiple optimization periods, the associated linear programming
problems are solved multiple times during one experiment. Assume a scenario with three
switches s1, s2, s3 that spans a time period of 400 seconds. s1 suffers from a flow table
capacity bottleneck for 25 seconds and s3 suffers from a bottleneck for 50 seconds (but
fully overlapping with the first bottleneck). Given that the flow delegation algorithm is
executed once per second, this example will result in 75 executions of DT-Select and 50
executions of RS-Alloc. Each of these executions is referred to here as a sample. Samples
of DT-Select are called DTS-Samples. Samples for RS-Alloc are called RSA-Samples.

Data set: After an experiment is executed, scenario, parameters and results are stored in
a result file. A collection of these result files for multiple experiments is called a data set.
All results presented in this work are associated with exactly one data set. All data sets
and the tools for browsing the data sets are publicly available (see Appendix D).

Scenario ID: Many of the plots and explanations used in this thesis specify a so-called
scenario ID. This is a unique identifier between 0 and 500000 that can be used in the
evaluation environment to recreate the exact same scenario, e.g., for reproducibility or
to test the scenario with another parameterization.

12.3 Evaluation Methodology

The methodology used for evaluation is depicted in Fig. 12.2. It consists of four steps:
scenario generation, pre-processing, experiment execution and post-processing. All
conducted experiments follow this methodology. Before the individual steps are explained
in more detail, the overall process is briefly summarized below.

1© Scenario generation: Single scenarios are generated as scale-free topologies based
on the Barabasi-Albert model [AB02] and populated with a configurable number
of hosts, following the approach in [Coh+14b]. Afterwards, traffic and flow rules
for the hosts are generated based on data from [Geb+12] and [JRB18]. Specific
bottlenecks situations can be enforced in certain parts of the topology (hotspots)
or certain time frames (temporal bottlenecks).

2© Pre-processing: An initial scenario set with 500.000 scenarios is generated based
on the process from step 1 with a randomized set of parameters. This initial scenario
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Figure 12.2: Evaluation methodology

set is then reduced in two steps to create scenario sets of smaller size with similar
characteristics.

3© Experiment execution: Execution of the actual experiment which means DT-Select
and RS-Alloc are calculated individually for each scenario with the given parameter-
ization (which is specified by the experiment creator). Each such experiment results
in a result file that consists of the scenario and the output of the two algorithms. It
is also possible to validate results with a flow-level simulator (optional).

4© Post-processing: The data obtained from step 3© is analyzed analytically to deter-
mine the flow table utilization of the scenario with and without flow delegation
(and several other metrics). Results of multiple experiments are stored in a data
set. Final step is analysis and interpretation of the obtained data.

12.3.1 Scenario Generation

This section describes the scenario generation process. Goal is it to create a synthetic
scenario with realistic topology and plausible characteristics for traffic and flow table uti-
lization. Recall from Def. 12.1 that such a scenario is defined as a quadruple




S, H, Y, F
�

.

A scenario is generated in two subsequent steps. The first step is topology generation

which will return a three-tuple



S, H, Y
�

. S is a set of switches, H is a set of hosts and Y

represents the links between the switches and hosts. This is discussed in Sec. 12.3.1.1.
The second and more complex step is flow rule set generation. The flow rule set F

contains all flow rules installed into the switches in S. This is discussed in Sec. 12.3.1.2.
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12.3.1.1 Topology Generation

The topology of a scenario



S, H, Y
�

is created with Alg. 15 in two steps: The first step
(line 5-12) creates links between the switches in S and the second step (line 13-18)
connects each host in H with a switch in S. Links are specified as binary variables as it
was introduced in Sec. 4.1: ys→r is set to 1 if a link exists between switch s ∈ S and r ∈ S.
If no such link exists, the variable is set to 0. The some notation is used for links between
hosts and switches.

The first step of Alg. 15 is based on the Barabasi-Albert model which is often used in
the context of software-based networks [LPW16; Luo+16; Kos+17; Xu+17; Zha+19;
OCF19]. It generates random scale-free topologies, i.e., topologies where the node
degree distribution follows a power law. The model argues that the scale-free nature of
a topology is based on two mechanisms that are commonly found in many real-world
communication networks [AB02]: i) the network can be described as an open system
where new nodes are added continuously starting from a small initial set of nodes and
ii) the likelihood of connecting a new node to an existing node depends on the degree
of the existing node. These two mechanisms are described in the model as growth and
preferential attachment.

The algorithm has three simple input parameters: number of switches |S|, number of
hosts |H| and a third parameter 1≤ m< |S|. The latter is a special parameter from the
Barabasi-Albert model that serves two purposes. It defines the size of the initial set and
also the number of links that are added in each iteration. Because the growth mechanism
requires that at least one switch is not part of the initial set, the parameter is restricted
to a value m < |S|. At initialization, the topology consists of m0 = m switches and no
links (line 2) – the initial set mentioned above that represents the starting point for the
growth mechanism. New switches and links are then added in |S| −m0 iterations in the
first loop (line 5). In each iteration, one new switch is added and connected to m existing
switches, i.e., the model adds m new links per iteration (lines 6-10). To take preferential
attachment into account, the endpoints for each of the m new links are chosen according
to the probability in Eq. 12.4. r ∈ S is one of the already existing switches in S.

Π(r) =
degree(r)
∑

s∈S

degree(s)
(12.4)

This will preferably attach new links to switches with higher node degree. After all
remaining switches are added, the topology consists of |S| switches and m ∗ (|S| −m0)

links and the model ensures that the node degree distribution of the switches follows
a power law. In the second step, the hosts in H are randomly attached to one of the
switches in S (lines 13-18).
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Algorithm 15: Topology Generation

Data: number of switches |S| and hosts |H| to be generated, model parameter m

Result: topology information



S, H, Y
�

for one scenario
1 Function generate_topology(|S|, |H|, m):

2 S = {s1, . . . , sm} // initial set of m switches

3 H = {} // initial set of hosts (empty)

4 Y = {} // initial set of links (empty)

/* Step 1: create switch topology (Barabasi-Albert model) */

5 for s ∈ {sm+1, . . . , s|S|} do
/* add m new bi-directional links between s and r ∈ S */

6 for i ∈ {1, . . . , m} do

7 r ← select a switch r ∈ S with probability Π(r) = degree(r)
∑

s∈S degree(s)

8 ys→r ← yr→s← 1
9 Y ← Y ∪ {ys→r , yr→s} // update link set

10 end

11 S← S ∪ {s} // update switch set

12 end

/* Step 2: attach hosts to topology */

13 for h ∈ {h1, . . . , h|H|} do

14 s← select a random switch s ∈ S (equally distributed)
15 ys→h← yh→s← 1
16 Y ← Y ∪ {ys→h, yh→s} // update link set

17 H ← H ∪ {h} // update host set

18 end

19 return



S, H, Y
�

20 end

Fig. 12.3 shows examples of generated topologies with different parameters. The switches
are shown as black circles labeled from 0 to |S| − 1. Links between switches are shown
as black lines. The hosts are shown as small blue dots. Links between switches and hosts
are shown as blue lines. Topology a© in the top left corner, for example, was generated
with |S| = 4, |H| = 100, and m= 1. The topologies further to the right represent higher
values of |H| and m. The topologies further to the bottom represent higher values of |S|.

Note that the Barabasi-Albert model was only chosen because it can be easily parame-
terized (with parameter m) and creates very different but still realistic topologies. The
created topologies, however, are not necessarily representative for all kinds of networks.
Data center networks, for example, have a different structure in most cases. It is important
to mention here that flow delegation was also successfully tested in data center topologies
[BD17], i.e., the approach is not conceptually limited to a certain kind of topology.
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Figure 12.3: Example topologies created with Alg. 15

12.3.1.2 Flow Rule Set Generation

Flow rule set generation is more complex than topology generation. The process takes
the topology from the last section and creates the flow rules as follows:

(1) Create a set of inter-arrival time values Tiat. Values in this set specify the time be-
tween two consecutive flow rule installations from the perspective of the controller.
Assume the first flow rule is installed at some point in time τ and Tiat is given as
{ta, tb, tc, . . .}. The second flow rule is then installed at τ+ ta, the third flow rule
is installed at τ+ ta + tb and so on.

(2) Values in Tiat are artificially reduced to increase the number of flow rules installed
per second. This can be done either for all values in the set using some linear factor
to scale up the scenario as a whole. Or the reduction is restricted to specific time
windows to create periods where the network temporarily suffers from increased
load. The latter is referred to as “temporal bottlenecks” from here on.
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(3) Individual flow rules are then generated iteratively in five sub-steps:

a) Select a random pair of hosts



hsrc, hdst

�

from the topology

b) Calculate the number of bits sent from hsrc to hdst and the constant bit rate4

c) Calculate install and removal time for the flow rule(s) associated with the
communication between hsrc and hdst. The install time is realized as a global
time offset.

d) Create a new flow rule for each switch on the shortest path between hsrc and
hdst

e) Select next value in Tiat and add this value to the global time offset for
consecutive flow rules (see step c)

The above process is shown in Alg. 16. It has two kinds of inputs: the topology



S, H, Y
�

that was created in the last section with Alg. 15 and parameters to further specify how
the rules are generated, given here as nxyz. These parameters are explained in Table 12.2
below, listed in the order in which they are used in Alg. 16.

Parameter Description

npairs Number of host pairs



hsrc, hdst

�

selected from set H. For each
selected pair, one flow rule is installed in all switches on the path
between hsrc and hdst.

niat_scale Global scale parameter for inter-arrival time values in Tiat.
Specifies the time required to install all flow rules in seconds. If
set to 350s (default value), Tiat is scaled in such a way that the
sum of the inter-arrival time values equals 350 seconds.

nbneck Number of temporal bottlenecks added to the scenario. Each
temporal bottleneck is further specified with a duration and an
intensity value.

nbneck_duration Duration value for temporal bottlenecks in seconds. A value of
10s means that all temporal bottlenecks last for 10 seconds.

nbneck_intensity Intensity value for temporal bottlenecks given as a percentage
value > 100%. All inter-arrival time values affected by a temporal
bottleneck are scaled by 100

nbneck_intensity
.

4As mentioned in Sec. 12.1, the bit rate for a single sender (hsrc) is assumed to be constant over time.
Different senders, however, can have different constant bit rates.
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nisr Inter switch ratio. Probability that hsrc and hdst are not attached
to the same switch if a new pair is selected, given as a percentage
value between 0% and 100%

nhs Number of hotspots in the scenario. A hotspot is a subset of the
hosts in H that are preferred when host pairs are selected. Is
further specified with an intensity value.

nhs_intensity Intensity value for hotspots. Determines the number of re-
selections that are done if a selected host does not belong to
a hotspot. Default value is 5.

ntraffic_scale Global scale parameter for processed traffic given as a percent-
age value > 100%. All traffic processed by a flow rule is scaled
linearly by 100

ntraffic_scale
.

nlifetime Minimum lifetime of a flow rule. A global parameter given in
seconds that is used for all flow rules.

Table 12.2: Parameters for flow rule set generation

Output of the algorithm is a set of flow rules Fs for each switch s ∈ S. These flow rules are
specified as introduced in Sec. 12.1, i.e., as a nine-tuple. The remainder of this section
will now explain the motivation and design decisions associated with the individual steps
of Alg. 165.

The first step (line 3) is construction of suitable inter-arrival time values Tiat. This is
done with a gamma distribution based on results presented in [Geb+12]. The authors in
[Geb+12] analyzed different distribution functions (exponential, log-normal, gamma) to
model flow inter-arrival times. For that purpose, traffic of 600 customers of a German
access provider was captured over a period of 14 days (3.3 TBytes of observed data).
They found that a gamma distribution with shape k = 0.4754 and scale θ = 13.7300
resulted in a good match with the observed data. The same approach and parameters
are used here to model the inter-arrival time of flow rules. Note that the function in line
3 returns a set of npairs values, one for each flow rule installed in the third step below.

In the second step (line 4-5), the calculated inter-arrival time values are adjusted. Line
4 first applies a global scale parameter niat_scale. This is required because the above
gamma distribution was designed for a single switch while a scenario usually consists
of multiple switches. However, instead of using 1

|S| as a traffic-independent multiplier

5See https://github.com/kit-tm/fdeval/blob/master/topo/scenario.py for implementation de-
tails.

https://github.com/kit-tm/fdeval/blob/master/topo/scenario.py
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Algorithm 16: Flow Rule Set Generation

Data: topology



S, H, Y
�

and parameters for flow rule generation (nxyz, explained
in Table 12.2)

Result: flow rule set Fs for each switch s ∈ S

1 Function generate_flow_rule_sets(



S, H, Y
�

, nxyz):

2 Fs = {} ∀s ∈ S

/* Step 1: Calculate a set of npairs inter-arrival time values using a gamma

distribution with shape k and scale θ [Geb+12] */

3 Tiat← get_iat_samples_from_gamma_distribution(k, θ , npairs)
/* Step 2: Modify the set of inter-arrival time values to include global

scale factor and temporal bottlenecks */

4 Tiat← apply_global_scale_factor(Tiat, niat_scale)
5 Tiat← apply_temporal_bottlenecks(Tiat, nbneck, nbneck_intensity, nbneck_duration)

/* Step 3: Iteratively add new flow rules */

6 τoffset← 10
7 for i ∈ {1, . . . , npairs} do

/* Step 3a: Select a new random host pair based on inter switch ratio

(nisr) and topology hotspot parameters (nhs and nhs_intensity) */

8




hsrc, hdst

�

← get_host_pair(H, nisr, nhs, nhs_intensity)
/* Step 3b: Calculate flow length in bits based on [JRB18] and select

bit rate for the sending host */

9 δ← get_sample_from_jurkiewicz_mixture()
10 b← get_bitrate(δ, ntraffic_scale)

/* Step 3c: Calculate install and removal time for the new flow rule */

11 τinstall← τoffset

12 τremove← τoffset +max
�

min(δ
b
, 35), nlifetime

�

/* Step 3d: Calculate shortest path between hsrc and hdst and add flow

rule to the flow rule set of each switch on the path */

13 sp= {ssrc, . . . , sdst} ← get_shortest_path(hsrc, hdst)
14 for s ∈ {ssrc, . . . , sdst} do

15 f ←



s, hsrc, hdst, sp, τinstall, τremove, δ, b, nlifetime

�

16 Fs← Fs ∪ { f }
17 end

/* Step 3e: Increase offset by next inter-arrival time value and

continue with the next flow rule */

18 τoffset← τoffset + Tiat[i]

19 end

20 return Fs

21 end
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(which is a valid alternative approach),
∑

Tiat
niat_scale∗1000 is used here. That means all values in

Tiat are multiplied with this value. This ensures that flow rules are always installed over
a time period of niat_scale seconds which makes it easier to design and plot experiments.
The additional factor of 1000 in the denominator is required because inter-arrival time
values are given in milliseconds and the scale parameter is given in seconds.

Line 5 further adjusts the values in Tiat to emulate temporal bottlenecks. The number
of temporal bottlenecks to be considered is given as nbneck. For each temporal bottleneck,
a random index x is selected between 1 and |Tiat|. This index represents the start of the
temporal bottleneck. Next, a second index y > x is selected so that y is minimal and Eq.
(12.5) is fulfilled, i.e., the bottleneck spans a duration of nbneck_duration seconds.

�

∑x+y

i=x
Tiat[i]

1000

�

≥ nbneck_duration (12.5)

All values in |Tiat| between index x and index y are then reduced to increase the number
of flow rules installed in this time period, i.e., they are multiplied with a value < 1. This
multiplier is determined by the scale parameter for bottleneck intensity nbneck_intensity

which is given as a value > 100. A value of 125, for example, means that the inter-arrival
times in Tiat are multiplied with 100

125 = 0.8 during the bottleneck. Higher intensity values
result in lower multipliers and a higher number of installed flow rules per second. All
temporal bottlenecks currently have the same duration and intensity. To simulate that
such temporal bottlenecks do not occur instantaneously, the multipliers (y − x in total)
are modeled as a normal distribution with µ = 100

nbneck_intensity
. Smaller multipliers are used

if the indices are close to x and y (at the “edge” of the temporal bottleneck) and larger
multipliers are used for indices near x +

y−x

2 (at the center). The subsequent section
gives examples of how this mechanism works with different parameterizations.

The third step (line 7-19) will create the individual flow rules, roughly following the
methodology used in [Coh+14b]. It consists of five sub steps.

Sub step 3a (line 8) selects a random pair of hosts



hsrc, hdst

�

from set H. The selection
is controlled by three parameters. The inter switch ratio nisr determines the probability
that the two selected hosts are attached to two different switches so that traffic between
hsrc and hdst has to be forwarded over at least two switches. With nisr = 50%, half of
the selected pairs is attached to different switches. With nisr = 20%, only 20% of the
pairs are attached to different switches. This parameter is important because higher inter
switch ratios are more likely to cause bottlenecks in switches with high node degree
(because less traffic is exchanged locally at one switch).

The two other parameters that control the selection of the host pairs are referred to as
hotspot parameters. A hotspot is a subset Hhs ⊆ H and hosts in this subset are preferred
in the host pair selection process. The number of hotspots is given as nhs. For each
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hotspot, the hosts attached to a randomly selected switch are added to Hhs. The hotspot
mechanism itself works as follows. Each time a new host pair is selected, it is checked
whether hsrc is present in Hhs. If this is the case, the selection process is finished. If this
is not the case, however, a new pair is selected. The maximum number of re-selections
is constrained by the second hotspot parameter nhs_intensity. Using this mechanism,
bottlenecks can be simulated for arbitrary switches – including those with a low node
degree. Examples are provided in the next section.

Sub step 3b (line 9-10) generates the traffic. This includes the number of bits sent
from hsrc to hdst and the bitrate of the sending host. The number of bits are calculated
in a similar way as the inter-arrival time values. Because [Geb+12] does not provide
distributions for this use case, we instead use the results presented in [JRB18]. The
authors used a very similar setup, collected 275 TBytes of traffic with four billion flows in
a campus network (AGH University of Science and Technology) and extracted different
mixture models that are publicly available on GitHub6. The concrete mixture used to
create a sample for δ in line 9 makes use of several uniform and log-normal distributions
and can be found here: https://github.com/kit-tm/fdeval/blob/master/topo/st
atic.py7. Given the number of bits δ, the bitrate of the sending host has to be determined
which is done in line 10. The idea is that high volume flows are transmitted with higher
bitrate. The relationship between δ and b is modeled as a simple square root function.
A step function representing a static set of bit rates for different classes of applications
was also tested with similar results but discarded because of the required additional
parameters.
The traffic scale parameter ntraffic_scale is used for scenarios where the flow rules process
more traffic, e.g., because multiple hosts are aggregated behind one rule. If used, δ
is multiplied with 100

ntraffic_scale
, i.e., the number of bits is increased linearly. Without this

parameter, the majority of the created flow rules will process a very small amount of
traffic (less than 1000 bytes) which is a favourable situation for the flow delegation
approach because the amount of additional traffic caused by relocation is small (would
lead to biased results).

Sub step 3c (line 11-12) calculates the install and removal times for the new flow rule.
The install time is determined with a global offset variable – τoffset in line 6 – which is
updated in each iteration in sub step 3e. The removal time is calculated with the help
of δ and b. Parameter nlifetime represents the minimum lifetime of all flow rules and is
used here if δ

b
is too small – e.g., only a couple of milliseconds. This is similar to the idle

6See https://github.com/piotrjurkiewicz/flow-models, last accessed 2020-02-25. Mixtures for
flow duration and inter-arrival time are unfortunately not yet available here.

7The original version of this mixture given as a set of json files created by Piotr Jurkiewicz can be
found here: https://github.com/piotrjurkiewicz/flow-models/tree/master/data/agh_2015/
mixtures/all/length, last accessed 2020-02-25

https://github.com/kit-tm/fdeval/blob/master/topo/static.py
https://github.com/kit-tm/fdeval/blob/master/topo/static.py
https://github.com/piotrjurkiewicz/flow-models
https://github.com/piotrjurkiewicz/flow-models/tree/master/data/agh_2015/mixtures/all/length
https://github.com/piotrjurkiewicz/flow-models/tree/master/data/agh_2015/mixtures/all/length
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timeout mechanism used in OpenFlow networks. Because scenarios in this evaluation are
limited to 400 seconds, a static maximum lifetime of 35 seconds is used. This is necessary
because the above process also generates a small amount (< 0.001%) of flow rules that
would last for hundreds of seconds which makes plotting and exception handling more
difficult.

Sub step 3d (line 13-17) calculates the shortest path between hsrc and hdst and adds
a new flow rule to set Fs if s is included in the shortest path. It is easy to see that all
nine variables specified in Table 12.1 are available at this point. The new flow rule is
constructed in line 15 and added to Fs in line 16.

Sub step 3e (line 18) increases the offset that is used in the next iteration in sub step
3c. It therefore extracts the next value from the set of inter-arrival time values (Tiat[i])

and adds it to τoffset. The procedure then continues with sub step 3a until all pairs are
handled, i.e., there are npairs iterations in total.

12.3.1.3 Examples

This section shows examples for flow rule set generation. To better illustrate the idea,
the majority of the parameters is kept static8. All examples are created with 6 switches
and 100 hosts. Parameter m for the Barabasi-Albert model is set to 1. In addition, the
global seed for the pseudo random number generator was set to a fixed value so that all
examples use the same topology.

The parameters for flow rule generation are listed in Table 12.3. The number of selected
pairs (npairs) is set to 100.000 in all five examples. The global scale parameter for the
inter-arrival time values (niat_scale = 350s), the global scale parameter for processed
traffic (ntraffic_scale = 100%) and the minimum lifetime of the flow rules (nlifetime = 3s)
are also kept static across the examples. The bottleneck-specific parameters, however,
are varied to highlight different aspects:

• Example 1: low inter switch ratio, ignores all other bottleneck-specific parameters

• Example 2: high inter switch ratio, ignores all other bottleneck-specific parameters

• Example 3: uses a hotspot, i.e., the hosts attached to one random switch (red
circle) are selected more frequently

• Example 4: uses two temporal bottlenecks that last for 50s each

• Example 5: combines a hotspot with five partially overlapping temporal bottlenecks

8The scenarios shown here are not included in the actual evaluation. They were created manually, only
for illustration purposes in this section.
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Example 1 Example 2 Example 3 Example 4 Example 5

Parameter (Fig. 12.4) (Fig. 12.5) (Fig. 12.6) (Fig. 12.7) (Fig. 12.8)

npairs 100.000

niat_scale 350s

nbneck - - - 2 5

nbneck_duration - - - 50s 50s

nbneck_intensity - - - 150% 150%

nisr 20% 75% 50% 50% 50%

nhs - - 1 - 1

nhs_intensity - - 5 - 5

ntraffic_scale 100%

nlifetime 3s

Table 12.3: Flow rule generation parameters for the five examples in Sec. 12.3.1.3. The

parameters are explained in Table 12.2. Ignored parameters are shown as a

minus sign.

Example 1: The topology – which is the same for all five examples – is shown in the
left. Switches are shown as black circles labeled from 0 to 5. Links between switches are
shown as black lines. The hosts are shown as small blue dots. Links between switches
and hosts are shown as blue lines. Example 1 in Fig. 12.4 is now constructed with an
inter switch ratio of 20%, i.e., traffic exchanged between two hosts has to be forwarded
over more than one switch in 20% of the cases. This means the majority of the generated
flow rules was only installed in a single switch.

This results in a scenario where the flow tables of the switches are used more or less
uniformly, simply because the host pairs are selected uniformly as well. The flow table
utilization over time for this case is shown in the right of Fig. 12.4. The black circles refer
to the switch number in the topology. Only the switches in the center of the topology –
primarily switch 0 – have a slightly higher flow table utilization which can be explained
with the inter switch ratio of 20%.

Another important aspect that can be observed in all six plots on the right of Fig. 12.4 is
the global scaling mechanism for the inter-arrival time values. Because niat_scale is set to
350 seconds, the values in Tiat are scaled in such a way that all flow rules are installed
within a 350 second period.
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Figure 12.4: Example 1 with small inter switch ratio of 20%
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Figure 12.5: Example 2 with large inter switch ratio of 75%

Example 2: This example is identical to example 1 except that the inter switch ratio
was increased from 20% to 75%. In this case, the majority of the generated flow rules is
installed in multiple switches (in contrast to before). It can be seen in Fig. 12.5 that the
flow table utilization differs based on the node degree. Switches with a higher degree in
the center of the topology (switch 0) require significantly more flow rules than switches
with a smaller degree at the edge (switches 2, 3, and 5). This is because host pairs are still
selected uniformly. The probability that a selected pair creates a shortest path including
switch 0 (with high node degree) is obviously much higher than the probability that the
path includes switch 3 (with small degree).

Example 3: In this example, the inter switch ratio is set to 50%. But unlike before, the
host pairs are not selected uniformly any more due to the hotspot mechanism. As shown
by the red circle in the topology in Fig. 12.6, switch 2 was randomly selected as a hotspot.
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Figure 12.6: Example 3 with a hotspot (red circle) at switch 2

This means all hosts attached to switch 2 were added to set Hhs. Now, when a new host
pair is selected, it is checked whether hsrc is present in Hhs. If this is not the case, a new
pair is selected which grants another chance to select a host from Hhs. This re-selection
is done up to 5 times in this example because nhs_intensity is set to 5. As a result, the
probability that a flow rule has to be installed in switch 2 is increased. This effect is
clearly visible in the large flow table utilization of switch 2 in the top right of Fig. 12.6.
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Figure 12.7: Example 4 with two temporal bottlenecks

Example 4: This example illustrates the mechanism behind the temporal bottlenecks.
Because nbneck = 2, there are two distinct temporal bottlenecks. These two bottlenecks
are visualized with small red rectangles in Fig. 12.7, directly above the x-axis. The first
temporal bottleneck starts at the 50s mark. The second temporal bottleneck starts after
230s. Both last for approx. 50s. Because temporal bottlenecks are applied to the global
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set of all inter-arrival time values, all switches experience an increase in installed flow
rules in the respective time windows. For the same reasons as above, the effect is stronger
for switches with high node degree.

