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Abstract
Accurate and reliable forecasting of total cloud cover (TCC) is vital for many areas such as astronomy, energy demand and

production, or agriculture. Most meteorological centres issue ensemble forecasts of TCC; however, these forecasts are

often uncalibrated and exhibit worse forecast skill than ensemble forecasts of other weather variables. Hence, some form of

post-processing is strongly required to improve predictive performance. As TCC observations are usually reported on a

discrete scale taking just nine different values called oktas, statistical calibration of TCC ensemble forecasts can be

considered a classification problem with outputs given by the probabilities of the oktas. This is a classical area where

machine learning methods are applied. We investigate the performance of post-processing using multilayer perceptron

(MLP) neural networks, gradient boosting machines (GBM) and random forest (RF) methods. Based on the European

Centre for Medium-Range Weather Forecasts global TCC ensemble forecasts for 2002–2014, we compare these

approaches with the proportional odds logistic regression (POLR) and multiclass logistic regression (MLR) models, as well

as the raw TCC ensemble forecasts. We further assess whether improvements in forecast skill can be obtained by

incorporating ensemble forecasts of precipitation as additional predictor. Compared to the raw ensemble, all calibration

methods result in a significant improvement in forecast skill. RF models provide the smallest increase in predictive

performance, while MLP, POLR and GBM approaches perform best. The use of precipitation forecast data leads to further

improvements in forecast skill, and except for very short lead times the extended MLP model shows the best overall

performance.
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Abbreviations
CDF Cumulative distribution function

CRPS Continuous ranked probability score

CRPSS Continuous ranked probability skill score

CTRL (ECMWF) Control (forecast)
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ENS (50-member ECMWF) ensemble

EPS Ensemble prediction system

GBM Gradient boosting machine
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MLP Multilayer perceptron

MLR Multiclass logistic regression

NWP Numerical weather prediction

PIT Probability integral transform
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POLR Proportional odds logistic regression

QRF Quantile regression forest

RF Random forest

SYNOP Synoptic observation
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1 Introduction

Reliable and accurate prediction of total cloud cover (TCC)

has a principal importance in observational astronomy [1]

and in the prediction of photovoltaic energy production, as

it is the main cause of variation in solar-radiation energy

supply [2, 3], but it is also of great relevance in agriculture,

tourism and in some other fields of economy. According to

the definition of the World Meteorological Organization,

‘‘total cloud cover is the fraction of the sky covered by all

the visible clouds’’ [4]. Even though this definition indi-

cates a continuous quantity in the [0, 1] interval, TCC

observations are usually reported in eighths of sky cover

called oktas taking just nine different values. In this way,

TCC forecasting can be considered as a nine-group clas-

sification problem and thus requires markedly different

methods than those used for other weather variables such

as temperature, wind speed or precipitation accumulation,

which are treated as continuous quantities.

TCC forecasts are generated using numerical weather

prediction (NWP) models (for a comparison of the per-

formance of the state-of-the-art techniques see [5]), and

recently all major meteorological centres issue ensemble

forecasts of TCC using their operational ensemble predic-

tion systems (EPSs). Examples include the Global

Ensemble Forecast System of National Centers for Envi-

ronmental Prediction [6] or the EPS of the independent

intergovernmental European Centre for Medium-Range

Weather Forecasts (ECMWF) [7–9]. With the help of a

forecast ensemble, one can estimate the probability distri-

bution of future weather variables, which opens the door

for probabilistic weather forecasting [10], where besides

the future atmospheric states the related uncertainty

information (variance, probabilities of various events, etc.)

are also predicted. However, ensemble forecasts often tend

to be underdispersive, that is the spread of the ensemble is

too small to accurately capture the full uncertainty, and can

be subject to systematic bias. This phenomenon can be

observed with several operational EPSs (see e.g. [11, 12])

calling for some form of statistical post-processing [13].

TCC ensemble forecasts are even more problematic, as in

terms of forecast skill they highly underperform ensemble

forecasts of other weather variables such as temperature,

wind speed, pressure or precipitation (see e.g. [14, 15]).

Over the past decade, various statistical post-processing

methods have been proposed in the meteorological and sta-

tistical literature, for an overview see e.g. [16] or [17]. These

include parametric approaches likeBayesianmodel averaging

[18] or non-homogeneous regression [19] providing estimates

of the probability distributions of the weather quantities of

interest, nonparametric techniques like quantile regression

(see e.g. [20, 21]) ormixedmethods such as quantilemapping

(see e.g. [22, 23]). Recently, machine learning methods have

becomemore and more popular in ensemble post-processing.

For example, Taillardat et al. [24] used quantile regression

forests (QRF) for calibration of ensemble forecasts of tem-

perature and wind speed, and Taillardat et al. [25] recently

extended the technique to precipitation forecasts. Rasp and

Lerch [26] applied neural networks for post-processing of

ECMWF near-surface temperature ensemble forecasts using

QRF as a benchmarkmodel, whereasBremnes [27] employed

neural networks in quantile function regression for calibrating

ensemble forecasts of wind speed. Bakker et al. [28] compare

several machine learning approaches for post-processing

NWP predictions of solar radiation based on quantile regres-

sion, including random forests, gradient boosting and neural

networks.

