KIT | KIT-Bibliothek | Impressum | Datenschutz

3D-Printable and Enzymatically Active Composite Materials Based on Hydrogel-Filled High Internal Phase Emulsions

Wenger, Lukas ORCID iD icon 1,2; Radtke, Carsten P. 2; Göpper, Jacqueline 2; Wörner, Michael 2; Hubbuch, Jürgen ORCID iD icon 1,2
1 Institut für Funktionelle Grenzflächen (IFG), Karlsruher Institut für Technologie (KIT)
2 Institut für Bio- und Lebensmitteltechnik (BLT), Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

The immobilization of enzymes in biocatalytic flow reactors is a common strategy to increase enzyme reusability and improve biocatalytic performance. Extrusion-based 3D bioprinting has recently emerged as a versatile tool for the fabrication of perfusable hydrogel grids containing entrapped enzymes for the use in such reactors. This study demonstrates the suitability of water-in-oil high internal phase emulsions (HIPEs) as 3D-printable bioinks for the fabrication of composite materials with a porous polymeric scaffold (polyHIPE) filled with enzyme-laden hydrogel. The prepared HIPEs exhibited excellent printability and are shown to be suitable for the printing of complex three-dimensional structures without the need for sacrificial support material. An automated activity assay method for the systematic screening of different material compositions in small-scale batch experiments is presented. The monomer mass fraction in the aqueous phase and the thickness of printed objects were found to be the most important parameters determining the apparent activity of the immobilized enzyme. Mass transfer limitations and enzyme inactivation were identified as probable factors reducing the apparent activity. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000122359
Veröffentlicht am 24.08.2020
Originalveröffentlichung
DOI: 10.3389/fbioe.2020.00713
Scopus
Zitationen: 21
Web of Science
Zitationen: 17
Dimensions
Zitationen: 23
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Bio- und Lebensmitteltechnik (BLT)
Institut für Funktionelle Grenzflächen (IFG)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2020
Sprache Englisch
Identifikator ISSN: 2296-4185
KITopen-ID: 1000122359
HGF-Programm 47.02.06 (POF III, LK 01) Zellpopul.auf Biofunk.Oberflächen IFG
Erschienen in Frontiers in Bioengineering and Biotechnology
Verlag Frontiers Media SA
Band 8
Seiten Art. Nr.: 713
Vorab online veröffentlicht am 21.07.2020
Schlagwörter 3D printing, bioprinting, cure-on-dispense, hydrogels, enzymes, beta-galactosidase, biocatalytic reactors, high internal phase emulsions
Nachgewiesen in Dimensions
Web of Science
Scopus
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page