Unlike the hotspot mechanism, temporal bottlenecks reduce the overall time period
between the first and last installed flow rule because a subset of the values in Tiat is
multiplied with a value < 1. Because the global scale parameter niat_scale is applied prior
to the temporal bottlenecks, the total duration is reduced. This effect can be observed
in the six plots in the right of Fig. 12.7. While previous examples span over a time
period of 350 seconds, this example is finished after approx. 300 seconds. This could be
altered by using the global scale parameter after the temporal bottlenecks. However, in
this case, the temporal bottlenecks would be artificially extended to a value larger than
nbneck_duration. Note that this effect is not important for the interpretation of the scenarios
because a real network would populate the flow tables continuously, i.e., is not restricted
to a maximum time window.
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Figure 12.8: Example 5 with hotspot (red circle) and temporal bottlenecks

Example 5: The last example in Fig. 12.8 shows a combination of the three introduced
bottleneck mechanisms – inter switch ratio, hotspots, and temporal bottlenecks. The
inter switch ratio is set to 50%, the number of temporal bottlenecks is set to 5 and there
is a hotspot in switch 1. Note that the temporal bottlenecks can “overlap” if the duration
value is large enough because the indices for the start of the bottleneck are selected
randomly. This can result in situations where the demand for flow rules increases very
fast, as it is shown, for example, in switch 1.
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12.3.2 Pre-Processing

The previous section explained how a single scenario is generated, which is step 1© in
the evaluation process outlined in Fig. 12.2. Step 2© (pre-processing) is discussed in
this section and consists of two tasks:

(1) Generation of 500.000 scenarios with randomized parameter selection

(2) Selection of relevant scenarios to construct the scenario sets used for evaluation

12.3.2.1 Parameter Selection

Goal is it to test the flow delegation approach with scenarios with a wide range of
characteristics – with respect to number of flow rules, traffic volume etc. However, due
to the high number of parameters in the scenario generation process, it is not possible to
simply test with all combinations of parameters. And it is also difficult to select a subset
of the parameters manually without excessive testing (which combination of parameters
leads to which result). Manual selection also comes with the danger of introducing bias.

For the above reasons, all parameters are selected randomly – and independently from
each other in the majority of the cases. This leads to a variety of scenarios with different
combinations of parameters. Table 13.1 shows the different parameters that are required
and the range of allowed values, specified by minimum and maximum. All parameters are
given as integer values. Parameters labeled with U (last column) are selected uniformly
between the specified minimum and maximum. Parameters labeled with N use a normal
distribution to prefer the smaller values. This is used if higher values of the parameter
near the maximum tend to create extreme scenarios, for example, scenarios with a very
high number of temporal bottlenecks.

Parameters labeled with S are also selected uniformly but from a prepared set, i.e., not
all values between minimum and maximum are available9. Parameters labeled with *
depend on the selection of another parameter. This is important for the m parameter
used for topology generation (has to be smaller than |S|) and for the number of hosts
where it makes sense to have a dependency on the number of switches.

Parameter Description Min Max

|S| Number of switches 2 15 U

|H| Number of hosts 5*|S| 20*|S| S (*)

m Used for topology generation 1 |S|-1 U (*)

9See https://github.com/kit-tm/fdeval/blob/master/topo/custom/pbce/exp800-2.py for de-
tails

https://github.com/kit-tm/fdeval/blob/master/topo/custom/pbce/exp800-2.py
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nseed Seed 1 1.000.000 U

nreduction Capacity reduction factor 20 99 U

npairs Number of host pairs 25.000 250.000 U

niat_scale Global scale for Tiat 280 350 S

nbneck Number of temporal bottlenecks 0 20 N

nbneck_duration Bottleneck duration 1 50 U

nbneck_intensity Bottleneck intensity 110 280 N

nisr Inter switch ratio 20 80 S

nhs Number of hotspots 0 4 N

nhs_intensity Hotspot intensity 0 10 N

ntraffic_scale Global traffic scale 25 12.500 S

nlifetime Minimum flow rule lifetime 1 5 U

(*) = Parameter selection depends on another parameter
U = Parameter is selected uniformly

N = Parameter is selected following a normal distribution
S = Parameter is selected uniformly from a prepared set

Table 12.4: Random parameter selection

The characteristics of the created scenarios with the above parameters are discussed in
the next section.

12.3.2.2 Construction of Scenario Sets

Not all 500.000 scenarios generated with the random parameters in Table 13.1 can be
used in the evaluation (resource constraints). It is therefore necessary to select a subset
of the scenarios. More precisely, two scenario sets are generated. One large scenario set
with 5.000 scenarios called Z5000 and a smaller set with 100 scenarios called Z100. The
smaller set is needed because certain experiments require many different combinations
of experiments to be executed for each single scenario which does not scale with Z5000 in
terms of experiment execution time.

In a first step, scenarios that are unrealistic or would consume too much evaluation
resources are excluded from the original set of 500.000 scenarios. This reduces the
amount of scenarios to 98.821 and is based on five criteria. These criteria are shown
with their cumulative distribution functions in Fig. 12.9. The dotted black vertical lines
indicate the boundaries used to include or exclude a scenario. In the end, only scenarios
that fall into the green region are considered.
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Figure 12.9: Characteristics of 500.000 random scenarios before selection

• The first plot in the top left shows the maximum number of flow rules that are
installed into a single switch over the period of an experiment. Scenarios with
more than 200.000 rules are excluded because such a high number of rules is not
considered realistic. However, this excludes only a small fraction of the scenarios
(< 1%).

• The second plot in the top right shows the flow table capacity of the switches taking
the capacity reduction factor into account. This criterion is restricted to values
between 1.000 and 3.000 which represents realistic values for currently available
hardware switches.

• The third plot shows the maximum flow table utilization if flow delegation is not
used. This criterion is restricted to values below 6.000. Given that the minimum
table capacity is 1.000, this allows for scenarios where the utilization is 600% above
the maximum capacity – an extreme case for the flow delegation approach.
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• The fourth plot shows the average link utilization of all links between the switches
in the topology. Because the maximum link capacity is set to 1000 Mbit/s, scenarios
with higher values are excluded.

• The last plot shows the pre-processing time required for the scenario generation
process. Because this value is strongly correlated with the experiment execution
time, it is used here to exclude scenarios that will most likely run into a timeout
later on because of limited evaluation resources (CPU processing time).

The characteristics of the reduced set with now 98.821 scenarios are shown in detail in
Appendix B. A subset of the characteristics – including the five criteria from above – can
also be seen in Fig. 12.10 and Fig. 12.11 (the dashed black line).

To further reduce the number of scenarios to 5000 and 100, the 98.821 scenarios are
processed with a simple sampling algorithm. The idea is to select a subset of the scenarios
so that the difference between the original distribution of the characteristics and the
sampled distribution of the characteristics is minimized10. The result for Z5000 with 5000
scenarios is shown in Fig. 12.10.

It can be seen that the distribution of the original scenario set with 98.821 scenarios –
shown as the dashed black line – and the distribution for the subset with 5000 scenarios
is almost identical. Benefit of this approach is that the subset contains a similar collection
of scenarios which allows it to apply results achieved with a smaller set to the larger set.
The result for Z100 with only 100 scenarios is shown in Fig. 12.11. Despite the small
amount of scenarios, it is still possible to approximate the original distribution in this
case.

The two scenario sets are available online. Please refer to Appendix D for further details
on how these data sets can be used and reproduced. Furthermore, Appendix B.1 shows
the CDFs for all characteristics and parameters. In addition, Appendix B.3 gives a detailed
overview of individual scenarios that can be found in Z100. It is also important to mention
that the results in this work were not only tested against Z100 and Z5000. The experiments
were also successfully validated with alternative sets for Z100 (two alternative sets) and
Z5000 (one alternative set). These alternative scenario sets are also available online.

10The sampling algorithm is implemented in https://github.com/kit-tm/fdeval/blob/master/plo

tter/agg_01_d001_scenario_selection.py. It takes a random subset and calculates seven different
percentiles (1%, 25%, 50%, 75%, 90%, 95%, and 99%) for 9 selected characteristics. It then iteratively
re-selects scenarios to improve the mean error between the percentiles of the original scenario set and
the sampled scenario set, averaged over the selected characteristics.

https://github.com/kit-tm/fdeval/blob/master/plotter/agg_01_d001_scenario_selection.py
https://github.com/kit-tm/fdeval/blob/master/plotter/agg_01_d001_scenario_selection.py
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Figure 12.10: Nine characteristics of the scenarios in Z5000 (red line) compared to the same

characteristics of the original set with 98.821 scenarios (dashed black line)

12.3.3 Experiment Execution

The two previous sections explained how scenarios are generated in step 1© and how
scenario sets are created in step 2©. The third step of the methodology is experiment
execution, i.e., flow table utilization and several other metrics are investigated for the
created scenarios, with and without flow delegation.

12.3.3.1 Environment

The evaluation environment created for this work is written in Python 3.6.8 and avail-
able on Github (https://github.com/kit-tm/fdeval). The only external dependency
despite common open source python libraries (such as networkx, numpy, scipy, etc) is
Gurobi which is used in version 8.0.1 for modeling and solving ILPs. The code will not
be explained here in detail. However, the following table lists selected entry points to
important source files in the code.

https://github.com/kit-tm/fdeval
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Entry point Description

main.py Executes a single experiment
https://github.com/kit-tm/fdeval/blob/master

/main.py

test.py Executes an experiment series
https://github.com/kit-tm/fdeval/blob/master

/test.py

experiment.py Represents one instance of an experiment
https://github.com/kit-tm/fdeval/blob/master

/topo/custom/pbce/exp800-2.py

scenario.py Implements the scenario generation process
https://github.com/kit-tm/fdeval/blob/master

/topo/scenario.py

dts.py Implements DT-Select algorithms
https://github.com/kit-tm/fdeval/blob/master

/engine/solve_dts.py

rsa.py Implements RS-Alloc algorithms
https://github.com/kit-tm/fdeval/blob/master

/engine/solve_rsa.py

translate_dts.py Translation to lambda notation for DT-Select
https://github.com/kit-tm/fdeval/blob/master

/engine/solve_dts_data.py

translate_rsa.py Translation to lambda notation for RS-Alloc
https://github.com/kit-tm/fdeval/blob/master

/engine/solve_rsa_data.py

simulator.py Discrete event simulator for flow rule delega-
tion
https://github.com/kit-tm/fdeval/blob/master

/core/simulator.py

Table 12.5: Important entry points of the evaluation environment

The workflow for running an experiment series (using the source files from the table
above) is discussed in the next section.

12.3.3.2 Execution of an Experiment Series

An experiment series consists of multiple experiments with different parameters. Such
a series is executed as follows (the *.py entry points are explained in Table 12.5): In a

https://github.com/kit-tm/fdeval/blob/master/main.py
https://github.com/kit-tm/fdeval/blob/master/main.py
https://github.com/kit-tm/fdeval/blob/master/test.py
https://github.com/kit-tm/fdeval/blob/master/test.py
https://github.com/kit-tm/fdeval/blob/master/topo/custom/pbce/exp800-2.py
https://github.com/kit-tm/fdeval/blob/master/topo/custom/pbce/exp800-2.py
https://github.com/kit-tm/fdeval/blob/master/topo/scenario.py
https://github.com/kit-tm/fdeval/blob/master/topo/scenario.py
https://github.com/kit-tm/fdeval/blob/master/engine/solve_dts.py
https://github.com/kit-tm/fdeval/blob/master/engine/solve_dts.py
https://github.com/kit-tm/fdeval/blob/master/engine/solve_rsa.py
https://github.com/kit-tm/fdeval/blob/master/engine/solve_rsa.py
https://github.com/kit-tm/fdeval/blob/master/engine/solve_dts_data.py
https://github.com/kit-tm/fdeval/blob/master/engine/solve_dts_data.py
https://github.com/kit-tm/fdeval/blob/master/engine/solve_rsa_data.py
https://github.com/kit-tm/fdeval/blob/master/engine/solve_rsa_data.py
https://github.com/kit-tm/fdeval/blob/master/core/simulator.py
https://github.com/kit-tm/fdeval/blob/master/core/simulator.py
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Figure 12.11: Nine characteristics of the scenarios in Z100 (red line) compared to the same

characteristics of the original set with 98.821 scenarios (dashed black line)

first step, the parameters for the experiment series are written into a parameter database
called series.db. The series is started with a call to test.py using a reference to the
folder that contains the series.db parameter database. This tool uses asyncio to run all
experiments specified in series.db (in parallel). The tool can be aborted at any time. It
will delete failed result sets at the next start and continue with the missing experiments.
This will also consider updated parameters in the parameter database. Each experiment
is executed in a new process – instance of main.py – to avoid memory leaks. Within
main.py, the following steps are executed per experiment:

(1) main.py will first create a global experimentation environment called “ctx” where
all important data structures are stored (parameters, scenario, statistics, . . . ).

(2) Parameters are extracted from series.db and stored in ctx. If a scenario ID is used,
it serves as a seed to generate the corresponding random parameters. This is done
in experiment.py.
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(3) The scenario generator in scenario.py is called and creates the scenario based on the
parameters. This step will also perform a first analysis of the scenario to determine
various metrics such as maximum flow table utilization or maximum link utilization
(without flow delegation).

(4) The created scenario is handed over to rsa.py where the flow delegation algorithm
is executed. The process is implemented iteratively. rsa.py calls dts.py to get access
to the results of the delegation template selection algorithm (if required). The
translation to lambda notation is also executed iteratively in each optimization
period.

(5) After the algorithm is finished, the situation with flow delegation is calculated.
This takes the optimal solutions from DT-Select and RS-Alloc and applies them
to the scenario. Statistics for the scenario with flow delegation applied are then
determined based on these calculations.

(6) The optimal solutions from DT-Select and RS-Alloc and the original scenario without
flow delegation can be validated in an event discrete simulator. The statistics
obtained from the simulator are compared to the statistics obtained analytically in
the last step.

(7) The statistics are written into a result file that is stored on disk together with
additional files for debugging (such as the output from the terminal).

Step 6 was introduced to ensure that the analytical results are calculated correctly – which
is not trivial due to the complexity of the involved code. To achieve this, the scenario is
executed in a discrete event simulator created for this thesis that can simulate basic flow
rule life cycles11. The implementation of the simulator is rather simple and should be
easy to understand by studying the code. What is important here: the validation step
is performed completely independent from the analytical part in rsa.py and dts.py. The
simulator takes the flow rule installation and removal events calculated by the scenario
generation process and creates the appropriate events in the simulator. It also takes the
selected and allocated delegation templates (the output of DT-Select and RS-Alloc) for
each time slot and executes these decisions inside the simulator. A periodic process will
then count the installed flow rules in each switch once per second. These values are then
compared to the flow table utilization calculated by rsa.py.

11The simulator is implemented in https://github.com/kit-tm/fdeval/tree/master/core, last ac-
cessed 2020-07-20

https://github.com/kit-tm/fdeval/tree/master/core
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12.3.3.3 Parameterization

An experiment series needs to be parameterized. The most important parameters in this
context are shown in Table 12.6. The three parameters in the top are the key parameters.
nscenario_id defines the scenario IDs that should be used in the experiment series. The
second-level parameters for scenario generation are then determined automatically based
on the specified scenario IDs. This concept is used for the majority of the experiments.
Only the experiments for the case study and the scalability experiments need manually
defined scenarios which is explained in the respective sections. nreduction defines the
capacity reduction factor to control the severity of the bottlenecks. Note that, for Z5000,
each scenario is already associated with a randomly determined capacity reduction factor
so that all experiments use the same setup. And ndts_algo is used to specify the DT-Select
algorithm.

Parameter Description Possible values

nscenario_id Used scenario IDs The scenario IDs in Z5000 or Z100

nreduction Capacity reduction factor Values between 1% and 80%

ndts_algo DT-Select algorithm Select-Opt, Select-CopyFirst, Select-Greedy

Parameter Description Used default values (see Appendix A)

Ldts Look-ahead factor DT-Select 3

Lrsa Look-ahead factor RS-Alloc 3

nassignments Assignments for RS-Alloc 50

ndts_weights DT-Select weights ωTable

DTS
= 6 ωLink

DTS
= 2 ωCtrl

DTS
= 1

nrsa_weights RS-Alloc weights ωTable

RSA
= 1 ωLink

RSA
= 0 ωCtrl

RSA
= 5

Table 12.6: Parameterization options

The five parameters in the bottom of Table 12.6 represent the configuration of the
algorithms. The developed algorithms in this thesis need to be parameterized with a look-
ahead factor (represents the amount of future time slots to consider), with the number
of allocation assignments in case of RS-Alloc and with weights to control the different
objectives. All experiments conducted in this thesis use the default parameterization that
is shown here. It is explained in detail in the parameter study in Appendix A how these
default parameters were determined.

The default parameterization works well with all scenarios investigated here. However,
better results may be achieved for individual scenarios if other parameterizations are
used. However, this and advanced mechanisms such as automatic parameter tuning with
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the help of machine learning (for example) are considered future work and not discussed
here further.

There are various other implementation-specific parameters such as timeout values,
debugging options etc. that are not listed in Table 12.6. A complete list of all parameters
supported by the evaluation environment can be found in https://github.com/kit-t

m/fdeval/blob/master/topo/custom/pbce/exp800-2.py. In the majority of the cases,
however, the used default parameters should work just fine.

12.3.4 Post-Processing

The final post-processing step uses a set of tools specified in https://github.com/kit

-tm/fdeval/tree/master/plotter to access the result files stored on disk. This step
has to be done individually for each experiment series and is not explained here. Instead,
the details are explained in the respective setup sections of the individual experiments.
Implementation specific details can be studied directly in the code.

https://github.com/kit-tm/fdeval/blob/master/topo/custom/pbce/exp800-2.py
https://github.com/kit-tm/fdeval/blob/master/topo/custom/pbce/exp800-2.py
https://github.com/kit-tm/fdeval/tree/master/plotter
https://github.com/kit-tm/fdeval/tree/master/plotter


Chapter 13

Case Study

This chapter shows how the flow delegation approach works from a functional perspective.
It consists of a case study with four selected scenarios from Z100 that represent conceptually
different situations. The chapter is structured as follows. Sec. 13.1 explains how the
candidates for the case study are selected. Sec. 13.2 presents the four selected candidate
scenarios. Sec. 13.3 introduces the experiment setup and Sec. 13.4 discusses the results.

13.1 Candidate Selection

The candidates for the case study are selected based on the flow table utilization ratio
from Def. 12.6. Fig. 13.1 shows a cumulative distribution function of the ratios for
the 100 scenarios in Z100. Small ratios represent scenarios with a large amount of free
capacity. High ratios represent scenarios with little free capacity. In Z100, the ratios span
from approx. 10% to 70% and 50% of the scenarios have a ratio below 34%.

The remainder of this section will now investigate four scenarios with different flow table
utilization ratios. This includes two extreme cases – scenario z136505 with a a ratio of
13.42% and scenario z166890 with a ratio of 72.83% – and two cases in between. The
index numbers represent the scenario id used in the implementation and data sets.

13.2 Description of Investigated Scenarios

The four scenarios highlighted in Fig. 13.1 are associated with the following randomized
scenario generation parameters:

275
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Figure 13.1: Candidate selection for the case study

z136505 z155603 z84812 z166890

Parameter Description (13.42%) (28.40%) (37.91%) (72.83%)

|H| Number of hosts 203 70 156 56

|S| Number of switches 13 9 12 5

m Topology generation 1 2 1 2

nseed Seed 136505 155603 84812 166890

npairs Number of host pairs 83758 222892 209242 231821

niat_scale Global scale for Tiat 300 350 300 350

nbneck Temporal bottlenecks 4 2 4 0

nbneck_duration Bottleneck duration 47 23 14 0

nbneck_intensity Bottleneck intensity 190 160 110 0

nisr Inter switch ratio 50 70 40 50

nhs Number of hotspots 1 0 0 0

nhs_intensity Hotspot intensity 4 0 0 0

ntraffic_scale Global traffic scale 500 500 75 75

nlifetime Minimum rule lifetime 3 2 3 3

Table 13.1: Scenario generation parameters for the example scenarios in Fig. 13.1
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Figure 13.2: Scenario z136505 with a flow table utilization ratio of 13.42%

The scenarios in the table are listed from left to right with increasing flow table utilization
ratio. The ratio is shown in brackets in the table header. In general, it can be seen that
the scenarios with smaller ratios have higher bottleneck parameters. Scenario z136505

has a hotspot and four temporal bottlenecks. In addition, bottleneck duration is close
to the maximum (47 out of 50) and bottleneck intensity (190) is high. Scenario z155603

(duration 23, intensity 160) and z84812 (duration 14, intensity 110) are also created with
temporal bottlenecks. From these four examples, only scenario z166890 is created without
the use of bottleneck mechanisms which results in a high flow table utilization ratio.
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Figure 13.3: Scenario z155603 with a flow table utilization ratio of 28.40%
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Figure 13.4: Scenario z84812 with a flow table utilization ratio of 37.91%

This makes sense because more – and more intensive – temporal bottlenecks and hotspots
result in a scenario with higher maximum flow table capacity which is used as the
denominator in Eq. 12.3. So the ratio does not only correlate with the available free
capacity, it also correlates with number and intensity of the bottlenecks.

Scenario z136505 is visualized in Fig. 13.2. The visualization is used in the same way as
in Sec. 12.3.1.3. The scenario consists of 13 switches with a hotspot in switch 1 (red
circle). This switch and the three other switches with high node degree (0,3,4) require
a high amount of flow rules compared to the switches at the edge with smaller node
degree (2, 11, . . . ). It is expected that scenarios with such rapidly changing flow table
utilization patterns can benefit from flow delegation.

Scenario z155603 is visualized in Fig. 13.3. The scenario consists of 9 switches. The
overall situation is similar to scenario z136505, except that the switches have a higher flow
table utilization in general. On the one hand, there is less free capacity available. At the
same time, however, the node degree of the switches with higher utilization (primarily
2) is higher compared to the last scenario (more options for remote switches).

Scenario z84812 is visualized in Fig. 13.4. It consists of 12 switches, two of which form
the core of the network (0, 1). Because communication between the left and the right
part of the network has to involve both core switches, the amount of flow rules required
in these switches is significantly higher compared to rest of the network. The two small
temporal bottlenecks are barely significant in this example.
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Figure 13.5: Scenario z166890 with a flow table utilization ratio of 72.83%

Scenario z166890 is visualized in Fig. 13.5. In this scenario, the 5 involved switches are
all highly utilized. There is little free flow table capacity that could be used by flow
delegation.

13.3 Experiment Setup

To investigate how flow delegation performs with respect to the four above scenarios, a
series of experiments is conducted, individually for each scenario. The scenario is kept fix
and then used with capacity reduction factors between 1% and 80%. A capacity reduction
factor of 5%, for example, will set the flow table capacity used in the experiment to 95%
of the maximum flow table utilization. A factor of 10% will set the capacity to 90% of
the maximum flow table utilization. All experiments are performed with Select-CopyFirst
as DT-Select algorithm and the default parameterization from Appendix A.4. The most
important parameters for this experiment series are listed in Table 13.3.

Parameter Description Used Values

nscenario_id Used scenario IDs 136505, 155603, 84812, 166890

nreduction Capacity reduction factor 1%, 2%, . . . , 79%, 80%

ndts_algo DT-Select algorithm Select-CopyFirst

ndts_lookahead DT-Select look-ahead 3

nrsa_lookahead RS-Alloc look-ahead 3

nrsa_assignments RS-Alloc assignments 50
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ndts_weights DT-Select weights ωTable

DTS
= 6 ωLink

DTS
= 2 ωCtrl

DTS
= 1

nrsa_weights RS-Alloc weights ωTable

RSA
= 1 ωLink

RSA
= 0 ωCtrl

RSA
= 5

Table 13.2: Important experiment parameters

There are 80 result sets per scenario and 320 result sets in total in the final data set. The
parameters in the bottom are the same for all 320 experiments. All other parameters are
set to their default values.

13.4 Results

The results of the case study are discussed in two steps. Sec. 13.4.1 first presents an
exemplary analysis of scenario z136505. This introduces the correlation between capacity
reduction factor and failure rate which is essential for later discussions. It also provides a
visual explanation of the flow delegation approach and its limitations. Sec. 13.4.2 will
then discuss the implications of the flow table utilization ratio.

13.4.1 Capacity Reduction and Failure Rate

Findings: This section illustrates how flow delegation works for example scenario
z136505. It is shown that the approach can achieve a 0% failure rate with a capacity
reduction factor of 40% (capacity = 1873, maximum utilization = 3122).

We are interested in the maximum capacity reduction factor that we can apply to the
example scenarios so that no flow rules are relocated to the backup switch, i.e., with a
failure rate of 0%. The following discusses this process on the example of scenario z136505.
More precisely, the following four experiments are discussed below:

nscenario_id nreduction Utilization Capacity Failure rate

Fig. 13.6 136505 30% 3122 2185 0.00%

Fig. 13.7 136505 40% 3122 1873 0.00%

Fig. 13.8 136505 50% 3122 1561 0.21%

Fig. 13.9 136505 60% 3122 1248 2.73%

Table 13.3: Discussed experiments in Sec. 13.4.1
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Figure 13.6: Scenario z136505 with capacity reduction of 30%

Fig. 13.6 shows the first experiment for a capacity reduction factor of 30%. The
scenario has a maximum flow table utilization of 3122 rules (see peak in switch 1), i.e., a
switch with at least 3122 rules is required to not run into a flow table capacity bottleneck.
In other words: without flow delegation or a similar approach, the network operator
has only two options. She either invests in infrastructure with sufficient resources (over-
provisioning, expensive) or has to deal with the consequences of the bottleneck which
might not be acceptable. Flow delegation reduces the required amount of investments.
Let us assume the operator buys switches with a flow table capacity of 2185 flow rules, as
it is shown in Fig. 13.6. This is a 30% reduction compared to a switch with a capacity of
3122 flow rules – and potentially significantly cheaper in terms of capital and operational
expenditure.

