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Abstract

A novel solution approach to a class of nonlinear statistical inverse problems with �nitely

many observations collected over a compact interval on the real line blurred by Gaussian white

noise of arbitrary intensity is presented. Exploiting the nonparametric taut string estimator,

we prove the state recovery strategy is convergent to a solution of the unnoisy problem at the

rate of n−1/2 as the number of observations n grows to in�nity. Illustrations of the method's

application to real-world examples from hydrology, civil & electrical engineering are given and

an empirical study on the robustness of our approach is presented.

Key words: inverse problems; signal processing; nonparametric statistics; taut string es-
timator; white noise

MSC (2010): 60G35, 60G15, 62G08, 62G20, 62G35, 93E10, 93E11, 93E14

1 Introduction

Let X ,Y be Banach spaces and let A : D(A) ⊂ X → Y be an operator with a domain D(A)
and a range R(A). With x denoting the unknown state variable and y being a measurement or an
observation, many nonlinear inverse problems can be written in the form

y = A(x). (1.1)

Equation (1.1) with an appropriately chosen A, dictated by each particular application and typically
referred to as a forward operator, arises in control theory when observing dynamical systems given
by ordinary, partial or stochastic di�erential equations (see, e.g., the monographs [18, 28]). Equation
(1.1) also occurs in optimization theory and statistics when reconstructing or estimating system's
parameters (cf. [5, 10, 26]), etc. Applications range from physics (continuum mechanics, geophysics
& geology, astronomy, optics) and engineering (nondestructive testing, material science, remote
sensing) to medicine & biology (medical imaging, noninvasive diagnostics, population modeling)
and computer science (image processing, signal �ltering and decoding), etc.

Di�erent versions and variants of Equation (1.1) are known in the literature. In most studies,
X and Y are assumed to be Hilbert spaces (often even X = Y ) and the operator A is chosen
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to be linear. Depending on the particular framework, both the operator A and the observation y
can be deterministic, stochastic or fuzzy. Additionally, either a single or multiple batches of full
or partial observations can be available. Usually, the operator A is invertible. If this is not the
case, various generalized solution notions (strong/mild/weak/extrapolated solution, quasi-solution,
ε-solution, etc.) can sometimes be employed. Nonetheless, even if y ∈ R(A) and A is invertible,
Equation (1.1) is typically ill-posed in the sense of Hadamard (cf. [26, De�nition 3.1]) due to the
lack of continuity of A−1.

In [26, Chapters 3 to 9], Schuster et al. give an overview of recent literature on solution ap-
proaches to Equation (1.1), in particular, they outline the Tikhonov regularization method, iterative
regularization techniques, the method of approximate inverse, etc. In contrast to nonlinear versions
of Equation (1.1), many studies exist in the linear situation. We refer the reader to [3, 14, 20] for
details.

Nonlinear inverse problems with stochastic noise are particularly challenging. Given a probabil-
ity space (Ω,F ,P) and assuming Σ to be a σ-algebra on Y , a general inverse problem with additive
random noise reads as

y = A(x) + σξ, (1.2)

where ξ is assumed to be an F-Σ-measurable Y -valued random element (typically, satisfying E[ξ] =
0) and σ > 0 is the (constant) noise intensity. A well-known consequence of the Hahn-Banach
theorem (cf. [6, p. 199]) permits Equation (1.2) to be equivalently rewritten as

yϕ = 〈ϕ,A(x)〉Y ′;Y + σ〈ϕ, ξ〉Y ′;Y for any ϕ ∈ Y ′ (1.3)

with Y ′ denoting the (Euclidean) topological dual of Y and 〈·, ·〉Y ′;Y standing for the dual pairing
between Y ′ and Y . For given ϕ ∈ Y ′, Equation (1.3) is often referred to as an indirect observation.
If A is linear, densely de�ned and invertible (at least on the essential range of ξ), Equation (1.3)
can also be interpreted as a direct observation

yψ = 〈ψ, x〉X ′;X + σ〈ψ, ζ〉X ′;X for ψ ∈ R(A′) = X ′.

with ζ = A−1η. Such transformations are typically not desirable since they introduce unnatural
error correlations.

In contrast to Equation (1.3), only a �nite number of indirect observations are typically available
in practice. Hence, Equation (1.3) can be rewritten as

yk =
〈
ϕk,A(x)

〉
Y ′;Y

+ σ〈ϕk, ξ〉Y ′;Y for any ϕk ∈ Φn, (1.4)

where Φn = {ϕ1, ϕ2, . . . , ϕn} ⊂ Y ′ is a �nite set referred to as a design. If Φn can be chosen freely,
say, to optimize some quality criterion or to achieve the best asymptotic approximation rate, the
framework of Equation (1.4) is sometimes called an optimal design. Though being very desirable,
the optimal design can rarely be implemented in practice. Instead of being arbitrarily selectable,
the design is typically given beforehand. In this case, one speaks of a �xed design. The problem
may become, for example, to assemble an estimation procedure based on this �xed design mapping
the observations {y1, y2, . . . , yn} to a state estimate x̂n to assure the best estimation accuracy as
n→∞ for x or a derived quantity such as f(x) for some linear or nonlinear f , where x is a solution
to the unnoisy problem in Equation (1.1). Alternatively, the estimator could be designed to achieve
the best order of accuracy for recovering x or f(x) as σ → 0 (cf. [21]).

In the present paper, we propose a two-step �plug-in� recovery strategy for Equation (1.2):

I) Using nonparametric statistics, compute an estimator ŷn for E[y].
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II) Plug ŷn into Equation (1.1) and solve the resulting inverse problem ŷn = A(x) for x as if ŷn
was nonrandom.

Obviously, Step II) is especially simple if A possesses a Lipschitzian inverse.
To illustrate the power of our new approach, we apply it to the following speci�c version of

Equation (1.4) and assess its performance. Choosing the re�exive Lebesgue space (de�ned in Section
2.1 below)

Y := Lp
(
0, 1;Rd

)
for d ∈ N and some p ∈ (1,∞),

we consider the operator

A : D(A) ⊂X → Y for some re�exive Banach space X ,

which will later be extended to a larger Banach space. The rationale behind the choice of spaces
will be explained in the sequel.

The noise ξ is selected to be Gaussian white noise given as the distributional derivative of
a standard d-variate Brownian motion

(
W (t)

)
t≥0

being a random element of C0
(
[0, 1],Rd

)
with

its paths almost surely contained in the space Cα0
(
[0, 1],Rd

)
∩W s,p

0

(
0, 1;Rd

)
for any α ∈ (0, 1

2),
s ∈ (0, 1

2), p ∈ [1,∞) (cf. [7, p. 13]). See Section 2.1 below for the de�nition of these and other
spaces used in this paper.

With Tn :=
{

1
n ,

2
n , . . . , 1

}
for n ∈ N denoting an equidistant lattice on [0, 1], we let

ϕk := n

∫ k
n

k−1
n

(
·
)
(t)dt for 1 ≤ k ≤ n, (1.5)

where the integration is interpreted in terms of the antiderivative operator, which, in turn, is a
bijective mapping from Cα−1

(
[0, 1],Rd

)
to Cα0

(
[0, 1],Rd

)
for α ∈ (0, 1

2) (cf. [12, p. 209]) and isomor-

phism from Lp
(
0, 1;Rd

)
to W 1,p

0

(
0, 1;Rd

)
↪→ C

(p−1)/p
0

(
0, 1;Rd

)
for p ∈ (1,∞). This is elaborated

upon in Section 2.3. The design Φn is then chosen as Φn := {ϕ1, . . . , ϕn
}
⊂ L (Y ,Rd). Strictly

speaking, the ϕk's are bounded linear operators and not functionals. For the sake of simplicity, we
forgo the projection of ϕk's on each of their components since their range is �nitely dimensional.

With this notation, Equation (1.4) can be written as

yk = ϕk
(
A(x)

)
+ σξk for 1 ≤ k ≤ n, (1.6)

where ξ1, . . . , ξn are independent identically distributed (iid) standard normal d-variate random
vectors. Here and in the sequel, we imploy the standard convention used in statistics and bold
vector- and tensor-valued objects. First, a nonparametric estimation procedure needs to be applied
to estimate E

[
y(·)
]
. Here, we decided to use the taut string estimator recently introduced by

Davies and Kovac in [9]. Our choice will be justi�ed by two important features of the estimation
procedure. On one hand, we can achieve the convergence rate of n−1/2 in some weak metric and, on
the other hand, in contrast to linear estimation strategies, our nonlinear procedure is quite robust
to corruption and dilution of a certain data fraction even if the corruption magnitude is signi�cant.
Note that the convergence rate of n−1/2 is typical � and optimal � for parametric problems and
can be attained, e.g., with asymptotically e�cient maximum likelihood estimators or their robust
analogs. Due to the weak topology employed in this article, we can retain this optimal parametric
rate even in the nonparametric context. This rate would have impossible if a stronger topological
framework was employed (cf. [19, 30]). Further, under appropriate assumptions on A, we can
reconstruct x such that our estimate converges in an appropriate norm to a solution of Equation

3



(1.2) for σ = 0 obtained with the Tikhonov regularization approach at the rate of n−1/2 as n→∞.
Since our problem is nonlinear, a nonlinear estimation technique will also be adopted.

