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Machine learning and agent-based modeling are two popular tools in
energy research. In this article, we propose an innovative methodology
that combines these methods. For this purpose, we develop an electricity
price forecasting technique using artificial neural networks and integrate
the novel approach into the established agent-based electricity market
simulation model PowerACE. In a case study covering ten interconnected
European countries and a time horizon from 2020 until 2050 at hourly
resolution, we benchmark the new forecasting approach against a simpler
linear regression model as well as a naive forecast. Contrary to most of
the related literature, we also evaluate the statistical significance of the
superiority of one approach over another by conducting Diebold-Mariano
hypothesis tests. Our major results can be summarized as follows. Firstly,
in contrast to real-world electricity price forecasts, we find the naive
approach to perform very poorly when deployed model-endogenously.
Secondly, although the linear regression performs reasonably well, it is
outperformed by the neural network approach. Thirdly, the use of an
additional classifier for outlier handling substantially improves the
forecasting accuracy, particularly for the linear regression approach.
Finally, the choice of the model-endogenous forecasting method has a
clear impact on simulated electricity prices. This latter finding is particularly
crucial since these prices are a major results of electricity market models.
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Abstract

Machine learning and agent-based modeling are two popular tools in energy
research. In this article, we propose an innovative methodology that combines these
methods. For this purpose, we develop an electricity price forecasting technique
using artificial neural networks and integrate the novel approach into the established
agent-based electricity market simulation model PowerACE. In a case study covering
ten interconnected European countries and a time horizon from 2020 until 2050 at
hourly resolution, we benchmark the new forecasting approach against a simpler
linear regression model as well as a naive forecast. Contrary to most of the related
literature, we also evaluate the statistical significance of the superiority of one
approach over another by conducting Diebold-Mariano hypothesis tests. Our major
results can be summarized as follows. Firstly, in contrast to real-world electricity
price forecasts, we find the naive approach to perform very poorly when deployed
model-endogenously. Secondly, although the linear regression performs reasonably
well, it is outperformed by the neural network approach. Thirdly, the use of an
additional classifier for outlier handling substantially improves the forecasting
accuracy, particularly for the linear regression approach. Finally, the choice of the
model-endogenous forecasting method has a clear impact on simulated electricity
prices. This latter finding is particularly crucial since these prices are a major results
of electricity market models.
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1 Introduction

Since the liberalisation of electricity markets, wholesale spot markets have steadily
gained importance in determining the economics of generation, storage and demand
units in the energy system. Even though a major share of final electricity generation
— and likewise consumption — is still traded on the forward market or via bilateral
contracts, the spot market price is the eventual realization that determines the op-
portunity and the future expectations on electricity prices. Typically, on a day-ahead
basis, demand and supply bids are matched in auctions on electricity exchanges in
many parts of the world to determine electricity prices. In understanding the com-
plex techno-economic interdependencies in the price formation on electricity markets,
many efforts have been made to model market logic and actors’ behavior in both the
long-term investment and the short-term operational perspective.

Besides approaches deploying mathematical optimization (e.g., Leuthold et al.|
2008), system dynamics (e.g., Petitet, 2016)) and equilibrium models (e.g., |Just and
Weber, 2008), simulation models depicting the individuals’ behavior constitute one
major research stream. After evolving in the early 2000s, so-called agent-based simu-
lation models (ABM) are today widely applied to address research questions dealing
with electricity price developments, energy policy measures, generation adequacy,
generation expansion planning, market design and market performance. In ABMs,
system effects emerge from depicting and simulating the individual agents’ behavior.
The most popular ABMs developed for the analysis of European electricity markets
include AMIRIS (Reeg et al., [2012), EMLab (Chappin et al., [2017), and Power ACE
(Genoese, 2010). For a broad overview on further applications of ABMs in the energy
context, please refer to the several review papers available in the literature (Guerci
et al.l [2010; Hansen et al.| [2019; Ringler et al.l 2016; Weidlich and Veit, 2008; Zhou
et al., 2007).

In ABMs, each agent derives its decisions model-endogenously. Thus, a key chal-
lenge in accurately modeling agents’ behavior lies in providing adequate expectations
for the future developments within the model. Hereby, agents typically base their
decisions on fundamental factors, such as techno-economic investment parameters
or variable costs of electricity generation, and on market price expectations. The
need for the latter motivates the essential role of price forecasting in ABMs, as the
price forecasts have crucial interdependencies with agents behavior and thus the
plausibility of the simulation results.

However, hardly any methodology or evaluation of the quality of model-
endogenous price forecasting has been presented in the literature in the past (see
Section [2). As this issue is crucial to model accuracy and has been treated only



rudimentary, this contribution addresses the scope of developing adequate model-
endogenous short-term price forecasts and to evaluate them using PowerACE, an
established ABM developed at Karlsruhe Institute of Technology (KIT). PowerACE
offers the opportunity to conduct case studies depicting the interconnected European
electricity market with a time horizon until 2050. We investigate and report both,
the forecasting accuracy and the emerging simulation results under different price
forecasting approaches. In brief, the main highlights and contributions of this paper
are:

e We describe the implementation and interdependencies of model-endogenous price
forecasts in long-term ABMs for interconnected electricity markets.

e We assess the suitability and the performance of naive, linear regression and arti-
ficial neural network (ANN) based forecasting approaches.

e We evaluate the impact of improved price forecasts for the agents on the simulation
results emerging on a European energy system level.