The figure shows four switches on the right. The fact that the other switches are not
shown here means flow delegation will only interact with these three switches (1, 2,
and 11) in this situation. The fourth switch labeled BS is the backup switch. The area
colored in red in switch 1 shows flow rules that are relocated to mitigate the bottleneck
in switch 1. In this case, switch 2 and switch 11 are used as remote switches. The green
area in switches 2 and 11 represents the relocated remote rules. The area colored in
yellow shows flow rules that are not touched by the flow delegation approach, including
additional rules such as aggregation and backflow rules. There are three important
observations to make in Fig. 13.6.

(1) None of the three switches suffers from a capacity bottleneck if flow delegation is
enabled.
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(2) The backup switch is not used, i.e., all flow rules are handled in hardware. The
failure rate is 0.00%, shown here in red in the top right of the backup switch.

(3) There is still plenty of free capacity available in the two remote switches. As a
result, the capacity reduction factor could potentially be increased to values above
30% without failures.

The two first observations demonstrate the feasibility of the flow delegation approach for
this example. The third observation motivates the concept to incrementally increase the
capacity reduction factor. Fig. 13.7 shows the same scenario with a capacity reduction

factor of 40% instead of 30%.
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Figure 13.7: Scenario z136505 with capacity reduction of 40%

The topology is the same as above (not shown again). With 40% reduction, the flow
table capacity for this experiment is 1873 rules. It can be seen that the same two remote
switches are chosen. And while the failure rate is still at 0%, the flow table utilization of
remote switches 2 and 11 is higher than in Fig. 13.6 because of the increased number of
rules relocated from switch 1.

Fig. 13.8 shows the scenario with a capacity reduction factor of 50% (capacity of 1561
rules). 10 of the 13 switches interact with the flow delegation approach. There are again
several important observations.

(1) Unlike before, there are now multiple bottlenecked switches (0, 1, and 3).

(2) The previously used remote switches (2, 11) are highly utilized during the bottleneck
phase, i.e., there is not much free flow table capacity left. In fact, all neighboring
switches of switch 1 are highly utilized during the bottleneck phase.
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Figure 13.8: Scenario z136505 with capacity reduction of 50%

(3) Several other switches such as 5, 6, and, 8 still provide spare resources. They can,
however, only be used for the switch 3 bottleneck due to the physical connections
in the topology (no link to switch 1).

(4) Not all flow rules can be successfully relocated to a remote switch any more. The
failure rate in this experiment is 0.21%, i.e., 0.21% of all flow rules – or 3.19% of
the to be relocated flow rules in the red area – are relocated to the backup switch.

Because the failure rate is not 0%, the above experiment with 50% reduction is considered
a “failure”. It means flow delegation cannot relocate 100% of the bottlenecked flow rules
to another hardware switch because the accessible spare resources are insufficient in
this case. This is a fundamental limitation of the approach. It is important to mention,
however, that 50% capacity reduction is already a significant factor – in terms of potential
savings but also in terms of overhead (discussed later). If the capacity reduction factor is
increased further, the failure rate will increase as well. Fig. 13.9 illustrates this with a
capacity reduction factor of 60% and a failure rate of 2.73%.



284 13 Case Study

0 100 200 300 400

0

1000

2000

3000

0

Scenario id for reproducibility: 136505
Flow table utilization ratio: 13.42%

0 100 200 300 400

0

1000

2000

3000

1

0 100 200 300 400

0

1000

2000

3000

2

0 100 200 300 400

0

1000

2000

3000

3

0 100 200 300 400

0

1000

2000

3000

4

0 100 200 300 400

0

1000

2000

3000

5

0 100 200 300 400

0

1000

2000

3000

6

0 100 200 300 400

0

1000

2000

3000

7

0 100 200 300 400

0

1000

2000

3000

8

0 100 200 300 400

0

1000

2000

3000

9

0 100 200 300 400

Time (s)

0

1000

2000

3000

10

0 100 200 300 400

Time (s)

0

1000

2000

3000

11

0 100 200 300 400

Time (s)

0

1000

2000

3000

1248

12

0 100 200 300 400

Time (s)

0

1000

2000

3000
22.37%
(2.73%)

BS

Capacity reduction factor: 60%

Flow table capacity

Rules relocated

Rules not touched by flow delegation

Rules stored in remote switch

Figure 13.9: Scenario z136505 with capacity reduction of 60%

13.4.2 Flow Table Utilization Ratio

Findings: Scenarios with lower flow table utilization ratio (more free capacity)
can achieve higher capacity reduction factors with 0% failure rate. The example
with lowest ratio (z136505) achieved a reduction factor of 44%. The example with
highest ratio (z166890) achieved only a reduction factor of 13%.
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The previous section showed that scenario z136505 can achieve a capacity reduction factor
of at least 40% with a 0% failure rate. This section now investigates how the four selected
example scenarios perform with respect to capacity reduction and how this correlates
with the flow table utilization ratio.
Fig. 13.10 plots the failure rate for different capacity reduction factors. The x-axis
represents the different experiments with a capacity reduction factor between 1% and
80%. The y-axis denotes the failure rate recorded for each experiment. And the four
lines represent the four example scenarios.
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Figure 13.10: Failure rate for the example scenarios based on capacity reduction

The colored rectangles in the plot then indicate the highest capacity reduction factor that
was achieved with 0% failure rate for the respective scenario. In case of z136505 (magenta,
utilization ratio of 13.42%), the highest capacity reduction factor without failures is 44%.
This is in line with the results from the previous section – at least 40% according to Fig
13.7 and less than 50% according to Fig. 13.8.
Note that the courses of the curves are of limited value here because even a failure rate of
1% could already be unacceptable in practice (depends on the specific design and tasks
of the network). The important point is the value specified in the rectangle while the
difference between the curves has little meaning. They are only shown here to underline
the strong correlation between failure rate and flow table utilization ratio: it is easy to
see that higher ratios will result in higher failure rates. The following will now look at
the three remaining scenarios in more detail.

Observations with respect to z155603 (blue curve in Fig. 13.10, utilization ratio of
28.40%): In direct comparison with z136505, scenario z155603 can achieve an even higher
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capacity reduction factor of 48%, despite its higher utilization ratio. This is because
the utilization ratio is not the only factor that is important here. Consider the situation
depicted in Fig. 13.11. The top of the figure shows scenario z155603 with a capacity
reduction factor of 48%, i.e., the maximum with 0% failure rate for this case. The part
in the bottom shows the same scenario with four selected capacity reduction factors
between 40% and 55%. The switches in grey are not used.

It is easy to see that the switches in z155603 have a much higher flow table utilization than
the switches in the scenario from the last section (Fig. 13.7). This is expected as the
utilization ratio is higher. However, the node degree of the bottlenecked switch in z155603

(switch 2, degree 6) is also higher than the node degree of the bottlenecked switch in
z136505 (switch 1, degree 4). As a result, the latter scenario has less remote switch options
available. And it can in fact be seen in Fig. 13.8, for example, that only two of the four
available remote switches can be used because the other two are fully utilized. Scenario
z155603, on the other hand, can make use of all six available remote switches which results
in a higher capacity reduction factor.

Observations with respect to z84812 (green curve in Fig. 13.10, utilization ratio of
37.91%): A detailed view of this scenario with flow delegation is shown in Fig. 13.12. It
represents a long-lasting bottleneck that is caused by two overloaded switches in the core
of the topology. This scenario is mainly included here because it suffers from a (rarely
occurring) limitation of the two-step optimization approach.

Take switch 1, for example. This switch has four remote switch options. Switch 0 cannot
be used because it is bottlenecked as well while the remaining three switches (2, 9,
6) have free capacity and could be used. However, the majority of the flow rules are
relocated to switch 9 and switches 2 and 6 are barely used. There are two primary
reasons for such a behavior. One is link utilization. If the link between switch 1 and
switch 2, for example, is fully utilized, the flow delegation approach cannot relocate
rules to switch 2. This is not the case here (not visible in the plot). What happens here
is a significant amount of the flow rules in switch 1 is associated with the delegation
templates representing the ingress ports that are connected to switch 0 – and also partially
switch 2 and switch 6. Note that especially the delegation template for the ingress port
towards switch 0 can be very large because this template has to cover all flow rules that
communicate from the left side of the network to the right.

This is unproblematic if the flow delegation problem is solved globally because the free
capacities of the remote switches are automatically included in the delegation template
selection process – e.g, by not selecting a larger template in exchange for several smaller
ones. This thesis, however, uses a two-step approach and delegation template selection
does currently not know about the free capacity in the remote switches. It can therefor
happen that the delegation templates selected by DT-Select are simply “too big” for
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allocation. This can be easily solved in future work by additional constraints with respect
to remote capacities while still using the two-step approach.

Observations with respect to z166890 (red curve in Fig. 13.10, utilization ratio of
72.83%): A detailed view of this scenario is given in Fig. 13.13. The highest capacity
reduction factor achieved with 0% failure rate is 13%, shown in the top of the figure.
The scenario is clearly limited by the available spare capacity in the network and the
small number of remote switch options – a worst case scenario for the flow delegation
approach. However, even in this scenario it is possible to achieve a capacity reduction
factor larger than 10%.
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Chapter 14

Performance

Flow delegation performance was defined in Def. 12.5 and indicates “how well” flow
delegation can deal with a specific situation. It is specified as the maximum capacity
reduction factor (=bottleneck severity) that can be applied to a scenario so that the
failure rate does not exceed 0%, 0.1% or 1%. Failure rates higher than 1% are con-
sidered impracticable. Another performance indicator also discussed here is over- and
underutilization. Overutilization occurs if the flow table utilization exceeds the capacity
despite the fact that flow delegation is used. Underutilization occurs when flow rules are
relocated to a remote switch despite the fact that the delegation switch has free entries
left in its flow table. This chapter investigates the following aspects with respect to flow
delegation performance:

(1) Performance without Failures: Sec. 14.1 investigates the relationship between
capacity reduction factor (bottleneck severity) and the ability to handle a scenario
with 0% failure rate. It is shown that 90% of the experiments achieve a 0% failure
rate for capacity reduction factors up to 7% and 50% of the experiments achieve a
0% failure rate for capacity reduction factors up to 28%.

(2) Performance with small Failure Rates: Not all use cases demand for a 0% failure
rate. Sec. 14.2 investigates the performance if small failure rates of 0.1% and
1% are considered acceptable. It is shown that this relaxation can improve flow
delegation performance by a factor of 3.

(3) Performance based on Utilization Ratio: Sec. 14.3 investigates how the available
free capacity impacts the performance. It is shown that flow delegation achieves
better performance when applied to scenarios with low utilization ratio which is
equivalent to more free flow table capacity.

291



292 14 Performance

(4) Over- and Underutilization: Sec. 14.4 investigates over- and underutilization. It
is shown that no overutilization occurs with Select-Opt and Select-CopyFirst and
underutilization is below 5% in most cases which is considered a good value.

14.1 Performance without Failures

Sec. 13.4.1 already showed that flow delegation can achieve a 0% failure rate when
the capacity reduction factor is set to values between 13% and 48%. However, these
results are based on individual examples. This section will now investigate the important
relationship between capacity reduction factor and failure rate for a broader set of
scenarios.

14.1.1 Experiment Setup

Two experiment series are performed in this context. The first series executes all scenarios
in Z5000 with random capacity reduction factors between 1% and 80% .

Parameter Description Used Values

Series 1
nscenario_id Used scenario IDs All scenario IDs in Z5000

nreduction Capacity reduction factor Random between 1% and 80%

Series 2
nscenario_id Used scenario IDs All scenario IDs in Z100

nreduction Capacity reduction factor 1%, 2%, . . . , 79%, 80%

Sa
m
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fo
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se

ri
es

ndts_algo DT-Select algorithm Select-CopyFirst

ndts_lookahead DT-Select look-ahead 3

nrsa_lookahead RS-Alloc look-ahead 3

nrsa_assignments RS-Alloc assignments 50

ndts_weights DT-Select weights ωTable

DTS
= 6 ωLink

DTS
= 2 ωCtrl

DTS
= 1

nrsa_weights RS-Alloc weights ωTable

RSA
= 1 ωLink

RSA
= 0 ωCtrl

RSA
= 5

Table 14.1: Experiment parameters for Sec. 14.1

However, the capacity reduction factors are not distributed uniformly. This is because the
random factors were already selected in the scenario generation process and there is a
(realistic) bias towards smaller factors. This bias comes from the fact that higher capacity
reduction factors are correlated with extreme scenarios with higher pre-processing and
experiment execution times which is one of the five conditions for excluding a scenario
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from the original set (see Sec. 12.3.2.2). 50% of the scenarios have a capacity reduction
factor between 1% and 24%. And only 12% of the scenarios have capacity reduction
factors above 50%.

To make sure that this bias does not distort the result, a second experiment series is
designed for validation. In this second series based on Z100, all capacity reduction factors
between 1% and 80% are used following a uniform distribution. The smaller scenario
set is used here because using Z5000 with all 80 different values consumes too much
CPU resources. All experiments for both series are performed with Select-CopyFirst as
DT-Select algorithm and the default parameterization from Appendix A.4. The most
important parameters are listed in Table 14.4. The data set for the first series contains
4996 result sets, 4 experiments were aborted because of a timeout. The data set for
the second series contains 7907 result sets, 93 experiments were aborted because of a
timeout.

14.1.2 Results

Findings: 90% of the experiments achieve a 0% failure rate for all capacity reduc-
tion factors up to 7%. 50% of the experiments achieve a 0% failure rate for all
capacity reduction factors up to 28%.

To investigate the relationship between capacity reduction factor and failure rate, the
data sets are processed as follows. In a first step, the failure rate is calculated for each
experiment. Step two puts the experiments into 80 different groups, one group for each
used capacity reduction factor. And step three calculates the 50th (p50) and the 90th (p90)
percentile of the failure rates for each groups, i.e., 50% (90%) of the observed failure rates
in the group are below p50 (p90). Percentiles are used here because Z5000 was generated
randomly and includes extreme scenarios where the failure rate is > 0% despite the fact
that a very low capacity reduction factor is applied (below 5%). Without percentiles, the
result would be dominated by these outliers. Extended plots with additional percentiles
– including the 100th percentile that represents all 4996 experiments – are shown in
Appendix C.

The results for Z5000 are shown in Fig. 14.1. The x-axis represents capacity reduction
factors in ascending order, i.e., the 80 groups from above. The y-axis denotes the
maximum failure rate of either 50% (blue curve) or 90% (red curve) of the experiments
in the group associated with the x-value. The histogram in gray in the top denotes the
number of experiments inside each group. Note that the groups for the smaller reduction
factors contain more experiments. For very high reduction factors above 70%, most of the
groups contain less than 5 entries. The small amount of data points in this area explain
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Figure 14.1: Capacity reduction for 4996 experiments based on Z5000

the absence of a clear trend in the curves – this is different for the second experiment
series discussed below. The values close to 80% on the x-axis are thus not considered
representative, they are just included here for completeness.

The actual flow delegation performance for the two percentiles is shown in the colored
rectangles in Fig. 14.1. These values denote the highest capacity reduction factor that
could be handled with a 0% failure rate. It can be concluded from the blue rectangle
that 50% of the experiments achieve a 0% failure rate for all capacity reduction factors
up to 28%. It is important to mention that this does not mean that 50% of the scenarios
achieve a capacity reduction of 28% (this would be a completely different statement).
It says that 50% of the experiments with a capacity reduction factor of 28% and lower
(!) achieve a failure rate of 0%. Similarly, the red rectangle indicates that 90% of the
experiments achieve a 0% failure rate for all capacity reduction factors up to 7%. Note
that Z5000 represents thousands of different scenarios and the values might be higher (or
smaller) for individual scenarios. This is discussed in more detail in subsequent sections.

These numbers can be interpreted as follows. The 7% value (red) is meant as a worst
case baseline. It can be expected that, regardless of the actual situation, flow delegation
can deal with a bottleneck that falls into the 7% reduction range while maintaining a 0%
failure rate. It is shown later that this range can be extended significantly by allowing
failure rates slightly above 0%. The 28% value (blue) is meant as an optimistic expectation
that the majority of the bottleneck situations in the 28% range can be handled without
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Figure 14.2: Capacity reduction for 7907 experiments based on Z100

failures. While 7% and 28% does not sound impressive at first glance, the potential
gain in practice is significant. Assume an existing network is equipped with switches
that support 1000 flow rules. For this network, 28% reduction is sufficient to mitigate
bottleneck situations with 1387 flow rules, i.e., more than 38% above the maximum
capacity of the switches. 28% reduction also means the network operator can replace
the switches with a smaller (cheaper) model that only supports 720 flow rules, i.e., if the
1000 rules are only required in rare high load scenarios.

Another important observation from Fig. 14.1 is that higher capacity reduction factors
in the area at and above 50% lead to unacceptable high failure rates. It can further be
seen that the y-values increase “slowly” for x-values between 7% and approx. 20% in
case of the red curve. This means that only a small fraction of the flow rules can not be
allocated to a remote switch. A similar observation can be made for the blue curve up to
an x-value of approx. 40%. This is the main motivation to also investigate cases with
failure rates slightly above 0% (next section).

Fig. 14.2 shows the same plot for the second experiment series based on Z100. It can be
seen in the histogram in the top that each capacity reduction factor now has the same
amount of experiments (around 100). Only some higher capacity reduction factors lead
to complex optimization problems which triggered a timeout to save resources. These
experiments are not included here (93 out of 8000). Note that the curves now follow a
clear trend compared to the results in Fig. 14.1. This and the overall numbers – 12%
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reduction for 90% of the experiments and 30% reduction for 50% of the experiments –
validate the results achieved with Z5000.

14.2 Performance with Small Failure Rates

In certain contexts, it can be acceptable that a small fraction of the flow rules is not

processed by a remote switch but processed by a backup switch in software or handled
in some other way, e.g., with a flow rule eviction mechanism (see Sec. 2.4.2.2). In
such cases, it is not mandatory to achieve 0% failure rate. This section discusses the
impact on flow delegation performance if a slightly increased failure rate of 0.1% or 1%
is considered acceptable.

14.2.1 Experiment Setup

This investigation also uses the two experiment series described in Sec. 14.1.1. The first
series is based on scenario set Z5000 with random capacity reduction factors between 1%
and 80%. The second series is based on scenario set Z100 with all capacity reduction
factors between 1% and 80%.

14.2.2 Results

Findings: Allowing a slightly increased failure rate of 0.1% or 1% improves the
performance of the flow delegation approach significantly – up to a factor of 3
compared to the results with 0% failure rate.

Fig. 14.3 shows the same data as Fig. 14.1. The plot is designed in the exact same way as
explained in Sec. 14.1.2, with one small exception: it is now assumed that a small failure
rate is acceptable, i.e., flow delegation is allowed to put some rules into a backup switch.
Note that this has no impact on the actual data – it basically only changes the definition
of when the flow delegation approach has failed with respect to a certain scenario and
capacity reduction factor. In the last section, any experiment with a failure rate above
0% was considered a failure, even if only a single rule was sent to the backup switch. Fig
14.3, on the other hand, shows the flow delegation performance if a failure rate of 0.1%
or 1% is considered acceptable. It is important to mention here that the values of 0.1%
and 1% refer to the total amount of flow rules installed in all switches over the course of
the experiment. With 300.000 rules (average value for scenarios in Z5000), this would be
300 rules in case of 0.1% and 3.000 rules in case of 1%.



14.3 Performance with Different Utilization Ratios 297

1 10 20 30 40 50 60 70 80

Capacity reduction (in %)

0

20

40

60

80

F
a
ilu

re
ra

te
(i
n

%
)

35% if failure rate ≤ 0.1%

42% if failure rate ≤ 1%

15% if failure rate ≤ 0.1%

21% if failure rate ≤ 1%

0

100 Number of
scenarios
(4996 in total)

50th percentile

90th percentile

Figure 14.3: Capacity reduction for 4996 experiments based on Z5000. In contrast to Fig.

14.1, rectangles represent a maximum allowed failure rate of 0.1% and 1%.

It can be seen in Fig. 14.3 that a relaxation of the accepted failure rate increases
the performance significantly. 90% of the experiments can be handled with capacity
reductions of up to 15% if a failure rate below 0.1% is accepted. This is increased by a
factor of 2.14 when compared to the numbers from Fig. 14.1 (7%). If a failure rate of
1% is accepted, the performance is further increased to 21% (factor 3). For 50% of the
experiments, the values are increased from 28% to 35% with 0.1% failure rate and to
42% with 1% failure rate. The effect is noticeably stronger for smaller capacity reduction
factors which makes sense because the approach does not scale beyond reduction factors
of 50% and there is little room for improvement for higher factors. The second experiment
series based on Z100 shown in Fig. 14.4 shows a similar behavior which supports the
results.

14.3 Performance with Different Utilization Ratios

The performance results presented so far do not differentiate between scenario charac-
teristics. However, it is expected – and was already shown for individual scenarios in Sec.
13.4.1 – that the available free capacity in the network correlates with the failure rate and
the maximum capacity reduction that can be achieved without failures. It is investigated
in this section how the available free capacity affects flow delegation performance.
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Figure 14.4: Capacity reduction for 7907 experiments based on Z100. In contrast to Fig.

14.2, rectangles represent a maximum allowed failure rate of 0.1% and 1%.

14.3.1 Experiment Setup

The basic setup is the same as before, i.e., the two experiment series based on Z5000 and
Z100 described in Sec. 14.1.1 are used. However, to investigate the impact of the available
free capacity, the experiments are grouped into seven disjoint classes based on flow table
utilization ratio. Recall from Def. 12.6 that the this ratio quantifies the available free
capacity. Table 14.2 shows the seven classes for Z5000. The majority of the classes covers
ratios in a 10% region. Only the first and the last class cover a slightly larger region –
20% in case of c1 and 30% in case of c7 – because of the low number of available samples.

Class Mean ratio Samples 0% FR 0.1% FR 1% FR

c1 0%-20% 15.89 880 66.48% 71.82% 84.20%

c2 20%-30% 24.81 1539 67.12% 73.49% 85.77%

c3 30%-40% 34.61 1152 62.07% 66.32% 79.77%

c4 40%-50% 44.61 737 48.30% 54.55% 67.84%

c5 50%-60% 54.60 398 32.66% 40.95% 56.28%

c6 60%-70% 64.44 199 23.62% 31.16% 45.23%

c7 70%-100% 76.08 91 7.69% 14.29% 27.47%

Table 14.2: Flow table utilization classes for experiments based on Z5000
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Class Mean ratio Samples 0% FR 0.1% FR 1% FR

c1 0%-20% 16.74 781 54.93% 60.82% 73.50%

c2 20%-30% 25.34 2495 46.81% 51.62% 63.45%

c3 30%-40% 35.24 2071 36.36% 41.43% 51.86%

c4 40%-50% 45.19 1120 30.80% 35.09% 43.12%

c5 50%-60% 53.89 800 20.75% 24.88% 33.38%

c6 60%-70% 63.68 320 21.25% 23.75% 30.00%

c7 70%-100% 71.32 320 4.38% 9.38% 19.06%

Table 14.3: Flow table utilization classes for experiments based on Z100

The first class c1, for example, contains 880 experiments with a flow table utilization
ratio between 0% and 20%, with a mean of 15.89%. The three additional values listed
in the table specify the fraction of the experiments with a failure rate of 0%, up to 0.1%
and up to 1%. The numbers confirm the results from the previous section in the sense
that the fraction of experiments that can achieve an acceptable failure rate increases
if the accepted maximum failure rate itself is increased. For class c7, for example, the
fraction of experiments with a failure rate up to 0.1% is significantly higher than the
fraction of experiments that achieved a 0% failure rate. The effect is visible across all
seven classes. However, it is noticeably stronger for scenarios with a high utilization
ratio. This is the expected behavior because less free capacity leads to more difficult
problem formulations and increases the chance that no suitable remote switch allocation
is available for a subset of the rules.

The classes for the second experiment series based in Z100 look similar, shown in Table 14.3.
There are, however, two important remarks. First, there are only 100 different scenarios
in this scenario set. As a result, there are only 100 different utilization ratios (experiments
for the same scenario have the same ratio). Classes c6 and c7, for example, consists of
only four different scenarios. The 320 samples come from the 80 different experiments
per scenario. Second, the fraction of experiments that can achieve an acceptable failure
rate is lower compared to the numbers in Table 14.2. This is because the experiments
for Z100 use a uniformly distributed capacity reduction factor. Experiments with a high
capacity reduction factor, however, can not achieve acceptable failure rates because of
missing spare capacity.

Fig. 14.5 and Fig. 14.6 show the distribution of the individual ratios for both experiment
series. The x-axis lists the seven classes. The y-axis denotes the flow table utilization
ratio. The data is displayed in box plot form showing minimum, maximum, median as
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Figure 14.5: Utilization ratios Z5000
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Figure 14.6: Utilization ratios Z100

well as 25th and 75th percentiles. In case of Z5000 (in the left), it can be seen that the
classes between 20% and 70% are well balanced, i.e., there are experiments for almost
all possible values of utilization ratios. The two other classes include the extreme cases
with very high or very low ratios. For Z100, the number of different utilization values is
noticeably smaller. The first five classes cover the majority of utilization ratios, but are
not as well balanced as in Z5000. c6 and c7 are highly unbalanced – results with respect to
utilization ratio that are based on these classes should be treated with care (not used in
this thesis).

14.3.2 Results

Findings: Flow delegation can achieve better performance in scenarios with low
utilization ratio where more free capacity is available.

An example for the impact of the utilization ratio on flow delegation performance is given
in Fig. 14.7. The plot is designed in the same way as before except that only the 880
experiments of utilization class c1 are considered (see Table 14.2). The x-axis represents
capacity reduction factors in ascending order. The y-axis denotes the maximum failure
rate of either 50% (blue curve) or 90% (red curve) of the experiments associated with
the given capacity reduction factor (x-value). The histogram in gray in the top denotes
the number of experiments for the different reduction factors. The colored rectangles
define the flow delegation performance for an accepted failure rate of 0.1% and 1%.