The outline of our paper is the following. In Section 2, we brie�y summarize some important
information on probability in Banach spaces. Further, we present a short discourse on nonparametric
statistics as well as introduce the taut string estimator and prove a novel weak convergence result
for the latter at the �parametric� rate of n−1/2. In Section 3, we apply the taut string methodology
to design an estimator x̂ for x in Equation (1.6). Further, we give two applications and present
a numerical robustness study. In the Appendix, some well-known results on the double obstacle
problem of di�erential geometry, used to prove the weak convergence in Section 3, are summarized.

2 Nonparametric Regression and Taut Strings

In this section, we brie�y discuss the central topic of nonparametric regression theory, present the
1D taut string estimator introduced in [9] and prove its convergence in the topology of W−1,p(0, 1)
referred to in this paper as weak convergence. For a more detailed treatise on nonparametric
regression, we refer the reader to [11, Chapter 2], [17, Chapter 4]) or [29, Chapter 5], etc.

2.1 Probability in Functional Spaces

Thoughout the paper, we employ standard notation (cf. [1]). Let G := (a, b) be a bounded open
interval of R and Ḡ = [a, b] denote its topological closure.

2.1.1 Basic Functional Spaces

Consider the following spaces.

� For Banach spaces X ,Y , let L (X ,Y ) denote the (Banach) space of bounded linear opera-
tors from X to Y .

� For a Banach space X , let X ′ denote its (real) topological dual, i.e., X ′ := L (X ,R).

� Let C0(Ḡ) denotes the space of continuous functions on Ḡ endowed with the maximum norm.
Note that C0(Ḡ) is then a separable Banach space (in particular, a Polish space).

� For α ∈ (0, 1], de�ne the Hölder space

Cα(Ḡ) :=
{
u ∈ C0(Ḡ) | ‖u‖Cα(Ḡ) <∞

}
with ‖u‖Cα(Ḡ) := ‖u‖C0(Ḡ)+ sup

x,y∈Ḡ
x6=y

∣∣u(x)− u(y)
∣∣

|x− y|α
.

Similar to [7], introduce
Cα0 (Ḡ) :=

{
u ∈ Cα(Ḡ) |u(a) = 0

}
.

� For α ∈ (0, 1), the negative Hölder space C−α(Ḡ) of Schwartz' distributions u is de�ned as in
[12, Section 13.3] with an additional assumption that a ≡ min(Ḡ) 6∈ supp(u), where the latter
stands for the support of u. Endowed with appropriate topology, C−α(Ḡ) is a Fréchet space.

� For p ∈ [1,∞], let Lp(G) and Lploc(G) denote the standard Lebesgue space or its local version,
respectively.

� For u ∈ L1
loc(G) and s ∈ N, let u(s) denote the distributional derivative of u of order s.
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� For s ∈ N and p ∈ [1,∞], let W s,p(G) and W s,p
loc (G) denote the standard Sobolev space on

G or its local version, respectively. Let W 0,p(G) ≡ W 0,p
0 (G) := Lp(G). For s ∈ (0,∞)\N,

complex interpolation yields the space

W s,p(G) :=
[
Lp(G),Wm,p(G)

]
s/m

equipped with an (equivalent) Sobolev-Slobodeckij norm

‖u‖W s,p(G) =


(
‖u‖p

W bsc,p(G)
+
∫
G

∫
G

(
|∂bscx u(x)−∂bscy u(y)|p

|x−y|s−bsc

)
dx dy
|x−y|

)1/p

, p <∞,

max

{
‖u‖W bsc,∞(G), ess sup

x,y∈G

|u(x)−u(y)|
|x−y|s−bsc

}
, p =∞.

� For s > 0 and p ∈ [1,∞], let W s,p
0 (G) denote the closure of C∞(G)-functions vanishing in a

neighborhood of the left boundary a of G with respect to the norm of W s,p(G). Further, let

W−s,p(G) :=
(
W s,p′

0 (G)
)′
with 1

p + 1
p′ = 1.

From [1, Chapter 7.3] and [27, Section 15], we know

W s,p
0 (G) ↪→

{
u ∈ C0(Ḡ) |u(a) = 0

}
for p ∈ (1,∞], s ∈ (1

p ,∞). (2.1)

Remark 2.1. It should be pointed out that (similar to [7]) our de�nition of W s,p
0 (G) and Cα0 (Ḡ)

(and, therefore, of W−s,p(G) and C−α(Ḡ)) slightly di�ers from the usual one as we do not require its
elements to vanish at the right boundary of G. Still, all essential properties typical for the classical
W s,p

0 (G) and Cα0 (Ḡ) spaces are preserved.

2.1.2 Levý Construction of Standard Brownian Motion

Let (Ω,F ,P) be a complete probability space and let ξ1, ξ2, . . . be iid random variables with mean

0 and standard deviation σ > 0. For n ∈ N, we de�ne the cumulative sum Sn :=
n∑
k=1

ξk and consider

the process
Xn(t) := σn−1/2

(
Sbntc + (nt− bntc)ξbntc+1 for t ∈ [0, 1]. (2.2)

By construction, for any n ∈ N, Xn ∈ C0
(
[0, 1]

)
.

Let Pn denote the probability measure of Sn on C0
(
[0, 1]

)
and B be the Borel σ-algebra on

C0
(
[0, 1]

)
. By virtue of Donsker's invariance principle, there exists a probability measure P̃ on(

C0
(
[0, 1]

)
,B
)
and a P̃-measurable standard Brownian motion W := (W (t))t∈[0,1] such that, as

n→∞, Pn weakly converges to P̃ and Xn converges in distribution to W , i.e.,

Pn
w→ P̃ and Xn

d→W as n→∞. (2.3)

From [7, p. 13], we know

W (·) ∈ Cα0
(
[0, 1],Rd) ∩W s,p

(
0, 1;Rd

)
for α ∈ (0, 1

2), s ∈ (0, 1
2), p ∈ [1,∞) P�a.s. (2.4)

Moreover, on the strength of [7, Theorem 3.6],

W ∈ Lp
(
Ω, Hs,p

0

(
0, 1;Rd

)
,F ,P

)
for p ∈ (2,∞), s ∈ (1

p ,
1
2)

with respect to some complete probability space denoted again (for the sake of simplicity) as
(Ω,F ,P). Here and in the sequel, the (separable) �image space� is equipped with the standard
Borel σ-algebra.
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2.2 Nonparametric Regression

Before we introduce a rigorous probabilistic framework for nonparametric regression in Section 2.3,
we start with an informal discussion by �rst ignoring topology and measurability aspects. In this
article, we follow the probabilistic approach to nonparametric regression. We refer the reader to a
recent work [8] by Davies for a description of the alternative data-driven approach.

Consider a process
(
Y (t)

)
t∈[0,1]

possessing a Tukey decomposition

Y (t) = µ(t) + ε(t) for t ∈ [0, 1] (2.5)

where
(
ε(t)

)
t∈[0,1]

models the noise and µ : [0, 1] → R is the signal we aim to reconstruct. Again,

as mentioned, evaluating Y and µ pointwise may not be meaningful if Y and µ are irregular.
Nevertheless, since the vast majority of statistical literature ignores the (ir)regularity aspects, we
assume for a moment evaluating Y and µ pointwise is meaningful.

For n ∈ N, we de�ne a �nite index set Tn =
{
tk = k

n | 1 ≤ k ≤ n
}
. For Equation (2.5), consider

a regression problem with �xed design given by

Y (tk) = µ(tk) + ε(tk) for tk ∈ Tn. (2.6)

Our thrust is to obtain an estimate µ̂n of the function µ based on a realization(
yn
(

1
n

)
, yn

(
2
n

)
, . . . , yn(1)

)
of the process (Yt)t∈Tn . That is, given a set R of regression functions de�ned on [0, 1] and indexed
by a parameter set Θ, one needs to �nd an element of R which is the �best� approximation for µ.