The remainder of the paper is structured as follows. Section[2]provides a literature
review on machine learning (ML) applications in the energy context in general and
the integration of such methods in ABMs in particular. Section [3] introduces the
Power ACE model, outlines the challenges of model-endogenous price forecasting and
explains the developed approaches as well as their implementation. In Section 4] a
case study of the interconnected European electricity market until 2050 is presented
and the accuracy of the developed forecasting approaches is evaluated. Section
comprises the main findings, draws conclusions and provides an outlook on future
research fields in the further development of ABM.

2 Literature Review and Research Gap

Since literature matching the exact scope of this paper is scarce, the review provided
in the following starts with a rather generic overview of ML approaches applied for
(price) forecasting in the energy domain. Then, we present in more detail the few
directly relevant publications and outline the research gap this paper aims to fill.
Forecasting is one of the most popular fields in energy economics. Herein, as
in many other research fields, ML approaches gain more and more importance.
Among the family of ML approaches, ANN can be considered the most popular
and most widespread. As shown in a pioneering study by |Adya and Collopy| (1998),



well-designed ANN approaches are capable to outperform traditional forecasting ap-
proaches from econometrics and were computationally manageable at the end of the
last millennium. With increasing computational capacities in the past years, ML
has conquered the forecasting domain with various algorithms fitted to even more
various scopes.

In the energy context, major applications include load forecasting (pioneering
studies by Lee et al., [1992; [Liu et al., 1991; Park et al., [1991), renewable feed-in
(see, e.g., Yadav and Chandel, 2014) for an extensive review on solar), redispatch
forecasting (Staudt et all, 2018)) or even more complex tasks such as photovoltaic
potential assessment (Mainzer et all, [2017).

However, the most prominent field for ANN applications remains price forecasting
and particularly the forecasting of electricity spot market prices (for conciseness, in
the remainder referred to as electricity prices). Forecasting electricity prices with
ANN has been pervasively studied (see, e.g., (Catalao et al.l 2007, |Conejo et al.
2005; Pindoriya et al., 2008; Rodriguez and Anders, 2004, for early studies). The
thorough review on electricity price forecasting by [Weron provides the reader
a well-elaborated chapter on different structures and applications of ANN. Since the
publication of this review paper, literature on ANN applications in electricity price
forecasting has further augmented. Ghoddusi et al.| (2019) provide a review on ML
in energy economics, with an updated review on ANN studies forecasting electricity
prices. Among the most influencing studies are Bento et al.| (2018]), Dudek| (2016)),
Keles et al] (2016al), [Lago et al| (2018a]b)), [Peng et al| (2018)), [Singh et al| (2017) and
Wang et al.| (2017)), which all apply ANN in methodological variations to forecast
electricity prices in different market areas. In addition to the review by
(2019), recent studies by |Giovanelli et al.| (2018), (Oksuz and Ugurlu/ (2019)
and [Ugurlu et al| (2018) provide further investigations and case studies on how to
accurately forecast electricity prices in national spot markets with the use of ANNs.

Apart from the electricity spot market, ANNs are as well deployed to other
electricity-related prices, such as balancing reserve market prices (Kraft et al., 2019,
2020)) and energy prices for commodities like carbon emission certificates (Fan et al.
2015} [Sun et al. 2016]) or crude oil (Ding, 2018; |[Huang and Wang, |2018; |Jammazi|
and Aloui, [2012; Moshiri and Foroutan 2006} [Yu et al. 2017} [Zhao et al. 2017).

Let us now move on to the more specific field of implementing forecasting and
ML techniques into ABMs of electricity markets. In a recent review paper,
differentiate between two use case categories in this context. Firstly, ML
methods can be used to forecast external input data, which is subsequently being
used in an ABM. Secondly, ML algorithms may be applied to implement the learning
behavior of the agents.




An example of the first use case category is provided in |Scheidt| (2002), where an
ANN is trained to forecast electricity prices. The forecasts created by the ANN are
then used to derive trading strategies that are deployed in a subsequently applied
ABM. However, unlike in our approach, the ANN is not retrained using simulation
results but only used in a static way.

Most publications falling into the second use case category identified by |Prasanna
et al.| (2019) apply relatively simple reinforcement learning approaches like Q-learning
(e.g., Esmaeili Aliabadi et al.| |2017) or Erev-Roth learning (e.g., Mengelkamp et al.,
2018; Zhou et al., [2011)). Still, some noteworthy exceptions using supervised learning
exist, which are addressed next.

Wehinger et al.| (2013) present an ABM covering four European countries (France,
Germany, Italy, Switzerland) with model-endogenous adaptive price forecasting
based on multiple linear regression. The agents use these price forecasts to determine
optimal trading decisions. As the simulation moves on, the price forecasting model
is continuously updated using the latest available simulation outcomes. Despite the
proximity to our concept, there are four major distinctions. Firstly, the regression
model mostly relies on autoregressive terms and only includes few exogenous vari-
ables (temperature, wind forecast and oil price). Secondly, a linear regression rather
than an ANN is used. Thirdly, unlike in our approach, effects in the neighbouring
countries are not explicitly considered in the price forecasts. Finally, only a rela-
tively short time horizon of few years is covered, whereas the time horizon in our
work covers 2020 through 2050.

Pinto et al.| (2012, 2016) use an ABM of the Iberian electricity market and imple-
ment different adaptive price forecasting techniques, such as feedforward ANNs or
support vector machines. Although their scope of work is closely related to ours, the
paper at hand can be seen as an extension in terms of several aspects. Firstly, Pinto
et al.| only consider very short time periods of two months rather than a multi-decade
setting as we do. Secondly, a very basic ANN configuration is applied and only the
Iberian market is modelled whereas we consider a much more complex setup with
ten interconnected market areas. Finally and most importantly, Pinto et al.| do not
provide statistical evidence of any forecast’s superiority over the other benchmarks
considered.