In the original plot with all experiments in Fig 14.7, the performance for the 90th
percentile was 17% in case of 0.1% failure rate and 25% in case of 1% failure rate. In Fig.
14.7 where only the experiments in c1 are considered, the performance is increased to



14.4 Over- and Underutilization 301

1 10 20 30 40 50 60 70 80

Capacity reduction (in %)

0

20

40

60

80

F
a
ilu

re
ra

te
(i
n

%
)

43% if failure rate ≤ 0.1%

52% if failure rate ≤ 1%

21% if failure rate ≤ 0.1%

31% if failure rate ≤ 1%

0

20 Number of
scenarios
(880 in total)

50th percentile

90th percentile

Figure 14.7: Flow delegation performance of class c1 for non-zero failure rates

21% and 31%. The performance values for the 90th percentile are also increased, from
34% to 43% (failure rate 0.1%) and from 44% to 52 % (failure rate 1%).

Fig. 14.8 shows the flow delegation performance of all seven classes and considered
failure rates (0%, 0.1%, and 1%). It can be seen that higher utilization ratios result in
a higher flow delegation performance. In class c1 with a low utilization ratio, 50% of
the experiments achieve a 0% failure rate for capacity reduction factors up to 41%. The
performance is reduced from 41% to 36% in class c2, to 28% in class c3 and this trend
continues linearly until the performance reaches 0% in class c7. This is expected because
c7 contains the experiments with highest utilization ratio and flow delegation reaches its
conceptual limitations. It can also be observed that the results for an accepted failure
rate of 0.1% and 1% are similar and that a higher accepted failure rate (e.g., 1% instead
of 0.1%) results in a higher performance.

14.4 Over- and Underutilization

Two other important key performance indicators for flow delegation are over- and
underutilization. Overutilization describes a situation where the flow table utilization in
the delegation switch exceeds the capacity for one or multiple time slots, i.e., a capacity
bottleneck was not mitigated. Underutilization describes a situation where flow rules are
relocated to a remote switch despite the fact that the delegation switch has free entries
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Figure 14.8: Flow delegation performance for different utilization ratios and different

accepted failure rates

left in its flow table. This section investigates these two key performance indicators when
flow delegation is applied to the scenarios in Z5000.

14.4.1 Experiment Setup

Similar to the setup in Sec. 14.1.1, Over- and underutilization is examined for the scenar-
ios in Z5000 with random capacity reduction factors between 1% and 80%. Because the
different DT-Select algorithms show different behavior with respect to over- and under-
utilization, three experiments are executed for each scenario with different algorithms
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(Select-Opt, Select-CopyFirst, Select-Greedy). The data set therefore contains 15.000
result sets in total.

Parameter Description Used Values

nscenario_id Used scenario IDs All scenario IDs in Z5000

nreduction Capacity reduction factor Random between 1% and 80%

ndts_algo DT-Select algorithm Select-Opt, Select-CopyFirst, Select-Greedy

Table 14.4: Experiment parameters for Sec. 14.4

It is important to mention that all three algorithms (Select-Opt, Select-CopyFirst, Select-
Greedy) in conjunction with the ingress port based aggregation scheme from Sec. 5.2.2.3
worked as expected for 100% of the investigated scenarios, i.e., all scenarios in Z5000

were handled successfully. In case of Select-Opt and Select-CopyFirst, this means the
optimization problem was feasible in 100% of the cases.

The following defines metrics for over- and underutilization that are required for the
investigations in this section. Overutilization is calculated individually for each switch. It
is given as a percentage value that is defined as follows:

Definition 14.1: Overutilization

Overutilization for a switch s ∈ S counts the amount of flow rules above the
capacity in all time slots after the flow delegation algorithm is executed and applies
a normalization factor (denominator) to get a percentage value:







∑

t∈T

max
�

uFD

s,t − cTable

s
, 0
�

∑

t∈T

max
�

uTable

s,t − cTable

s
, 0
�





 ∗ 100 (14.1)

cTable

s
is the capacity of the switch. uTable

s,t denotes the flow table utilization of switch s in time
slot t without flow delegation (see Def 2.12). And uFD

s,t denotes the flow table utilization
of switch s in time slot t with flow delegation. The latter term is introduced here to
simplify the equation. Using the notation from previous chapters, uFD

s,t can be calculated
as follows:

uFD

s,t = uTable

s,t − 2 ∗ |D∗
s,t | −

∑

d∈D∗s,t

uTable

d,t (14.2)
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D∗
s,t is the set of selected delegation templates by the DT-Select algorithm in time slot

t and uTable

d,t represents the amount of rules that will be relocated if delegation template
d is selected. (see Sec. 9.4.1). The first part (2 ∗ |D∗

s,t |) accounts for the aggregation
and backflow rules because each delegation template results in one aggregation rule and
the number of backflow rules is constrained by |D∗

s,t | due to the ingress-port aggregation
scheme.

The numerator iterates over all time slots and subtracts the capacity from the current
flow table utilization value (with flow delegation). The max function ensures that only
positive values are taken into account, i.e., time slots where the utilization stays below
the capacity are evaluated to 0. The normalization factor in the denominator represents
the amount of flow rules above the capacity if flow delegation is not used. This value is
always bigger because flow delegation will always reduce the amount of flow rules in the
flow table if used. The ∗100 is used to get a percentage value. This way, overutilization
can be i as the fraction of flow rules above the capacity that are not removed by flow
delegation.

Underutilization is also calculated individually for each switch. It is given as a percentage
value that is defined as follows:

Definition 14.2: Underutilization

Underutilization for a switch s ∈ S counts the amount of free capacity in the flow
table for time slots where the flow table utilization without flow delegation is above
the capacity. This value is multiplied with a normalization factor (denominator) to
get a percentage value:


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
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s
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s,t , 0
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∑

t∈T Bneck

cTable

s





 ∗ 100 (14.3)

Set T Bneck contains all time slots t ∈ T where the flow table utilization without
flow delegation is above the capacity: T Bneck := {t ∈ T | uTable

s,t > cTable

s
}

The variables are the same as before. cTable

s
is the capacity of the switch, uTable

s,t denotes the
flow table utilization of switch s in time slot t without flow delegation and uFD

s,t denotes
the flow table utilization of switch s in time slot t with flow delegation.

Underutilization is a common phenomenon caused by the fact that DT-Select makes
decisions based on delegation templates and not individual flow rules. It is thus difficult to
perfectly utilize all entries in the flow table of the delegation switch. High underutilization
indicates that available flow table capacity at the delegation switch is wasted, i.e., lower
values are better.
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14.4.2 Results for Overutilization

Findings: No overutilization occurs in any experiment when used with Select-Opt
and Select-CopyFirst. Select-Greedy causes overutilization in approx. 3.5% of the
experiments but the bottleneck situation is resolved quickly in all cases.

The measured overutilization for all scenarios in Z5000 is shown as a cumulative distri-
bution function in Fig. 14.9. The x-axis denotes the calculated overutilization value
given as a percentage value according to Eq. 14.1. The y-axis represents the fraction of
experiments with an overutilization value below the x-value. The two scenario IDs are
used as examples below.
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Figure 14.9: Overutilization results for Select-Opt, Select-CopyFirst, and Select-Greedy

It can be seen in the figure that both, Select-Opt and Select-CopyFirst have an overuti-
lization value of 0% in all cases. This is the expected result. With flow delegation, there
can only be overutilization if the delegation template selection algorithm selects too few
delegation templates. The two ILP-based algorithms Select-Opt and Select-CopyFirst,
however, use a knapsack constraint for the capacity, i.e., uFD

s,t is guaranteed to be below
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cTable

s
as long as the problem is feasible. Because none of the problem formulations that

are required for the experiments here was infeasible, there is no overutilization1.

Because Select-Greedy does not use linear programming, it is not guaranteed that there
is no overutilization. Fig. 14.9 shows that approx. 3.5% of the 5000 experiments with
Select-Greedy resulted in an overutilization value > 0% and the maximum overutilization
value is 11.36%. The actual results in practice, however, are not as critical as the raw
values might indicate. This is due to the normalization factor that is applied in Eq.
14.1. This normalization factor is not a constant but depends on the severity of the
bottleneck. For further illustration, the flow table utilization over time and the capacity
of the experiment with 11.36% overutilization is shown in Fig. 14.10. The red circle in
the left plot shows the situation where the utilization exceeds the capacity. A zoom-in is
shown on the right side.
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Figure 14.10: Overutilization in scenario z122314

It can be seen that, in this case, the bottleneck itself lasts for a very short time and the
amount of flow rules that fall into the red region (relocated rules) is small. Because the
normalization factor counts the flow rules in the red region above the blue line (at time
slot boundaries), the calculated overutilization value is high. It could theoretically also
exceed 100%. To account for this observation, we also calculate the experiments with the
highest overutilization value without normalization – the worst case in absolute numbers,
so to speak. The result is shown in Fig. 14.11.

1If a problem formulation would get infeasible, Select-Greedy is used as fallback mechanism. So even if
no such case is present in Z5000, the performance results for Select-Greedy show the anticipated results
for a potential infeasible scenario.
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Figure 14.11: Overutilization in scenario z170154

The figure shows that this situation is more severe than the one seen before because more
than 30 flow rules are affected. However, even in this worst case example, the situation is
resolved in 3 time slots. This is also true for all other experiments with overutilization. It
is concluded that Select-Greedy can still be used if occasional overutilization is acceptable.
Note that the normalized overutilization value of the example in Fig. 14.11 is only 0.24%
because the bottleneck (red area) above the capacity is much larger.

Final remark: overutiliuation is fundamentally different from the failure rate where flow
rules are sent to the backup switch because not enough free capacity is available. A
non-zero failure rate (RS-Alloc was forced to use the backup switch) is expected if free
capacity in the remote switches is scarce while overutilization (DT-Select failed) will
never occur in the optimal case.

14.4.3 Results for Underutilization

Findings: Underutilization with Select-Opt is below 5% in 90% of the cases. Select-
CopyFirst performs slightly worse and stays below 5% underutilization in 80% of
the cases. Select-Greedy can only achieve underutilization below 10.74% in 50%
of the cases.

The measured underutilization for all scenarios in Z5000 is shown as a cumulative distri-
bution function in Fig. 14.12. The x-axis denotes the calculated underutilization value
given as a percentage value according to Eq. 14.3. The y-axis represents the fraction of
scenarios with underutilization below the x-value.
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Figure 14.12: Underutilization results for Select-Opt, Select-CopyFirst, and Select-Greedy

It can be seen in the figure that, as expected, all algorithms suffer from a certain degree of
underutilization. Select-Opt has the best performance, followed by Select-CopyFirst and –
with some distance – Select-Greedy. In 50% of the experiments, using Select-Opt results
in a maximum underutilization of 1.42% compared to 2.55% with Select-CopyFirst and
10.75% with Select-Greedy.

Less underutilization means more flow rules can be stored in the delegation switch
which reduces the required additional link bandwidth and also the number of flow rules
affected by delegation. Reducing the number of remote rules is also beneficial from the
perspective of the end users – recall from Sec. 8.4 that the detour via the remote switch
increases the end-to-end delay by up to 0.1ms. With underutilization below 5% in at
least 80% of the cases, both Select-Opt and Select-CopyFirst show promising results.
Select-Greedy should only be used if the other two approaches are not applicable because
the number of unnecessarily relocated flow rules is significantly higher. This shows the
general limitation of the greedy-based approach compared to the much more flexible
ILP-based algorithms.

To get a better understanding of the practical implications of underutilization, Fig. 14.13
shows a typical example with 3.14% underutilization which is considered a good value.
It is clearly visible in the plot that the flow table resources in the delegation switch are
utilized properly when compared to a similar example with 10.95% underutilization
shown in Fig. 14.14.
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Figure 14.13: Underutilization in scenario z292750 (with Select-CopyFirst)
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Figure 14.14: Underutilization in scenario z457028 (with Select-Greedy)

The last aspect that has to be discussed with respect to underutilization are the extreme
outliers in the top of Fig. 14.9: a small fraction of approx. 0.1% of the experiments show
underutilization values between 40% and 80%. This is significantly higher than what is
achieved in other experiments. 80% underutilization means that only 20% of the flow
table is used in the delegation switch – which is far from reasonable. Such an experiment
is shown in Fig. 14.15. This experiment was conducted with Select-Opt but the same
effect occurs if Select-CopyFirst or Select-Greedy are used. It can be seen in the darker
red area that all flow rules from the delegation switch are relocated away around the
150s mark. What seems like an error at first glance can be explained with the scenario
generation parameters that are used for this experiment.
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Figure 14.15: Underutilization in scenario z79859 (with Select-Opt)

The scenario used is shown in Fig. 14.16. The fact that only 2 switches are used is
not essential but simplifies the explanation, the effect can also occur with more than
2 switches. It can be seen that the switches share the same bottleneck. This alone, of
course, is not enough to explain the high underutilization. The critical point is the hotspot
in switch 1 in conjunction with a very high inter switch ratio (nisr). For this scenario,
the inter switch ratio was set to nisr = 70%. This means that only 30% of the flow rules
handle “local” traffic between two hosts while the other 70% redirect traffic to either
switch 0 or switch 1. To understand why this is a problem, take switch 0 as an example
which is the switch shown in Fig. 14.15. The delegation template selection algorithm
has 16 delegation templates to choose from (recall that we use the ingress-port based
aggregation scheme). 15 of these templates are associated with the links connected to the
hosts shown in blue. The last template is associated with the link towards switch 1. What
happens now is that, because of the hotspot and the high inter switch ratio, the majority
of the communication pairs select hsrc attached to switch 1 (due to the hotspot) and hdst

attached to switch 0 (due to high nisr). Consequentially, the 15 templates associated
with the links connected to the hosts of switch 0 will rarely start a new communication
and the cover sets of the delegation templates will be very small. So small, that these
15 templates alone are not sufficient to mitigate the bottleneck. In result, the algorithm
has no other choice than selecting the delegation template that is associated with switch
1. The conflict free cover set of this template, however, is so large that it contains the
majority of all the flow rules in the flow table. This explains why all the flow rules are
suddenly relocated and the underutilization gets as high as 77.21% in this case. It was
confirmed that all outliers can be explained with this specific effect.

In practice, this effect can be easily compensated by setting a threshold for the maximum
number of flow rules in the conflict-free cover set and ignoring all templates in the
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Figure 14.16: Detailed view of scenario z79859 to explain the effect seen in Fig. 14.15

selection process that exceed the threshold. This was not done here to make sure that the
anticipated and expected effect actually occurs and to determine its probability (extreme
cases occur in approx. 0.1% of the experiments).





Chapter 15

Overhead

Bottleneck mitigation with the help of flow delegation does not come for free. This
chapter investigates the overhead that is associated with the approach. There are three
major kinds of overhead that need to be considered (see Sec. 9.4.4 for further details):

(1) Table overhead: the additional rules installed in the flow table of the delegation
switch. It is shown in Sec. 15.3 that 99% of the investigated experiments can be
handled with a maximum table overhead of 10 aggregation rules per time slot with
all three DT-Select algorithms.

(2) Link overhead: the amount of bits relocated from delegation switch to remote
switch and vice versa. It is shown in Sec. 15.4 that 50% of the investigated scenarios
can be handled with a maximum link overhead of less than 13 Mbit per switch
and time slot in case of Select-Opt and 19 Mbit per switch and time slot in case of
Select-CopyFirst. Select-Greedy causes significantly more link overhead.

(3) Control overhead: the additional control messages required to keep the flow
delegation system running. It is shown in Sec. 15.5 that most investigated scenarios
can be handled with less than 100 additional control messages per second and
that Select-Greedy causes significantly more control overhead than the two other
algorithms.

The following section first investigate the three above kinds of overhead when flow
delegation is applied to an example scenario. Subsequent section then investigate the
overhead for all scenarios in Z5000.

313
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15.1 Experiment Setup

This section uses the same setup as in Sec. 14.4.1, i.e., the scenarios in Z5000 with the
three different delegation template selection algorithms and random capacity reduction
factors between 1% and 80%. Table overhead, link overhead and control overhead are
specified per time slot and calculated individually for each switch. Table overhead is
given as an average value of required aggregation rules per time slot:

Definition 15.1: Table overhead

Table overhead for a switch s ∈ S counts the amount of aggregation rules installed
in the flow table of the delegation switch, divided by the number of time slots with
bottlenecks:

1

|T Bneck|
∗
∑

t∈T Bneck

|D∗
s,t | (15.1)

Set T Bneck contains all time slots t ∈ T where the flow table utilization without
flow delegation is above the capacity: T Bneck := {t ∈ T | uTable

s,t > cTable

s
}. D∗

s,t is the
set of selected delegation templates in time slot t.

Note that the backflow rules are not included in Eq. (15.1) because it is assumed that
a static set of |D∗

s,t | backflow rules is installed as soon as the flow delegation system is
enabled (see Sec. 9.4.4.1). The real overhead is thus increased by a constant value of
approx. 10 to 20 rules.

Link overhead represents the additional bandwidth required between delegation switch
and remote switch(es).

Definition 15.2: Link overhead

Link overhead for a switch s ∈ S counts the bits relocated by all installed aggrega-
tion rules, divided by the number of time slots with bottlenecks:

1

|T Bneck|
∗
∑

t∈T Bneck

∑

d∈D∗s,t

wLink

d,t (15.2)

Set T Bneck contains all time slots t ∈ T where the flow table utilization without
flow delegation is above the capacity: T Bneck := {t ∈ T | uTable

s,t > cTable

s
}. D∗

s,t is the set
of selected delegation templates in time slot t. wLink

d,t represents the link overhead
cost coefficient first introduced in Sec. 9.4.4.2 that represents the relocated bits
for template d in time slot t.



15.2 Overhead Example 315

It is important to mention that link overhead always refers to the amount of bits that
need to be relocated per switch. This does not mean that all bits are relocated via the
same link. If different delegation templates are allocated to different remote switches,
the overhead is shared among these links.

Control overhead is finally given as the average amount of additional control messages
that are required per time slot in order to realize flow delegation:

Definition 15.3: Control overhead

Control overhead for a switch s ∈ S counts the additional control messages sent by
the flow delegation system, divided by the number of time slots with bottlenecks:

1

|T Bneck|
∗
∑

t∈T Bneck

∑

d∈D∗s,t

wCtrl

d,t (15.3)

Set T Bneck contains all time slots t ∈ T where the flow table utilization without
flow delegation is above the capacity: T Bneck := {t ∈ T | uTable

s,t > cTable

s
}. D∗

s,t is the
set of selected delegation templates by the DT-Select algorithm in time slot t. wCtrl

d,t

represents the control message overhead cost coefficient first introduced in Sec.
9.4.4.3 that represents required additional control messages for template d in time
slot t.

15.2 Overhead Example

This section presents an example for the above overhead definitions based on a concrete
scenario. First recall that all three kinds of overhead in Sec. 15.1 are defined for DT-
Select and quantify resources used by the flow delegation system that would not be used
otherwise:

• Table overhead quantifies the amount of aggregation rules installed in the delegation
switch (uses space in the flow table)

• Link overhead quantifies the traffic that is relocated by the aggregation rules (uses
bandwidth of one or multiple links connected to the delegation switch)

• Control overhead quantifies the additional control messages sent by the flow del-
egation system (uses bandwidth of the control channel and also computational
resources on the switch required for processing the control messages)

To get a better understanding what this means in raw numbers and how the different
DT-Select algorithms perform in terms of overhead, consider the example given in Fig.
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Figure 15.1: Overhead example using scenario z136505
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15.1. The three plots show three different experiments executed with scenario z136505

which was already discussed in Sec. 13.4.1. The applied capacity reduction factor is
10% in all three cases, i.e., the switch has a capacity of 2809 rules which is 90% of the
maximum flow table utilization of the scenario (3122 rules). The plot in the top shows
the flow table utilization over time for the experiment that uses Select-Opt to calculate
the delegation templates. The plot in the middle shows the flow table utilization over
time if Select-CopyFirst is used. And the last plot in the bottom shows the flow table
utilization over time if Select-Greedy is used. The dashed blue line is the capacity of the
switch. The rules in yellow are not touched by the flow delegation approach. The rules
in red are relocated to a remote switch (not shown).

As a first observation, it can be seen from the general statistics (next to each plot on the
right side) that 15 time slots are affected by a bottleneck over the course of the three
experiments. It can also be seen that all three DT-Select algorithms can successfully

mitigate the two bottleneck situations that occur between the 100 and 200 second
mark. However, the caused overhead differs dependent on the used algorithm. The
overhead details are listed below the general statistics. The absolute values are shown
first. The average values per time slot are shown in brackets after the absolute values.
The value in brackets is the value from the definitions in Sec. 15.1.

• Table overhead: Select-Opt requires 36 aggregation rules in total which is 2.4 rules
per time slot on average. Select-CopyFirst requires 35 aggregation rules (2.33
per time slot on average) and select greedy requires 23 aggregation rules. It is
explained below in the following sections where these differences come from.

• Link overhead: Select-Opt selects the delegation templates in such a way that the
aggregation rules will relocate 360.79 Mbit in total during the 15 time slots that
are affected by a bottleneck. This is 24.05 Mbit in each time slot on average. Note
that the relocated traffic can be distributed over multiple links if more than one
remote switch is selected (not shown here). What is shown, however, is that the
two other algorithms return selections that are inferior in terms of link overhead.
The selected templates in case of Select-CopyFirst result in 883.41 Mbit in total
and the templates selected by Select-Greedy result in 1844.57 Mbit.

• Control overhead. In case of Select-Opt, 1022 additional control messages are sent
from the flow delegation system which is 68.13 control messages per time slot on
average. These control messages are required if a delegation template is unselected
and the currently relocated rules have to be moved back to the delegation switch.
The two other algorithms need a similar amount of control messages, 1236 in case
of Select-CopyFirst and 1142 in case of Select-Greedy.
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It can be concluded that – at least for this example scenario – there is a gap between

the three DT-Select algorithms in terms of overhead. This gap and a more complete
view on overhead caused in different scenarios is investigated in the following sections.
This is done individually for each kind of overhead.

15.3 Results for Table Overhead

Findings: 99% of the scenarios in Z5000 can be handled with a maximum table
overhead of 10 aggregation rules per time slot, regardless of the used DT-Select
algorithm. Select-Greedy causes the lowest table overhead, followed by Select-Opt
and Select-CopyFirst.

The measured table overhead for all scenarios in Z5000 is shown as a cumulative distribu-
tion function in Fig. 15.2. The x-axis denotes the calculated table overhead given as the
average amount of required aggregation rules per time slot according to Eq. 15.1. The
y-axis represents the fraction of experiments with a table overhead below the x-value.
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Figure 15.2: Table overhead results for Select-Opt, Select-CopyFirst, and Select-Greedy

It can be seen that all three algorithms can handle 99% of the experiments with less than
10 aggregation rules (on average). For 50% of the experiments, the table overhead is at
1.67 rules in case of Select-Greedy, 2.13 rules in case of Select-Opt and 3 rules in case of
Select-CopyFirst. Together with the backflow rules, the total amount of additional rules
stored in a delegation switch stays below 30 rules in almost all cases. This is less than
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1% of the capacity in case of a 3000 rule switch. It is concluded that table overhead is
not a critical limitation of the flow delegation approach.

The fact that Select-Greedy has the lowest table overhead is directly linked to the ob-
servation that this algorithm causes the highest underutilization: its lack of flexibility.
Other than the ILP-based approaches, Select-Greedy can only select or unselect delegation
templates in one time slot. It can not select one template in exchange for another one. It
therefore tends to just stick with a once selected delegation template. This means most
delegation templates are used for a long time which again means that more rules of this
template are relocated (recall that only the rules after installation of the aggregation
rule are relocated). Because more relocated rules are associated with a single template,
less templates are required (lower table overhead) but it is more difficult to efficiently
utilize the space in the flow table of the delegation switch (higher underutilization).
The two other algorithms switch the templates much more frequently to improve the
objective function which leads to a smaller amount of relocated rules associated with
each template (higher table overhead, lower underutilization).
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Figure 15.3: Table overhead grouped by capacity reduction factor

Fig. 15.3 shows the table overhead for different capacity reduction factors. A value
on the x-axis represents all experiments with a specific capacity reduction factor. The
corresponding y-value is the 90th percentile of the table overhead for these experiments.
It can be seen that, up to a capacity reduction factor of 20%, the table overhead is
below 5 rules for all three algorithms. In addition, the curves for all three algorithms
follow a linear trend. So lower capacity reduction factors (less severe bottlenecks) can
be handled with less aggregation rules and smaller table overhead. The fluctuations for
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higher capacity reduction factors are related to the smaller number of samples in this
area (see Sec. 14.1.1).

15.4 Results for Link Overhead

Findings: 50% of the scenarios in Z5000 can be handled with a maximum link
overhead of less than 13 Mbit/s per switch (not per link!) in case of Select-Opt, 19
Mbit/s in case of Select-CopyFirst and 51 Mbit/s in case of Select-Greedy. Smaller
capacity reduction factors require less bandwidth.

The measured link overhead for all scenarios in Z5000 is shown as a cumulative distribution
function in Fig. 15.4. The x-axis in log-scale denotes the calculated link overhead given
as the average amount of relocated bits per switch and time slot according to Eq. 15.2.
The y-axis represents the fraction of scenarios with a link overhead below the x-value.
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Figure 15.4: Link overhead results for Select-Opt, Select-CopyFirst, and Select-Greedy

It can be seen in the figure that Select-Opt (red) has the best link overhead results,
followed by Select-CopyFirst (blue) and Select-Greedy (green). If the delegation templates
are calculated with Select-Opt, the amount of relocated traffic is below 12.74 Mbit on
average per time slot in 50% of the experiments, below 44.63 Mbit in 80% of the
experiments and below 277.15 Mbit in 99% of the experiments. If the delegation
templates are calculated with Select-CopyFirst, the amount of relocated traffic is below
18.26 Mbit on average per time slot in 50% of the experiments, below 55.12 Mbit in 80%
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of the experiments and below 363.19 Mbit in 99% of the experiments. With Select-Greedy,
the amount of relocated traffic is below 50.63 Mbit on average per time slot in 50% of
the experiments, below 134.19 Mbit in 80% of the experiments and below 1392.05 Mbit
in 99% of the experiments.