Probabilistic forecasting approaches estimating predic-

tive distributions can be considered as the most advanced

prediction methods not only in atmospheric sciences, but in

other fields of science and economy, e.g. in economical

risk management, seismic hazard prediction or financial

forecasting. For a detailed overview of the main concepts

and properties of probabilistic forecasts and the areas of

application see [29].

The discrete nature of TCC means that the predictive dis-

tribution should take the form of a discrete probability dis-

tribution and post-processing can be considered as a

classification problem resulting in the probabilities of the

oktas. For calibrating TCC ensemble forecasts, Hemri et al.

[30] propose two discrete parametric post-processing

approaches, namelymulticlass logistic regression (MLR) [31]

and proportional odds (or ordered) logistic regression (POLR)

[32].Different versions of logistic regressionhad already been

successfully applied in statistical post-processing (see e.g.

[33, 34]) and ordered logistic regression also showed good

performance for forecasts of discrete categories [35].

Since probabilistic multi-category classification is one

of the main areas of application of machine learning, the

main goal of our work here is to investigate the use of

machine learning methods for total cloud cover prediction

in the framework of statistical post-processing of TCC

ensemble forecasts. With the help of ECMWF global

ensemble forecasts for the period 2002–2014, we test the

performance of multilayer perceptron neural networks

(MLP) [36], gradient boosting machine (GBM) [37] and

random forest algorithms (RF) [38], and compare their

forecast skill with the raw TCC ensemble and the MLR and

POLR approaches of [30]. We further investigate the effect

of using precipitation ensemble forecasts as additional

predictors in TCC post-processing. More accurate TCC

forecasts can be expected to result in improved predictions

of produced photovoltaic energy; however, this topic is

beyond the scope of the current work and is a subject of

further research.
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The paper is organized as follows. Section 2 contains the

description of the TCC and precipitation ensemble fore-

casts and observations. Section 3 reviews the various cal-

ibration methods and tools used for forecast evaluation. A

case study on post-processing of TCC ensemble forecasts is

provided in Sect. 4, and the article concludes with a dis-

cussion in Sect. 5.

2 Data

We consider 52-member ECMWF global ensemble fore-

casts (high-resolution forecast (HRES), control forecast

(CTRL) and 50 members (ENS) generated using random

perturbations) of TCC and 24 h precipitation accumulation

initialized at 1200 UTC for 10 different lead times ranging

from 1 day to 10 days for the period between January 1,

2002, and March 20, 2014, together with the corresponding

observations. The TCC data set is identical to the one

investigated in [30] containing data for 3330 synoptic

observation (SYNOP) stations left after an initial quality

control. TCC SYNOP observations are reported in values

Y ¼ f0; 0:1; 0:25; 0:4; 0:5; 0:6; 0:75; 0:9; 1g corresponding

to the different oktas, whereas the raw ensemble forecasts

are continuous values in the [0, 1] interval. The matching

of forecasts and observations is performed with quantiza-

tion of forecast values using intervals

½0; 0:01½; ½0:01; 0:1875½; ½0:1875; 0:3125½;
½0:3125; 0:4375½; ½0:4375; 0:5625½;

½0:5625; 0:6875½; ½0:6875; 0:8125½;
½0:8125; 0:99½; ½0:99; 1�;

that is raw or post-processed forecasts falling, e.g. into the

interval [0.1875, 0.3125[ correspond to observation value

0.25 (see [30, Table A1]).

Our additional precipitation data set, which has been

investigated in [39], contains forecast-observation pairs for

2917 SYNOP stations after quality control. At 2239 of these

station, both TCC and precipitation data are available.

3 Calibration methods and forecast
evaluation

In what follows, let Y 2 Y ¼ fy1; y2; . . .; y9g be TCC at a

given location and time expressed in oktas and denote by

f ¼ ðf1; f2; . . .; f52Þ the corresponding 52-member ECMWF

TCC ensemble forecast with a given lead time, where f1 ¼
fHRES and f2 ¼ fCTRL are the high-resolution and control

members, respectively, whereas f3; f4; . . .; f52 correspond to

the 50 statistically indistinguishable (and thus exchange-

able) ensemble members fENS;1; fENS;2; . . .; fENS;50 generated

using random perturbations. In this discrete setting, the

estimation of the predictive distribution of Y reduces to the

estimation of conditional probabilities

P Y ¼ yk j fð Þ; k ¼ 1; 2; . . .; 9: ð1Þ

Obviously, in (1) the raw ensemble forecast f can be

replaced by any feature vector x derived from the ensemble

and/or other covariates. In order to ensure comparability

with the reference MLR and POLR approaches for classi-

fication using TCC data only (see Sect. 4.2), we consider

the same feature set as in [30]. The investigated covariates

are the HRES forecast fHRES, the control forecast fCTRL, the

mean of the 50 exchangeable ensemble members f ENS, the

ensemble variance

s2 :¼ 1

51

X52

i¼1

fi � f
� �2

; where f :¼ 1

52

X52

i¼1

fi;