We can conclude that given the scarce literature on applying ML for model-
endogenous price forecasting in ABMs of electricity markets, an important research
gap with regard to improving such simulation models opens up. Against this back-
ground, the following Section [3] introduces an innovative and unique methodology,
that combines the two popular research streams of ML and ABM. Before we move on,
let us outline that model-endogenous forecasting brings along a number of additional



challenges in comparison to forecasting in the general sense. Firstly, the feedback on
simulated electricity prices needs to be considered. Poor forecasting accuracy leads
to poor agent bidding behavior, which then leads to implausible simulated prices in
the consecutive simulation step. These erroneous prices influence the forecasting in
the next simulation step, and so on. Secondly, both, the diversity and the change
in the composition of the national energy systems and in interconnection capacities
between market areas over time requires an approach, that is flexible and capable
to adapt to new price formation mechanisms (Lago et al., 2018b)). Thirdly, the
computational limitation needs to be considered in the implementation into a ABM
framework such as PowerACE. As the model training and forecasting is carried out
numerous times within a simulation run until 2050, each single forecasting procedure
must remain computationally lean. Therefore, a trade-off between ANN architecture
and training on one side and the computational performance on the other side needs
to be carried out.

3 Methodology

This section starts with an overview of PowerACE, the existing ABM framework
applied in this paper. Next, we describe in detail the developed ANN forecasting
approach and its integration into PowerACE. Finally, some additional forecasting
approaches are introduced, which are used as benchmarks to evaluate the perfor-
mance of the developed ANN-based methodology.

3.1 Simulation Framework

3.1.1 Overview

PowerACE is an established agent-based simulation model, which was originally
developed for the analysis of the German electricity market in long-term scenario
analyses (see Keles et al.| 2016b; Ringler et al., [2017; Fraunholz et al.| 20194, for some
exemplary applications). The model covers different electricity market segments
with a focus on the day-ahead market and different types of capacity remuneration
mechanisms and runs at an hourly resolution (8760h/a) over a typical time horizon
from 2015 up to 2050.

Within PowerACE, several agents represent the associated market participants
such as utility companies, regulators and electricity consumers (see Fig. . Most
notably, the modelled electricity suppliers can decide on the daily dispatch of their



conventional power plants and storage units as well as once per simulation year on
the investment in new such facilities. Thus, the short-term and long-term decision
levels are considered jointly and their interactions can be investigated. Ultimately,
the development of the markets emerges from the simulated behavior of all agents.

In light of the European Commission’s goal of creating a Single European Market
for electricity, the importance of adequately considering cross-border effects in elec-
tricity market models increases. Thus, recent advancements of Power ACE focus on
expanding the geographical scope to cover multiple countries, which obviously sig-
nificantly increases the model complexity. In this context, Fraunholz et al. (2019b)
concentrated on the long-term investment perspective of the model and developed a
novel algorithm to solve the generation expansion planning problem in interconnected
electricity markets. Ringler et al.| (2017) focused on the short-term perspective and
embedded a linear optimization approach into PowerACE. This optimization is a
simplified representation of EUPHEMIA (NEMO Committee, [2019), the algorithm
used for the real-world day-ahead market clearing process across multiple intercon-
nected market areas.

Yet, to-date, cross-border effects are only rudimentally considered in an essential
part of the day-ahead market simulation, namely the model-endogenous short-term
electricity price forecasting of the agents in Power ACE. To provide some more con-
text, we next introduce the different steps of the day-ahead market simulation with
Power ACE. As the long-term investment perspective of the model is not in the focus
of this paper, it is not further addressed.

3.1.2 Day-Ahead Market Simulation

Multiple traders per market area participate in the day-ahead market simulation
with PowerACE. Most importantly, supply traders representing the major utility
companies in a given market area prepare individual bids for each of their conven-
tional power plants. Additionally, price-inelastic bids for demand, renewable feed-in
and (optionally) pumped storage units are prepared by agents representing a single
trader per market area, respectively. We concentrate on the procedure from the
supply traders’ point of view, for which the different steps in the day-ahead market
simulation are illustrated in Fig. [2l and briefly described as follows.

(1) Price forecasting. According to theory, electricity generators in a competitive
market environment are willing to offer electricity at the marginal generation
cost. However, starting up a power plant leads to additional costs related to
a higher fuel consumption and a reduced lifetime caused by material wear and
tear. In order to account for this and prepare bids accordingly, it is important
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are essential, as they have a direct impact on the bidding of the agents, and thus an indirect

impact on the outcomes of the market clearing process. The market outcomes of previous

auctions in turn affect the price forecasting of the agents.

for the generators to estimate the running hours of a specific power plant on
the next (simulation) day. Thus, the supply traders prepare a price forecast
for all hours of the following day.

Bidding. Based on the price forecast and their respective bidding strategies,
the different supply trader agents now prepare bids for each of their power
plants p and hour h of the following day. These bids consist of volume (MWh)
and price (EUR/MWh). The bid volumes are determined by the installed
capacity and under consideration of an exogenously given availability factor
as well as a potential balancing reserve provision. In contrast, the bid prices
depend both, on the type of the power plant and whether it is expected to
run in the respective hour (i.e., h € H® C H) or expected not to run (i.e.,
h e Hgﬁ C H). Table [l| provides an overview of the bidding strategies for the
different situations. Please note that in all cases, the variable costs ¢;* of
a power plant p play a crucial role. These are determined by the fuel price
pé“el, the power plant’s net electrical efficiency 7,, the price of COy emission
allowances p©©2, the CO, emission factor of the fuel e and the costs for
operation and maintenance CS&M as shown in Eq. .