The significantly higher link overhead caused by Select-Greedy shows that this algorithm
should only be used if none of the two other algorithms is applicable, e.g., because of
resource constraints or if a backup solution is required when one of the optimization
problems is getting infeasible. The difference between Select-Opt and Select-CopyFirst
is smaller but still noticeable. If link bandwidth is a critical concern, using Select-Opt
instead of Select-CopyFirst might be helpful but this is only possible if enough computing
resources for Select-Opt are available.
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Figure 15.5: Link overhead grouped by capacity reduction factor

Fig. 15.5 shows the link overhead for different capacity reduction factors. A value
on the x-axis represents all experiments with a specific capacity reduction factor. The
corresponding y-value is the 90th percentile of the link overhead for these experiments.
It can be seen that the link overhead scales linearly with the capacity reduction factor.
This is the expected result because a higher capacity reduction factor leads to a higher
number of flow rules that are relocated to a remote switch. This is equivalent to a higher
number of packets that must be relocated to a remote switch.
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15.5 Results for Control Overhead

Findings: In 99% of the scenarios in Z5000, the amount of additional control
messages per time slot is below 200 if Select-Opt is used and below 237 if Select-
CopyFirst is used. There is only a small difference in terms of control overhead
between Select-Opt and Select-CopyFirst and a larger difference between the
ILP-based algorithms and Select-Greedy.

The measured control overhead for all scenarios in Z5000 is shown as a cumulative
distribution function in Fig. 15.6. The x-axis denotes the calculated control overhead
given as the average amount of additional control messages per time slot according to
Eq. 15.3. The y-axis represents the fraction of scenarios with a control overhead below
the x-value.
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Figure 15.6: Control overhead results for Select-Opt, Select-CopyFirst, and Select-Greedy

It can be seen in the figure that Select-Opt (red) and Select-CopyFirst (blue) cause a similar
amount of control overhead while the control overhead is increased if Select-Greedy
(green) is used. If the delegation templates are calculated with Select-Opt, the amount of
additional control messages per time slot is below 40 in 50% of the experiments, below
69 in 80% of the experiments and below 198 in 99% of the experiments. If the delegation
templates are calculated with Select-CopyFirst, the amount of additional control messages
per time slot is below 42 in 50% of the experiments, below 74 in 80% of the experiments
and below 237 in 99% of the experiments. With Select-Greedy, the amount of additional
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control messages per time slot is below 58 in 50% of the experiments, below 130 in 80%
of the experiments and below 487 in 99% of the experiments.

Similar to the results from the previous section, Select-Greedy performs significantly worse
than the two other approaches. The difference between Select-Opt and Select-CopyFirst,
on the other hand, is very small.
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Figure 15.7: Control overhead grouped by capacity reduction factor

Fig. 15.5 shows the control overhead for different capacity reduction factors. A value
on the x-axis represents all experiments with a specific capacity reduction factor. The
corresponding y-value is the 90th percentile of the control overhead for these experiments.
It can be seen that the control overhead converges to a value of approx. 100 control
messages per second for increasing capacity reduction factors. This means there is a
scenario-independent upper bound on the required control messages per second (approx.
100) that is considered acceptable for current SDN switches.

The results for Select-Opt and Select-CopyFirst are very similar. Select-Greedy performs
worse, especially for low capacity reduction factors where a significantly higher number
of control messages is required compared to the ILP-based algorithms. This is again
caused by the fact that Select-Greedy can only select or unselect delegation templates
in one time slot and most delegation templates are used for a long time. This means a
higher number of rules is relocated and has to be moved back to the delegation switch
when a template is unselected.





Chapter 16

Runtime and Scalability

Both, runtime and scalability of the designed algorithms (DT-Select, RS-Alloc) are impor-
tant for practical application of the flow delegation approach. This chapter investigates
the following aspects:

(1) Algorithm runtime: Algorithm runtime is defined as the time in milliseconds
required for one optimization period (“sample”) of DT-Select and RS-Alloc. Both,
modeling time and solving time are evaluated for the designed algorithms in Sec.
16.1. It is shown that DT-Select and RS-Alloc can be modeled and solved in less
than 150ms for 99% of all investigated scenarios on a single CPU core.

(2) Number of delegation templates: The scenarios in Z100 and Z5000 require a com-
paratively small number of delegation templates (usually < 50). It is shown in Sec.
16.2 that the Select-CopyFirst algorithm also works with hundreds of delegation
templates without noticeable increase in algorithm runtime.

(3) Number of switches: The scenarios in Z100 and Z5000 only consists of up to 15
switches. It is shown in Sec. 16.3 that RS-Alloc also works with hundreds of
switches with a linear increase in algorithm runtime. For capacity reduction factors
below 30%, the algorithm runtime is below 500ms in all investigated cases with
up to 300 switches (using a single CPU core).

The results presented in this section demonstrate that the flow delegation approach scales
linear with three important parameters: individual runtime of the required algorithms,
number of delegation templates and number of switches in the topology. This means
in summary that a single commodity server with 32 cores can handle a network with
hundreds of switches.

325
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16.1 Runtime

To analyze runtime characteristics of DT-Select and RS-Alloc, modeling and solving time
for each optimization period is measured in milliseconds. Solving time is the time spent
inside the Gurobi solver. Modeling time is the time required to prepare the model for
the solver and includes translation of the scenario data into lambda notation. The total
algorithm runtime is the sum of modeling time and solving time.

16.1.1 Experiment Setup

The experiment series used in this section is based on scenario set Z5000 with random
capacity reduction factors. This is different from the look-ahead analysis in Sec. A.1.1
which is based on the smaller scenario set with only 100 different scenarios. All experi-
ments are performed with Select-CopyFirst and the recommended parameters specified
in Sec. A.4.

Parameter Description Used Values

nscenario_id Used scenario IDs All scenario IDs in Z5000

nreduction Capacity reduction factor Random between 1% and 80%

ndts_algo DT-Select algorithm Select-CopyFirst

Ldts Look-ahead factor DT-Select 3

Lrsa Look-ahead factor RS-Alloc 3

nassignments Assignments for RS-Alloc 50

Table 16.1: Experiment parameters for Sec. 16.1

The series is executed on a server with 2 x Intel(R) Xeon(R) Silver 4110 CPUs (32 logical
cores, clocked at 2.10 GHz). However, unlike before, the experiment environment is
restricted to a single CPU core to avoid the interference effects mentioned in Sec. A.1.2.

16.1.2 Results for DT-Select

Findings: Select-CopyFirst can be modeled and solved in less than 150ms per
bottlenecked switch in 99% of the investigated scenarios using a single CPU core.
Optimizations can reduce this to values below 50ms.

We already know from the results in Sec. A.1.3 that Select-Opt is too expensive with re-
spect to algorithm runtime. This section will thus focus on the Select-CopyFirst approach.



16.1 Runtime 327

Fig. 16.1 shows the modeling times for the experiment series as a cumulative distribution
function. The x-axis denotes the measured modeling time in milliseconds on a logarithmic
scale. The y-axis denotes the fraction of the algorithm samples with a modeling time
below the specified x-value. One sample represents the result of one optimization period.
The number of samples for an experiment depends on the used scenario and the capacity
reduction factor1. If 20 time slots are affected, for example, there are 20+L samples for
DT-Select.

The different colored curves in the plot each represent a subset of the experiments with a
certain flow table utilization ratio. This is the ratio between average flow table utilization
of all switches in the experiment and the maximum flow table utilization (Def. 12.6).
The seven classes between c1 and c7 are defined in Table 14.2. The first class c1 contains
all experiments with a flow table utilization ratio between 0% and 20%. Classes c2 to
c6 contain the experiments with utilization ratio between 20% and 70%. And class c7

consists of the experiments with a ratio above 70%. The number in brackets behind the
class specifies the number of algorithm samples for all experiments in the class. The
thicker black line represents the union of all classes, i.e., all samples of all experiments.
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Figure 16.1: Select-CopyFirst modeling time

1A higher capacity reduction factor typically means that the bottleneck spans over more time slots
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It is shown by the black line in Fig. 16.1 that 99.78% of the 1.176.504 DT-Select

samples have a modeling time below 128ms if a single CPU core is used. This means
only 0.22% of the samples require more than 128ms with a worst case modeling time
across all samples of 383ms. Note that these are cumulative values and modeling times
are lower if the extremer examples are not considered. For 88% of the samples, for
example, the modeling step is finished after a maximum of 32ms. And approx. 24% of
the samples are finished under 8ms.
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Figure 16.2: Select-CopyFirst modeling time without link overhead coefficients

Nevertheless, a modeling time above 32ms in approx. 12 percent of the cases is not
negligible given that DT-Select is executed once per optimization period per switch.
However, these number can be optimized in several ways in a real system. For once,
the current modeling is done completely in python without optimizations and contains
logging/debugging code that could be removed. Using a just-in-time compiler such as
PyPy or a more efficient programming language will probably also reduce the modeling
time significantly. However, this was not tested. Instead, it was investigated which
conceptual part of the modeling step contributes the most to the final measurement
result. This investigation showed that more than 50% of the modeling time in the current
prototype is used for creating the link overhead cost coefficients. This is expensive because
data for each individual flow rule object is extracted. In a real system, however, this
data can be provided by some monitoring component and it is not required to calculate
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the coefficient from scratch in each optimization period. This and other implementation
specific aspects provide potential for optimization.

To quantify this optimization potential, Fig 16.2 shows the modeling times without the
link overhead cost coefficients. The figure has the same structure as Fig. 16.1 except that
the time required for calculation of the link overhead coefficients is not included. Note
that we did not replace or optimize the code, we just set the weight for the link overhead
part to 0 in the multi-objective optimization so that these coefficients are not required
any more (ωLink

DTS
= 0). A real optimization would have to replace this part of the code with

an interface to a monitoring system, for example. However, the optimization problem
is still usable with ωLink

DTS
= 0 (see results in Sec. A.3.2) and the updated results give a

first impression of what can be achieved with a more optimized version of the code. It
is shown that the “optimized” Select-CopyFirst version without link overhead cost

coefficients can be modeled in less than 32ms for 98.92% of the samples which is
a significant improvement to before (faster by a factor of 4). The worst case modeling
time is reduced from 383ms to 121ms. And 68.9% instead of 24% of the samples require
a modeling time of less than 8ms.

Another (less important) aspect that should be discussed here is the impact of the different
utilization classes, i.e., the colored curves besides the thicker black curve. Fig. 16.1
shows that scenarios with higher flow table utilization (classes c5 to c7) seem to have
higher modeling times in the lower end of the considered time range, i.e., the fraction of
samples with modeling times above 8ms and above 32ms is larger for utilization classes
c5 to c7. This observation is accurate but has to be interpreted with caution. Recall that
a high flow table utilization ratio means that the bottleneck situation spans over the
majority of the time slots while only a small portion of the time slots is affected if the
ratio is low. This effect can be observed in the case study where scenarios with different
utilization ratio are investigated. Consider the situation with utilization ratio 72.83% in
scenario z166890 (Fig. 13.13). Even for small capacity reduction factors such as 10% or
15%, the bottleneck situation basically spans over the whole course of the experiment
which means DT-Select is executed for the majority of the 400 time slots. Compare this
to the situation in scenario z155603 with utilization ratio 28.4% in Fig. 13.11. In this case
– even with a very high capacity reduction factor of 40% –, only a small fraction of the
time slots is affected by the bottleneck situation.

This is important here for two reasons: i) the amount of flow rules included in the
translation process (lambda notation) is smaller if less time slots are affected over the
course of an experiment and ii) the probability that a bottleneck only spans over a small
amount of time slots is higher. The latter is especially important given the behavior
of the look-ahead mechanism in Select-CopyFirst. As already explained in Sec. A.2.2,
delegation templates are selected earlier as necessary because the L future time slots
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are considered as capacity constraints in the optimization problem. It turns out that the
coefficients for these “early selections” (i.e., not all considered future time slots have
a bottleneck) can be computed faster compared to a situation where all L future time
slots suffer from a bottleneck. This is one of the reasons why the classes with smaller
utilization ratio have a higher fraction of samples that can be modeled in 2-8ms.
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Figure 16.3: Select-CopyFirst solving time

The only remaining factor for the algorithm runtime is the time required by the Gurobi
solver to calculate the optimal result. The results for the solving time are shown in Fig.
16.3. The structure of the figure is again identical to before. It is shown by the black
line that Gurobi can solve 99.92% of the samples in less than 8ms. And in 98% of
the cases, the solver can find the optimal result in less than 2ms. The strange course
of the curves can be explained with different complexity of the individual optimization
problems. In approx. 40% of the cases, for example, the solver can simply pre-solve
the model which is very fast. For the other cases, the runtime grows with increasing
complexity, i.e., with the number of iterations required by the solver.

It is concluded from the above results that i) the current prototype of the Select-CopyFirst
algorithm can be calculated in less than 150ms in more than 99.9% of the investigated
cases which includes the time for modeling and solving and ii) an implementation with
optimizations will be able to reduce the algorithm runtime further. A realistic guess for
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the optimization potential is a reduction of the modeling time by at least a factor of 3,
i.e., DT-Select can be calculated in less than 50ms.

16.1.3 Results for RS-Alloc

Findings: RS-Alloc can be modeled and solved in less than 150ms in 99% of the
investigated scenarios using a single CPU core.

The previous section investigated the algorithm runtime of the DT-Select step based on
required modeling and solving time for one optimization period. This section discusses
the same for RS-Alloc. The look-ahead factor is set to L = 3 and 50 allocation assignments
are used (to make the problem more difficult).

Fig. 16.4 shows the RS-Alloc modeling times for the experiment series as a cumulative
distribution function. The figure has the same structure as the figures in the previous
section: the x-axis denotes measured modeling time in milliseconds on a logarithmic
scale, the y-axis denotes the fraction of the algorithm samples with a modeling time below
the specified x-value and the different colored curves represent subsets of experiments
with a certain flow table utilization ratio, arranged in seven classes from c1 to c7 as
defined in Table 14.2. The thicker black line represents all samples of all experiments.
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Figure 16.4: RS-Alloc modeling time



332 16 Runtime and Scalability

The first observation is that the number of samples in case of RS-Alloc is smaller com-
pared to the number of DT-Select samples. This is because DT-Select is executed per
bottlenecked switch while RS-Alloc is only executed once after the delegation templates
for all bottlenecked switches are calculated. It can be seen in Fig. 16.4 that the modeling

step for RS-Alloc requires less than 128ms in 99.91% of the 258.118 investigated

samples using a single CPU core. Only approx. 0.1% of the samples require more than
128ms with a worst case modeling time of 1376ms across all samples. This is considered
acceptable given that RS-Alloc is executed only once per time slot and the modeling step
can be easily parallelized if necessary.

0.2 0.5 1.01.0 2.0 4.0 8.0 16.0 32.0 64.0 128.0 256.0 512.0

Solving time RS-Alloc (ms)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

<2ms

32.79%

<8ms

72.78%

<32ms

97.05%

<128ms

99.12%

<512ms

99.75%

<200007ms

100.00%

c1 (28887 samples)

c2 (71644 samples)

c3 (72325 samples)

c4 (46129 samples)

c5 (25599 samples)

c6 (11461 samples)

c7 (2073 samples)

all 258118 samples

Figure 16.5: RS-Alloc solving time

One interesting observation in Fig. 16.4 is that the different utilization classes have
a strong impact on the modeling time. This is expected and linked to the correlation
between flow table utilization ratio and available free capacity. Scenarios with high
utilization ratio – such as scenarios used for experiments in class c6 and c7 – do not have
a large amount of free flow table capacity. This means the number of remote switch
options in the remote set for the RS-Alloc algorithm is small. In addition, there is a
high probability that a remote switch option cannot be used because the number of
relocated rules associated with a delegation template is too high (or the free capacity
in the remote switch is too low which is the same statement). In result, the number of
allocation assignments that can be created for these scenarios is limited to values smaller
than the maximum of 50. In most of the extreme cases (class c7), there is only a single
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assignment left which is “everything has to be allocated to the backup switch”. It can
be concluded that scenarios with lower flow table utilization ratio and more free

capacity require more modeling time.

The remaining factor for the RS-Alloc algorithm runtime is the time required by the
Gurobi solver to calculate the optimal result. The results for RS-Alloc solving time are
shown in Fig. 16.5. The figure uses the same structure as before. It is shown by the
thicker black line that Gurobi can solve 99.12% of the samples in less than 128ms.
And in 97% of the cases, the solver can find the optimal result in less than 32ms. The
figure also shows that 0.25% of the samples require more than 512ms.
The worst case solving time in this case is 200 seconds which is the pre-configured
timeout for RS-Alloc. However, the current setup always uses a fully optimal solution.
Because a real system will use anticipated monitoring data, it is uncritical to stop the
optimization after a pre-configured gap (towards the optimal solution) and work with
non-optimal results if necessary. The timeout can be set to a value of 0.5 seconds to deal
with extreme situations. And if the solver cannot provide a result in the specified time, a
greedy allocation strategy can be used as a fallback for this time slot.

It is concluded from the above results that the current prototype of the RS-Alloc algorithm
can be calculated in less than 200ms in more than 99% of the investigated cases which
includes the time for modeling and solving. Note that Z5000 only considers scenarios with
up to 15 switches. Results for RS-Alloc with higher switch counts up to 300 are discussed
below.

16.2 Number of Delegation Templates

An important scalability parameter for DT-Select is the number of delegation templates
considered in the optimization problem. The indirect aggregation scheme based on
ingress ports introduced in Sec. see 9.16 uses a static amount of templates limited by the
number of ingress ports. This means the scenarios investigated so far based on Z100 and
Z5000 require only a small number of delegation templates (< 50 in most cases). This
section investigates modeling and solving times if the number of delegation templates is
increased.

16.2.1 Experiment Setup

The experiment series used for this section is not based on the scenario generation process.
Instead, experiments are created manually to control the number of delegation templates.
This is done with a single switch which is sufficient here because DT-Select is executed
individually per switch. The experiments are generated with the parameters in Table
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16.2 to design scenarios where mitigation is required in almost all time slots. The number
of templates is scaled with the number of hosts |H| attached to the single switch, i.e., the
ingress-port based aggregation scheme is still used but with a higher number of ingress
ports. Note that the number of required delegation templates in the solution (|D∗

s,t |)
scales with |H|. This is because less flow rules are associated with a single template if the
number of hosts increases while the number of to be relocated flow rules for bottleneck
mitigation only depends on the number of host pairs npairs.

Parameter Description Values

|H| Number of hosts 25, 50, . . . , 475, 500

|S| Number of switches 1

nseed Seed 1, 2, . . . , 9, 10

nreduction Capacity reduction factor 10%, 30%, 50%, 70%

npairs Number of host pairs 100.000, 200.000

niat_scale Global scale for Tiat 250 seconds

nbneck Temporal bottlenecks 0

nisr Inter switch ratio 0%

nhs Number of hotspots 0

ntraffic_scale Global traffic scale 100%

nlifetime Minimum rule lifetime 1 second

Table 16.2: Experiment parameters for Sec. 16.2

The generated scenarios are similar to scenario z166890 discussed in the case study, see
Fig. 13.13. All experiments are performed with Select-CopyFirst and the recommended
parameters specified in Sec. A.4.

16.2.2 Results

Findings: Algorithm runtime increases sub-linearly with the number of considered
templates. Select-CopyFirst supports up to 500 delegation templates with modeling
and solving times below 20ms in all cases.

The experiment series makes use of four capacity reduction factors between 10% and
70% to change the number of flow rules that need to be relocated. Fig. 16.6 shows the
modeling and solving time for a different number of templates and a capacity reduction
factor of 10%. The x-axis denotes the number of delegation templates and the y-axis
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represents the runtime in milliseconds for all DT-Select samples executed with the amount
of templates specified on the x-axis. The thick line represents the median (50th percentile),
the dashed line the maximum (100th percentile). The two colors represent two different
setups: one with npairs = 100.000 randomly selected communication pairs (green) and
on with npairs = 200.000. These two setups are included because the number of pairs
controls the number of rules in the flow table which is important in the following.

Note that there are 10 different experiments for each combination of capacity reduction
factor and number of templates (the different nseed values). Because each experiment
consists of approx. 250 DT-Select samples, each data point in the plot represents approx.
2500 samples. The total amount of considered samples is approx. 50.000 per curve over
all 20 different x-values.
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Figure 16.6: Modeling and solving times of DT-Select for different number of delegation

templates (for 10% capacity reduction)

The first important observation for Fig. 16.6 is that – with 10% capacity reduction –, the
modeling time never exceeds 12.5ms and the solving time never exceeds 15ms, tested
here with up to 500 templates. And very similar results are achieved with higher capacity
reduction factors (see figures below). It can be concluded that neither the solving time

nor the modeling time exceeds 20ms in the investigated experiments regardless of

the numbers of delegation templates and the capacity reduction factor. This shows
that, from a runtime perspective, DT-Select scales well with the number of considered
templates.
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Figure 16.7: Modeling and solving times of DT-Select for different number of delegation

templates and capacity reduction factors (30% in the top, 50% in the bottom)

It can further be seen in the right plot of Fig. 16.6 that the solving time scales sub-linear
with the number of templates (decreased slope for higher values). This is expected
because the number of templates defines the number of decision variables in the Select-
Opt optimization problem. In the left plot, it can be seen that a small amount of templates
leads to high modeling times. This is because the flow rules2 are distributed over the
available number of templates. With |H| templates and npairs flow rules, each template

2The number of pairs is equal to the number of flow rules here because the topology consists of a single
switch
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is associated with approx.
npairs

|H| rules over the course of the experiment. Because npairs

is static and |H| is increased from 25 to 500, higher values of |H| reduce the number of
flow rules per template. Because the majority of the computational effort for translation
to lambda notation comes from iterating over the flow rule sets in the templates, the
modeling time is decreased if the individual templates are associated with less flow rules.
It can be seen in Fig. 16.6 and also the following figures that this effect is very strong
until the number of templates (|H|) reaches 100. At this point in time, the overhead for
iterating over the templates is higher than the savings from reduced iterations inside
each single template. This is why the modeling time increases from this point on with
a sub-linear trend. The outliers in the modeling time plot – e.g., with |H| = 300 – are
caused by interference between experiments. This effect is explained in detail in Appendix
A.1.2. Also note that the number of different seeds (10) is rather small in this experiment
series.

If we compare the results from Fig. 16.6 with 10% capacity reduction and the results
from Fig. 16.7 for 30% and 50%, it can be seen that the solving time in the right plot
only increases until |H| reaches a certain value. To explain this effect, it is important
to understand that the number of rules to be relocated only depends on the capacity
reduction factor and the number of pairs. With 100.000 pairs and a 10% reduction factor,
the average capacity of the switch in the experiments is 1067 and 118 rules need to
be relocated on average. With 100.000 pairs and a 30% reduction factor, the average
capacity is 830 and 355 rules must be relocated.

Note that these numbers do not change for a higher number of templates. Because each
template is associated with approx.

npairs

|H| flow rules over the course of the experiment, the
solver has to select more and more templates to get to the required amount of rules when
|H| increases. Taking this into consideration, it is easy to see that the average number of
rules associated with a template d in one time slot t is of critical importance. Assume
this value is given as cd,t . A delegation template d can only be used if cd,t ≥ 2, i.e., there
are at least two rules that can be relocated if the template is selected. Otherwise, the
overhead added by the aggregation rule will immediately negate the effect of selecting
the template. The reduction of solving time observed in Fig. 16.7 can now be explained
with two effects:

(1) Higher values of H will decrease cd,t and therefore also the probability that a
delegation template has a value cd,t ≥ 2. These templates are not included in the
optimization problem in the first place so that the total amount of decision variables
will decrease with lower H which makes the problem simpler and reduces solving
time.
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(2) Higher capacity reduction factors will increase the number of rules that need to be
relocated and, at the same time, reduce the available capacity of the switch. This
puts a hard limit on the maximum number of delegation templates that can be
selected by the solver. This makes the problem simpler because the solver is forced
to select templates with high cd,t regardless of the objective function (reduced
search space).

The above results indicate that DT-Select can deal with a high number of delegation
templates (500) and will automatically reduce the complexity of the optimization problem
if only a subset of the templates is usable. However, it is important to keep in mind
that there is a hard limit of the number of delegation templates that can be selected3 in
practice. The experiment series defined in this section is a good example for this general
limitation.
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Figure 16.8: Table overhead for different number of templates and capacity reduction factors

3Note that it makes a big difference whether a template is “selected” (used in the optimal result) or
“considered” (included in the optimization problem as one option). The number of considered templates
can be arbitrarily high in theory. The number of selected templates not because of aggregation rule
overhead and flow table capacity limitations.
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Consider the four plots in Fig. 16.8. The x-axis denotes the number of delegation
templates and the y-axis represents the mean table overhead for all DT-Select samples
executed with the amount of templates specified on the x-axis. Recall that the table
overhead counts the amount of aggregation rules installed in the flow table of the
delegation switch, divided by the number of time slots with bottlenecks (Def. 15.1).
The four plots represent the different capacity reduction factors used in the experiment
series. The two colors represent two setups, one with npairs = 100.000 randomly selected
communication pairs (green) and one with npairs = 200.000.

It can be seen that the number of used aggregation rules per time slot stays below 20
if the capacity reduction factor is set to 10% (top left). This is a reasonable overhead
given that the table capacity cTable

s
is 1067 rules for the green curve and 1987 for the blue

curve. With 30% capacity reduction, the overhead is significantly higher for large values
of |H|. With 200 delegation templates, 40 aggregation rules are required in case of the
green curve. With |H| = 400, this value is already increased to 65 aggregation rules –
because cd,t is reduced and more templates are required. This means that almost 10%
of the capacity – 830 in this case – is occupied with aggregation rules. If the capacity
reduction factor is increased further, the amount of aggregation rules in the flow table of
the delegation switch is also increased.