the proportions of forecasts predicting zero and maximal

cloud cover

p0 :¼
1

52

X52

i¼1

Iffi¼0g and p1 :¼
1

52

X52

i¼1

Iffi¼1g;

respectively, where IH denotes the indicator function of a

set H, and an interaction term

I :¼ s2signðdÞd2 with d :¼
�
ðfHRES � 0:5Þ

þ ðfCTRL � 0:5Þ þ ðf ENS � 0:5Þ
�
=3

connecting the ensemble variance and the mean deviation

of the first three features from 0.5.

As additional feature we also consider the mean f PREC of

the ECMWF 51-member precipitation ensemble forecast

for some of the models (see Sect. 4.3). The use of the

HRES precipitation forecast or of the mean of the 52-

member precipitation ensemble (including HRES) instead

of f PREC was also tested; however, these models did not

result in a significant improvement in the forecast skill.

In the following, we introduce the different post-pro-

cessing models for TCC. Implementation details for all

models, including details on tuning parameters and

parameter estimation, are provided in Sect. 4.1.

3.1 Multiclass and proportional odds logistic
regression

In multiclass logistic regression, after choosing an arbitrary

reference class, the log-odds of a remaining class with

respect to the reference class is expressed as an affine

function of the features. This means that after setting, e.g.

the last okta y9 as reference class, the conditional distri-

bution of TCC with respect to an M-dimensional feature

vector x equals
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PðY ¼ ykjxÞ ¼

eLkðxÞ

1þ
P8

‘¼1

eL‘ðxÞ
; k ¼ 1; 2; . . .; 8;

1

1þ
P8

‘¼1

eL‘ðxÞ
; k ¼ 9;

8
>>>>>>>><

>>>>>>>>:

with LkðxÞ :¼ b0k þ x>bk;

ð2Þ

where b0k 2 R; bk 2 RM , resulting in 8ðM þ 1Þ free

parameters to be estimated on the basis of the training data.

The POLR model is designed to fit ordered data such as

the TCC observations at hand. Given a feature vector x, the

conditional cumulative probabilities of Y are expressed as

P
�
Y � yk j x

�
¼ eLkðxÞ

1þ eLkðxÞ
;

with LkðxÞ :¼ c0k þ x>c; k ¼ 1; 2; . . .; 9;

ð3Þ

where we assume that c01\c02\ � � �\c09. In this way,

POLR model (3) is more parsimonious than MLR model

(2), as it has just 9þM unknown parameters.

3.2 Multilayer perceptron neural network

A multilayer perceptron (MLP) is a classical feedforward

neural network, consisting of an input layer, an output layer

and some intermediate layers (so-called hidden layers)

comprised of several neurons each. The value in each of

the neurons is a transformed value (via an activation

function) of a weighted sum of all neuron values from the

previous layer plus a bias term. The number of neurons in

the input and output layers are uniquely determined by the

number of features and number of classes, respectively,

whereas the number of the hidden layers and the number of

the neurons in a particular hidden layer are free (or tuning)

parameters of the network. For a comprehensive intro-

duction to neural networks, see e.g. [36].

The network is trained using a set of labelled data

(training set): The weights of the neurons are determined in

order to minimize a given loss function on the training set.

To avoid overfitting, it is recommended to use early stop-

ping rules based on a validation set. Typically, it is a

randomly chosen subset of the labelled data set available

for the training. The minimization process terminates if the

value of the loss function computed on the validation set

does not improve during a given number of subsequent

iterations. Similar techniques are applied for the other

machine learning methods, see Sect. 4.1 for details.

Another tool to prevent overfitting is the extension of the

loss function with a regularization term. Here we use an L2
regularization where the sum of squares of the weights of

the network is multiplied by a factor (which is an additional

tuning parameter of the network). The trained network

provides for each feature vector a probability distribution

corresponding to the oktas.

3.3 Random forest models and gradient
boosting machines

Random forests (RF) and gradient boosting machines

(GBM) are machine learning models which are both based

on ensembles of decision trees. Decision trees are flow-

chart-like structures that have been used in meteorological

forecasting since the 1950s [40]. Decision tree models are

obtained through iteratively splitting training data into

groups according to a threshold in one of the features x

which is chosen to maximize the homogeneity of the target

variable within the resulting subsets. This process is iter-

ated until a stopping criterion is reached. Out-of-sample

forecasts can be obtained by proceeding through the deci-

sion tree according to the predictor input and estimating

class probabilities by the empirical frequencies of observed

classes in the corresponding subset of the recursively par-

titioned feature space. While there exist several algorithms

for decision tree learning, we will here focus on classifi-

cation and regression trees first introduced by Breiman

et al. [41].

3.3.1 Random forest models

To improve robustness and address overfitting issues of

decision trees, random forest models [38] repeatedly

resample the training set to obtain multiple decision trees.