Market clearing. All bids prepared by the supply trader agents are then submit-
ted to a central market operator, which uses a clearing algorithm — formulated
as a linear optimization problem — to determine electricity prices and cross-
border electricity flows (Ringler et al., 2017)). In the objective function, the
economic welfare in the coupled electricity system is maximized (Eq. )
Constraints include the energy balance in all market areas (Eq. (2D])) as well



as a limitation of the acceptance rates of demand bids (Eq. (2d])), supply bids
(Eq. (2d)) and exchange flows between the different market areas (Eq. (2d))).
The optimization problem is solved for each simulation hour, yet, we omit the
index h for better readability. After the market has been cleared, the market
outcome — in particular the information on which bids have been accepted — is
returned to the different supply trader agents.

(4) Dispatch. Finally, all supply trader agents calculate the sum of their accepted
hourly bid volumes, which results in their individual hourly load curve to serve.
The agents then determine a cost-minimal dispatch of their power plant fleet,
which serves this load curve under consideration of variable generation costs
and start-up costg}

fuel CcO fuel
+pt-e
b TP + OfM (1)
Tlp

var
p

max Z ( Z (pd *qad ajd) - Z (ps “(gs - $s)> (2&)

Ty Ts,Tmy,
L2 e M \d€Dym SESm

subject to
Z (Qd . md) - Z ((:ZS : xs) + Z (qrmn?r)r(z’ *Tmm! — q;z?;;m . $m’,m) =0 VYmeM
d€Dm, SESm m’'eM},
Der‘n,and Su;)?)ly Exchar?gre flows

(2b)
0<24<1 Vd € Dy,,Ym € M (2¢)
0<z, <1 Vs € Sy, VYme M (2d)
0<zpmym, <1 Vmy,mee M (2e)

!Formally, this step requires to solve a mixed-integer linear optimization problem. However,
to save computational resources, a heuristic approach is applied, such that only close-to-optimal

solutions can be guaranteed.
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where

(Decision variables)

x bid acceptance rate [-]

(Parameters)

P bid price [EUR/MWHh]

q bid volume [MWHh]

(Indices)

d demand bid

S supply bid

m market area

(Sets)

M simulated market areas

M market areas connected to market area m
D,, demand bids submitted in market area m
S supply bids submitted in market area m

It is important to realize that the model-endogenous price forecasts have a direct
impact on the bidding of the different supply trader agents, which in turn drives the
outcome of the market clearing process (cf. Fig. . At the same time, the price
forecasting approaches applied in this paper are continuously updated during the
simulation. For this purpose, the market outcomes of previous auctions are used as
input data. In other words, there exists a mutual dependency between price forecasts
and market outcomes. Thus, poor price forecasts lead to distorted, unsound bidding
behavior and ultimately distorted market outcomes. This aspect is crucial, since
simulated day-ahead market electricity prices are typically one of the major results
of electricity market models.

As previously mentioned, Power ACE was originally developed to analyze the Ger-
man electricity market. If only a single market area is considered, model-endogenous
price forecasts are relatively simple to implement due to the limited number of price
drivers. However, extending the model to a multi-country setup heavily increases the
complexity of creating reasonably accurate price forecasts for all considered market
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Table 1: Overview of power plants’ hourly bidding prices b, depending on the type of the
power plant and the expected online hours. Source: [Fraunholz et al.| (2020).

Case (1): Power plant p (base-/medium-/peak-load) is in the market in all hours h'

bpn = " Vhe H = H
Case (2): Power plant p (base-load) is in the market in some hours h?
bp,n = Vhe H CH
;’:}Ln _ C}\;ar _ C;tart/tgff Vh € H]g)ff CH
brest = it Vhe HY" C H

Case (3): Power plant p (medium-/peak-load) is in the market in some hours h?
b = € 4 1A /en € HOY C H
bph = ¥ + /AL Vhe HYT C H

LIf a power plant is expected to always be in the market, no start-up costs occur and the
hourly bids b, therefore only consist of the variable costs ;.

2 Base-load power plants are expected to temporarily accept market prices below their marginal
generation costs in order to avoid start-up costs in subsequent hours. Thus, variable costs
are bid for the expected running hours Hp" and two different bids are created for each hour
h € HI‘J’ff — the minimum running load of the power plant is bid at variable costs minus

avoided start-up costs c;t"“t

, while the remaining load is bid at variable costs. The avoided
start-up costs are evenly distributed among the expected offline time tgff.

3 If a medium- or peak-load power plant is expected to be in the market only in few hours or
never, the hourly bids consist of variable costs and start-up costs. For expected online times

ty" longer than one hour, start-up costs are distributed evenly.

12



areas. Thus, this paper aims to develop, implement and test novel approaches in
this regard. To the best knowledge of the authors, this crucial aspect with regard to
model accuracy is mostly overlooked to date by simulation-based electricity market
models in the scientific literature (cf. Section [2).

Before delving into the methodological details of the proposed new price forecast-
ing approaches, we have to mention that a single price forecast is created in each
simulated market area, which is then used by all supply traders allocated to a given
market area. We choose this approach first and foremost to reduce the computational
burden. Moreover, the scope of this paper is to highlight the general suitability of
ANNSs in the context of electricity market simulation models. However, extending
our approach to a separate price forecast for each supply trader is straightforward,
since multiple instances of an ANN can easily be created by using different random
number seeds. Moreover, network architecture and training strategies could be varied
to further diversify the price forecasts.

3.2 Artificial Neural Network Model

3.2.1 Preparation of Input Data

The objective of the implemented ANNs is to find model-endogenous relationships
between different input variables and the target variable, i.e., the simulated market
prices. Since the day-ahead electricity markets are cleared such that a balance be-
tween supply and demand is ensured, drivers of both the supply and the demand
side are relevant. Moreover, the market results in a given market area are crucially
affected by the situation in directly or even indirectly interconnected market areas.