Within the framework of parametric regression, the set R is �nitely dimensional, e.g., the space
of a�ne linear functions on [0, 1] in case of linear regression or polynomials up to certain degree
in case of polynomial regression, etc. In this case, one often employs the so-called least squares
estimator µ̂n of µ obtained as a solution to the minimization problem

µ̂n = arg min
θ∈Θ

n∑
k=1

∣∣yn ( kn)− f ( kn ; θ
)∣∣2 . (2.7)

In contrast to parametric regression, the set R is in�nitely dimensional when a nonparametric
or semiparametric framework is used. In this case, the minimization problem in Equation (2.7) is
usually ill-posed and a regularization technique is needed. A typical regularization approach is to
replace Equation (2.7) with

f̂n = arg min
θ∈Θ

( n∑
k=1

∣∣yn ( kn)− f ( kn ; θ
)∣∣2 + Pn

(
f(·; θ)

))
(2.8)

where Pn : R → [0,∞) is a Tikhonov-type penalization functional. For example, letting R =
W 2,2

(
(0, 1)

)
and

Pn(f) = λn

∫ 1

0

∣∣f (2)(t)
∣∣2dt for f ∈ R and appropriate λn > 0,

the regression model from Equation (2.8) reduces to the well-known cubic P-spline regression (see,
e.g., [17, Section 4.2.3]). Here, f (s) denotes the s-th order distributional/weak derivative of f (cf.
[4, Chapter 1]). Due to the continuity and strict convexity of Pn as well as the convexity and
compactness of R, the unique minimizer in Equation (2.8) exists in R and is a smooth function by
virtue of the Sobolev's imbedding theorem (see [1, Chapter 4]). Hence, the estimation quality can
be rather poor if the true mean µ exhibits non-smoothness or discontinuity properties.
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2.3 The Taut String Estimator

In the following, we outline the taut string regression technique proposed by [9]. For the process(
Y (t)

)
t∈[0,1]

given in Equation (2.5), the key idea of their approach is to apply nonparametric

regression to the antiderivative of
(
Y (t)

)
t∈[0,1]

rather then applying it directly to
(
Y (t)

)
t∈[0,1]

since

the antiderivative has better regularity properties than the original process. As proved by Grasmair
[15], the taut string regression can be substituted into the framework of Equation (2.8) by selecting

Pn(f) = λnTV(f),

where TV(f) stands for the total variation of f . Correspondingly, R is selected as the space
BV
(
[0, 1]

)
of bounded variation functions. With R including functions having discontinuities at the

node points Tn, this approach provides a good estimation for discontinuous µ.
Before we proceed with the estimator description, we put Equation (2.5) into a rigorous form. Let(

ε(t)
)
t∈[0,1]

be the white noise given as the weak/distributional derivative of a standard univariate

Wiener process
(
W (t)

)
t∈[0,1]

with respect to a complete probability space (Ω,F ,P). Using the

results of Section 2.1, we have

ε(·) ∈W s−1,p
0

(
(0, 1)

)
∩ Cα−1

0

(
[0, 1]

)
for α, s ∈ (0, 1

2), p ∈ [1,∞) P�a.s. and

ε ∈ Lp
(
Ω,W s−1,p

0

(
(0, 1)

)
,F ,P

)
for any s ∈ (1

p ,
1
2), p ∈ (2,∞).

(2.9)

Further, let µ ∈ Lp
(
(0, 1)

)
for some p ∈ (1,∞). With the grid Tn de�ned in Section 2.2, we

consider the regression problem

n

∫ tk

tk−1

Y (s)ds = n

∫ tk

tk−1

µ(s)ds+ σn

∫ tk

tk−1

ε(s)ds for 1 ≤ k ≤ n (2.10)

with tk := k
n for 0 ≤ k ≤ n and a given σ > 0. Here, the integration operator is formally interpreted

in the sense ∫ b

a
f(s)ds :=

(
(∂t)

−1f
)
(b)−

(
(∂t)

−1f
)
(a),

where the derivative operator ∂t := (·)(1) is an isomorphism between W 1,p
0

(
(0, 1)

)
and Lp

(
(0, 1)

)
,

which, using standard interpolation and duality techniques, can be extended to an isomorphism
between the spaces W s,p

0

(
(0, 1)

)
and W s−1,p

(
(0, 1)

)
for s ∈ (0, 1). Further, ∂t can be viewed as

a bijective mapping between the (non-separable) Banach space Cα0
(
[0, 1]

)
and the Fréchet space

Cα−1
(
[0, 1]

)
(cf. [12, p. 209]). In view of these facts, (∂t)

−1ε(·) ∈ Cα0
(
[0, 1]

)
for α ∈ (0, 1

2) P�a.s.

and (∂t)
−1µ ∈ W 1,p

0

(
(0, 1)

)
↪→ C

p/(p−1)
0

(
[0, 1]

)
. Thus, Equation (2.10) can be interpreted in the

strong sense as both (∂t)
−1µ and (∂t)

−1ε(·) can be evaluated pointwise in [0, 1].
Letting

Yn(tk) = n

∫ tk

tk−1

Y (s)ds, µn(tk) = n

∫ tk

tk−1

µ(s)ds, εn(tk) = n

∫ tk

tk−1

ε(s)ds

and extending Yn, µn and εn to cádlág step functions with jumps at tk's, Equation (2.10) can be
written as

Yn(tk) = µn(tk) + σεn(tk) for 1 ≤ k ≤ n, (2.11)

where εn(tk)'s are iid standard Gaussian random variables. In fact, the convergence results to follow
will remain valid also for non-Gaussian iid εn(tk)'s with bounded moments up to a certain order.
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It should also be pointed out that Equation (2.11) is now rigorously de�ned but still resembles the
original naive formulation in Equation (2.6).

Given a realization
(
yn
(

1
n

)
, yn

(
2
n

)
, . . . , yn(1)

)
of the locally time-averaged process

(
Yn(t)

)
t∈Tn ,

we de�ne the cumulative process

y◦n
(
k
n

)
=

1

n

k∑
j=1

yn

(
j
n

)
for 0 ≤ k ≤ n.

Hence, y◦n is an approximation of its continuous counterpart
(
Y ◦n (t)

)
t∈[0,1]

with the latter given by

Y ∗n (t) =

∫ t

0
Yn(s)ds for t ∈ [0, 1].

For C > 0, we de�ne the lower and upper bounds for x◦n via

ϕn(0) = un(0) = 0, ϕn
(
k
n

)
= y◦n

(
k
n

)
− Cσn−1/2 for 1 ≤ k ≤ n and

ψn(0) = un(0) = 0, ψn
(
k
n

)
= y◦n

(
k
n

)
+ Cσn−1/2 for 1 ≤ k ≤ n,

(2.12)

respectively, and extend them onto [0, 1] by piecewise linear functions (cf. Equation (2.2) and [9,
pp. 3]). In practice, since σ is not known, it can roughly be estimated by

σ̂n = 1.48√
2

Median
{
|yn(t2)− yn(t1)|, . . . , |yn(tn)− yn(tn−1)|

}
. (2.13)

As for the constant C, Davies and Kovac recommended in [9, pp. 32] taking

C = Median
(

max
t∈[0,1]

|W (t)|
)
≈ 1.149. (2.14)

Next, we de�ne
θn(t) = ty◦n(0) for t ∈ [0, 1].

Obviously, ϕn, ψn ∈ W 1,∞((0, 1)
)
and θn is a straight line. Using Equation (A.1), we can thus

de�ne the functional tube

Kθnϕn,ψn =
{
s ∈W 1,∞((0, 1)

) ∣∣ s(0) = 0, s(1) = y◦n(1), ϕn ≤ sn ≤ ψn in [0, 1]
}
.

Consider the length functional L de�ned in Equation (A.3). From Theorem A.3, we know L at-
tains its unique minimum over the set Kθnϕn,ψn at some s∗n ∈W 1,∞((0, 1)

)
. Further, the minimizer s∗n

is exactly the taut string running through the tube Kθnϕn,ψn and satisfying the �boundary conditions�

s∗n(0) = 0 and s∗n(1) = y◦n(0).

Moreover, s∗n is a piecewise linear function uniquely determined by its values at the node points

{0, 1
n ,

2
n , . . . , 1}. The taut string estimator µ̂n for µ is then given as the cádlág realization of s

∗(1)
n ,

i.e.,
µ̂n(t) = s∗(1)

n (t) for t ∈ [0, 1].

For the sake of convenience, we modify µ̂n on
[
0, 1

n

)
according to

µ̂n(t) := µ̂n
(

1
n

)
for t ∈

[
0, 1

n

)
such that µ̂n is uniquely determined by its values on Tn. This way, we do not have to distinguish
between µ̂n and µ̂n|Tn . Hence, the taut string estimator Tn of µ is a nonlinear mapping de�ned as

Tn(·;Cσ) : Rn → Rn, xn 7→ µ̂n.

Figure 1 shows the result of application of the taut string estimator to a dataset of size n =
200 selected from a distribution modelled by Equation (2.11) with µ(t) = 2 exp(t) sign

(
1 − 2t −

cos(3.1πt)
)
, t ∈ [0, 1], and σ = 1.
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Figure 1: Illustration of the taut string methodology.

2.4 Asymptotic Consistency of the Taut String Estimator

Before presenting our new convergence study, we brie�y summarize some important results on the
asymptotic behavior of the taut string estimator from [9].