This bootstrap aggregation (or bagging) approach is used in

conjunction with only considering a random subset of the

predictors at each splitting node. Class probability predic-

tions for out-of-sample cases are obtained by averaging

over the decision trees in the RF ensemble.

Several tuning parameters have to be chosen when

implementing RF models. Most importantly, the number of

trees in the forest has to specified, and the depth (the

number of levels of recursive partitioning) as well as the

number of predictor variables randomly selected at each

splitting node have to be selected for the individual trees.

Generally, RF models are often relatively robust to these

tuning parameters and tend to not be prone to overfitting

for a wide range of parameter choices.

3.3.2 Gradient boosting machines

In contrast to randomly resampling the training data, gra-

dient boosting machines consist of ensembles of decision

trees which are grown sequentially, using information from

previously grown trees. Thereby, each decision tree is fit on

a modified version of the original training set focusing on
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regions where previous model iterations provide poor

predictions.

The umbrella term boosting refers to machine learning

algorithms that fit models by combining several simpler

models, decision trees in our case. Following [37], various

notions of gradient boosting have been developed, and it

was demonstrated that boosting can be interpreted as gra-

dient descent algorithm in function space where a loss

function is iteratively optimized by choosing a function

that points in the negative gradient direction. Gradient

boosting principles are applicable for wide range of loss

functions, and corresponding algorithms have been devel-

oped for a wide range of machine learning tasks. For a

general introduction to gradient boosting see e.g. [42].

We here employ a specific variant of tree-based gradient

boosting called extreme gradient boosting [43], which

relies on second-order approximations of the objective

function. GBM model predictions are obtained via

ẑc ¼
XM

m¼1

hcmðxÞ; ð4Þ

where hcm denotes a regression tree for category c 2
f1; . . .; 9g containing a continuous value in all terminal

leaves, and M is the number of boosting iterations. For

probabilistic classification tasks, separate sets of regression

trees are fitted simultaneously for all categories, and the

obtained latent values ẑc are transformed according to a

softmax function. A regularized version of the LogS (see

Sect. 3.4) is used to learn the set of functions used in the

model (4). For details, see [43].

Compared to RF models, GBM often provide better

predictions in a variety of applications, but are more prone

to overfitting and more difficult to tune. In particular, the

number of boosting iterations, M, is of crucial importance.

Further, the complexity of the individual trees hm must

often be restricted, see Sect. 4.1 for details.

3.4 Verification scores

As discussed in [44], the main goal of probabilistic fore-

casting is to maximize the sharpness of the predictive

distribution subject to calibration. Sharpness refers to the

concentration of the predictive distribution, whereas cali-

bration means a statistical consistency between forecasts

and observations. These two goals can be simultaneously

addressed with the help of proper scoring rules, which are

loss functions SðF; xÞ assigning numerical values to pairs

(F, x) of forecasts and observations. As mentioned in the

Introduction, in the case of TCC by forecast F we refer to a

discrete probability distribution on Y characterized by a

probability mass function (PMF) pFðyÞ.

In the atmospheric sciences, probably the most popular

proper scoring rules are the logarithmic score (LogS) [45]

and the continuous ranked probability score (CRPS)

[46, 47]. The former is the negative logarithm of the PMF

evaluated at the observation, that is

LogS
�
F; x

�
:¼ � log

�
pFðxÞ

�
;

whereas for TCC probabilistic forecasts at hand the latter

can be given as

CRPS
�
F; x

�
¼

X9

k¼1

pFðykÞ
��yk � x

��

�
X9

k¼2

Xk�1

‘¼1

pFðykÞpFðy‘Þ
��yk � y‘

��;

which is the discrete version of the representation

CRPS
�
F; x

�
¼ EjX � xj � 1

2
EjX � X0j;

where X and X0 are independent random variables with

distribution F and finite first moment. Both LogS and

CRPS are negatively oriented, that is smaller score values

indicate better predictive performance.

For a given lead time, the goodness of fit of competing

TCC forecasts in terms of probability distributions are

compared with the help of the mean CRPS and mean LogS

values CRPS and LogS, respectively, over all forecast

cases in the verification data. Further, the improvement in

CRPS and LogS with respect to a reference model can be

quantified using the continuous ranked probability skill

score (CRPSS) and logarithmic skill score (LogSS),

respectively, defined as

CRPSS :¼ 1� CRPS

CRPSref
and LogSS :¼ 1� LogS

LogSref
;

where CRPSref and LogSref denote the mean CRPS and

LogS of the reference approach (see e.g. [46, 48]). Note

that both CRPSS and LogSS are positively oriented, that is

larger skill scores mean better predictive performance.