We aim to keep our ANNs as simple as possible and therefore base them solely
on fundamental factors, used in similar form, e.g., by Keles et al. (2016a): expected
electricity demand, expected feed-in of renewables, fuel prices, carbon prices, and
available generation capacities. Please note that we always consider the variables of
all modelled market areas, regardless of the market area for which the price forecast
is carried out. This is because the electricity markets of the European countries
are interconnected and therefore mutually influence each other. This is particularly
relevant in the price formation process and therefore also in price forecasting as
recently confirmed by Lago et al. (2018b). Given the model-endogenous character
of our price forecasts and the fact that simulations up to 2050 are carried out, a few
additional particularities need to be considered:

e As is common practice in electricity market models, renewables are assumed to
bid their generation at 0 EUR/MWh. The feed-in of 1 MW renewable electricity

13



is therefore essentially equivalent to a reduction in electricity demand of 1 MW.
Thus, we combine electricity demand and renewable feed-in to a single variable
per market area, the residual demand.

Due to the non-availability of hourly resolved projections up to 2050 in the lit-
erature, we assume constant fuel and carbon prices over the course of a single
year. In consequence, the simulated electricity prices do not contain intra-annual
fluctuations caused by level variations of the fuel and carbon prices. We can there-
fore omit fuel and carbon prices from the list of input variables used in our price
forecasting ANNs.

Power ACE allows for investment decisions and decommissioning of old generation
capacity at the end of each simulation year. Throughout a year, however, constant
availability factors are used for all technologies except for nuclear power plantsﬂ
Thus, only the available generation capacities of market areas with substantial
shares of nuclear power are included in the set of explanatory variables.

The day-ahead price cap in European electricity markets is currently set at
3000 EUR/MWHh. In practice, this limit is (almost) never reached. Contrary,
due to the simulation horizon of PowerACE up to 2050, scarcity situations with
extreme price spikes may well occur in our model. The same is true for hours with
a surplus of renewable electricity generation and prices reaching 0 EUR/MWh or
even becoming negative. These situations are still relatively rare in reality, yet are
likely to occur substantially more often in future simulation years. Thus, unlike
present real-world day-ahead price forecasts, our ANN approach needs to be able
to consider such situations adequately.

Apart from time series for the residual demand in all modelled market areas and

the available capacities in market areas with substantial shares of nuclear power,
we also consider the first differences of the residual demand time series to account

for auto-correlation in load and thus electricity prices (cf. Weron, 2014). Moreover,

since the operation of pumped storage plants does not only depend on the level of
the residual load in a given hour, but also on the load level throughout the day, the
input data for our ANNs also includes the daily arithmetic mean of the residual load
in the respective market area under consideration.

2Nuclear power plants are base-load power plants and therefore rely on as many running hours

as possible. These units therefore typically carry out their annually required revisions in times of

low electricity demand. Thus, seasonal patterns can be observed regarding the available capacities

of nuclear power plants

14
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Figure 3: Overview of the training (a) and forecasting (b) process of the artificial neural net-
works. Two different models are applied, one for price regression (red) and one for classification
to consider extreme situations (blue), i.e., surplus generation setting the price at 0 EUR/MWh
and scarcity resulting in a price of 3000 EUR/MWh.

3.2.2 Model Configuration and Training

For the price forecast using ANNs we apply a two-stage modeling approach, which
is schematically illustrated in Fig. [3]

Firstly, a feedforward neural network is used for a regressionﬂ aiming to explain
the simulated prices in dependence of the residual demands, their first differences and
daily mean as well as the available capacities in all market areas. For the training
of this model (Fig. , red boxes), the input data is filtered to exclude outlier prices
resulting from the must-run capacity exceeding the residual demandﬁ (i.e., a price of

3Please note that we use the term regression to describe the general process of finding relation-
ships between a set of input variables and a set of output variables, regardless of the specific method
applied. Whenever we refer to regression in the meaning of a particular statistical method, we use

the exact name of this method, e.g., linear regression, logistic regression or non-linear regression.
4In reality, even negative prices often occur in such situations. This is because some heat-

controlled conventional power plants need to stay online to fulfill their heat delivery agreements.
Moreover, renewable feed-in is often subsidized such that it can still operate profitably, even under
(slightly) negative prices. In PowerACE, must-run conditions of conventional power plants are not
modelled and all renewables offer their production at 0 EUR/MWh. Thus, prices of 0 EUR/MWh
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0EUR/MWHh) or a scarcity situation (i.e., a price of 3000 EUR/MWh). Next, the
explanatory variables and the response variable are standardized as shown in Eq. ,
where z denotes the standardized variable, x the non-standardized variable, T the
mean of the sample and S the standard deviation of the sample. Standardization is a
common procedure in machine learning to improve training speed and performance.
The network is then trained with the standardized data.

- (3)

Secondly, another feedforward neural network is used to classify the simulated
prices into 1) situations with a renewable surplus setting the price at 0 EUR/MWh, 2)
regular situations with the price being set by any conventional power plant or storage
unit, and 3) scarcity situations with peak prices of 3000 EUR/MWh as shown in Eq.
(4). Please note, that the residual demands’ differences do not have an impact on
whether a renewable surplus or a scarcity situation occurs and are therefore omitted.
For the training of the model (Fig. [3a] blue boxes), the simulated prices are first
categorized and transformed using one-hot encoding. Then, as for the first ANN, the
explanatory variables are standardized and the ANN is trained to obtain the weights
of the classification network.