This can go so far that the number of required aggregation rules exceed the capacity of
the flow table. This situation can be observed with the green curve in the bottom right
of Fig. 16.8. Because the flow table can store only 355 rules in this example and cd,t

is too low for too many of the templates, the solver can not deal with the situation if
|H| is set to values greater than 250. This means the problem is getting infeasible. In
the current prototype, a backup solution is used in such a case that will select additional
templates. This backup solution does not consider the capacity of the flow table which
explains why the green curve in the bottom right of Fig. 16.8 grows beyond the capacity.
The effect can also be observed in the solving time plot for this scenario which is shown
for completeness in Fig. 16.9. The additional red curve shows the percentage of the
samples that are infeasible.

It is important to mention that the case above is not a realistic scenario. However, it is a
good example to demonstrate the conceptual limitations of the approach. In summary, it
can be concluded that the Select-CopyFirst algorithm supports hundreds of delegation
templates without noticeable increase in algorithm runtime. This could be important, for
example, if another aggregation scheme is used where a high number of templates has
to be considered. Is is further shown in this section that a high number of delegation
templates in combination with a small amount of associated rules per template (cd,t)
leads to more and more table overhead if |H| is increased and will eventually result in
infeasible optimization problems.
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Figure 16.9: Scaling Delegation Templates, 70% capacity reduction

16.3 Number of Switches

The scenarios in Z100 and Z5000 represent relatively small networks with up to 15 switches.
This section investigates the algorithm runtime of RS-Alloc if the number of switches is
increased to higher values (up to 300). Note that DT-Select scales linear with the number
of switches by default because delegation template selection is executed individually per
switch.

16.3.1 Experiment Setup

The experiment series used for this section is not based on the scenario generation process.
Instead, experiments are created manually to control the number of switches. Because
larger topologies need a larger amount of hosts, the series consists of three “sub-series”
where the majority of the parameters is fixed, except for the number of switches, the
number hosts and the number of communication pairs. The experiments are generated
with the parameters in Table 16.3. The 9 entries in the bottom are the three sub-series.

Parameter Description Values

m Topology generation 1,2

nseed Seed 1, 2, . . . , 9, 10

nreduction Capacity reduction factor 10%, 30%, 50%, 70%

niat_scale Global scale for Tiat 300 seconds
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nbneck Temporal bottlenecks 1

nbneck_duration Bottleneck duration 1

nbneck_intensity Bottleneck intensity 20

nisr Inter switch ratio 70%

nhs Number of hotspots 0

ntraffic_scale Global traffic scale 100%

nlifetime Minimum rule lifetime 3 second

|S| Number of switches 10, 15, . . . , 95, 100

|H| Number of hosts 250

npairs Number of host pairs 100.000

|S| Number of switches 110, 115, . . . , 195, 200

|H| Number of hosts 500

npairs Number of host pairs 150.000

|S| Number of switches 210, 220, . . . , 290, 300

|H| Number of hosts 1000

npairs Number of host pairs 150.000

Table 16.3: Experiment parameters for Sec. 16.2

The 11 entries in the top are the same for all three sub-series. The number of switches is
scaled from 10 to 300 in steps of 5 or 10. Smaller topologies with up to 100 switches
use 250 hosts. Topologies with 100-200 switches use 500 hosts and topologies with
more than 200 switches use 1000 hosts. All topologies are created with m = 1 and
m = 2 using the Barabasi-Albert model. The number of communication pairs is relatively
small (100.000 and 150.000) but this is compensated with a high inter switch ratio.
This ensures that 70% of the generated pairs result in flow rules installed over multiple
switches. All experiments are performed with Select-CopyFirst and the recommended
parameters specified in Sec. A.4.

The experiments were executed on a server with 2 x Intel(R) Xeon(R) Silver 4110 CPUs
(32 logical cores, clocked at 2.10 GHz) running 32 experiments in parallel without further
management of the resources such as setting processor affinity, i.e., the system was on
full load during the evaluation. This can impact the reported runtime values as explained
in Sec. A.1.2.
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16.3.2 Results

Findings: Algorithm runtime increases linearly with the number of switches. RS-
Alloc supports up to 300 switches with algorithm runtime (modeling + solving)
below 5s in all investigated cases using a single CPU core. For smaller and more
realistic capacity reduction factors up to 30%, algorithm runtime is below 500ms
in all investigated cases.

The experiment series is designed similar to the series used in Sec. 16.2 and makes
use of four capacity reduction factors between 10% and 70%. Fig. 16.10 shows the
modeling and solving time for a different number of switches and capacity reduction
factors. The x-axis denotes the number of switches and the y-axis represents the runtime
in milliseconds for all RS-Alloc samples executed with the amount of switches specified
on the x-axis. The values for the two plots in the top are given as the median. The values
for the two plots in the middle are given as 90th percentiles. And the plots in the bottom
show the maximum of the measured values across all samples. The four colored lines
represents the four different capacity reduction factors.

It can be seen in Fig. 16.10 that all conducted experiments could be modeled in less
than 5 seconds and solved in less than 1 second using a single CPU core – which includes
extreme scenarios with 70% capacity reduction. Note that the runtime values are usually
better if experiments can not interfere with each other (see Sec. A.1.2). Further note that
RS-Alloc is only executed once per time slot and both sub-steps – modeling and solving –
can be parallelized if necessary.

It can further be seen that all curves scale linear with the number of switches. In addition,
it can be seen that smaller – and more realistic – capacity reduction factors up to 30%
can be handled in less than 100ms in 50% of the cases and less than 500ms in 100%
of the cases (using one CPU core on a highly loaded system). It is concluded that the
RS-Alloc approach can be used in larger networks with (at least) 300 switches.
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Chapter 17

Conclusion and Outlook

This thesis introduced flow delegation, a novel concept for flow table capacity bottleneck
mitigation that can be easily applied to existing software-based networks and enables
two powerful new use cases:

• Bottleneck mitigation with existing hardware: By using the available spare flow
table capacity in the infrastructure, flow delegation can handle situations where the
flow table utilization exceeds the maximum capacity – which would normally lead
to decreased performance, loss of connectivity, security problems or violation of
service agreements. The evaluation shows that flow delegation can deal with flow
table utilizations that are up to 38% above the capacity by only using available
spare resources (median value for 5000 investigated bottleneck scenarios). This
means flow delegation can handle bottlenecks with 1380 concurrently installed
flow rules when all (!) switches in the infrastructure have a capacity of only 1000
rules.

• Reduction of operational and capital expenditure: Network operators can include
the mitigation potential of flow delegation into the calculation when new equipment
has to be bought and select cheaper and more energy efficient switches with smaller
TCAM chips. It is shown that flow delegation allows for a 28% reduction in TCAM

size (median value for 5000 investigated bottleneck scenarios) which can lead to
significant savings given that TCAM chips are one of the most expensive components
in a modern SDN switch.

In addition to the two above use cases, flow delegation comes with several benefits that
cannot be achieved with other existing solutions. The designed system is realized com-
pletely in software and can be used without changes to the existing network – in contrast
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to approaches that require changes to the infrastructure [Yu+10; Cur+11; Kat+14b] or
the network applications [KHK13; KB13; Len+15]. In addition, the operational aspects
(i.e., the fact that a flow rule is relocated to another switch) is hidden from the control
plane with the help of control message interception. This allows it to simply enable and
disable flow delegation on-demand which is well suited for bottlenecks that only occur in
parts of the network or within certain time frames. And last but not least, flow delegation
has very low requirements in terms of protocol features that must be supported by the
controller and the switches: it works with every version of OpenFlow and can be easily
adapted to other southbound protocols if necessary.

Flow delegation works as follows: if a bottleneck is detected or anticipated, flow rules
from the bottlenecked switch are automatically relocated to a neighboring remote switch
with spare capacity. All packets associated with the relocated flow rules are then redirected
towards and processed within the remote switch. After processing, the packets are sent
back to the bottlenecked switch and forwarded to their original destination. Since all
packets are still processed in hardware, the overhead for relocated packets in terms
of additional latency is quite small (below 0.1ms). It is shown in the thesis that flow
delegation can deal with severe bottleneck situations where the required amount of flow
rules exceeds the capacity by more than 50% while only using existing spare capacity.
And it is further shown that the price that has to be paid for flow delegation in terms
of additional link utilization and control messages is acceptable in the majority of the
cases: less than 13 Mbit/s per bottlenecked switch – which is distributed over several
links if multiple remote switches are used – and less than 50 additional control messages
per second per bottlenecked switch (median values for 5000 investigated bottleneck
scenarios).

17.1 Summary of Contributions

The thesis makes three main contributions: i) It presents a system design and architecture
capable of dealing with the numerous practical challenges associated with flow delegation.
ii) It introduces suitable algorithms for flow delegation to efficiently mitigate bottlenecks
taking future knowledge and multiple objectives into account. And iii), it studies feasibil-
ity, performance, overhead, and scalability of the approach covering various different
scenarios. The individual contributions are as follows:

• A modular architecture for flow delegation is presented that consists of five inde-
pendent building blocks: monitoring system, rule aggregation scheme, delegation
algorithm, detour procedure and control message interception. It is discussed in
detail how each of these building blocks can be realized.
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• Practical feasibility of the designed system is shown with two independent proof-
of-concept implementations evaluated in a real (emulated) OpenFlow network.

• A novel rule aggregation concept is introduced to calculate so-called delegation tem-
plates independently of the flow rules installed in the flow table. These delegation
templates are much easier to handle than the output of comparable approaches such
as dependency graph algorithms [Kat+14a] because different delegation templates
are conflict-free by design. Note that this is not only useful for flow delegation
but could also be applied in the context of software offloading [BP12; Kat+14b;
MDS17], flow rule distribution [Yu+10; KHK13] or other related areas.

• A novel flow delegation algorithm is designed to mitigate bottlenecks. The under-
lying problem is decomposed into two sub-problems (DT-Select, RS-Alloc) which
are then modeled with the help of integer linear programming. The thesis presents
single-period and multi-period versions for both problems that can deal with multi-
ple and potentially conflicting objectives. The multi-period versions consider future
network situations to proactively mitigate anticipated bottlenecks.

• Fast and scalable heuristics for the flow delegation algorithm are developed which
operate in the millisecond range (< 150ms) on a single CPU core – fast enough to
be used in practice. A single commodity server with 32 cores can handle a network
with hundreds of switches.

• A comprehensive evaluation is conducted to investigate feasibility, performance,
overhead, and scalability of the approach. It is shown that the approach is primarily
limited by two factors: the available free flow table capacity and the available free
link bandwidth. Other factors such as additional rules required by the approach
(e.g., aggregation rules) or additional control messages are uncritical in most cases.

The code for the prototypes, the algorithms and the evaluation is publicly available. All
data sets used for the evaluation are also available to support reproducibility.

17.2 Perspectives for Future Work

It was already mentioned in [BZ16] that the flow delegation approach is not restricted
to flow table capacity bottlenecks1. It could also be used, for example, to cope with
hardware heterogeneity and missing data plane features. Due to the feature-richness of
the OpenFlow specification and diversity in the switch vendor market, not all features are

1Some ideas in this direction were already investigated, for example in the area multi table processing
[Gei+17; Gei+19] (joint work with the University of Würzburg and Nokia Bell Labs) and model driven
networking [Lop+18] (joint work with the Federal University of Pernambuco)
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automatically available on every switch. Now assume the controller uses a certain feature
that is only supported by a subset of the switches. Flow delegation can relocate flow rules
that use this feature to the supporting switches. Another area where flow delegation may
be applicable is load balancing of switch CPU resources, e.g., for processing packet_in

control messages or monitoring requests which can be expensive for large flow tables. If
one of the switches suffers from a high CPU utilization, processing could be delegated to
another switch with less CPU utilization.

Another area for future work is combination of flow delegation with other approaches.
With support from the controller and/or the network applications, for example, it could
be possible to combine flow delegation with solutions for flow table compression such as
[LMT10; MLT12] to handle bottlenecks that cannot be mitigated by one approach alone.
It could also be a valid strategy to combine flow delegation with software offloading
[BP12; Kat+14b; MDS17].

Application of machine learning is also a promising direction for further investigation.
Reinforcement learning could be used to control whether delegation templates are
selected or not based on the current situation in the network2. The expectation is
that this may potentially lead to better decisions tailored to the learned behavior in a
particular environment. Another idea in the context of machine learning is automatic
parameterization of the algorithms. In the current approach, a generic set of parameters
is used for all scenarios. Experiments showed, however, that different parameters can
lead to different results. It is thus expected that flow delegation would benefit from
automatic parameter tuning which is a classical task for machine learning.

Finally, there are several options for optimizations with respect to the five designed
building blocks of the flow delegation architecture which may merit further investigation.
One is extending the detour procedure and the RS-Alloc algorithm so that flow rules
can be relocated to every remote switch with free capacity and not only those that
are directly connected to the delegation switch. It could also be possible to develop
a pre-processing step similar to the approach presented in Sec. 11.3 to improve the
performance of Select-Opt. Another idea is to further investigate generalized control
message interception that was here only addressed in the context of flow delegation
but has many other applications – for example in the area of verification and security
[Khu+13; Kaz+13; Hu+14] or network debugging [Han+12; Wun+11; WBZ16].

2Some promising steps in this direction were already performed in a master thesis by Jichao He entitled
“Flow Delegation with Reinforcement Learning”. This thesis applied Q-learning and Deep Q Networks
(DQNs) to the flow delegation problem.
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Appendix A

Parameter Study

The developed algorithms need to be parameterized with a look-ahead factor (represents
the amount of future time slots to consider), with the number of allocation assignments
in case of RS-Alloc and with weights to control the different objectives. These parameters
have a significant impact on flow delegation performance and overhead. It is explained
in the following, how the default parameters used for all experiments in this thesis were
determined.

• Sec. A.1 investigates the impact of look-ahead factor L on algorithm runtime

• Sec. A.2 investigates the impact of look-ahead factor L on overhead

• Sec. A.3 investigates the weights for multi-objective optimizations

• Sec. A.4 presents the determined parameters

A.1 Impact of Look-ahead Factor on Algorithm Runtime

The look-ahead factor L determines the amount of future time slots considered in the
periodic optimization. Higher look-ahead factors increase the amount of coefficients in
the optimization problem which leads to higher modeling and solving times but can also
reduce the overhead because the algorithms can better anticipate how the situation will
develop in the near future and react accordingly. This section will investigate how the
runtime of the two ILP-based algorithms scales with factor L. The subsequent section
will then investigate the improvement in terms of reduced overhead achieved by the
look-ahead mechanism.
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A.1.1 Experiment Setup

Two different experiment series are designed for the look-ahead analysis, one for DT-
Select and one for RS-Alloc. Both are based on scenario set Z100 with random capacity
reduction factors. This is done because it is expected that high look-ahead factors will
result in potentially high runtimes. This is also the reason why all experiments are aborted
after a timeout of 1600 seconds to save evaluation resources. The timeout was chosen so
that each optimization period gets at least 4s of processing power from one logical CPU
core with some spare time for the evaluation overhead.

Parameter Description Used Values

(for both)
nscenario_id Used scenario IDs All scenario IDs in Z100

nreduction Capacity reduction factor Random between 1% and 80%

DT-Select
ndts_algo DT-Select algorithm Select-Opt, Select-CopyFirst

Ldts Look-ahead factor DT-Select 1, . . . , 9

RS-Alloc

ndts_algo DT-Select algorithm Select-CopyFirst

Ldts Look-ahead factor DT-Select 3

Lrsa Look-ahead factor RS-Alloc 1, . . . , 9

nassignments Assignments for RS-Alloc 5, 20, 50, 100, 200

Table A.1: Experiment parameters for Sec. A.1

The first experiment series investigates the look-ahead factor for DT-Select. In this case,
each scenario in Z100 is executed with look ahead factors between Ldts = 1 to Ldts = 9.
This is done for Select-Opt and Select-CopyFirst which results in 2 x 900 experiments.
The second experiment series investigates the look-ahead factor for RS-Alloc. This is done
with Select-CopyFirst and Ldts = 3. The look-ahead factor for RS-Alloc is varied between
Lrsa = 1 and Lrsa = 9. In addition, the maximum number of allocation assignments is
varied between 1 and 200. This results in 5 x 900 experiments.

Both series were executed on a server with 2 x Intel(R) Xeon(R) Silver 4110 CPUs (8
physical cores per CPU, 32 logical cores in total, clocked at 2.10 GHz) equipped with 96
GBytes of physical memory1.

1The high amount of RAM is not required. Maximum RAM utilization of the system was approx. 8 GBytes
with 32 experiments running in parallel.
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A.1.2 Reported Runtime Values

For correct interpretation of the reported values for modeling and solving time in this
section, it is necessary to understand that 32 experiments were executed in parallel
without further management of the resources such as setting processor affinity. The
system used for evaluation was on full load during the experiment. This is important
here because the experiments did not only run DT-Select and RS-Alloc but also various
other tasks such as pre-processing, scenario generation and calculation of metrics. Fig.
A.1 shows the DT-Select experiment series with additional details regarding the executed
tasks.
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Figure A.1: Experiment execution times for DT-Select look-ahead analysis

The top shows all experiments that use Select-Opt as DT-Select algorithm and the bottom
shows all experiments that use Select-CopyFirst. There are 900 experiments for each
algorithm, 9 for each scenario in Z100. The x-axis shows the experiment index between 0
and 899 sorted by total time used for calculating DT-Select. The y-axis shows the total
experiment execution time in seconds. The different colors represent different tasks
in the evaluation environment. Note that the timings in the tasks are aggregated, i.e.,
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the blue area contains all individual runs of DT-Select for the experiment which can be
hundreds or thousands.

It can be seen from the figure that, in case of Select-CopyFirst, a considerable amount
of the execution time is used for pre-processing (setup of the evaluation environment)
and calculating metrics for the result set. These steps depend heavily on I/O and can
slow down other processes which unfortunately also includes the Gurobi solver. Because
the different processes are not coordinated in any way, the measured execution time for
DT-Select and RS-Alloc can be increased due to interference with other processes running
on the server.

There are two additional observations. First, it can be seen in Fig. A.1 that the majority of
the time is used for DT-Select (blue area). This is expected because delegation template
selection is executed for every switch. The effort for RS-Alloc (black area), on the other
hand, is almost negligible with respect to overall resource consumption. The small black
spike in the bottom plot at the 600 second mark represents either an unknown error or
an extreme case of interference2. The second observation is that Select-Opt can only
calculate 634 out of 900 experiments without running into the 1600 second timeout.
This is because the number of assignments grows exponentially with L which cannot be
solved in a reasonable amount of time. A single experiment with L = 9 and Select-Opt
can take more than 24h hours to be modeled and solved. It is important to understand
that the experiments with timeout are missing in the results below. This only affects
Select-Opt (see Fig. A.1) and means that the reported runtime results would be much
worse if the experiments with timeout could be included. Because the goal is to show
that Select-Opt does not scale and the results for Select-CopyFirst are not affected, this is
uncritical.

A.1.3 Results for DT-Select

Findings: The runtime (= sum of modeling and solving time) of Select-CopyFirst
scales linear with L and stays below 0.5 seconds for L < 18. The solving time is
constant while the modeling time grows linearly for larger L. For Select-Opt, the
modeling time grows exponentially with L, i.e., this approach should not be used
in practice, at least not with look-ahead factors L > 3.

To analyze the impact of the look-ahead factor, the modeling and solving time for each
optimization period is measured in milliseconds. Solving time is the time spent inside the

2The experiment with the spike is based on scenario ID 392105 with look-ahead factor L = 6. This
experiment was executed again multiple times after the series where the RS-Alloc part was always
measured as approx. 7 seconds instead of 660 seconds.
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Gurobi solver. Modeling time is the time required to prepare the model for the solver, i.e.,
primarily the translation of the scenario data into lambda notation. Time to calculate
the metrics and other tasks of the evaluation environment are not included in the results
presented below. One optimization period includes the last time slot and up to L future
time slots.

The results for Select-Opt are presented in Fig. A.2 and the results for Select-CopyFirst are
presented in Fig. A.3. The x-axis denotes the look-ahead factor L. The y-axis denotes the
modeling or solving time for one optimization period using the look-ahead factor specified
as x-value. The data for each look-ahead factor consists all samples of the executed
algorithm. It is displayed in box plot form showing minimum, maximum, median as well
as 25th and 75th percentiles.
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Figure A.2: Select-Opt modeling and solving times for different look-ahead factors

The runtime advantage of Select-CopyFirst in the second figure over Select-Opt in the
first figure is clearly visible: when looking at higher look-ahead factors, the difference is
up to two orders of magnitude for the modeling time and up to one order of magnitude
for the solving time. The differences for lower factors are shown in the table below. It
contains the median values for L = 2 to L = 6 in milliseconds for modeling and solving
time of both algorithms, i.e., for 50% of the investigated experiments, the measured
times are lower than the value specified in the table.

L=2 L=3 L=4 L=5 L = 6

Modeling Time
Select-Opt 40.64 101.94 230.00 474.29 1031.42

Select-CopyFirst 21.34 31.95 46.92 55.39 70.09
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Solving Time
Select-Opt 10.78 42.86 62.67 81.11 106.98

Select-CopyFirst 2.13 1.87 2.10 1.83 1.87

In 50% of the experiments, modeling for Select-CopyFirst is 2 to 14 times faster

than modeling with Select-Opt if the look-ahead factor is small3: 21.34ms with Select-
CopyFirst vs 40.46ms with Select-Opt in case of L = 2 (factor 1.9) and 70.09ms vs
1031.42ms in case of L = 6 (factor 14.7). Solving of the created linear program is
faster by a factor of 20 with L = 2 – 2.13ms with Select-CopyFirst vs 42.86ms with
Select-Opt – up to a factor of 57 with L = 6 (1.87ms vs 106.98ms). It can be seen,
however, that both algorithms are primarily limited by the modeling effort and not the
solving effort. Fig. A.2 shows that the modeling time for Select-Opt grows exponentially
with L while the modeling time for Select-CopyFirst in Fig. A.3 grows linearly with L.
The trend for the solving time is approx. linear in case of Select-Opt and constant in
case of Select-CopyFirst. Fig. A.4 shows how the trend continues with larger values of
L for Select-CopyFirst. Larger values of L = 9 for Select-Opt can not be computed in
reasonable time.

The above results limit the algorithms and look-ahead factors that can be used in practice.
Select-Opt is conceptually limited by the modeling time. Because the input size grows
exponentially, it is difficult to optimize this step. And even with L = 4, the modeling
time in the current prototype is already at 230ms in 50% of the experiments. The 99th
percentile with L = 4 is at 815ms. Further recall that these are only the values for
experiments that did not run into a timeout. There are also scenarios with potentially
much higher modeling times not included here. In result, Select-Opt is too expensive in

terms of the required modeling time given that this algorithm is executed individually
for each switch once per optimization period – even for very small look-ahead factors
such as L = 3 or L = 4. This is the main reason why the Select-CopyFirst heuristic was
designed in the first place.

In case of Select-CopyFirst, higher look-ahead factors can be used with a linear increase
of the modeling time. The solving time does not increase for larger L – which is expected
given that the heuristic makes only a decision for the first time slot and the number
decision variables in the optimization problem stays the same for all L. The number of
coefficients in the optimization problem, however, does scale with L so it is expected
that there is a small linear trend that is not visible for L = 1 to L = 30 (larger values
could not be tested with meaningful results because of the limited number of time
slots in the experiments). It can be concluded that Select-CopyFirst has no immanent

runtime limitation and the selection of a suitable look-ahead factor mainly depends on

3Note that high look-ahead factors L > 6 also require a mechanism that can predict L steps into the future
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Figure A.3: Select-CopyFirst modeling and solving times for different look-ahead factors
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Figure A.4: Select-CopyFirst modeling and solving times for L = 1 to L = 30

the available processing resources, the optimizations that can be realized with respect
to the modeling time and – most important – the expected benefits or drawbacks from
using higher look-ahead factors. It is shown in Sec. A.2 that L for Select-CopyFirst is
limited primarily by the fact that the overhead is increased if L is set to values above 6.

Closing remark: Fig. A.2 does not specify values for L = 1. This is because all experiments
with Select-Opt and L = 1 result in an infeasible optimization problem. This is not a
conceptual limitation and could be optimized. However, this was not done here due to
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time constraints (requires a complete re-design of the history mechanism) and because
L = 1 represents flow delegation without look-ahead which is not the focus of this work.

A.1.4 Results for RS-Alloc

Findings: From a runtime scalability perspective, RS-Alloc can support all tested
look-ahead factors up to L = 9 with up to 200 allocation assignments. Modeling
and solving time scale primarily with the number of allocation assignments in a
linear way.

The look-ahead factor used with RS-Alloc can be determined independently from the
look-ahead factor used with DT-Select, i.e., the two factors are not automatically restricted
to the lower one. And because the RS-Alloc look-ahead factor is directly linked to the size
of the allocation assignments, these two aspects are investigated here together. Similar
as before, the modeling and solving time for each optimization period is measured in
milliseconds. Solving time is again the time spent inside the Gurobi solver and modeling
time is the time required to prepare the model for the solver. One optimization period
includes the last time slot and up to L future time slots.
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Figure A.5: RS-Alloc modeling and solving time for different look-ahead values and number

of assignments.

The results obtained with the second experiment series from Sec. A.1.1 are shown in
Fig. A.5. The plots are arranged in four columns, each of which represent a maximum
number of allocation assignments (different colors). The first row shows modeling times,
the second row solving times. The two axis in the individual plots are designed in the
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same way as before. The x-axis denotes the look-ahead factor L. The y-axis denotes the
modeling or solving time for one optimization period using the look-ahead factor specified
as x-value. The data for each look-ahead factor consists all samples of the executed
algorithm. It is displayed in box plot form showing minimum, maximum, median as well
as 25th and 75th percentiles.