Further, following the suggestions of Gneiting and

Ranjan [49], statistical significance of the differences

between the verification scores is examined using the

Diebold-Mariano (DM) [50] test, which allows accounting

for the temporal dependencies in the forecast errors. In

simultaneous testing for the different stations, we also

address spatial dependencies by applying a Benjamini-

Hochberg algorithm [51] to control the false discovery rate

at a 5% level of significance (see e.g. [52]). We further

provide confidence intervals for mean score values and

skill scores, which are obtained with the help of 2 000

block bootstrap samples using the stationary bootstrap
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scheme with mean block length determined according to

[53].

Finally, a simple tool of visual perception of calibration

is the probability integral transform (PIT) histogram, where

the PIT is defined as the value of the predictive cumulative

distribution (CDF) at the validating observation, with a

possible randomization at points of discontinuity [54]. In

the case of proper calibration, PIT should follow a uniform

distribution on the [0, 1] interval; moreover, if uniformity

fails to be achieved, the shape of the PIT histogram pro-

vides information about the possible reason of the problem.

4 Results

All calibration approaches presented in Sect. 3 require

training data which should be large enough to provide

numerical stability and reasonable predictive performance.

Following [39], we here focus on local calibration, i.e.

post-processing of forecasts for a given station is per-

formed using only training data of that particular station.

Therefore, relatively long training periods are required to

achieve a suitably large training set. In order to ensure

comparability with the reference approaches, we consider

5-year training periods and both non-seasonal and seasonal

training schemes as in [30]. In the non-seasonal training,

forecasts and observations of 5 calendar years (e.g. 1

January 2003–31 December 2007) are used to train the

model for calibration of TCC ensemble forecasts for the

whole next calendar year (1 January–31 December 2008),

then the training period is rolled ahead by one year (1

January 2004–31 December 2008). In the seasonal

approach, two different seasons are considered covering

April–September and October–March, and TCC ensemble

forecast for a given day is calibrated using training data

from the same season only. The use of 5-year training

periods means that predictive PMFs are available for the

time interval between January 1, 2007, and March 20, 2014

(2636 calendar days), where one can test the forecast skill

of the post-processing methods presented in Sect. 3.

Further, as suggested by Hemri et al. [30], numerical

problems with LogS calculation are avoided by replacing

unrealistically low values pFðyjÞ of the predictive PMF

corresponding to okta yj with a probability pmin ensuring

that with a 1% chance one observes okta yj at least once

during the training period. Translated to formulae, this

means that instead of pFðyjÞ we consider

max
�
pmin; pFðyjÞ

�
, where pmin solves 0:01 ¼ 1�

�
1�

pmin

�T
with T being the length of the training period in days

and adjust the probabilities to get a PMF again (for more

details see [30]). Note that this is only a minor technical

adjustment, and compared with the original predictive

PMFs it results in negligible differences in CRPS or PIT

values.

4.1 Implementation details

Here, we discuss implementation details for the different

statistical and machine learning methods for TCC post-

processing.

4.1.1 Multiclass and proportional odds logistic regression

Both models have several implementations. Here, coeffi-

cients of the various MLR and POLR models are estimated

with the help of R packages nnet and MASS [55],

respectively. Note that the implementation based on the

nnet package utilizes neural networks for estimating the

parametric MLR model (2) which is a fundamentally dif-

ferent use of neural networks compared to our MLP models

introduced in Sect. 3.2.

4.1.2 Multilayer perceptron neural networks

In our computations, we apply the patternnet function

of Matlab with two hidden layers, consisting of 10 and 15

neurons. Both hidden layers use the hyperbolic tangent as

activation function. We consider the LogS as loss function

(sometimes termed cross-entropy in the machine learning

literature) with a 0.1 regularization parameter and scaled

conjugate gradient as minimization algorithm. In each

5-year training period (both for the seasonal and non-sea-

sonal approaches), the corresponding data set is split into a

training and validation set, the latter is a randomly selected

subset consisting of 15% of the data. As an alternative to

the 5-year rolling training period, training with a growing

data set using all available forecast cases from the previous

years and simultaneously increasing the weight of the

regularization term was also tested. However, this

approach did not result in an improved forecast skill.

4.1.3 Random forests

Our implementation of RF models is based on the R

package XGBoost [56]. The tuning parameters (depth of

trees, number of predictors sub-sampled at each splitting

node) for a specific observation station and forecast hori-

zon are determined as follows. The first of the rolling

5-year training periods consisting of the years 2002–2006

is split into an initial training set (years 2002–2005) and a

validation set (year 2006). For all combinations of tree

depths between 2 and 4, and numbers of predictors between

1 and 3, RF models consisting of 300 trees are estimated

based on the initial training set and evaluated on the vali-

dation set using the LogS. The combination of tuning
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parameters resulting in the lowest LogS on the validation

set is then used to fit a RF model consisting of 1000 trees

for the full training set (years 2002–2005) and to produce

forecasts for the first out-of-sample test set (year 2007). To

limit computational costs, this optimal combination of

tuning parameters is also used for all subsequent 5-year

training periods for that specific station and lead time.

