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ABSTRACT
We consider weighted random sampling from distributed data

streams presented as a sequence of mini-batches of items. This

is a natural model for distributed streaming computation, and our

goal is to showcase its usefulness. We present and analyze a fully

distributed, communication-efficient algorithm for weighted reser-

voir sampling in this model. An experimental evaluation on up to

256 nodes (5120 processors) shows good speedups, while theoretical

analysis promises further scaling to much larger machines.
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1 INTRODUCTION
We consider the problem of maintaining a random sample without

replacement over an input set that is revealed over time in small

batches and in a distributed fashion. The items have weights as-

sociated with them and are part of the sample with probability

proportional to their share of the total weight. Our design goal is to

minimize communication between the nodes (a detailed motivation

of communication efficiency is given in [12, 19]), while our overall

goal is to showcase the usefulness of the mini-batch model.

Problem Definition. Let the input consist of 𝑛 items, which we

shall refer to by their indices from 1..𝑛1, the weight of item 𝑖 be

𝑤𝑖 ∈ R+, and let𝑊 :=
∑𝑛
𝑖=1𝑤𝑖 denote the total weight. The items

1𝑎..𝑏 is shorthand for {𝑎, . . . , 𝑏 } throughout this paper.
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are processed in batches of variable size. After processing a batch,

update the weighted random sample without replacement of size

min(𝑘, 𝑛′) of all 𝑛′ items seen up to and including the current batch.

A weighted random sample without replacement of size 𝑘 consists

of𝑘 different items 𝑠1≠ . . . ≠ 𝑠𝑘 so that for 𝑗 ∈ 1..𝑘 and 𝑖 ∉ {𝑠ℓ | ℓ < 𝑗},
P
[
𝑠 𝑗 = 𝑖

]
= 𝑤𝑖/

(
𝑊 −∑

ℓ< 𝑗𝑤𝑠ℓ

)
. Note that a second definition of

the problem exists where the probability of each item to be included
in the sample is proportional to its relative weight. There, items

with weight𝑤𝑖/𝑊 > 1/𝑘 have inclusion probability greater than

one (infeasible items) and require special treatment, see e.g., [9].

1.1 Related Work
For an overview of the broader literature on random sampling, refer

to [17] for the uniform case and [13] for weighted sampling. Here,

we limit ourselves to the literature on reservoir sampling.

Uniform sampling from data streams has been studied since at

least the early 1960s [11]. A simple folklore method is to associate

uniform random deviates with the items, retaining the 𝑘 items with

the smallest associated values. Several asymptotically optimal algo-

rithms are known [16, 22]. Their key insight is that it is possible to

compute the distance between two samples in constant time [8, 16].

More recently, sampling from the union of multiple data streams

has also received some attention [4, 6, 7, 21]. However, in addition to

assuming synchronous operation of the nodes and the network, the

distributed streaming (or continuous distributed monitoring) model
used therein relies on a centralized coordinator node which stores

the entire sample and is the exclusive communication partner of all

other nodes, severely limiting scalability in practice. An algorithm

in a shared-memory mini-batch model was presented recently [20].

For weighted items, Chao [3] presents an elegant algorithm for

an alternative definition of weighted sampling (see above). Map-

ping weights to exponential (instead of uniform) deviates allows

for a simple selection of the 𝑘 smallest values to obtain a weighted

sample [1, 9, 10]. A reduction to sampling with replacement elim-

inates the effects of numerical inaccuracies of floating-point rep-

resentations [2]. To our knowledge, only [15] considers weighted

distributed reservoir sampling. It uses the distributed streaming

model, resulting in challenges orthogonal to those we face here.

2 PRELIMINARIES
Machine Model. We have 𝑝 processing elements (PEs) numbered

1..𝑝 , connected by a network with full-duplex, single-ported com-

munication. Sending a message of length ℓ takes time 𝛼 + 𝛽ℓ , where
𝛼 is the time to initiate the transfer and 𝛽 the subsequent trans-

mission time per machine word. Treating 𝛼 and 𝛽 as variables in

asymptotic analysis allows us to combine internal work 𝑥 , commu-
nication volume 𝑦 and latency 𝑧 into a single term: O(𝑥 + 𝛽𝑦 + 𝛼𝑧).
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Selection from Sorted Sequences. Our algorithm relies on selection

from the union of sorted sequences stored locally at the PEs. Which

selection algorithm to use depends on the data and requirements.

Let 𝑛 bound per-PE input size and 𝑘 be the rank of the desired

item. In the general case, we can use an algorithm with expected

running time O(log(𝑘𝑝) · log𝑛 + 𝛼 log
2 (𝑘𝑝)) [12, Section IV-B]. If

𝑘 is allowed to vary in some range 𝑘..𝑘 with 𝑘 − 𝑘 ∈ Ω(𝑘/𝑑) for
some 𝑑 ∈ N, it is possible to find an item with rank between 𝑘 and 𝑘

in expected time O(𝑑 log𝑛 + 𝛽𝑑 + 𝛼 log𝑝) [12, Lemma 3]. Further

options are detailed in our technical report [14].