With Kn = KCσ
n denoting the number of local extremes of µ̂n, we trivially observe 0 ≤ Kn ≤

n− 1. In [9, Theorem 4], the following result was proved.

Theorem 2.2. Let µ have k local extrema. If εn(tk)'s are iid random variables with zero mean and
unit variance, then

lim
n→∞

P
(
{k ≥ KCσ

n }
)

= H(C), (2.15)

where H denotes the cdf of the random variable max
t∈[0,1]

|W (t)| with
(
W (t)

)
t∈[0,1]

standing for the

standard univariate Wiener process.

Among other assertions, [9, Theorem 6] gives the following consistency result for the taut string
estimator.

Theorem 2.3. Let µ ∈ C2
(
[0, 1]

)
possess exactly k local extreme values {te1, . . . , tek} such that µ(1)

vanishes only at {te1, . . . , tek} whereas µ(2) does not vanish at these points. Further, let εn(tk)'s be
iid sub-Gaussian random variables. Thus, there exists a number A > 0 such that

lim
C→∞

lim
n→∞

P
({

ess sup
t∈An

|µ(t)− µ̂n(t)|
|µ(1)(t)|1/3

≤ AC2/3n−1/3
})

= 1

with An =
[
A
( logn

n

)1/3
, 1−

( logn
n

)1/3]
and

lim
C→∞

lim
n→∞

P
({

ess sup
t∈[0,1]

|µ(t)− µ̂n(t)|
|µ(2)(t)|1/3

≤ AC2/3n−1/3
})

= 1.

Recall that a random variable ζ is called sub-Gaussian if there exists a number c > 0 such that
E
[

exp(λζ)
]
< exp(cλ2) for any λ ∈ R.

Theorem 2.3, however, has both attractive and unattractive aspects. On one hand, it yields the
convergence in probability of the taut string estimator in the rather strong uniform norm. On the

9



other hand, the convergence rate of n−1/3 is suboptimal compared to n−2/5 predicted in [19] and
the limiting procedure assumes the constant C goes to in�nity whereas in practice, it is small and
�xed. Further, the proof relies on rather restrictive smoothness as well as local monotonicity and
convexity assumptions. Another downside is that no information is provided on the constant A.

Now, we present an alternative convergence study of the taut string estimator. Our approach
requires less regularity assumptions on µ and provides a convergence rate of n−1/2 even if µ has
�nitely many points of discontinuity. The convergence, however, holds in a rather week topology.
Instead of the L∞

(
(0, 1)

)
-norm used by Davies and Kovac in [9, Theorem 6], we employ the topology

of W−1,p
(
(0, 1)

)
.

For p ∈ [1,∞], consider the pathwise Lp-norm of the standard Brownian motion on (0, 1). This
yields a random variable ϑp := ‖W‖Lp((0,1)). Using Hölder's inequality to estimate

|ϑp| =
(∫ 1

0
|W (t)|pdt

)1/p
≤ max

0≤t≤1
|W (t)| ≤ ϑ∞

and taking into account that all moments of ϑ∞ are �nite, we conclude that the moments of ϑp for
any p ∈ [1,∞] are also �nite.

Theorem 2.4. For some α ∈ (1/2, 1] and p ∈ [1,∞), assuming

� µ ∈ Cα(Īj), Ij open for 1 ≤ j ≤ m such that
m⋃
j=1

Īj = [0, 1]. (The �signal� function µ may be

discontinuous at ∂Ij.)

� εn(tk)'s are iid random variables with zero mean and unit variance,

we then have
‖µ̂n − µ‖W−1,p((0,1)) ≤ n−1/2σ(C + ϑp) + oP(n−1/2) as n→∞.

Proof. For n ∈ N, let S∗n ∈W 1,∞((0, 1)) denote the taut string through the function tube

Kθnϕn,ψn =
{
Sn ∈W 1,∞((0, 1)) |ϕn ≤ Sn ≤ ψn

}
centered around the cumulative process

(
Y ◦n (t)

)
t∈[0,1]

, where the bounds ϕn and ψn are de�ned as

in Equation (2.12). Recall that the taut string estimator µ̂n is given as a cádlág realization of the
weak derivative (S∗n)(1) of S∗n.

Using the de�nition of ϕn, ψn and exploiting Equation (2.11),

ϕn(t) =
1

n

bntc∑
k=0

(
µn( kn) + εn( kn)

)
+ {nt}

(
µn
( dnte

n

)
+ ϕn

( dnte
n

))
− Cσn−1/2,

ψn(t) =
1

n

bntc∑
k=0

(
µn( kn) + εn( kn)

)
+ {nt}

(
µn
( dnte

n

)
+ ϕn

( dnte
n

))
+ Cσn−1/2

with {·} := (·)− b·c denoting the fractional part of a real number.
Consider the set

An :=

n⋃
k=1

{
(tk−1, tk)

∣∣ (tk−1, tk) ∩ ∂Ij = ∅ for 1 ≤ j ≤ m
}
.
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Obviously, as n → ∞, the Lebesgue measure of [0, 1]\An goes to zero as 1
n . For any t ∈ An, we

estimate

|µn(t)− µ(t)| ≤ 1

n

m∑
j=1

∫ tk

tk−1

|µ(s)− µ(t)|ds ≤ Ln−α (2.16)

with L := max
1≤j≤m

‖µ‖Cα(Ij). Letting M(t) :=
∫ t

0 µ(s)ds for t ∈ [0, 1] and recalling Equation (2.16),

we �nd for any t ∈ [0, 1]

∣∣∣ 1
n

bntc∑
k=0

µn( kn) + (nt− bntc)µn
( dnte

n

)
−M(t)

∣∣∣
≤
∣∣∣ 1
n

bntc∑
k=0

µn( kn)−M(t)
∣∣∣+ n−1‖µ‖L∞((0,1))

≤
∣∣∣ 1
n

∑
0≤k≤bntc
tk 6∈An

µn( kn)−M(t)
∣∣∣+ m+1

n ‖µ‖L∞((0,1)) + m
n ‖M‖L∞((0,1))

≤
∣∣∣ 1
n

∑
0≤k≤bntc
tk 6∈An

µ( kn)−M(t)
∣∣∣+ Ln−α + o(n−1)

≤
dnte∑
k=0

∫ tk+1

tk

|µ(s)− µ(k/n)|ds+O(n−α) = O(n−α).

Combining the latter inequality with Equation (2.3),

ϕn(t) = M(t) + n−1/2σW (t)− Cσn−1/2 + oP(n−1/2) and

ψn(t) = M(t) + n−1/2σW (t) + Cσn−1/2 + oP(n−1/2) as n→∞
(2.17)

uniformly with respect to t ∈ [0, 1]. Therefore, as n→∞,

‖ϕn −M‖Lp((0,1)) = n−1/2σ
(
C + ϑp

)
+ oP(n−1/2),

‖ψn −M‖Lp((0,1)) = n−1/2σ
(
C + ϑp

)
+ oP(n−1/2).

(2.18)

Theorem A.3 implies

‖S∗n −M‖Lp((0,1)) = n−1/2σ
(
C + ϑp

)
+ oP(n−1/2) as n→∞.

Using the fact that the weak derivative operator (·)(1) is a contraction from the Banach space
Lp((0, 1)) into W−1,p((0, 1)), i.e.,

‖f (1)‖W−1,p((0,1)) = sup
‖ϕ‖

W1,p′ ((0,1))
=1

∣∣〈f (1), ϕ〉
W−1,p((0,1));W 1,p′

0 ((0,1))

∣∣
= sup
‖ϕ‖

W1,p′ ((0,1))
=1

∣∣∣ ∫ t

0
f(t)ϕ(1)(t)dt

∣∣∣
≤ sup
‖ϕ‖

W1,p′ ((0,1))
=1
‖f‖Lp((0,1))‖ϕ‖W 1,p′ ((0,1))

= ‖f‖Lp((0,1)),

(2.19)
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where 1
p + 1

p′ = 1, we �nally get

‖µn − µ‖W−1,p((0,1)) =
∥∥(S∗n)(1) −M (1)‖W−1,p((0,1)) ≤ ‖S∗n −M‖Lp((0,1))

≤ n−1/2σ(C + ϑp) + oP(n−1/2) as n→∞

as claimed.

Remark 2.5. The weak convergence result in Theorem 2.4 can be interpreted as follows. For an
arbitrary f ∈W 1,p

0 (G), there holds∣∣∣ ∫ 1

0

(
µn(t)− µ(t)

)
f(t)dt

∣∣∣ ≤ n−1/2σ(C + θp)‖f‖W 1,p(G) + oP(n−1/2) as n→∞,

i.e., the di�erence (µ̂n − µ) being multiplied in L2(G) with any test function f ∈W 1,p
0 (G) vanishes

at the rate of n−1/2.

Theorem 2.4 can be used to obtain con�dence balls for µ in the norm of W−1,p
(
(0, 1)

)
. The

following corollary is straightforward.