For rolling 5-year training periods, tree depths of 2, 3

and 4 are selected in around 43%, 36% and 21% of the

cases, respectively. The chosen number of predictors for

subsampling is slightly more evenly distributed, and the

most frequently selected tuning parameter combination

consists of trees of depth 3 with 3 predictors sub-sampled

at each split (around 17% of all cases). Note that since

initial tests did not indicate improvements in predictive

performance and RF models often tend to be relatively

robust to the choice of tuning parameters, we did not

consider a more extensive set of possible parameter values

in order to limit computational costs.

4.1.4 Gradient boosting machines

We implement GBM models based on the R package

XGBoost [56]. Throughout, we use shrinkage with a

learning rate of k ¼ 0:1 which reduces the influence of

each individual tree hcm by adding a scaled version of that

tree only. To further prevent overfitting, we determine the

number of boosting iterations M for a fixed tree depth by

using an early stopping criterion. To that end, each 5-year

training set is split into an initial training set (first 4 years)

and a validation set (last year). GBM models of the form

(4) are then estimated iteratively for m ¼ 1; 2; . . . based on

the initial training set until the LogS on the validation set

has not improved during the last 25 iterations. This process

is repeated for all tree depth values between 1 and 4, and

the combination of tree depth and corresponding optimal

number of boosting iterations that results in the best LogS

on the training set is selected as set of tuning parameters.

The final out-of-sample forecasts for the test set are pro-

duced based on a GBM model fitted on the full training set

using these tuning parameters. A separate set of tuning

parameters is determined according to the procedure

described above for any combination of station and lead

time and any of the rolling 5-year training periods.

For models with a rolling 5-year training period, an

optimal tree depth of 1 is selected for around 86.5% of all

GBM models, a depth of 2 in around 11.5% of the cases

and a depth of 3 or 4 in less than 2%. The average number

of boosting iterations is 78.3, but generally depends on the

corresponding tree depth.

The procedures to determine optimal tuning parameters

of RF and GBM models described above are applied

separately to the two seasons when fitting seasonal RF and

GBM models. Therefore, the sets of optimal tuning

parameters differ not only by station, lead time and year

(only for GBM), but also by season for those variants.

4.2 Post-processing of TCC ensemble forecasts

As a first step, we investigate the post-processing of TCC

ensemble forecasts using the MLP, RF and GBM approa-

ches. As references, we consider the raw TCC ensemble

forecast and the MLR and POLR models. All calibrated

forecasts are based on the 7-dimensional feature vector
�
f ENS; fCTRL; fHRES; s

2; p0; p1; I
�>

except the MLR, where

following [30] the number of parameters is reduced by

omitting the interaction term I. Note that the MLP model

was also tested with the 52-member TCC forecast ensem-

ble as feature vector; however, this approach did not result

in an improved predictive performance. Further, following

again the suggestions of [30], in the POLR model the

coefficients of f ENS; fCTRL and fHRES are forced to be non-

negative by iterative exclusion of covariates with negative

weights. Finally, for all five calibration methods we test

both non-seasonal and seasonal training, forecasts obtained

using the latter are referred as MLPS, RFS, GBMS, MLRS

and POLRS, respectively.

Figure 1 shows the mean CRPS and LogS of the raw

ensemble and post-processed forecasts together with 95%

confidence intervals as functions of the lead time. All

calibrated TCC forecasts outperform the raw ensemble by a

wide margin and one can observe a clear grouping of the

various approaches. The first group, resulting in the lowest

mean CRPS and LogS values, consists of the MLP, GBM,

POLR and MLR methods and their seasonally estimated

versions showing very small differences in forecast skill.

The second group contains the non-seasonally and sea-

sonally estimated RF forecasts, where the latter results in

slightly lower score values than the former.

One can compare the performance of the forecasts in the

first group more easily by examining Fig. 2, where the

CRPSS and LogSS with respect to the POLRS forecasts are

plotted, which showed the best forecast skill among the

methods studied in [30]. According to Fig. 2a, in terms of

the mean CRPS, POLRS outperforms its competitors up to

day 7, whereas for longer lead times MLPS has the best

predictive performance. In general, forecasts based on

seasonal training result in lower mean CRPS than their

non-seasonal counterparts; however, the differences

decrease with the increase of the lead time. Results in terms

of the LogS shown in Fig. 2b indicate a different behaviour

and ranking of the models in that the mean LogS of the

MLPS approach reaches that of the POLRS model only at
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day 10 and MLRS underperforms all other methods for all

lead times.

These observations are further supported by Fig. 3

showing the proportion of stations where DM test indicates

significant difference in mean CRPS and LogS for lead

times 1, 4, 7 and 10 days. To simplify the presentation here,

we compare just the raw ensemble and the seasonally

trained versions of the calibration approaches, as in general

seasonal models outperform their non-seasonal counter-

parts. Raw ensemble and RFS forecasts are clearly sepa-

rated from the other four approaches for all lead times, as

most entries of the corresponding cells are close to 100%.