1, if p=0EUR/MWh
c=<2, ifp>0EUR/MWh A p < 3000 EUR/MWh (4)
3, if p = 3000 EUR/MWh

The ANNSs are trained with random initial weights once every simulation month
to adequately consider recent simulation outcomes. After being trained, the ANNs
are applied to provide day-ahead electricity price forecasts to the trading agents for
every simulation day until the next training is carried out. The forecasting process
is shown in Fig. BBl The input data is first standardized using the respective time
series characteristics (mean and standard deviation) of the training process. Using
the same standardization in training and forecasting is essential to obtain reasonable
forecasts, since the situations to be forecasted need to follow the same statistical
process as the training data. Both the regression ANN and the classification ANN
are then simultaneously applied to obtain forecasts of prices and price classifications.

After prediction, the forecasts are destandardized or set to the fixed value of the
predicted class according to Eq. , respectively. If the classification predicts a
regular situation (¢ = 2), the price forecast of the regression ANN ppelim determines

can only occur in our model, if the feed-in of renewables exceeds the residual demand.
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p. Yet, if according to the classification, a surplus of generation is predicted to set
the price (¢ = 1) or a scarcity situation is predicted to occur (¢ = 3), the price
forecast p is set to 0 EUR/MWh, or 3000 EUR/MWH, respectively. In the literature,
this applied algorithm is also known as a regime-switching model (e.g., Keles et al.|
2012; \Swider and Weber, [2007)).

0EUR/MWh,  ifé=1
P = q Pprelim, if ¢=2 (5)
3000 EUR/MWh, ifé=3

Table 2| provides an overview of the applied hyperparameters in the regression and
classification ANNs. These parameters were found after intense testing and satisfy
the trade-off between computational burden and forecasting accuracy. Most notably,
we use a relatively large batch size of 512 to increase the chance of all three price
classes being included in the majority of the batches. In order to avoid overfitting,
we apply a L2-regularization. This means that the loss term to be minimized dur-
ing training is supplemented by a regularization term r, which is calculated as the
squared Euclidean norm of the weight vector w, multiplied by a small coefficient ¢
as shown in Eq. @ Moreover, early stopping helps to reduce the risk of overfitting
and at the same time limits the time required for the model training. The training
data consists of simulation results from the previous 8760 hours of the simulation
and is adjusted for each new model training using a rolling horizon approach.

r:»s-Hw||§:5-(wf+w§+...+wi) (6)

We are well aware that other and more sophisticated types of ANN than sim-
ple feedforward networks exist. Yet, as also stated by |[Prasanna et al| (2019), in
the context of ABMs with multiple agents interacting dynamically, computationally
efficient lean algorithms are preferable for model-endogenous tasks. We apply two
ANNSs (classification and regression, as described above) in each of the ten market
areas, which are trained monthly over a simulation period of 31 years (2020 until
2050). Consequently, we end up with 2 - 10 - 12 - 31 = 7440 model trainings to be
carried out. Thus, despite acknowledging the potential improvements that recurrent
neural networks or other advanced types of ANN may bring along, we refrain from
implementing such approaches.
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Table 2: Overview of the applied hyperparameters in the regression and classification ANNs.

Hyperparameter Regression ANN Classification ANN

Model class Feedforward network Feedforward network

Input variables! 22 12

Output variables? 1 (day-ahead price) 3 (price categories)

Hidden layers 2 1

Neurons in hidden layers 20/15 10

Activation functions Rectified linear unit/Rectified Rectified linear unit/Softmax
linear unit/Identity

Weight initialization Xavier uniform 1 Xavier uniform 1

Updater Adam (IKingma and Bal, |2017I) Adam (IKingma and Bal, |2017|)
with  «=0.001, p;=0.9, with «=0.001, B =0.9,
Ba =0.999, e = 1078 Bo =0.999, e = 1078

Loss function Mean squared error Multiclass cross-entropy

Regularization L2 with coefficient 10~4 L2 with coefficient 10~*

Training data size 8760 (rolling horizon) 8760 (rolling horizon)

Batch size 512 512

Number of epochs 200 200

Early stopping 10 epochs w/o improved loss 10 epochs w/o improved loss

1 As shown later in Section ten market areas are modelled. The regression ANN uses residual demands,
their first differences and the available capacities in all market areas. Moreover, the daily arithmetic mean
of the residual load in the respective market area under consideration is included. Please note, however,
that only the available capacities in France are considered, since it is the only modelled country with a
substantial share of nuclear power installed and constant availabilities are assumed for all other technologies.
Contrary, the classification ANN omits the first differences of the residual demands, as they do not have
an impact on whether a renewable surplus or a scarcity situations occurs.

2 Since separate forecasting models are created for each market area, the only output variable of the regression
ANN is the day-ahead electricity price in the respective market area. Contrary, the classification ANN

predicts the probabilities of an hour belonging to one of three classes, thus it has three output variables.
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3.2.3 Technical Implementation

The agent-based simulation model PowerACE is programmed in Java. For this rea-
son, we use Deeplearning4]ﬂ, an established deep learning programming library writ-
ten for Java to embed the novel price forecasting approaches based on ANNs into
the existing modeling framework.

Power ACE considers multiple market areas, for each of which a separate price
forecast needs to be carried out. Since these forecasts can be calculated fully inde-
pendent of each other, we use multi-threading to speed-up the training process. We
run PowerACE on a machine with an AMD Ryzen Threadripper 2950X CPU (16
cores at 4.0 GHz) and 128 GB main memory (RAM). As we want to ensure deter-
ministic behavior, the ANNs are initialized with an identical random number seed
in all simulations carried out.

3.3 Benchmark Models

In order to assess the accuracy of the implemented price forecasts based on ANNs,
it is necessary to compare the outcomes with those of some benchmarks. For this
purpose, we implement a naive approach as well as a linear regression approach,
which are briefly described in the following paragraphs.