Corollary 2.6. Let the assumptions of Theorem 2.4 be satis�ed. For a signi�cance level α ∈ (0, 1),
let θp,1−α denote the (1− α)-th quantile of θp. Consider a random functional ball

Bn,1−α :=
{
u ∈W−1,p

(
(0, 1)

)
| ‖µ̂n − u‖W−1,p((0,1)) ≤ n−1/2σ(C + ϑp)

}
,

then
lim sup
n→∞

P
{
µ ∈ Bn,1−α} ≥ 1− α.

Remark 2.7. In practice, σ is not known. With an estimate µ̂n of µ being available, σ̂n can be
estimated using Equation (2.13). If µ̂n can be veri�ed to converge to µ in C0

(
[0, 1]

)
in probability

P, Equation (2.13) can be re�ned via

σ̂n = 1.48√
2

Median
{
|yn(t1)− µ̂n(t1)|, . . . , |yn(tn)− µ̂n(tn)|

}
.

The topology in Theorem 2.4 can be strengthened at the price of lowering the convergence rate.

Theorem 2.8. Let s ∈ [0, 1). In addition to the assumptions of Theorem 2.4, let

E
[
|εn(tk)|p+2

]
<∞,

then there exist constant Cp, C > 0 such that

‖µ̂n−µ‖W s−1,p((0,1)) ≤ 2CCpn
−1−s

2 ‖µ‖1−sLp((0,1))

(
‖µ‖Lp((0,1)) +

(
E
[
|εn(0)|p

])1/p)s
+ oP(1) as n→∞.

Proof. First, we show an Lp-bound for µ̂n. Being piecewise linear functions, ϕn and ψn are weakly

di�erentiable with piecewise constant derivatives ϕ
(1)
n , ψ

(1)
n ∈ L∞

(
(0, 1)

)
expressed as

ϕ(1)
n (t) = ψ(1)

n (t) = µn
(
d tne
)

+ εn
(
d tne
)
for t ∈ [0, 1]. (2.20)

Next, using Equation (2.20) and exploiting Minkowski inequality, by virtue of the weak law of large
numbers, we obtain

‖ϕ(1)
n ‖Lp((0,1)) = ‖ψ(1)

n ‖Lp((0,1))
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=
( n∑
k=1

∫ k/n

(k−1)/n

∣∣µn( kn)+ εn
(
k
n

)∣∣pdt)1/p

=
( n∑
k=1

∫ k/n

(k−1)/n

∣∣µn( kn)∣∣pdt+

∫ k/n

(k−1)/n

∣∣εn( kn)∣∣pdt)1/p
(2.21)

≤ ‖µ‖Lp((0,1)) +
(
n−1

n∑
k=1

∣∣εn( kn)∣∣p)1/p
+ o(1)

= ‖µ‖Lp((0,1)) +
(
E
[
|εn(0)|p

])1/p
+ oP(1)

as n→∞ based on Equation (2.16).
Taking into account the one-dimensional Poincaré & Friedrichs inequality and using the inter-

polation inequality for the fractional Sobolev space

W s,p
0 ((0, 1)) =

[
Lp((0, 1)),W 1,p

0 ((0, 1))
]
s

(cf. [1, p. 250]), we obtain a constant Cp > 0, which only depends on p, such that

‖S∗n −M‖W s,p
0 ((0,1)) ≤ Cp

∥∥(S∗n)(1) −M (1)
∥∥1−s
Lp((0,1))

‖S∗n −M‖sLp((0,1))

≤ Cp
∥∥µ̂n − µ‖1−sLp((0,1))‖ψn − ϕn‖

s
Lp((0,1))

≤ Cp
(
‖µ̂n‖Lp((0,1)) + ‖µ‖Lp((0,1))

)1−s‖ψn − ϕn‖sLp((0,1))

Calculating
‖ψn − ϕn‖Lp((0,1)) = 2Cn−1/2

and using Theorem 2.4, we obtain

‖S∗n−M‖W s,p
0 ((0,1)) = 2CCpn

−1−s
2 ‖µ‖1−sLp((0,1))

(
‖µ‖Lp((0,1)) +

(
E
[
|εn(0)|p

])1/p)s
+ oP(1)

as n → ∞. Using the fact that the derivative operator is a contraction from W s,p
0 ((0, 1)) into

W s−1,p((0, 1)) (cf. Equation 2.19), the claim follows.

3 An n−1/2-Rate State Recovery Strategy

In this section, we rigorously de�ne our two-step state recovery strategy based on the taut string
estimator and a Tikhonov regularization technique. Under appropriate assumptions, we prove our
estimator converges.

For q ∈ (1,∞), let X , X− with X ↪→ X− be Lq-based (re�exive) Sobolev spaces over an
arbitrary domain. For d ∈ N and p ∈ (1,∞) , consider an a (possibly) nonlinear operator

A : D(A) ⊂X → Lp(0, 1;Rd)

with a domain D(A). For y ∈ R(A), an inverse problem free of noise can be expressed as

A(x) = y, (3.1)

where y ∈ Lp(0, 1;Rd) play the role of an observation variable. In the following, A will be extended
to an operator

A− : D(A−) ⊂X− →W−s,p(0, 1;Rd) for some s ∈ [1,∞)
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with a domain D(A−).
For some x̄ ∈X− and q ∈ (1,∞), consider a Tikhonov penalization functional

P(x) = ‖x− x̄‖qX− for x ∈X−.

For Equation (3.1), the following generalized solution notion will be employed (cf. [26, De�nition
3.25]).

De�nition 3.1. Let y ∈ R(A) ⊂ R(A−). An element x† ∈ D(A−) is referred to as a P-minimizing
solution to Equation (3.1) if

A(x†) = y and P(x†) = inf
{
P(x) |x ∈ D(A−) with A−(x) = y

}
.

(Note that the de�nition of x† depends on the choice of x̄ �xed above.)

Unless A− is linear (cf., e.g., [26, p. 53]), P-minimizing solutions are not uniquely determined.
If A− is injective, x† belongs even to D(A). Further, if x is a unique solution to operator Equation
(3.1), then it is also a P-minimizing solution.

The following existence result in the class of P-minimizing solutions is known from [26, Propo-
sition 3.14].

Theorem 3.2. Let the following conditions hold true:

1) The operator A is extendable to A− : D(A−) ⊂X− →W−s,p(0, 1;Rd) such that the set D(A−)
is convex and closed in X−.

2) The operator A− is weak-to-weak sequentially continuous from X− to W−s,p(0, 1;Rd), i.e.,
for any x ∈ D(A−), xn ⇀ x in X− for some (xn)n∈N ⊂ D(A−) implies A−(xn) ⇀ A−(x) in
W−s,p(0, 1;Rd) as n→∞.

Then Equation (3.1) possesse a (not necessarily unique) P-minimizing solution.

Now we turn to a version of Equation (3.1) with noise. Let
(
W(t)

)
t∈[0,1]

be the standard

d-variate Wiener process with respect to a probability space (Ω,F ,P) and let ε denote its �rst
variational derivative. Using the results of Section 2.1, ε ∈ Lp

(
Ω,W s−1,p

(
0, 1;Rd

)
,F ,P) with

ε(·) ∈ Cα−1
(
[0, 1]

)
for any s, α ∈ (0, 1

2) P�a.s. For σ > 0, consider the statistical inverse problem
with noise

A(x) = y + σε ≡ yobs. (3.2)

Since ε neither attains its values in R(A) nor even in Lp
(
0, 1;Rd

)
, the notion of a P-minimizing

solution can not directly be applied to Equation (3.2) as the right-hand side of Equation (3.2) is
too irregular.

To overcome this di�culty, we proceed as follows. Assuming the system in Equation (3.2) is
indirectly observed over the �functionals� ϕk's from Equation (1.5), we obtain

A(xn) = yn + σεn ≡ yobs,n, (3.3)

where xn is some (unknown) element of D(A), yn ≡ y remains unchanged and for tk = k
n , 1 ≤ k ≤ n,

yn(tk) = n

∫ tk

tk−1

y(s)ds, εn(tk) = n

∫ tk

tk−1

ε(s)ds, yobs,n(tk) = n

∫ tk

tk−1

yobs(s)ds (3.4)
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with a unique extension by cádlág functions with jumps at most at tk, 2 ≤ k ≤ n − 1 (cf. Section
2.3).

A standard solution approach to Equation (3.3) consists of constructing a regularization proce-
dure in the sense of [26, De�nition 3.20] such that, as σ = σ(n) → 0 and n → ∞, the sequence of
solutions to regularized problems converge to an x̄-minimum norm solution of the original problem
(3.1) without noise. In addition to a uniform P-a.s. boundedness condition on ε in the norm of
Lp
(
0, 1;Rd

)
, which is obviously violated in our case, this framework is not practical since σ typi-

cally does not vanish in most applications. Hence, we apply our two-step regularization approach
brie�y outlined in the introduction to obtain a regularization scheme converging to a P-minimizing
solution of Equation (3.1) as n→∞ for arbitrary, but �xed σ > 0.