3 MINI-BATCH MODEL
Our model is a batched view on streaming algorithms. Items arrive

as a series of mini-batches on small time intervals. For example,

each mini-batch could be defined as the set of all items that arrived

within a certain time window (e.g., in Apache Spark Streaming [23]).

Because memory is limited, only the current mini-batch is available

in memory at each point in time. This is a generalization of other

models of streaming algorithms: on a sequential underlying ma-

chine with batch size 1, we obtain the sequential streaming model

(see, e.g., [20]). In a distributed model with 𝑝 sites (nodes) which

exchange fixed-size messages with a coordinator, batch size 1 yields

the distributed streaming model, also known as the continuous dis-
tributed monitoring model [5]. In this paper, we use the distributed

message-passing model described in Section 2.

Unless explicitly specified, we shall make no assumptions about

the distribution of mini-batch sizes across PEs or over time, nor

about the distribution of items. In algorithm analysis, we denote

by 𝑏 the maximum number of items in the current batch at any

PE, and by 𝐵 the sum of all PEs’ current batch sizes. Thus, an

algorithm expressed in the mini-batch model can handle arbitrarily

imbalanced inputs without any impact on correctness; however,

load balance may suffer if the number of items per PE differs widely.

4 WEIGHTED RESERVOIR SAMPLING
The basic idea of our algorithm is to combine the exponential clocks

method—associating with each item an exponentially distributed

key using the item’s weight for the rate parameter [1, 9, 10, 13]—

with a communication-efficient bulk priority queue to maintain the

set of the 𝑘 items with the smallest keys, i.e., the sample. Each PE

is solely responsible for the items that were seen in its input, and

no PE gets a special role (such as a coordinator node). During each

batch, a PE inserts into its local reservoir all items whose key is

smaller than the largest key of any item in the sample (the global

threshold). When a batch finishes, the PEs perform a distributed

selection for the 𝑘-th smallest key, which becomes the new global

threshold, and discard all items with larger keys. The remaining

elements form the new sample. During a mini-batch, the threshold

remains unchanged.

Our algorithm adapts the sequential skip distance calculation of

Efraimidis and Spirakis [10, Section 4] with an 𝑥 ↦→ − ln(𝑥) map-

ping, which improves numerical accuracy and simplifies generation.

Details are shown in Algorithm 1 and our technical report [14].

The reservoir is maintained in a distributed fashion, with each

PE’s local reservoir represented as a B+ tree augmented with split,
rank, and select support (see, e.g., [18, Sections 7.3.2 and 7.5.2]).

Algorithm 1 Pseudocode for Weighted Reservoir Sampling

Input: 𝐴 the local part of the mini-batch of items,𝑇 the previous batch’s

threshold (initially −∞), 𝑅 the local reservoir (initially empty)

Output: The new threshold and the updated local reservoir

def processBatch(𝐴 : Item[],𝑇 : R, 𝑅 : Reservoir) : R × Reservoir

Item: R+ × N with weight 𝑤 ∈ R+, index 𝑖 ∈ N
Reservoir: B+ tree mapping keys from R to item IDs

if 𝑇 < 0 then — fewer than 𝑘 items seen globally before
foreach (𝑤, 𝑖) ∈ 𝐴 do — exponentially distributed keys

𝑅.insert(− ln(rand())/𝑤, 𝑖)

else
j := 0 : N; — 1-based index of next item, initially invalid
while 𝑗 ≤ |𝐴 | do

𝑋 := − ln(rand())/𝑇 : R — weight to be skipped
while 𝑋 > 0 do — skip 𝑋 amount of weight in total

𝑗 := 𝑗 + 1;

if 𝑗 > |𝐴 | then break from both loops

𝑋 := 𝑋 −𝐴 [ 𝑗 ] .𝑤
𝑦 := exp(−𝑇 ·𝐴 [ 𝑗 ] .𝑤) : R
𝑣 := − ln(𝑦 + rand() (1 − 𝑦))/𝐴 [ 𝑗 ] .𝑤 : R — new key
𝑅.insert(𝑣, 𝐴 [ 𝑗 ] .𝑖)

(𝑇, 𝑖) := select(𝑅,𝑘) — select 𝑘 globally smallest and new threshold
(𝑅, _) := 𝑅.splitAt(𝑖) — discard local items with larger keys
return (𝑇, 𝑅) — return new threshold and reservoir

At the end of a mini-batch, the PEs jointly select the globally

𝑘-th smallest key (see Section 2) in the union of all local reservoirs,

which becomes the insertion threshold for the next batch. Each PE

then discards all items with larger keys using a split operation. The
remaining 𝑘 items in the union of all local reservoirs form the de-

sired sample of all items seen so far. Algorithm 1 gives pseudocode.