3.3.1 Naive Price Forecast

The basic idea of the naive price forecast is to use a potential correlation between
prices in a given hour and those of the same hour on the previous day. Alternatively,
it is also common to use the hour of the same weekday in the previous week, to
account for differences between different types of days. More precisely, the price
forecasts py in hour h are calculated very simply as p, = pp_., where x denotes the
respective lag of 24 or 168 hours. Please note that despite the obvious simplicity
of this approach, more advanced but insufficiently calibrated models often fail to
outperform the naive benchmark (Conejo et al., 2005).

3.3.2 Linear Regression Model

A linear regression model is a reasonable additional benchmark, as it ranges between
the naive forecast and the ANN approach with regard to model complexity. Anal-

Shttps://deeplearning4j.org/

19


https://deeplearning4j.org/

ogously to the ANN approach, the implemented linear regression approach consists
of the two separate steps previously introduced in Section [3.2.2]

However, the regression part is carried out as a multiple linear regression rather
than as an ANN. The corresponding relationship is shown in Eq. , where (3
denotes the vector of regression coefficients, x; the vector of explanatory variables
in hour A, and p,, the independent variable, i.e., the price in hour h.

Ph=0 Th (7)

Similarly, a multinominal logistic regression is applied for classification instead
of the second ANN. With K denoting the number of price categories (in our case
K = 3), B the vector of regression coefficients for price category k, and xp the
vector of explanatory variables in hour A, Eq. presents the probability of a given
hour A falling into price category k. For the forecast, the category with the highest
estimated probability ultimately determines the expected category ¢; of the hour h.

Bk Th

K-1 3, ,xp’
Pr(c, = k)= { | F 2w ®)

, fork=K
D

Please note that individual models are used in each considered market area, yet
we omit the index m for better readability. Since a linear predictor function is used
in both, the regression and the classification part, we can interpret this benchmark
as a linear approach, contrary to the non-linear character of the ANNs.

Please note that the type of relationship between electricity prices and the various
explanatory variables is likely to change throughout the simulation in an a priori un-
known fashion. Consequently, we refrain from applying non-linear regression models
as an additional benchmark.

3.3.3 Models Without Classifier

Finally, in order to assess the benefit of handling outliers separately by means of a
classifier, both, the ANN approach and the linear regression approach are additionally
tested in configurations without classifiers, i.e., only the red parts of Fig. [3|are applied
for these cases.
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4 Evaluation of the Forecasting Approaches

In this section, we conduct a multi-country long-term case study using PowerACE
with the newly implemented price forecasting methods. To start with, we provide an
overview of the data used and the scenarios under investigation. Then, we compare
the forecasting performance of the ANN approach and the benchmarks. Finally, we
show how the forecasting accuracy affects the eventual simulated market outcomes,
i.e., the day-ahead electricity prices.

4.1 Data Sources and Scenario Setup

As introduced in Section [3.1, PowerACE is a detailed bottom-up simulation model
and therefore requires substantial amounts of input data. Table [3| provides an
overview of the data used in all simulations presented in the following as well as
the respective sources. Since a major objective of the developed price forecasting
methodologies is the adequate consideration of cross-border effects, the applied ver-
sion of PowerACE covers ten interconnected European countries, all of which are
modelled considering their respective real-world market designﬂ (see Fig. .

We run a total of five simulations with identical input data and only vary the
applied day-ahead price forecasting methodology. The simulations are carried out
with an hourly resolution and cover the time horizon from 2020 to 2050. The different
forecasting approaches investigated are as follows:

e Naive persistence forecast with lag of 24 hours (Naive24 ),

Multiple linear regression with multinominal logistic regression classifier (LRw/C'),

Feedforward neural network with feedforward neural network classifier (ANNw/C'),

Multiple linear regression without classifier (LRw/0C'),

Feedforward neural network without classifier (ANNw/oC').

In the remainder of this paper, we focus on the first three approaches, while the
additional model runs without classifier are only briefly addressed. However, the
complete results of all simulations are included in Appendix [A]

SFor details on the different market design options see [Bublitz et al.| (2019).
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Table 3: Overview of the input data used in all simulations carried out with PowerACE. The

table has been adopted from a previous study (Fraunholz et al., 2019a)) since we make use of

the exact same data sets.

Input data type Resolution  Sources and comments

Conventional power plants unit level — |S&P Global Platts (2015]), and own assump-

tions
Fuel prices yearly EU Reference Scenario (]de Vita et al.|7 |2016I)
Carbon prices yearly EU Reference Scenario (Ide Vita et a1.|, |2016|)7
scaled to reach 150 EUR/tco, in 2050
Investment options yearly |Louwen et a1.| (]2018[); |Schr6der et al.| (I2013I);
Siemens Gamesa (2019)), and own assump-
tions
Interconnector capacities yearly Ten-Year Network  Development Plan
(]ENTSO—E|, |2016|)

Electricity demand hourly, historical time series of 2015 1
market , scaled to the yearly demand given in
area the EU Reference Scenario (de Vita et al.