With the univariate taut string estimator Tn introduced in Section 2.3, we de�ne its d-variate
version

T dn : (Rd)Tn → (Rd)Tn

by applying Tn to each component of the sample, where Tn =
{
tk = k

n | 1 ≤ k ≤ n
}
. Further, we

de�ne the extension operator
En : (Rd)Tn → Lp(0, 1;Rd)

mapping a lattice function to its unique extension to a cádlág step function with (possible) jumps
at tk, 2 ≤ k ≤ n− 1.

De�nition 3.3. For α > 0, consider the following two-step regularization scheme.

I) De�ne

ŷn := En
(
T dn
(
yobs,n|Tn

))
,

where yobs,n|Tn is the restriction of yobs,n onto Tn.

II) Let x̂n be a minimizer of the functional

Fn(x) =
1

p

∥∥A−(x)− ŷn
∥∥p
W−s,p(0,1;Rd)

+
ασp

q
n−p/2‖x− x̄‖qX− (3.5)

over all x ∈ D(A−).

We call this scheme a taut-string-based regularization approach.

The well-posedness of our taut-string based regularization technique is presented in Theorem
3.4.

Theorem 3.4. Let the conditions of Theorem 3.2 be satis�ed. The taut-string-based regularization
approach yields then P-a.s. for any n ∈ N an estimate x̂n ∈ D(A−) as a minimizer of the functional
in (3.5).

Proof. As cádlág functions, both yobs,n and ŷn P-a.s. belong to L
p
(
0, 1;Rd

)
. WithD(An) = D(A−),

the set D(An) is convex and closed in X−. Hence, An satis�es conditions of Theorem 3.2. This
fact together with [26, Proposition 4.1] yields the existence of a minimizer x̂n of Fn.

Now, we prove a convergence result for our regularization scheme.

Theorem 3.5. In addition to conditions of Theorem 3.4, suppose y is a piecewise Hölder-continuous
function with a Hölder-exponent strictly bigger than 1

2 . Further, assume for some number L > 0

‖x1 − x2‖X− ≤ L
∥∥A−(x1)−A−(x2)

∥∥
W−s,p(0,1;Rd)

for x1, x2 ∈ D(A−). (3.6)

For n ∈ N, let x̂n ∈ D(A−) be given by the taut-string-based regularization approach introduced in
De�nition 3.3. With x† ∈ D(A) standing for a P-minizing solution to Equation (3.1), we have:
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1) x̂n is P-a.s. uniquely determined.

2) x̂n ∈ Lp
(
Ω,X−,F ,P) for the complete probability space (Ω,F ,P) associated with (Wt)t∈[0,1].

3) ‖x̂n − x†‖X− = OP(n−1/2) as n→∞.

Proof. The P-a.s. existence of x̂n follows from Theorem 3.4, while the uniqueness is due to the
injectivity of A− furnished by Equation (3.6). Using Equations (3.5) and (3.6), we estimate∥∥A−(x̂n)− ŷn

∥∥
W−s,p(0,1;Rd)

≤
(
pFn(x̂n)

)1/p
≤
(
pFn(x†)

)1/p

=
(∥∥A−(x†)− ŷn

∥∥p
W−s,p(0,1;Rd)

+
pασp

q
n−p/2‖x† − x̄‖qX−

)1/p

=
(∥∥ŷn − y

∥∥p
W−s,p(0,1;Rd)

+
pασp

q
n−p/2‖x† − x̄‖qX−

)1/p

and

‖x̂n − x†‖X− ≤ L
∥∥A−(x̂n)−A−(x†)

∥∥
W−s,p(0,1;Rd)

≤ L
∥∥A−(x̂n)− ŷn

∥∥
W−s,p(0,1;Rd)

+ L‖ŷn − y‖W−s,p(0,1;Rd)

= OP(n−1/2) as n→∞.

Using the Lipschitzianity of A−1
− . the Lipschitz-continuous dependence of x̂n on ŷ and, therefore, ε

follows.
Combining the last two estimates, invoking Theorem 2.4 and using the norm continuity, we get

ŷn ∈ Lp
(
Ω,W−s,p

(
0, 1;Rd

)
,F ,P) along with ‖x̂n − x†‖X− = OP(n−1/2) as n→∞,

thus, �nishing the proof.

Remark 3.6. The assumption in Equation (3.6) is quite restrictive. For deterministic problems,
a less restrictive requirement known as the �source condition� (cf. [26, Chapter 3 and 4]) is often
employed. For stochastic problems, in the absence of uniqueness, the latter condition makes the
analysis quite problematic as the measurability of x̂n becomes an issue. In contrast, for linear
problems, lack of uniqueness does not occur and measurability becomes more straightforward.

4 Examples and Applications

4.1 Groundwater Level Prediction

A mud slide in North Vancouver caused the deaths of two people. An engineering company was
commisioned to monitor the groundwater level thereafter. If groundwater rises to levels that reach
between stable and unstable soil structures, residents need to be evacuated. In [24], Ramsay et al.
discussed a way to predict the groundwater level based on hourly rainfall amount. After a prediction
model is established, the rainfall data are not measured a posteriori but predicted beforehand based
on weather forecasts.

With R(t) denoting the rainfall amount hourly measured in mm and G(t) the groundwater level
in meters at some time t ∈ [0, T ], [24] proposed the following ODE model to establish a relation
between G(t) and R(t):

Ġ(t) = −β(t)
(
G(t)− µ(t)

)
+ α(t)R(t− δ) for t ∈ [0, T ], G(0) = G0, (4.1)
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Figure 2: Groundwater data (left) and rainfall data (right)

where Ġ(t) = d
dtG(t) denotes the derivative of G at time t ∈ [0, T ], β(t) is the groundwater discharge

rate, α(t) represents the recharge capacity per 1 mm rainfall, δ is a delay parameter set to 3, µ(t)
is the wellhead level and and G0 stands for the initial groundwater level. First, Ramsay et al. [24]
assumed α, β, µ are constant and applied their multi-step smoothing approach to estimate these
parameters. Plugging these estimates into Equation (4.1), a rather good agreement between the
predicted and the measured groundwater level was obtained. The functional parameters α, β and µ
were not explicitly reported, rather described as �slowly varying over time.� No rigorous functional-
analytic framework was employed.

Since Equation (4.1) is non-autonomous, the model can mainly be used only retrospectively.
Unless α, β and µ are constant, the forecasting of G(t) based on the measurements of R(t) is
limited to very small time horizons. To overcome this de�ciency, we propose the following model of
distributed delay-type:

Ġ(t) = −γ
(
G(t)− µ

)
+

∫ 0

−δ
K(s)R(t+ s)ds for t ∈ [0, T ], G(0) = G0. (4.2)

where γ is the discharge rate of the initial groundwater level measured with respect to the waterhead
level µ, G0 stands for the initial value of G(t) and K(s) represents the time-delayed recharge
coe�cient from the rainfall. As in [24], we let δ = 3. For physical reasons, γ, µ,G0 and K(s) are
nonnegative � same as R(t) for all t. Additionally, it is natural to assume K(s) is non-decreasing to
give more weight to more recent R-values in the integral. With K being retrospectively estimated
over [0, T ] with T ≥ δ, it can be used to forecast G at over future time horizons.

To put Equation (4.2) into the framework of Section 3, we use the Duhamel's principle (the
so-called �variation of constant formula�) to get the equivalent formulation

G(t) = µ+ e−γt(G0 − µ) +

∫ t

0

∫ 0

−δ
e−γ(t−s)K(ξ)R(s+ ξ)dξds. (4.3)

As we will later see, by density and continuity Equation (4.3) will be extendable to a distributional
version. Assuming the presence of white noise in the measurements of G, we �nally obtain

G(t) = µ+ e−γt(G0 − µ) +

∫ t

0

∫ 0

−δ
e−γ(t−s)K(ξ)R(s+ ξ)dξds+ σε(t), (4.4)
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where ε(t) is a 1D white noise process. For the sake of simplicity, the explicit dependence on the
functional parameter R(t) will be suppressed in the notation used below.

De�ne the forward operator

A : D(A) ⊂X → L2
(
(0, T )

)
,

(G0, γ, µ,K) 7→ µ+ e−γ·(G0 − µ) +

∫ ·
0
e−γ(·−s)

∫ 0

−δ
K(ξ)R(s+ ξ)dξds

with X := R3 ×W 1,2
(
(−δ, 0)

)
and

D(A) :=
(
[0,∞)

)3 × {K ∈W 1,2
(
(−δ, 0)

)
|K ≥ 0,K ′ ≥ 0

}
.

Assuming R ∈ L2
(
(0, T )

)
, A is well-de�ned and continuous by standard delay ODE results [16].