For longer lead times GBMS also differs significantly from

its competitors in almost all stations both in terms of CRPS

and LogS. On the contrary, the increase of the lead time

reduces the proportion of stations where the mean LogS of

MLPS and POLRS forecast differ, whereas in terms of the

mean CRPS after decrease one can observe a slight

increase. This behaviour is in line with the MLPS skill

scores of Fig. 2a and b, respectively. Overall, we note that

even though the absolute differences in terms of CRPS and

LogS between the different methods are relatively small,

they thus are often statistically significant for a large pro-

portion of the stations.

The positive effect of post-processing can also be

observed in the PIT histograms in Fig. 4, where again, only

the results for better performing seasonally trained models

are shown. The U-shaped histograms of the raw ensemble

at days 1 and 4 clearly indicate underdispersion, whereas at

days 7 and 10 a small hump starts to appear. RFS forecasts

are overdispersive for short lead times and develop some

bias as the forecast horizon increases. GBMS forecasts

exhibit the same behaviour, however, to a much smaller

extent. The PIT histograms of POLRS and MLPS are

almost perfectly flat, indicating a better calibration com-

pared to the other methods.
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Fig. 1 Mean CRPS (a) and LogS (b) of the raw ensemble and post-processed forecasts together with 95% confidence intervals
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Fig. 2 CRPSS (a) and LogSS (b) with respect to the POLRS model of MLPS, MLP, GBMS, GBM, MLRS, MLR and POLR forecasts together

with 95% confidence intervals
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4.3 Post-processing using an extended feature
set

The added value of incorporating additional features based

on geographical data of SYNOP stations and/or forecasts of

other weather variables has been demonstrated in various

recent articles on post-processing (e.g. [24, 26, 28]). Due to

the direct connection to clouds [57], functionals of pre-

cipitation ensemble forecasts represent a natural choice for

additional predictors. We here use the mean f PREC of the

ECMWF 51-member precipitation forecast as additional

covariate and investigate the performance of MLP, GBM

and POLR approaches, showing the best forecast skill in

Sect. 4.2, with extended feature vector
�
f ENS; fCTRL; fHRES; s

2; p0; p1; I; f PREC
�>

:

Again, we consider both non-seasonal and seasonal

training, the corresponding models are referred as MLP-P,

GBM-P, POLR-P and MLPS-P, GBMS-P, POLRS-P,

respectively.

According to Fig. 5a, b, where the mean CRPS and

LogS values of different MLP, GBM and POLR forecasts

are plotted as functions of the lead time, and Fig. 5c, d

showing the corresponding skill scores with respect to the

POLRS model, the additional covariate results in different

effects for the MLP, and the GBM and POLR models.

After day 2 MLP models using also precipitation forecasts

significantly outperform MLP models based on TCC

forecasts only in terms of both CRPS and LogS regardless

of the training scheme (MLP is not shown), moreover, for

longer lead times MLPS-P and MLP-P show the best
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Fig. 3 Proportion of stations with significantly different mean CRPS (upper triangle) and LogS (lower triangle) at a 5% level of significance for

lead times 1 (a), 4 (b), 7 (c) and 10 (d) days
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Fig. 4 PIT histograms over all stations and dates (3300 stations, 2636 days) of the seasonally trained calibration approaches and the raw

ensemble at days 1, 4, 7 and 10
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predictive performance. In contrast, the use of precipitation

has the highest effect on POLR models at day 1, and the

differences between POLRS-P and POLRS and POLR-P

and POLR models (POLR is not shown) are decreasing

with the increase of the lead time. The same phenomenon

can be observed with GBMS and GBM models (not

shown). The use of precipitation forecast substantially

improves the predictive performance; however, the differ-

ence decreases with the increase of the lead time. Up to day

5, GBMS-P and GBM-P approaches result in lower mean

CRPS than the POLRS model, whereas for days 1 and 2

GBMS-P outperforms POLRS-P and MLPS-P.

These results are in line with proportions of stations with

significantly different mean CRPS and LogS values pro-

vided in Fig. 6, where we consider only the models with

the extended feature set in the interest of visual clarity. For

instance, the proportion of stations where the mean CRPS

of GBMS-P and GBM-P models differ shows a monotone

decreasing sequence of 38.59%, 31.80%, 28.18%, 20.99%,

mimicking the decreasing distance of the corresponding

curves in Fig. 5c, while the bow of the CRPSS of MLPS-P

with respect to POLRS and the decrease of the CRPSS of

POLRS-P matches the change of the corresponding entries

(68.65%, 26.98%, 78.70%, 75.72%) in Fig. 6.

Addressing calibration, Fig. 7 shows the PIT histograms

of the calibration approaches using precipitation forecasts

at days 1, 4, 7 and 10. In general, all six methods result in

rather well calibrated predictive PMFs for all lead times.

The histograms of GBMS-P and GBM-P approaches are

overdispersive for all lead times, whereas MLPS-P, MLP-P

and POLR-P are slightly overconfident only at day 1,

which transforms to a small underdispersion at longer lead

times. Note that in contrast to Fig. 4, which is based on

verification data of 3330 locations; here, we consider PIT

values for just 2239 SYNOP stations where precipitation

ensemble forecasts are also available. However, this

reduction does not change the general shape of the PIT

histograms of the raw ensemble and the MLPS, GBMS and

POLRS forecasts, so they are not shown in this case.