It can be seen that RS-Alloc is faster and scales better with L than DT-Select with respect
to both, modeling and solving times. All combinations of look-ahead factors and number
of assignments stay below 50ms in 50% of the experiments and below 400ms in 100% of
the experiments (the outliers are not shown here because of readability). The impact of
the used number of allocation assignments is much higher than the impact of using higher
look-ahead factors. In conclusion: selection of the two aforementioned parameters is not
restricted by runtime scalability and can be done primarily with respect to the achieved
overhead reduction (next section).

A.2 Impact of Look-ahead Factor on Overhead

The previous section did analyze the impact of the look-ahead factor on algorithm runtime.
This section will now investigate the impact of higher look-ahead factors on overhead
caused by DT-Select and RS-Alloc.

A.2.1 Experiment Setup

The results in this section are based on the experiment series described in Sec. A.1.1.
The parameters are listed in Table A.5. No further changes are required.

A.2.2 Results for DT-Select

Findings: The look-ahead factor for Select-CopyFirst should be set to values
between L = 3 and L = 5. These factors lead to feasible problems in all conducted
experiments and show a good trade-off between runtime and overhead: L = 3 is
best for runtime, L = 5 is best for control overhead. In this thesis, L = 3 is used as
the default value. Values larger than L = 6 will only increase overhead as well as
runtime and should not be used.

Before the overhead for different look-ahead factors is investigated, it is important to
mention that small values below L = 3 can lead to infeasible optimization problems. This
effect is explained in Sec. 10.2.6 and occurs when a bottleneck can only be mitigated
if delegation templates are selected anticipatory. Experiments with Z5000 show that this
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effect occurs in 201 out of 8940 bottlenecked switches with L = 1. There are no cases
with L > 1 in Z5000, but the effect also occurs in experiments with L = 2 if the capacity
reduction factor is set to high values of > 80%. The effect never occurred with L = 3 in
any of the conducted experiments. It is therefor recommended to use at least a look-ahead
factor of L = 3.

Description Formula

Table

overhead

(Def. 15.1)

Represents the average value of required ag-
gregation rules per time slot. Calculated as
the amount of aggregation rules installed
in the flow table of the delegation switch
divided by the number of time slots with bot-
tlenecks.

1

|T Bneck|
∗
∑

t∈T Bneck

|D∗
s,t |

Link

overhead

(Def. 15.2)

Represents the average bandwidth required
in Mbits/s between a delegation switch and
one or more remote switches per time slot.
Calculated as the bits relocated by all in-
stalled aggregation rules, divided by the
number of time slots with bottlenecks.

1

|T Bneck|
∗
∑

t∈T Bneck

∑

d∈D∗s,t

wLink

d,t

Control

overhead

(Def. 15.3)

Represents the average amount of additional
control messages required per time slot to
realize flow delegation. Calculated the ad-
ditional control messages sent by the flow
delegation system, divided by the number of
time slots with bottlenecks.

1

|T Bneck|
∗
∑

t∈T Bneck

∑

d∈D∗s,t

wCtrl

d,t

Table A.3: DT-Select overhead definitions

Further note that the remainder of this section only investigates the results for Select-
CopyFirst because it was shown above in Sec. A.1 that Select-Opt is too expensive in
terms of required modeling and solving time. The overhead results for different L are
shown in Fig. A.6. The three columns represent the three kinds of overhead introduced
for DT-Select in Chapter 15. The used overhead definitions are summarized in Table
A.3. The x-axis in the individual plot represents the selected look-ahead factor L. The
y-axis represents the calculated overhead for 900 experiments and is presented in box
plot form.

It can be seen in Fig. A.6 that higher look-ahead factors result in higher table over-

head and higher link overhead. This observation is directly linked to the design of the
heuristic. Recall that Select-CopyFirst only makes a decision for the first time slot and
“copies” this decision to all future time slots. Because future time slots are still considered
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Figure A.6: Overhead with Select-CopyFirst and different look-ahead values

as capacity constraints, delegation templates are selected earlier as necessary if L is high.
Assume a situation where the flow table utilization is increased by 100 rules per time
slot. Further assume the flow table capacity of the switch is 550 rules. The following
table shows when the approach has to start the mitigation (i.e., select the first template)
based on the applied look-ahead factor L, denoted here with “x”.

Anticipated flow
table utilization

t1 t2 t3 t4 t5 t6

100 200 300 400 500 600

L=1 0 0 0 0 x x

L=2 0 0 0 x x x

L=3 0 0 x x x x

L=4 0 x x x x x

L=5 x x x x x x

If the look ahead is set to L = 1, the first template has to be selected in t5 because the
bottleneck in t6 would otherwise not be mitigated. With L = 2, the first template has to
be selected in t4. Not necessarily because it is not sufficient to start the mitigation in t5

but because the utilization constraints now include time slot t6. This pattern continues.
With L = 5, the algorithm has to select the first template in t1. This is the fundamental
difference in flexibility between Select-Opt and Select-CopyFirst. Compare the situation
for the two algorithms with L = 5 in time slot t1:
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• Select-Opt can easily select assignments in such a way that no delegation template is
selected in t1 to t4. This is possible because the assignments consists of all possible
selections for all considered time slots.

• Select-CopyFirst does not have this flexibility. It HAS to come up with a solution
in t1 so that the capacity for all considered L future time slots is below 550 rules.
Because the decision is copied from the first time slot, the algorithm is forced to
select at least one delegation template in t1 – it can not “delay” the selection for a
couple of time slots to save overhead.

It is easy to follow that this “earlier selection” leads to more selected delegation templates
over time which means the table overhead is increased. This effect obviously gets stronger
if L is higher which is clearly visible in the leftmost plot in Fig. A.6. For L = 20, Select-
CopyFirst will start the mitigation 20 time slots before the actual bottleneck. The same
effect also explains why the link overhead is increased (second plot in the figure).

Early selection of templates, however, is not necessarily a bad thing. One positive side
effect is that Select-CopyFirst – similar to Select-Greedy – tends to stick with a once
selected delegation template without loosing the flexibility to change from one set of
selected templates to another one. This is the reason why Select-CopyFirst is strong in
terms of control overhead. In some scenarios, Select-CopyFirst can even achieve a lower
control overhead than Select-Opt. To understand this effect, it is important to understand
where the control overhead comes from:

• First recall that, if a delegation template is unselected, the relocated rules asso-
ciated with this template have to be moved back from the remote switch to the
delegation switch which requires control messages and thus contributes to the
control overhead.

• Further recall that only the rules after installation of the aggregation rule are
relocated. If a delegation template is selected in multiple consecutive time slots, the
“new” flow rules are automatically relocated as well and the amount of relocated
rules associated with this template grows. Consequentially, the control overhead
is higher if such a “grown” template is unselected because more rules need to be
moved back to the delegation switch.

Select-CopyFirst frequently changes the selection if L is set to small values such as 1 and
2 which leads to high control overhead. At the same time, if L is set too high (> 6), the
number of relocated rules associated with the selected “grown” templates also causes
high control overhead if these templates are unselected (which is inevitable at some point
in time). In conclusion, the best results with Select-CopyFirst in terms of control

overhead are achieved for look-ahead factors between L=3 and L=6. This effect can
be observed in the rightmost plot in Fig. A.6
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A.2.3 Results for RS-Alloc

Findings: The look-ahead factor for RS-Alloc should be set to values between L = 2
and L = 7. Higher values result in increased allocation overhead. The number of
allocation assignments should be set to a value of at least nassignments = 5. In this
thesis, L = 3 and nassignments = 50 are used as default values.

This section investigates the impact of look-ahead factor L and number of allocation
assignments nassignments on failure rate and allocation overhead. The failure rate is in-
troduced in Def. 12.4 and represents the amount of flow rules allocated to the backup
switch over the course of an experiment. And the allocation overhead represents addi-
tional control messages that are required because RS-Alloc changed the allocation of a
delegation template to another remote switch or to the backup switch.
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Figure A.7: Impact on failure rate

The failure rate for different look-ahead factors and number of assignments is shown
in Fig. A.7. It can be seen that the median is at 0% for all combinations of look-ahead
factors and number of allocation assignments. If a single assignment is used, the failure
rates are higher in general. Note that a difference of 0.3% in the failure rate makes a
big difference in practice and nassignments = 1 should not be used. There is no noticeable
difference between the remaining combinations, however, at least not with respect to the
failure rate.
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Figure A.8: Impact on allocation overhead

The situation for the allocation overhead is different. The results in Fig. A.8 show that
smaller look-ahead factors result in lower allocation overhead. The lowest overhead
values are achieved with look-ahead factors between 2 and 7. Because the results for
nassignments = 5 (top right), nassignments = 20 (bottom left) and nassignments = 200 (bottom
right) are again very similar, it can be concluded that RS-Alloc achieves the best results if
the look-ahead factor is between 2 and 7 and the number of assignments is at least 5.

A.3 Weights for Multi-Objective Optimization

DT-Select and RS-Alloc are defined as multi-objective optimization problems and the
individual objectives need to be parameterized with weights. The weights balance the
different overhead cost coefficients against each other, i.e., specify, for example, how
important it is to reduce the number of relocated bits compared to the additional number
of control messages. The weights for DT-Select are specified as ω

DTS
and the weights for

RS-Alloc are specified as ω
RSA

.

This section presents a set of ready-to-use default weights that achieve a reasonable
trade-off between the different kinds of overhead if no further assumptions are made
with respect to the network scenario. The weights are tuned using scenario set Z100 and
work well in all scenarios investigated in this thesis.



A.3 Weights for Multi-Objective Optimization 367

A.3.1 Experiment Setup

Two experiment series are designed for the investigation of the weights, one for DT-Select
and one for RS-Alloc. Both are based on scenario set Z100 with random capacity reduction
factors. The first experiment series investigates the impact of the three weights for
DT-Select. In this case, each scenario in Z100 is executed with all combinations of ωTable

DTS
,

ωLink

DTS
, and ωCtrl

DTS
using values from ω

DTS
= 0 to ω

DTS
= 8. This results in 9 x 9 x 9 = 729

combinations per experiment and 729 x 100 = 72.900 experiments in total.

Parameter Description Used Values

used for

both series

nscenario_id Used scenario IDs All scenario IDs in Z100

nreduction Capacity reduction factor Random between 1% and 80%

ndts_algo DT-Select algorithm Select-CopyFirst

Ld ts Look-ahead for DT-Select 3

Lrsa Look-ahead for RS-Alloc 3

nassignments Assignments for RS-Alloc 50

DT-Select

(1st series)

ωTable

DTS
Weight for DT-Select 0, 1, . . . , 7, 8

ωLink

DTS
Weight for DT-Select 0, 1, . . . , 7, 8

ωCtrl

DTS
Weight for DT-Select 0, 1, . . . , 7, 8

RS-Alloc

(2nd series)

ωTable

DTS
Weight for DT-Select 6

ωLink

DTS
Weight for DT-Select 2

ωCtrl

DTS
Weight for DT-Select 1

ωTable

RSA
Weight for RS-Alloc 0, 1, . . . , 7, 8

ωLink

RSA
Weight for RS-Alloc 0, 1, . . . , 7, 8

ωCtrl

RSA
Weight for RS-Alloc 0, 1, . . . , 7, 8

Table A.5: Experiment parameters for Sec. A.1

The second experiment series investigates the weights for RS-Alloc. The setup is identical
to the first series except that the ω

RSA
weights are varied, i.e., the series also consists of

72.900 experiment. The remaining parameters are set according to the finding from
previous sections. All experiments use the Select-CopyFirst algorithm with look-ahead
factor Ldts = 3. The look-ahead factor for RS-Alloc is also set to Lrsa = 3 and the
maximum number of allocation assignments is set to 50.
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A.3.2 Results for DT-Select

Findings: The general recommendation for the DT-Select weights is: ωTable

DTS
= 6,

ωLink

DTS
= 2, and ωCtrl

DTS
= 1. In other words: table and link overhead coefficients should

be used with at least a 3:1 ratio and link overhead and control overhead coefficients
should be used with at least a 2:1 ratio.

This section investigates the DT-Select overhead if different ω
DTS

-weights are applied.
As a first step, normalized overhead definitions are required because the raw overhead
values can be several orders of magnitude apart. This makes it difficult to systematically
test the different combinations. Table A.6 explains how the three kinds of overhead for
DT-Select from Chapter 15 are normalized. This normalization ensures that all three
kinds of overhead are always specified as a percentage value between 0% and 100%.

Description Formula

Normalized

table

overhead

Similar as table overhead in Def. 15.1
but divided by a normalization factor
that represents the maximum amount
of possible aggregation rules







∑

t∈T Bneck

D∗
s,t

∑

t∈T Bneck

|Ds,t |





 ∗ 100

Normalized

Link

overhead

Similar as link overhead in Def. 15.2
but divided by a normalization factor
that represents the total amount of bits
processed over the course of the exper-
iment.









∑

t∈T Bneck

∑

d∈D∗s,t

wLink

d,t

∑

t∈T Bneck

∑

f ∈Fs,t

δ f ,t








∗ 100

Normalized

Control

overhead

Similar as control overhead in Def.
15.3 but divided by a normalization
factor that represents the amount of
install control messages required with-
out flow delegation over the course of
the experiment.

�

∑

t∈T Bneck

∑

d∈D∗s,t

wCtrl

d,t

|Fs|

�

∗ 100

Table A.6: Normalized overhead definitions for DT-Select

The results of the first experiment series for DT-Select are shown in Fig. A.9. The
figure consists of four parts, three of which represent the different kinds of overhead in
normalized form according to Table A.6. The fourth part in the bottom right represents
an aggregated score calculated as the sum of the three other overhead values divided
by 3, i.e., the three kinds of overhead have the same weight. The colors represent four
selected parameterizations out of the 729 available combinations:
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• The red curve shows the cumulative distribution functions for 100 experiments
executed withωTable

DTS
= 1,ωLink

DTS
= 0, andωCtrl

DTS
= 0. This means only the table overhead

cost coefficients are included in the objective function.

• The green curve shows the cumulative distribution functions for 100 experiments
executed with ωTable

DTS
= 0, ωLink

DTS
= 1, and ωCtrl

DTS
= 0. This means only the link overhead

cost coefficients are included in the objective function.

• The blue curve shows the cumulative distribution functions for 100 experiments
executed with ωTable

DTS
= 0, ωLink

DTS
= 0, and ωCtrl

DTS
= 1. This means only the control

overhead cost coefficients are included in the objective function.

• The black curve finally represents the combination of weights with the highest
aggregated score summed up over all 100 experiments. In this case, all three
overhead parts are included in the objective functions, weighted with ωTable

DTS
= 6,

ωLink

DTS
= 2, and ωCtrl

DTS
= 1.

The four above example parameterizations are shown here because they demonstrate the
improvement of a multi-objective approach compared to using only a single objective.
Take the green curve as an example. If only the link overhead cost coefficients are
included – and the coefficients for table overhead and control overhead are ignored –,
the link overhead is minimized. This is clearly visible in the top right of Fig. A.9 where
the 100 experiments summarized by the green curve achieve significantly smaller link
overhead values. However, at the same time, the control overhead shown in the bottom
left is significantly larger for the green curve, because this parameterization will always
(and only) prefer delegation templates that lead to a minimization of the link overhead
and ignore everything else. Switching from one set of selected delegation templates in
time slot t x to a completely new one in t x+1, however, requires a large amount of control
messages which contributes to the control overhead (we already saw this effect in Sec.
A.2.2).

Similarly, the red and the blue curve can also achieve lower overhead in one specific
area. The red curve minimizes the amount of required aggregation rules (table overhead,
see plot in the top left) and the blue curve minimizes the amount of required additional
control messages (control overhead, see plot in the bottom left). In practice, however, all
three overhead parts are important. The black curve shows the best aggregated score
with multi-objective optimization if all three parts are weighted equally. It is easy to
see that the black curve with parameterization ωTable

DTS
= 6, ωLink

DTS
= 2, ωCtrl

DTS
= 1 achieves a

good trade-off between table overhead, link overhead and control overhead.

It can further be concluded that the red curve (only using table overhead coefficients)
and the blue curve (only using control overhead coefficients) show similar behavior. This
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Figure A.9: Evaluation of different DT-Select weights. Lower values are better.

means these two parameterizations can be used as a stand-alone objective function with
acceptable results if multi-objective optimization is too expensive. The link overhead
coefficients, on the other hand, are too aggressive when used alone, i.e., they have to be
used together with at least one of the other cost coefficients in order to avoid an excessive
amount of control messages.
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A.3.3 Results for RS-Alloc

Findings: The general recommendation for the RS-Alloc weights is: ωTable

RSA
= 5,

ωLink

RSA
= 0, and ωCtrl

RSA
= 1.

In case of RS-Alloc, we are mainly interested in failure rate, allocation overhead and
allocation fairness if different ω

DTS
-weights are applied. Failure rate is defined in Def.

12.4 and determines the fraction of the flow rules not handled by a remote switch over
the course of an experiment. This value is already given as a percentage value and no
further changes are required.

Allocation overhead represents additional control messages that are required because
RS-Alloc changed the allocation of a delegation template to another remote switch or to
the backup switch. Allocation overhead is just another name for control overhead that
was chosen to make sure that the control overhead caused by RS-Alloc can be properly
distinguished from the control overhead caused by DT-Select. Note that RS-Alloc has to
work with the delegation templates calculated by DT-Select. As a result, it has no impact
on link or table overhead which is determined fully by the selected delegation templates.
The only overhead directly associated with RS-Alloc is allocation overhead.

Allocation fairness determines the ability of RS-Alloc to balance available free flow table
capacity of multiple remote switches. It is quantified with a metric that measures the
difference in available free flow table capacity of all potential remote switch options Rs,t

of a bottlenecked switch s in time slot t. Lower values mean the free flow table capacity
of the switches in Rs,t is closer at each other. The formula for allocation fairness used in
this work is defined as follows:
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Different versions of this formula and also other approaches with Jain’s fairness index
and a minimum mean squared error formulation were tested, all with very similar results
(included in the data set but not used in the plots below). The difference value for one
time slot is divided by the maximum flow table utilization that occurred over the course
of the experiment and averaged over all bottlenecked time slots to get a percentage value
between 0% and 100%.
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Figure A.10: Evaluation of different RS-Alloc weights. Lower values are better.

It is important to mention that allocation fairness has to be explicitly included in the
optimization problem. This is done here by adding a small amount of dummy assignments
for each switch. These dummy assignments improve the objective but block a certain
amount of flow rules in the assigned switch if selected by the solver. Because the cost
for selecting a dummy depends on the free flow table capacity and is further scaled with
ωTable

RSA
, allocation of delegation templates can be balanced between the remote switches

which results in more “fairness” with respect to resource allocation – because the dummy
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assignments are more likely to be selected which will reserve capacity4. It is important
to mention, however, that this is only an example for a very simple resource allocation
strategy. It could also be valid strategy to reduce the number of remote switches, for
example.

The results for the RS-Alloc experiment series with different ω
DTS

-weights are shown in
Fig. A.10. The figure consists of four parts: Allocation fairness is shown in the top left,
allocation overhead in the top right and the failure rate in the bottom left. The last part
in the bottom right shows the aggregated score of the three other values. The colors
represent four selected parameterizations out of the 729 available combinations, very
similar to the discussion in the previous section:

• The red curve shows the cumulative distribution functions for 100 experiments
executed with ωTable

RSA
= 1, ωLink

RSA
= 0, and ωCtrl

RSA
= 0. This means only the available

free flow table capacity at the remote switch and allocation fairness is taken into
account.

• The green curve shows the cumulative distribution functions for 100 experiments
executed with ωTable

RSA
= 0, ωLink

RSA
= 1, and ωCtrl

RSA
= 0. This means only the available free

link bandwidth between delegation switch and remote switch is taken into account.

• The blue curve shows the cumulative distribution functions for 100 experiments
executed with ωTable

RSA
= 0, ωLink

RSA
= 0, and ωCtrl

RSA
= 1. This means only the allocation

overhead is taken into account.

• The black curve finally represents the combination of weights with the highest
aggregated score summed up over all 100 experiments. The aggregated score is
again the weighted sum of the three other parts listed above. In this case, the best
result was achieved for ωTable

RSA
= 1, ωLink

RSA
= 0, and ωCtrl

RSA
= 5.

It can be seen that the blue curve associated with allocation overhead plays a crucial role
when selecting weights for RS-Alloc. This is expected because allocation overhead is the
only part directly associated with remote switch allocation. Setting ωCtrl

RSA
to 0 – as it is

done in the two other example parameterizations (red and green)– leads to significantly
more allocation overhead. This effect can be observed in the top right plot in Fig. A.10.
Using only ωCtrl

RSA
= 1 and ignoring the two other weights, however, is a viable option. This

can be used if multi-objective optimization is too expensive. It can further be seen that
the green and the red curve show a similar trend. This is due to the fact that RS-Alloc
has little influence on both, table utilization and link bandwidth because the algorithm
works with delegation templates calculated by DT-Select.

4The implementation of this feature can be found under “balancing assignments” in the RS-Alloc solver,
see https://github.com/kit-tm/fdeval/blob/master/engine/solve_rsa.py

https://github.com/kit-tm/fdeval/blob/master/engine/solve_rsa.py
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The black curve representing the best combination of weights basically follows the blue
curve. The only exception is that using non-zeroωTable

RSA
weights improves allocation fairness

as shown in the top left. In conclusion, the recommended parameterization for RS-

Alloc is ωTable

RSA
= 1, ωLink

RSA
= 0, and ωCtrl

RSA
= 5. It is expected that a non-zero ωLink

RSA
weight

will have a more noticeable effect if a resource allocation strategy for link bandwidth is
included which is basically identical to the allocation fairness mechanism that balances
the free flow table capacity. Allocation strategies for RS-Alloc in general are an interesting
topic for future research.

A.4 Used Parameters

The following table lists the used parameters for DT-Select and RS-Alloc. Note that better
results may be achieved for individual scenarios if other parameterizations are used.
However, this and advanced mechanisms such as automatic parameter tuning with the
help of machine learning (for example) are considered future work and not discussed
here further.

Parameter Description Used Values

ndts_algo DT-Select algorithm Select-CopyFirst
Sec. A.2.2

Ld ts Look-ahead factor for DT-Select 3

Lrsa Look-ahead factor for RS-Alloc 3
Sec. A.2.3

nassignments Assignments for RS-Alloc 50

ωTable

DTS
Weight for DT-Select 6

Sec. A.3.2ωLink

DTS
Weight for DT-Select 2

ωCtrl

DTS
Weight for DT-Select 1

ωTable

RSA
Weight for RS-Alloc 5

Sec. A.3.3ωLink

RSA
Weight for RS-Alloc 0

ωCtrl

RSA
Weight for RS-Alloc 1

Table A.7: Recommended parameterization for DT-Select and RS-Alloc



Appendix B

Scenario Set Characteristics

The scenario-based evaluation uses two scenario sets: one large scenario set with 5.000
scenarios called Z5000 and a smaller set with 100 scenarios called Z100. This section
presents additional characteristics with respect to these two important sets.

B.1 Parameter Distribution

Fig. B.1 and Fig. B.2 show CDFs for additional parameters in scenario set Z100 and Z5000,
compared to the data provided in Fig. 12.11 and Fig. 12.10. The dashed black line
shows the parameter distribution in the original scenario set with 98.821 scenarios. The
red line shows the parameter distribution in the smaller scenario set with 100 and 5000
scenarios.

B.2 Correlation between Important Characteristics

This section further characterizes the investigated scenarios in Z5000. Fig. B.3 shows the
correlation between capacity reduction factor, failure rate and flow table utilization ratio
if the accepted maximum failure rate is set to 0%. The x-axis represents the capacity
reduction factor between 1% and 80%. The y-axis denotes the fraction of experiments
that actually have a capacity reduction factor that is equal or higher to the specified
x-value. The different curves represent the seven flow table utilization ratio classes from
Table 14.2.

Take class c1 in Fig. B.3 – the blue line – as an example for how to read the plots. We
know from Table 14.2 that 66.48% of the experiment in class c1 were able to achieve a

375
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Figure B.1: CDFs for parameter characterization of scenario set Z100

0 10 20

Number of bottlenecks

0.00

0.25

0.50

0.75

1.00

C
D

F

0 20 40

Bottleneck duration

0.00

0.25

0.50

0.75

1.00

C
D

F

0 100 200

Bottleneck intensity

0.00

0.25

0.50

0.75

1.00

C
D

F

0 2 4

Hotspots

0.00

0.25

0.50

0.75

1.00

C
D

F

0 5 10

Hotspot intensity

0.00

0.25

0.50

0.75

1.00

C
D

F

2 4

Parameter m

0.00

0.25

0.50

0.75

1.00

C
D

F

0 5000 10000

Traffic scale parameter

0.00

0.25

0.50

0.75

1.00

C
D

F

20 40 60 80

Interswitch rate

0.00

0.25

0.50

0.75

1.00

C
D

F

2 4

Minium rule lifetime

0.00

0.25

0.50

0.75

1.00

C
D

F

Sampled scenario set (original=98821, sampled=5000, seed=1)

Figure B.2: CDFs for parameter characterization of scenario set Z5000
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failure rate of 0%. In Fig. B.3, we can see this value at x = 0 because all experiments
have at least a capacity reduction factor of 1%. The fraction of experiments with 0%
failure rate then decreases for increased values of x . 61.45% of the experiments in c1

achieved at least a capacity reduction of 10%. 57.86% achieved a reduction of 15%.
This trend continues, as shown in the plot: the fraction of experiments without failures
decreases with increasing capacity reduction. Only 25.53% can achieve a reduction of
45%. 4.65% can achieve 65%. And no experiment in c1 is able to achieve a capacity
reduction of 70% or higher.

When comparing the different classes, it is easy to see that there is a strong correlation
between utilization ratio and the capacity reduction that can be achieved with a 0%
failure rate. The lower the utilization ratio, the higher the achievable capacity reduction.
Take x=40% as an example. With c1, 31.48% of the experiments can achieve a reduction
of 40%. For c2, the fraction of experiments with a 0% failure rate for 40% reduction is
only 21.24% which is considerable lower. c3 achieves 40% for 10.46% of its experiments.
And none of the higher classes (c4 to c7) has an experiment that gets as high as 40%
reduction. Class c4 and c5 are capped at x=35% (0.85% of the scenarios in case of c5).
Class c6 and c7 are capped at x=15%.