Theorem 4.1. A mini-batch of up to 𝑏 items per PE can be pro-
cessed in time O(𝑏 + (𝑏∗ + 1) log(𝑏∗ + 𝑘) +𝑇sel), where 𝑏∗ ≤ 𝑏 is the
maximum number of items from the mini-batch below the insertion
threshold on any PE, and 𝑇sel is the time for selection from sorted
sequences of size at most 𝑏∗ + 𝑘 per PE (see Section 2).

Proof. By definition of 𝑏∗, the local insertions require time

O(𝑏∗ log(𝑏∗ + 𝑘)) in total because each local reservoirs has size at

most 𝑘 at the start of the batch. Since we have to process each item’s

weight even when using skip distances, O(𝑏) time is required to

identify the items to be inserted into the reservoir. The selection

operation takes time𝑇sel which varies depending on the specifics of

the input. The number of candidate items per PE for the selection

is clearly bounded by the local reservoir size of at most 𝑘 + 𝑏∗. The
split operation to discard the items with keys exceeding the new

threshold takes time logarithmic therein, i.e., O(log(𝑘 + 𝑏∗)). □

We now consider how many items we (unnecessarily) insert into

local reservoirs by keeping the threshold fixed during a mini-batch.

The next theorem, which we prove in the technical report [14], can

be viewed as an average case of Theorem 4.1.

Theorem 4.2. If all items’ weights are independently drawn from
the same continuous distribution and all batches have the same num-
ber of items on every PE, then our algorithm inserts no more than
O
(
𝑘
𝑝 log

𝑛
𝑘
+ log𝑝

)
items into any local reservoir in expectation.
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5 EXPERIMENTS
We implemented our algorithm with the multi-pivot approximate

selection algorithm of [12, Section IV-C], using 8 pivots and exact

bounds (𝑘 = 𝑘 = 𝑘).2 We compare it to a centralized algorithm

which uses the same thresholding procedure but gathers all candi-

date items at a designated root PE, where it uses sequential selection

tomaintain the sample, subsequently labeled gather. The code, avail-
able at https://github.com/lorenzhs/reservoir, is in C++ and was

compiled with g++ 8.2.0 and OpenMPI 4.0. It was executed on up to

256 nodes of ForHLR II, an HPC cluster with two 10-core Intel Xeon

E5-2660 v3 CPUs per node. Each core is one PE (20 PEs per node).

We use uniformly random weights from the interval (0, 100] as
input. Each PE receives the same number of items per mini-batch.

The results of a weak scaling experiment with per-PE batch size

𝑏 = 10
6
(left) and 10

5
(right) items and sample sizes of 𝑘 = 10

3
,

10
4
, and 10

5
are given in Fig. 1, showing the speedup relative to

our algorithm on a single node (𝑝 = 20). We can see that our

algorithm shows good scaling across the board, and, as expected,

smaller samples are slightly faster to maintain than larger ones.

Clearly, the centralized algorithm performs well only for small

samples, struggling even with 𝑘 = 10
4
for the larger batch size

and performing badly regardless of batch size for 𝑘 = 10
5
. Both

algorithms achieve better—and for our algorithm, near-optimal—

speedups for large batch sizes, as communication overhead is more

noticeable for small batches, where local processing is fast.

A running time composition analysis confirms that for 𝑘 = 10
5
,

local processing dominates our algorithms’ running time for larger

batch sizes, whereas the centralized algorithm spends most of its

time on selection and, as 𝑝 grows, gathering the candidate items.

We also conducted strong scaling experiments (not shown here

due to space limitations), which confirm consistent scaling of our

method as long as per-PE batch sizes do not drop below around 10
4
.

More details on our strong and weak scaling experiments as well

as a running-time composition analysis are given in our technical

report [14].
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Figure 1: Weak scaling, speedup relative to a single node
(p=20) with our algorithm
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In this configuration, its asymptotical running time matches the non-approximate

algorithm [12, Section IV-B], but its pivot selection speeds up convergence in practice.

6 CONCLUSION
We presented an efficient weighted reservoir sampling algorithm

as a showcase of the usefulness of the distributed mini-batch model

of streaming algorithms. Analysis and experiments show that our

algorithm performs well in theory as well as in practice.

Note that our algorithm can easily be modified to handle un-

weighted (uniform) inputs by using the well-known skip distances

for uniform reservoir sampling [8, p. 640], which saves the O(𝑏)
term in Theorem 4.1 because 𝑋 items can be skipped in O(1) time.
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