Next, assuming R ∈W−1,2
(
(0, 1)

)
, we canonically extend A to

A− : D(A−) ⊂X− →W−1,2
(
(0, 1)

)
with X− := R3 ×W 1,2

(
(0, T )

)
and

D(A−) :=
(
[0,∞)

)3 × {K ∈W 1,2
(
(−δ, 0)

)
|K ≥ 0,K ′ ≤ 0

}
.

Using Young's and Sobolev's inequalities to estimate∥∥∥∫ ·
0
e−γ(·−s)

∫ 0

−δ
K(ξ)R(s+ ξ)dξds

∥∥∥
W−1,2((0,1))

=
∥∥∥∫ ·

0
e−γ(·−s)

∫ 0

−δ
K(ξ)∂ξR

◦(s+ ξ)dξds
∥∥∥
W−1,2((0,1))

=
∥∥∥∫ ·

0
e−γ(·−s)

(
−
∫ 0

−δ
K ′(ξ)R◦(s+ ξ)dξds+

(
K(0)R◦(s)−K(−δ)R◦(s− δ)

)∥∥∥
W−1,2((0,1))

≤ ‖K ′‖L2((−δ,0))‖R◦‖L2((0,T )) +
∣∣K(−δ)

∣∣‖R◦‖L2((0,T ))

≤ C‖K‖W 1,2((−δ,0))‖R‖W−1,2((0,1))

with K◦ = (∂t)
−1K =

∫ ·
−δK(s)ds and some generic constant C > 0, it easily follows A− is well-

de�ned and continuous in K (and R). Hence, being a composition of continuous functions, A− is
strongly continuous in the product topology. The remaining conditions of Theorem 3.4 can easily
be veri�ed. This yields the existence of a minimizer (Ĝ0, γ̂, µ̂, K̂) of the functional (3.5).

Hence, our methodology is applicable to the inverse problem in Equation (4.2). To illustrate its
performance, we now apply our parameter estimation procedure to a particular dataset. Unfortu-
nately, only a subset of the dataset used in [24] is available and can be found in the CollocInfer

package of R in the �le NSdata.rda. This dataset (two univariate time series of size 315) is displayed
in Figure 2.

Since the last 100+ time periods did not contain any signi�cant amount of rainfall, we used the
�rst 100 times periods for model training purposes and the next 100 times periods for prediction,
while discarding the last 115 time periods. In contrast to [24], our goal was not to �predict� G(t)
retrospectively, but rather estimate/recover the parameters and use them for future prediction. This
is possible with our model in Equation (4.4).

The taut string estimator was subsequently applied to
(
G(1), . . . , G(100)

)
with estimated σ̂ =

4.6884 · 10−4. With the amount of additive noise being small, the role of taut string smoothing in
this example is less substantial. The integral in Equation (4.3) was approximated by a �rst-order
integral sum. Similarly, the negative Sobolev norms of a lattice function f were approximated by
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Figure 3: Smoothed groundwater level and its prediction (left) and estimated parameters (right)

�rst-order integral sums of the squared cumulative sums of f . Finally, the constrained optimization
problem for the discretized version of functional Fn from Equation (3.5) with

x̄ =
(
G(1), 0,

1

100

100∑
i=1

G(i), (0, 0, . . . , 0)
)

was solved using the constrainted optimization routine fmincon of Matlab. A full implementantion
of the algorithm is available in the supplement. The blue dashed & circled curve in Figure 3
displays the taut-string smoothed groundwater level, while the orange solid curve displays the �tted
groundwater lever for the �rst 100 times periods. As it is the case with time-dependent predictions,
the quality deteriorates with time. The estimated parameters are contained in Table 1 below.

G0 γ µ K(−3) K(−2) K(−1) K(0)

129.2623 0.043336 129.269 1.3561 10−7 5.2431 10−7 1.4454 10−7 0.0053244

Table 1: Estimated parameters

The trained model was subsequently used to predict the groundwater level for the next 100 times
periods based on future rainfall data. Again, while the prediction quality is originally fairly good,
a signi�cant deterioration can be observed for larger time horizons. A possible way to improve the
prediction quality is to account for time-dependent waterhead levels, which, in turn, may require
a sophisticated autonomous models for µ. Also, selecting an alternative model that accounts for
rainfall at di�erent locations and other factors will most likely produce predictions that better
match the observed data. This is not the focus here. Rather, how to implement the taut string
methodology in an inverse solution context for a real problem is our concern.

4.2 Euler-Bernoulli Beams

Consider a simply supported elastic Euler-Bernoulli beam of uniform density ρ > 0, uniform thick-
ness h > 0 and length L > 0. In an equilibrium state of the beam, let w(x) denote the vertical
displacement of its midline at point x ∈ (0, L). Further, let f : (0, L) → R denote the distributed
static force acting on the beam often referred to as loads. Using the equations of linear 3D elasticity
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(cf. [13, Chapter 1]), exploiting Euler-Bernoulli structural assumptions (cf. [2, Equations (7, 8)])
and postulating a linear Hooke's law for homogeneous isotropic media, w can be shown to satisfy
the following boundary value problem

EIw(4) = f(x) for x ∈ (0, L),

w(x) = w(2)(x) = 0 for x ∈ {0, L},

where E is the Young's modulus, I is the second moment of area of the beam's cross-section and
f(x) are the distributed loads. Figure 4 illustrates an elastic beam before and after bending. We
refer the reader to [22, Chapter 4] for a detailed discussion on elastic beams.

Figure 4: Elastic beam before and after bending

Consider the operator

A : D(A) ⊂X → L2
(
(0, L)

)
, w 7→ EIw(4),

where

X := L2
(
(0, L)

)
and D(A) :=

{
w ∈W 4,2

(
(0, L)

)
|w(x) = w(2)(x) = 0 for x ∈ {0, L}

}
.

The operator A can canonically be extended to operator

A− : D(A−) ≡X− := V → V ′, w 7→ EI
〈
w(2), (·)(2)

〉
L2((0,L))

with
V :=

{
ϕ ∈W 2,2

(
(0, L)

)
|ϕ(x) = 0 for x ∈ {0, L}

}
and V ′ = W−2,2

(
(0, L)

)
equipped with the norm ‖ · ‖V = (EI)−1/2

∥∥(·)(2)
∥∥
L2((0,1))

. With ε denoting the 1D white noise on

[0, L], for σ > 0, we consider the following problem for w

A−w = f + σε. (4.5)

In fact, Equation (4.5) is a well-posed direct problem. Nonetheless, the techniques from Section
3 can be employed to estimate w based on observations from Equation (3.3). Indeed, exploiting
standard elliptic theory, A and A− can be shown to satisfy the assumptions of Theorems 3.2 and
3.4. Moreover, due to existence and continuity of A−1

− , the conditions of Theorem 3.5 are also
satis�ed. Hence, with ŵn denoting the estimate from De�nition 3.3, we have∥∥ŵn −A−1

− (f)
∥∥
W 2,2((0,L))

= OP(n−1/2) as n→∞.

In particular, the convergence is uniform in [0, L] due to the Sobolev imbedding theorem.
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Figure 5: Estimation results for noisy measurements

Next, we present a numerical example. Consider a European wide �ange steel I-beam of HE
100 A type of length L = 3.6 m. For this, h = 0.096m, E = 200GPa, I = 5.24 · 10−8 m4. Assume a
total load f of 2 · 9.8 · 103N acts on the beam distributed as shown on the left of Figure 5. Assume
the distributed loads to be measured at n = 100 equidistant points with the measurement errors
being iid normal with mean 0N and standard deviation 9.8 · 103 N. Applying the state recovery
procedure from De�nition 3.3 with x̄ = 0 to the noisy measurements, we can estimate de�ection of
the plate (in the negative vertical direction). Here, the second derivative is discretized using the
standard centered three-point �nite di�erence approximation, whereas the V -norm is discretized
with an intergral sum for inverse Dirichlet-Laplacian. The right-hand side of Figure 5 illustrates
the actual de�ection pro�le w† = A−1f and its estimate ŵn. As one can see, ŵn is in a very good
correspondence with w.
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Figure 6: Estimation results for noisy measurements with 5% corruption

Now, we demonstrate the robustness of our approach due to incorporation of the taut-string-
based data �ltering. In the previous example, 5% of the data were randomly selected and corrupted
by adding 483N. The plot of the corrupted data along with the taut string estimate and actual
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loads are displayed in Figure 6 on the left. The right-hand side of Figure 6 suggests the de�ection
estimate obtained using a preliminary �ltering with the taut string estimator better matches the
actual de�ection than the estimate obtained without using the taut string smoothing.