Finally, the general behaviour of the MLPS, MLP, GBMS,

GBM, POLRS and POLR forecasts in terms of PIT values

is almost completely inherited to the corresponding MLPS-
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Fig. 5 CRPS (a) and LogS (b) of different MLP, GBM and POLR forecasts and the corresponding skill scores with respect to the POLRS model

(c, d) together with 95% confidence intervals
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P, MLP-P, GBMS-P, GBM-P, POLRS-P and POLR-P

approaches.

5 Discussion

We investigate various machine learning classifiers for

statistical post-processing of total cloud cover ensemble

forecasts. In particular, we consider multilayer perceptron

neural networks, random forest methods and gradient

boosting machines, which are tested on ECMWF global

TCC ensemble forecasts with lead times from 1 to 10 days

and the corresponding discrete SYNOP observations. Raw

TCC ensemble forecasts, multiclass and proportional odds

logistic regression are used as reference models, and we

consider both seasonal and non-seasonal training (follow-

ing [30]).

First we investigate the settings of [30], where the

classification is based on predictors calculated from the

TCC ensemble forecasts only. In general, all post-pro-

cessing methods significantly outperform the raw ensemble

for all lead times both in term of the mean CRPS and the

mean LogS over the verification data, and the corre-

sponding PIT histograms are closer to the uniform distri-

bution than those of the raw forecasts. Seasonally trained

models further result in slightly better predictive perfor-

mance than their non-seasonal counterparts. RF models

underperform their competitors, whereas the difference

between MLP, GBM, POLR and MLR approaches are

generally small. For short and medium forecast horizons,

the POLR model with seasonal training occurs to be the
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Fig. 6 Proportion of stations with significantly different mean CRPS (upper triangle) and LogS (lower triangle) at a 5% level of significance for

lead times 1 (a), 4 (b), 7 (c) and 10 (d) days
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Fig. 7 PIT histograms over all stations and dates (2239 stations, 2636 days) of the calibration approaches using precipitation forecasts at days 1,

4, 7 and 10
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most skillful, closely followed by the seasonally trained

MLP model which performs best for long lead times.

Several of the probabilistic classification methods exhibit

complementary systematic errors in calibration. Therefore,

forecast combination techniques along the lines of [58]

could potentially improve predictive performance. The

related topic of calibrating and combining probabilistic

classifiers has recently received some interest in the

machine learning literature, see e.g. [59].

Due to the flexibility of neural network model archi-

tectures, particularly the MLP model provides several

promising starting points for future extensions. For exam-

ple, long short-term memory neural networks [60] are

widely used for time series modelling and may allow to

incorporate temporal dependencies of forecast errors of the

raw ensemble predictions. Further, techniques along the

lines of station embeddings proposed in [26] could poten-

tially help construct a single MLP model jointly for all

stations which still is locally adaptive.

The use of the mean precipitation accumulation as

additional covariate further improves the predictive per-

formance and changes the ranking of the different methods.

With this extended feature set, the seasonal POLR model

exhibits the best overall performance only for short lead

times; after days 3–4 it is significantly outperformed both

by the seasonally and non-seasonally trained MLP. How-

ever, in general, the advantage of the extended set of

covariates fades with the increase of the lead time.

The improved performance when information on pre-

cipitation is added further indicates advantages of modern

machine learning methods such as GBM and MLP for total

cloud cover prediction. By contrast to the classical MLR

and POLR approaches, these methods allow to add addi-

tional predictors in a straightforward manner and provide

tools for avoiding overfitting. The inclusion of further

predictor variables such as, for example, indices of atmo-

spheric stability, pressure, humidity and temperature

information at upper levels of the atmosphere, or seasonal

information may further improve predictive performance.

Further, more complex machine learning models incorpo-

rating many predictors may not only improve TCC pre-

dictions, but may also allow to better understand the

shortcomings of the raw ensemble predictions utilizing

techniques such as measures of feature importance

[26, 38].

6 Conclusions

This paper provides a new approach to statistical post-

processing of TCC ensemble forecasts using various

machine learning based classification methods. According

to the best knowledge of the authors, this is the first work to

compare the state-of-the-art machine learning approaches

with the parametric classification techniques. Via an

extended case study based on the ECMWF global TCC

ensemble forecasts for 2002–2014, the superiority of neural

network classification over the best parametric models is

shown [30]. The possibility of involving additional

covariates into statistical post-processing of TCC is also

studied. The results indicate that when the mean precipi-

tation accumulation is used as additional covariate, for long

lead times multilayer perceptron neural network classifi-

cation exhibits far the best predictive performance. The

flexibility of neural network models and the wide range of

reasonable covariates opens a gate for further investiga-

tions. These studies might lead to direct economic benefit

as more accurate prediction of TCC plays a fundamental

role, e.g. in energy production, agriculture or tourism.
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