The results for a maximum accepted failure rate of 0.1% and 1% are shown Fig. B.4 and
Fig. B.5. The overall trend is the same while the fraction of scenarios is increased with
higher maximum accepted failure rate.
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B.3 Examples for Bottlenecked Situations

Fig. B.6 to Fig. B.9 show different bottleneck situations in scenario set Z100. Note that
scenarios can have more than one bottleneck switch, that is why there are more bottleneck
situations than scenarios. The small numbers in the rectangles are the scenario IDs and
the id of the bottlenecked switch (the number after the period).
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Figure B.6: Bottleneck Scenarios Example 1
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Figure B.7: Bottleneck Scenarios Example 2
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Figure B.8: Bottleneck Scenarios Example 3
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Figure B.9: Bottleneck Scenarios Example 4



Appendix C

Additional Performance Results

The following two sections show the flow delegation performance for all scenarios in
Z5000 with different maximum accepted failure rates and different flow table utilization
ratios.

C.1 Performance without Failures
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Figure C.1: Flow delegation performance for all scenarios in Z5000 given a 0% accepted

maximum failure rate
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Figure C.2: Flow delegation performance for scenarios in Z5000 with flow table utilization

ratio class c1 (0-20%) and a 0% accepted maximum failure rate
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Figure C.3: Flow delegation performance for scenarios in Z5000 with flow table utilization

ratio class c2 (20-30%) and a 0% accepted maximum failure rate
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Figure C.4: Flow delegation performance for scenarios in Z5000 with flow table utilization

ratio class c4 (40-50%) and a 0% accepted maximum failure rate
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Figure C.5: Flow delegation performance for scenarios in Z5000 with flow table utilization

ratio class c7 (70-100%) and a 0% accepted maximum failure rate
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C.2 Performance with small Failure Rates
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Figure C.6: Flow delegation performance for all scenarios in Z5000 and a accepted maximum

failure rate >0%
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Figure C.7: Flow delegation performance for scenarios in Z5000 with flow table utilization

ratio class c1 (0-20%) and a accepted maximum failure rate >0%
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Figure C.8: Flow delegation performance for scenarios in Z5000 with flow table utilization

ratio class c2 (20-30%) and a accepted maximum failure rate >0%
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Figure C.9: Flow delegation performance for scenarios in Z5000 with flow table utilization

ratio class c4 (40-50%) and a accepted maximum failure rate >0%
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Figure C.10: Flow delegation performance for scenarios in Z5000 with flow table utilization
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Appendix D

Reproducibility

Reproducibility of the results was an important requirement for all experiments conducted
in this thesis. Code, data sets, and scripts that were used to create the results are available
online and referenced here.

D.1 Code

The code for the prototypical implementations used in Chapter 8 and the evaluation
environment used in chapters 12 to 16 can be found on GitLab/GitHub, see table below.

Middleware Prototype
(2016)

Proxy Prototype
(2019)

Evaluation
Environment (2020)

Language Python 2.7 Java 8 Python 3.6.8

Contributors
Robert Bauer,
Ioannis Papamanoglou

Robert Bauer,
Simon Herter,
Addis Dittebrandt

Robert Bauer

Code access
https://git.scc.kit.

edu/work/sdn-pbce

https://github.c

om/kit-tm/gcmi,
https://github.com

/kit-tm/gcmi-exp

https://github.com/k

it-tm/fdeval

Table D.1: Code used in this thesis
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https://git.scc.kit.edu/work/sdn-pbce
https://git.scc.kit.edu/work/sdn-pbce
https://github.com/kit-tm/gcmi
https://github.com/kit-tm/gcmi
https://github.com/kit-tm/gcmi-exp
https://github.com/kit-tm/gcmi-exp
https://github.com/kit-tm/fdeval
https://github.com/kit-tm/fdeval
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D.2 Datasets

Download instructions for all datasets can be found here: https://doi.org/10.5445/
IR/1000120288 [Bau20]. Details are listed in the read-me file in the Github repository
(https://github.com/kit-tm/fdeval). Each dataset comes as an sqlite3 database
that contains the input parameters and the results of the experiments. Please refer to
the scripts in https://github.com/kit-tm/fdeval/tree/master/plotter for details
on how to use the datasets. Good starting points for this are agg_01_info.py and
agg_01_d021_scale_switches.py.

The following table summarizes all datasets that were used in the evaluation part of
the thesis in chapters 12 to 16 and in the appendices. The first column denotes the
dataset identifier. The last column points to all figures that were created with the dataset.
The most important datasets are D5000 and D100 which contain the results for the two
scenario sets Z5000 and Z100.

Description of the dataset Used for figures

D1
Randomly generated dataset with 500.000 different scenar-
ios used in the scenario generation process. The scenario
sets Z100 and Z5000 were sampled from this dataset.

12.9 to 12.11, B.1,
B.2

D2
Consists of handcrafted scenarios with different scenario gen-
eration and bottleneck parameters. Only used for examples
in Chapter 12, not for performance or scalability evaluations.

12.4 to 12.8

D3
Consists of handcrafted scenarios with different topology
parameters. Only used for examples in Chapter 12, not for
performance or scalability evaluations.

12.3

D20
Consists of handcrafted scenarios with different amounts of
considered delegation templates. Used for the scalability
evaluation in Chapter 16.

16.6 to 16.9

D21
Consists of handcrafted scenarios with different amounts of
switches in the topology. Used for the scalability evaluation
in Chapter 16.

16.10

D30
Contains the scenarios from scenario set Z100 with different
values for the DT-Select look-ahead factor (L=1 to L=9).
Used for the parameter study in Appendix A.

A.1 to A.3

D31
Same as dataset D30 above but the DT-Select look-ahead
factor is varied between 1 and 50. Used for the parameter
study in Appendix A.

A.4, A.6

https://doi.org/10.5445/IR/1000120288
https://doi.org/10.5445/IR/1000120288
https://github.com/kit-tm/fdeval
https://github.com/kit-tm/fdeval/tree/master/plotter
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D40

Contains the scenarios from scenario set Z100 with differ-
ent values for the RS-alloc look-ahead factor (L=1 to L=9)
and allocation assignments (5,20,50,100,200). Used for the
parameter study in Appendix A.

A.5

D41
Same as dataset D40 above but the RS-Alloc look-ahead
factor is varied between 1 and 30. Used for the parameter
study in Appendix A.

A.7, A.8

D50
Contains the scenarios from scenario set Z100 with different
weights for the DT-Select algorithms. Used for the parameter
study in Appendix A.

A.9

D60
Contains the scenarios from scenario set Z100 with different
weights for the RS-alloc algorithm. Used for the parameter
study in Appendix A.

A.10

D100

Contains the scenarios from scenario set Z100 with all capac-
ity reduction factors between 1% and 80% (80 experiments
per scenario). Used primarily for the performance evaluation
in Chapter 14.

13.1, 14.2, 14.4,
14.6, B.6 to B.9

D110

Contains four selected scenarios from Z100 with capacity
reduction factors between 1% and 80%. Used for the case
study in Chapter 13. Is redundant to D100 but the dataset
is much smaller which can be helpful.

13.2 bis 13.13,
15.1

D5000

Main dataset of the thesis. Contains the scenarios from
scenario set Z5000 where each scenario is assigned a random
capacity reduction factor between 1% and 80%. Contains
results for all three DT-Select algorithms. Used primarily for
the performance evaluation in Chapter 14.

14.1, 14.3, 14.5,
14.7 to 14.15, 15.2
to 15.7, B.3 to B.5,
C.1 to C.10

D5050

Contains the scenarios from scenario set Z5000 where each
scenario is assigned a random capacity reduction factor be-
tween 1% and 80%. Was only executed with Select-CopyFirst
and the execution was restricted to a single CPU core. Used
for the algorithm runtime evaluation in Chapter 16.

16.1 to 16.5

Table D.2: Datasets used in this thesis
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D.3 Dataset Details

This section presents some selected statistics of the used datasets. The table below lists
14 parameters, seven in the top and seven in the bottom (was splitted in two parts due
to space constraints). The parameters are:

• Size (MB): Size of the dataset in MBytes

• Exp.: Total number of experiments in the dataset

• T/O: Number of experiments that were aborted because of a timeout

• Scenarios: Number of different scenarios in the dataset

• Switches: Minimum and maximum number of switches in the topology

• Hosts: Minimum and maximum number of hosts in the topology

• Pairs: Minimum and maximum number of selected communication pairs

• Reduction: Minimum and maximum capacity reduction factor

• Bneck: Minimum and maximum number of temporal bottlenecks

• HS: Minimum and maximum number of hotspots in the topology

• m: Minimum and maximum parameter for the Barabasi-Albert model

• ISR: Minimum and maximum inter switch ratio

• Traffic Scale: Minimum and maximum traffic scale parameter

• DT-Select: Used DT-Select algorithms

Dataset Size (MB) Exp. T/O Scenarios Switches Hosts Pairs

D1 1356.86 500000 3164 500000 2-15 10-300 25000-249999

D2 4807.54 64800 0 10 6 100 100000

D3 48.72 1458 0 6 4-12 100-200 150000

D20 1197.71 1600 0 10 1 25-500 100000-200000

D21 330.00 3120 0 10 10-300 250-1000 100000-150000

D30 354.37 1800 266 100 2-15 13-244 44322-246377

D31 1236.34 8488 0 100 2-15 13-244 44322-246377

D40 1096.76 5400 0 100 2-15 13-244 44322-246377
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D41 699.18 15000 12 100 2-15 13-244 44322-246377

D50 15943.81 70713 52 97 2-15 14-300 37339-245537

D60 3506.99 73000 0 100 2-15 13-244 44322-246377

D100 2273.61 8000 93 100 2-15 14-300 37339-245537

D110 135.66 320 0 4 5-13 56-203 83758-231821

D5000 2984.41 15000 905 5000 2-15 10-299 26129-249948

D5050 1062.96 5000 5 5000 2-15 10-299 26129-249948

Dataset Reduction Bneck HS m ISR Traffic Scale DT-Select

D1 1-80 0-20 0-4 1-5 20-80 25-12500 None

D2 1 0-5 0-2 1-3 20-75 0 None

D3 1 0 0 1-3 0 0 None

D20 10-70 0 0 1 0 0 CopyFirst

D21 10-70 1 0 1-2 75 100 CopyFirst

D30 1-73 0-9 0-3 1-5 20-70 25-5250 Opt, CopyFirst

D31 1-73 0-9 0-3 1-5 20-70 25-5250 CopyFirst

D40 1-73 0-9 0-3 1-5 20-70 25-5250 CopyFirst

D41 1-73 0-9 0-3 1-5 20-70 25-5250 CopyFirst

D50 1-69 0-10 0-4 1-5 20-70 25-8750 CopyFirst

D60 1-73 0-9 0-3 1-5 20-70 25-5250 CopyFirst

D100 1-80 0-10 0-4 1-5 20-70 25-8750 CopyFirst

D110 1-80 0-4 0-1 1-2 40-70 75-500 CopyFirst

D5000 1-80 0-20 0-4 1-5 20-80 25-12500 All three

D5050 1-80 0-20 0-4 1-5 20-80 25-12500 CopyFirst

Table D.3: Selected dataset statistics

D.4 Scripts

This section lists the scripts that were used to extract the presented results from the
datasets. The first column denotes the result (pointer to a figure in the thesis). The
second column denotes the used dataset. The third column denotes the script that was
used for analysis. The scripts can be found here: https://github.com/kit-tm/fdev

al/tree/master/plotter. The list is sorted in ascending order by the first column so

https://github.com/kit-tm/fdeval/tree/master/plotter
https://github.com/kit-tm/fdeval/tree/master/plotter
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that it is easy to find the relevant combination of dataset and script for each figure in the
thesis.

Figures Dataset Used script

12.3 D3 agg_01_d003_topology_examples.py

12.4 to 12.8 D2 agg_01_d002_scenario_examples.py

12.9 to 12.11, B.1, B.2 D1 agg_01_d001_scenario_selection.py

13.1 D100 agg_01_d100_case_study_selection.py

13.2 to 13.13 D110 agg_01_d110_case_study_examples.py

14.1, 14.3, 14.5, 14.7, 14.8 D5000 agg_01_d100_d5000_performance.py

14.2, 14.4, 14.6 D100 agg_01_d100_d5000_performance.py

14.9 to 14.15 D5000 agg_01_d5000_over_underutil.py

15.1 D110 agg_01_d110_case_study_examples.py

15.2 to 15.7 D5000 agg_01_d5000_overhead.py

16.1 to 16.5 D5050 agg_01_d5050_runtime.py

16.6 to 16.9 D20 agg_01_d020_scale_templates.py

16.10 D21 agg_01_d021_scale_switches.py

A.1 D30 agg_01_d030_execution_time_analysis.py

A.2, A.3 D30 agg_01_d030_lookahead_dts_runtime.py

A.4, A.6 D31 agg_01_d031_lookahead_dts_overhead.py

A.5 D40 agg_01_d040_lookahead_rsa_runtime.py

A.7, A.8 D41 agg_01_d041_lookahead_rsa_overhead.py

A.9 D50 agg_01_d050_weights_dts.py

A.10 D60 agg_01_d060_weights_rsa.py

B.3 to B.5 D5000 agg_01_d100_d5000_performance.py

B.6 to B.9 D100 agg_01_d100_bottlenecked_situations.py

C.1 to C.10 D5000 agg_01_d100_d5000_performance.py

Table D.4: Scripts used for the analysis



Appendix E

Terminology

The following table gives an overview of the most important parameters and variables
used in this work, ordered by category.

Infrastructure

S Set of all switches in the infrastructure

s A single switch s ∈ S, usually refers to a delegation switch (with bottleneck) Def. 2.2

r A single switch r ∈ S, always refers to a remote switch (with free capacity) Def. 2.2

ys→r Binary variable, set to 1 if a direct physical link exists between s and r Sec. 4.1

cTable
s Flow table capacity of switch s Def. 2.11

cLink
s→r Capacity of link between switch s and switch r

uTable
r,t

Flow table utilization of switch r in time slot t (always given without flow delegation,
i.e., aggregation, backflow and remote rules are not considered)

Def. 2.12

uLink
s→r,t

Link utilization between s and r in time slot t in bits/s (always given without flow
delegation, i.e., traffic from aggregation and remote rules is not considered)

Sec. 4.2.3

Flow rules

F Generic set of flow rules

M Generic set of matches

Fs,t Set of flow rules associated with switch s in time slot t (represents flow table of s)

Ms,t Set of all matches contained in Fs,t

M C
s,t

Set of matches representing the cover set of an aggregation match −−→magg with respect
to a set of matches M

Def. 3.4

FCS
s,t Set of flow rules representing a conflict free cover set Def. 3.6

f A single flow rule f =



~m, ~a, prio
�

Def. 2.8

395
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fagg A single aggregation rule f agg =

−−→
magg,

−−→
aagg, prioagg

�

Def. 3.2
−→
m Match of a single flow rule, −→m =

�


k1, v1

�

, . . . ,



kn, vn

��⊺

Def. 2.6

−−→
magg Aggregation match that can be used to create an aggregation rule Def. 3.1

ki Packet header field used in a match Def. 2.3

vi Value taken by a packet header field, can be a wildcard (*) Def. 2.6
−→
a Action of a single flow rule, −→a =

�

a1(), . . . , am()
�⊺

Def. 2.7

prio Priority value of a single flow rule Def. 2.8

prioagg Priority value of an aggregation rule (aggregation priority) Def. 3.2

λa
f ,t Binary variable, set to 1 if flow rule f is active in time slot t Def. 4.2

λi
f ,t Binary variable, set to 1 if flow rule f was installed in time slot t Def. 4.2

φ f ,s Binary variable, set to 1 if f has a forwarding action that forwards packets to s Sec. 4.2.3

δ f ,t Processed bits by flow rule f in time slot t in bits/s Sec. 4.2.3

Time slots (see Sec. 2.1.1)

T Set of consecutive time slots T = {t1, ..., tm}

t One specific time slot (window between time slot t−1 and time slot t)

t0 Time slot prior to t1, i.e., t0 /∈ T

t1 First time slot in set T

tm Last time slot in set T

t x x-th time slot in T

t−x x-th time slot prior to t, i.e., t3 if t = t4 and x = 1

t+x x-th time slot after t, i.e., t5 if t = t4 and x = 1

q , v q and v also represent time slots, used as iterator variables

Delegation templates

Ds

Set of delegation templates calculated for delegation switch s; The notation without
time slot can be used because indirect rule aggregation results in the same delegation
templates in each time slot (with respect to the aggregation match −→md)

Ds,t
Set of delegation templates for switch s in time slot t

(input for single period DT-Select problem, see Def. 9.2)
Sec. 9.4.5

D∗
s,t

Set of selected delegation templates for switch s in time slot t

(output of single period DT-Select problem, see Def. 9.2)
Sec. 9.4.5

Ds,T
Sets of delegation templates for switch s for set T

(input for multi period DT-Select problem, see Def. 9.3)
Sec. 9.4.6

D∗
s,T

Sets of selected delegation templates for switch s for set T

(output of multi period DT-Select problem, see Def. 9.3)
Sec. 9.4.6

D∗∗
t

Set of selected and allocated delegation templates for switch s in time slot t

(output of single period RS-Alloc problem, see Def. 9.7)
Sec. 9.5.5
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D∗∗
T

Sets of selected and allocated delegation templates for switch s for set T

(output of multi period RS-Alloc problem, see Def. 9.8)
Sec. 9.5.6

d One single delegation template d =

−→
md, Fd,t

�

Def. 3.7
−→
md Aggregation match associated with a delegation template d Def. 3.7

Fd,t
Set of flow rules representing the conflict-free cover set of delegation template d in
time slot t

Def. 3.7

DT-Select

Xd,t Binary decision variable. Delegation template d is selected in time slot t Def. 9.1

uTable
d,t

Utilization of delegation template d in time slot t. Amount of flow rules that can be
relocated to the remote switch minus aggregation and backflow rules (overhead)

Sec. 9.4.3

wd,t Combined cost coefficient (includes all other DT-Select cost coefficients) Sec. 9.4.4

wTable
d,t

Rule overhead of delegation template d in time slot t, i.e., amount of aggregation
rules in the flow table

Sec. 9.4.4.1

wLink
d,t

Link overhead of delegation template d in time slot t, i.e., bits/s that must be
relocated

Sec. 9.4.4.2

wCtrl
d,t Control message overhead if delegation template d is selected in time slot t Sec. 9.4.4.3

DT-Select with assignments (Select-Opt)

L
Look ahead factor. A limited future horizon of L time slots is considered in the
multi period problem (same parameter for DT-Select and RS-Alloc)

Sec. 10.2.1.2

0 1
Represents a delegation template selection that is encoded in an assignment, i.e., this
is not a decision made by a decision variable but a fixed value inside an assignment
(see at below)

Sec. 10.2.1.1

Ad,T Assignment set Ad,T = {A1, A2, . . .} for a single delegation template , |Ad,T |= 2|T | Def. 10.1

Ai Single assignment Ai =< a1, . . . , am > for DT-Select with at ∈ { 0 , 1 }, m= |T | Def. 10.1

at

Value of assignment Ai in time slot t (selected = 1 , not selected = 0 ). Follows
the time slot notation, i.e., at+1

represents the value of assignment Ai in time slot
t+1 (can also be used with t1, tm etc)

Def. 10.1

Hs
History Hs =




HX
d

, H F
d

�

of the last optimization period for switch s (required for
periodic optimization, see Sec. 10.2.1.2)

Def. 10.2

HX
d

Binary variable. Set to 1 if delegation template d was selected in the last optimiza-
tion period (in time slot t0)

Def. 10.2

H F
d

Set of all active flow rules that are relocated to the remote switch in the last
optimization period (in time slot t0)

Def. 10.2

Xd,A Binary decision variable for Select-Opt. Assignment A is selected Def. 10.3

uTable
d,t,A Utilization of delegation template d in time slot t for assignment A Sec. 10.2.3

wTable
d,A Rule overhead cost coefficient for delegation template d and assignment A Sec. 10.2.4.1

wLink
d,A Link overhead cost coefficient for delegation template d and assignment A Sec. 10.2.4.2

wCtrl
d,A Control message overhead for delegation template d and assignment A Sec. 10.2.4.3
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w
0 1

d,t,A

Example of a helper variable used for calculating the three above cost coefficients.
Represents the cost for a case with two consecutive time slots t and t+1 where at

(the value of the assignment in time slot t) is set to 0 and at+1 is set to 1 . The
first index is usually colored grey because the cost is associated with the second
time slot (in this case when switching from 0 to 1 ).

Sec. 10.2.4

DT-Select with restricted assignments (Select-CopyFirst)

X
0

d

First binary decision variable for Select-CopyFirst. HX
d
= 0 and template d is

selected in time slot t1

Def. 10.5

X
1

d

Second binary decision variable for Select-CopyFirst. HX
d
= 1 and template d is

selected in time slot t1

Def. 10.5

u
0 1

d,t
Utilization for delegation template d for case with HX

d
= 0 and X

0

d
= 1 (example,

the other utilization coefficients are defined similarly)
Sec. 10.3.3

w
0 1

d

Cost coefficient for delegation template d for case with HX
d
= 0 and X

0

d
= 1

(example, each of the three cost coefficients for rule overhead, link overhead and
control message overhead is defined with four of these variables)

Sec. 10.3.4

RS-Alloc

Jt All allocation jobs (of all switches) in time slot t Def. 9.4

s j Delegation switch associated with allocation job j in time slot t Def. 9.4

d j,t Delegation template associated with allocation job j Def. 9.4

F j,t Conflict-free cover set associated with j in time slot t (from d j,t) Def. 9.4
−→
m j Aggregation match associated with j (from d j,t) Def. 9.4

R j,t
Allocation set for allocation job j in time slot t. Contains all possible remote switch
options (and a backup switch sB)

Def. 9.5

sB Backup switch with infinite resources to assure the problem is always feasible Def. 9.5

Yj։r,t
Binary decision variable for RS-Alloc. Remote switch r is allocated to job j in time
slot t

Def. 9.6

uTable
j,t Utilization coefficient. Flow table utilization demand of allocation job in time slot t Sec. 9.5.3

uLink
j,t Utilization coefficient. Link bandwidth demand of allocation job in time slot t Sec. 9.5.3

w j։r,t Combined cost coefficient (includes all other RS-Alloc cost coefficients) Sec. 9.5.4

wTable
j։r,t Cost coefficient. Free flow table capacity at remote switch r in time slot t Sec. 9.5.4.1

wLink
j։r,t Cost coefficient. Free link bandwidth between s j and r in time slot t Sec. 9.5.4.2

wCtrl
j։r,t Cost coefficient. Control messages necessary if r is allocated to j in time slot t Sec. 9.5.4.3

wStatic
r,t Cost coefficient. Static cost for using remote switch r in time slot t Sec. 9.5.4.4

ωRSA Weights to balance the different cost coefficients against each other Sec. 9.5.5

RS-Alloc with assignments (Alloc-Opt)

T j
Allocation job j is active in all time slots in T j , i.e., Jt contains a delegation template

with aggregation match −→m j for delegation switch s j in all time slots in T j

Def. 11.1

JT Contains all allocation jobs that are active in one of the time slots in T Def. 11.2



399

A j,T j Allocation assignment set for allocation job j and time slots T j
Def. 11.3

Ai Single allocation assignment Ai = {a1, . . . , am} for RS-Alloc with at ∈ R j,t , m= |T | Def. 11.3

at

Value of assignment Ai in time slot t (the allocated remote switch for delegation
template d j,t). Follows the time slot notation, i.e., at+1

represents the value of
assignment Ai in time slot t+1 (can also be used with t1, tm etc)

Def. 11.3

α j։r,t
Binary variable, set to 1 if remote switch r is used in time slot t of allocation
assignment A (required because at is not binary)

Def. 11.6

H j
History H j =




HX
j
, H F

j
, H r

j

�

of the last optimization period for allocation job j

(required for periodic optimization, see Sec. 11.2.1.3)
Def. 11.4

HX
j

Binary variable. Set to 1 if allocation job j was active in the last optimization period
(in time slot t0)

Def. 11.4

H F
j

Set of all active flow rules that are relocated to the remote switch in the last
optimization period (in time slot t0)

Def. 11.4

H r
j

The remote switch that was allocated to d j,t0
in the last optimization period (in

time slot t0)
Def. 11.4

Yj,A Binary decision variable for Alloc-Opt. Allocation assignment A is selected Def. 11.5

uTable
j,t

Utilization coefficient. Flow table utilization demand of allocation job in time slot t

(same variable, but updated for the multi period problem)
Sec. 11.2.3

uLink
j,t

Utilization coefficient. Link bandwidth demand of allocation job in time slot t

(same variable, but updated for the multi period problem)
Sec. 11.2.3

w j,A
Combined cost coefficient (includes all other RS-Alloc cost coefficients based on
assignments)

Sec. 11.2.4

wTable
j,A

Cost coefficient. Free flow table capacity at remote switch at in the t-th time slot of
allocation assignment A for all t ∈ T j (wTable

j։r,t defined for allocation assignments)
Sec. 11.2.4

wLink
j,A

Cost coefficient. Free link bandwidth between s j and remote switch at in the t-th
time slot of allocation assignment A for all t ∈ T j (wLink

j։r,t defined for allocation
assignments)

Sec. 11.2.4

wCtrl
j,A

Cost coefficient. Control messages necessary if r is allocated to the remote switch
at in the t-th time slot of allocation assignment A for all t ∈ T j . This includes cost
if the remote switch is changed within the assignment, i.e., two or more different
remote switches are used (wCtrl

j։r,t defined for allocation assignments)

Sec. 11.2.4

wStatic
A

Cost coefficient. Static cost for using remote switch at in the t-th time slot of
allocation assignment A for all t ∈ T j (wStatic

r,t defined for allocation assignments) Sec. 11.2.4

Table E.1: Used terminology
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