4.3 Electric Circuit

Consider an electric circuit with the diagram displayed in Figure 7 consisting of an AC voltage
source, capacitor of 1 F, two resistors of 1 Ω each and an inductor of 1 F. Assuming the voltage

1 H x1

1 Ω 1 F1 Ω x2 = y

+

−

Figure 7: Electric circuit

source is inactive and a measurement at the capacitor can be obtained, the system is governed by
the following system of ordinary di�erential equations over a time horizon [0, T ]:

ẋ(t) = Ax(t) for t ∈ [0, T ], x(0) = x0,

y(t) = Cx(t)
(4.6)

with

A =

(
0 −1
1 −2

)
, C =

(
0 1

)
,

where x(t) =
(
x1(t), x2(t)

)T
, x1(t) is the voltage at the inductor and x2(t) is the voltage at the

capacitor. Given an observation y(t), the goal is to reconstruct the state x(t) in Equation (4.6). In
the absense of noise, this is a standard linear observability problem [31, Chapter 1].

Assuming for a moment y(t) was in L2
(
(0, T )

)
and computing the observability matrix

O =

(
C
CA

)
=

(
0 1
1 −2

)
,

the Kálmán's rank criterion suggests the sytem (4.6) is (continuously) observable. Moreover, the
initial state can uniquely and continuously be reconstructed as

x(0) =
(∫ T

0
eA

TtCTCetAdt
)−1

∫ T

0
eA

TtCTy(t)dt, (4.7)

where the observability Gramian
∫ T

0 etA
T
CTCetAdt is an invertible matrix. Thus,

x(t) = eAt
(∫ T

0
eA

TtCTCeAtdt
)−1

∫ T

0
eA

TtCTy(t)dt (4.8)
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Eliminating x(t), Equation (4.6) can be cast into equivalent form:

y(t) = CeAtx0 for t ∈ [0, T ]. (4.9)

Equation (4.9) can easily be put into the framework of Section 3 by letting

A : D(A) ≡X → L2
(
(0, T )

)
, x0 7→ eA·x0

with X := R2. The operator A can be trivially extended to

A− : D(A) ≡X− →W−1,2
(
(0, T )

)
with X− = R2.
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Figure 8: Observability problem for an electric circuit

The noisy version of Equation (4.6) becomes then

A−(x0) = y + σε ≡ yobs, (4.10)

where ε is the univariate standard white noise and σ > 0.
Selecting x0 = (1, 3)T and y(t) =

(
A(x0)

)
(t) + 0.1ε(t) sampled on an equidistant lattice of size

1, 000 over [0, 5] a numerical implementation of the procedure from De�nition 3.3 was obtained by
using the matrix exponent to solve for x(t) and employing a �rst-order Riemann sum to compute
the W−1,2

(
(0, 1)

)
-norm of y(t). The results are displayed in Figure 8. The estimated value of x̂0 of

x0 was computed to be (1.0195, 2.9228)T.

Remark 4.1. The stochastic observation problem (4.6) is also solvable via continuous-time Kálmán
�lter, which is known to have certain L2-optimality properties. In the presence of outliers (i.e., when
the noise process departs from the iid Gaussianity), this optimality can be compromised. Due to a
certain degree of robustness originating from the application of the taut string smoothing, we expect
our approach to be generally more robust than Kálmán's �lter � at the price of reduced statistical
e�ciency in the absence of outliers.
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5 Conclusions

We presented a Banach space new two-step regularization approach to inverse problems with white
noise from Equation (1.2). Our method incorporates a preliminary data smoothing step with the
taut string estimator and a subsequent minimization of a discrepancy functional with a Tikhonov
regularization. We gave a detailed convergence study for the taut string estimator. In Theorem
2.4, we proved the �parametric� convergence rate of n−1/2 in the Sobolev space W−1,p

(
(0, 1)

)
under

rather weak regularity assumptions of the underlying conditional expectation. As a corollary, we
obtained an asymptotical con�dence ball for the unknown conditional expectation. Further, using
interpolation techniques, we extended this result to negative fractional Sobolev spaces at the price
of a reduced convergence rate.

Under appropriate assumptions on the forward operator and its continuation, Theorems 3.4
and 3.5 prove the overall regularization procedure is feasible and preserves the convergence rate of
n−1/2 in the norm of extended parameter/state space where n is the design size. These results are
developped in Section 3. In contrast to other solution methodologies, our approach does not require
noise to be bounded or vanish asymptotically. Finally, three examples are given that illustrate
applicability of the regularization technique.

The set of Matlab codes used to produce all examples from Section 4 are available online.
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A The Double Obstacle Problem in 1D

In this section, we brie�y summarize solution theory for the double obstacle problem in 1D. For a
detailed treatise, we refer the reader to [23] and [25, Chapter 7].

For functions ϕ,ψ : [0, 1] → [−∞,∞] with ϕ ≤ ψ in [0, 1] denoting the lower and the upper
obstacle and a linear function θ : [0, 1]→ R satisfying ϕ(0) ≤ θ(0) ≤ ψ(0) and ϕ(1) ≤ θ(1) ≤ ψ(1),
we de�ne the �admissible set�

Kθϕ,ψ :=
{
u ∈ C0([0, 1]) |u(0) = θ(0), u(1) = θ(1), ϕ ≤ u ≤ ψ a.e. in (0, 1)

}
. (A.1)

As a result, θ satis�es the di�erential equations(
θ(1)√

1 + (θ(1))2

)(1)

= 0 and θ(2) = 0 in (0, 1).

The classical double obstacle problem reads as follows: Find a function u∗ with the smallest arc
length over all elements of Kθϕ,ψ ∩W 1,∞((0, 1)), i.e.,

u∗ = arg min
{
L(u) |u ∈ Kθϕ,ψ ∩W 1,∞((0, 1))

}
, (A.2)
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where the arc length functional is given as

L(u) :=

∫ 1

0

√
1 + (u(1)(t))2 dt. (A.3)

Under appropriate regularity assumptions, the minimization problem in Equation (A.2) is equivalent
with the following variational inequality (cf. [25, Chapter 1.5]):

Find u∗ ∈ Kθϕ,ψ such that

∫ 1

0

(
u(1) − θ(1)

)(
v(1) − u(1)

)√
1 + (u(1))2

dt ≥ 0 for any v ∈ Kθϕ,ψ ∩W 1,∞((0, 1)).

(A.4)

The condition associated with (A.4) can be viewed as a generalized Karush-Kuhn-Tucker condition
for the minimization problem in Equation (A.2). Note that the nonlinear form de�ned by the
integral in Equation (A.4) is the Gâteaux derivative of functional L at point u− θ in the direction
v − u.

In this classical situation, the following well-posedness result of Theorem A.1 below can be shown
by adapting techniques from [25, Chapter 7.2] developed in the unilateral case. See also [23] for a
study of the linearized double obstacle problem in a Hilbert space situation.

Theorem A.1. Let the obstacle ϕ and ψ be such that

Kθϕ,ψ ∩W 1,∞((0, 1)) 6= ∅,

then the variational inequality in Equation (A.4) possesses a unique solution u∗ ∈ Kθϕ,ψ∩W 1,∞((0, 1)),

which is also the unique minimizer of L in Kθϕ,ψ ∩W 1,∞((0, 1)).

In case the obstacles ϕ,ψ are less regular, e.g., merely continuous and not weakly di�erentiable
with p-integrable derivatives, a weaker solution concept needs to be adopted.

De�nition A.2. Let ϕ,ψ ∈ C0([0, 1]). A function w ∈ Kθϕ,ψ is called a generalized solution to
Equation (A.4) if it satis�es

−
∫ 1

0

(
v(1)√

1 + (v(1))2

)(1)

(v − u) dt ≥ 0 for any v ∈ Kθϕ,ψ ∩ C2([0, 1]). (A.5)

By virtue of Minty's lemma (cf. [25, Chapter 7.3]), any function u ∈ Kθϕ,ψ ∩ W 1,∞((0, 1))
satisfying Equation (A.4) also satis�es (A.5).

Let S denote the solution operator sending each triple (ϕ,ψ, θ) with Kθϕ,ψ to the unique gener-
alized solution u.

Theorem A.3. Let ϕ,ψ ∈ C0([0, 1]) such that Kθϕ,ψ 6= ∅, then the following assertions hold true.

a) There exists a unique generalized solution u ∈ Kθϕ,ψ to Equation (A.4).

b) Let s ∈ (0, 1), p ∈ [1,∞]. If ϕ,ψ ∈W s,p((0, 1)), then u ∈W s,p((0, 1)).

c) The solution operator S is nonexpansive on Lp for any p ∈ [1,∞], i.e.,∥∥S (ϕ,ψ, θ)−S (ϕ̃, ψ̃, θ̃)
∥∥
Lp((0,1))

≤ max
{
‖ϕ− ϕ̃‖Lp((0,1)), ‖ψ − ψ̃‖Lp((0,1))

}
for all ϕ, ϕ̃, ψ, ψ̃ ∈ C0([0, 1]) with Kθϕ,ψ 6= ∅ and Kθ̃ϕ̃,ψ̃ 6= ∅.
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