2016)

Renewable feed-in hourly, historical time series of 2015 1
market , scaled to reach an overall renewable
area share in relation to electricity demand of 80 %

in 2050
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[[] Energy-only market [ ]Strategic reserve
[ Capacity mechanism

Figure 4: Overview of the real-world electricity market designs implemented in the different
countries covered by PowerACE. Only the grey market areas rely on an energy-only market,
whereas the other market areas use different long-term investment support schemes, either a

strategic reserve (yellow) or a capacity mechanism (green). However, as theory suggests no
impact of these mechanisms on the short-term bidding behavior is modelled.
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4.2 Forecasting Performance

In order to compare the forecasting performance of the different approaches under
investigation, we apply two common error metrics in the field of forecasting. Firstly,
we consider the mean absolute error (MAE) between the forecasted hourly electricity
prices p and their simulated realizations p. For a given year y and market area m,
the MAE can be calculated according to Eq. @ Secondly, in order to account for
the general increase of the price level over the course of the simulation (cf. Section
, we also calculate the mean absolute percentage error (MAPE) according to Eq.
(10). Please note that we choose the yearly mean prices p,,, as the denominator
rather than using the hourly realizations p,,,; in order to avoid the adverse effect
of dividing by very low values close to zero in case of very low simulated prices.

MAE 1 8760 A
ems = 360 ; [Py = Doyt (9)
MAPE 1 = |pm7y7h B ﬁm,y,h| . — 1 o
emy = 5760 ; o with  p,,, = 5760 ;pm,y,h (10)

While metrics like the MAE or the MAPE are useful to get a first impression
of one forecast’s superiority over another, they do not provide any notion of the
statistical significance of such a conclusion. Many electricity price forecasting papers
in the literature neglect this aspect. In contrast, as recommended by Weron (2014),
we run one-sided Diebold-Mariano tests (Diebold and Mariano, 1995) on the time
series of absolute errors. Given the structure of the Diebold-Mariano test, we conduct
one-on-one tests for each of the combinations of two forecasting approaches in our
set. As we test the hypothesis that one approach is better than the other in both
directions, this leads to 20 tests per country and a total of 200 tests. Due to the large
amount of data available (31 years from 2020 until 2050 at hourly resolution, i.e., a
total of 31 - 8760 = 271560 data points), these hypothesis tests should then be able
to state at a high significance level, whether the mean of the compared time series
of absolute errors is statistically different from zero (i.e., one forecast is superior to
the other).

In Tables [AH6| we provide the MAEs and MAPEs in all countries and years
for the naive persistence approach (Naive2/), the linear regression approach with
classifier (LRw/C) and the ANN approach with classifier (ANNw/C'), respectively.
For a quick visual overview, the same data are presented as heatmaps for selected

simulation years in Figs. [f] and [6] The results of the additional simulations without
classifier (LRw/0C, ANNw/oC) are provided in Tables [7] and [§| in Appendix [A]
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Figure 5: Mean absolute errors (MAEs) of the different price forecasting approaches in selected
simulation years. The linear regression (LRw/C) and even more so the artificial neural network
approach (ANNw/C) clearly outperform the persistence forecast (Naive24). Driven by the
general increase of the price level (cf. Section , the MAEs increase over the course of the
simulation for all forecasting approaches considered.
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Figure 6: Mean absolute percentage errors (MAPEs) of the different price forecasting ap-
proaches in selected simulation years. The linear regression (LRw/C) and even more so
the artificial neural network approach (ANNw/C) clearly outperform the persistence forecast
(Naive24). In contrast to the MAE, the MAPE accounts for the general increase of the price
level (cf. Section and therefore remains more stable over the course of the simulation.
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The first thing to observe is that the MAEs increase over the course of the sim-
ulation for all forecasting approaches considered. However, this finding is mostly
related to the general increase of the price level as previously mentioned and shown
in the subsequent Section 4.3 Thus, it is reasonable to focus on the MAPESs instead,
which remain more stable throughout the simulation period.

Moreover, we find that unlike in a usual electricity price forecasting context, the
naive method (Naive2/) performs very poorly with MAPEs (averaged over all simu-
lated years) ranging between 0.40 and 0.53 for the different countries. This important
result is due to the mutual dependencies between price forecasts and simulated prices
as described in Section|3.1.2] such that no stable outcome can be achieved. The linear
regression approach (LRw/C) and the ANN approach (ANNw/C'), both equipped
with an additional classifier, clearly outperform the naive approach with MAPEs
ranging from 0.17 to 0.32 and 0.17 and 0.21, respectively.

Please note, however, that these results are strongly affected by very few wrongly
classified outlier prices. To show this, we additionally remove the 0.25% worst fore-
casts of each approach and for each country and recalculate the MAEs and MAPEs
for the remaining 99.75% of the forecasted prices. The results for all five approaches
are shown in Tables in Appendix [A] We can observe that, although only very
few data points have been removed, the error metrics improve substantially. The ad-
justed MAPE for the ANNw/C" approach decreases to values between 0.12 and 0.16
for the different countries, and the LRw/C approach improves to values between 0.13
and 0.26. Given the complex dynamic setup with several mutual dependencies, we
therefore consider the forecasts of the ANNw/C approach to be sufficiently accurate.

Regarding the benefit of using an additional classifier, we can state that this is
much more relevant for the linear regression than for the ANN. This finding is rather
straightforward: While the ANN approach is capable of handling outlier prices quite
well even without a classifier, the linear regression approach is strongly distorted
when fit to data sets including few, but extreme outliers. This is because not the
entire value space is covered by observations and linear relationships fail to replicate
large variations in the dependent variable with only moderate variations in explaining
variables. For the detailed results of the approaches without classifier, please refer
to Appendix [A]

What remains to be proven is whether the differences between the forecasting
approaches are statistically significant. For this purpose, Fig. [7] presents the results
of the Diebold-Mariano tests, which allow us to assess whether there is a clear rank
of the approaches. We find the ANNw/C method to outperform both, the LRw/C
approach and the Naive2/ approach, at a very strong significance level p < 0.01.
Moreover, LRw/C' is superior to Naive24, also at a significance level p < 0.01. The
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Figure 7: Results of the Diebold-Mariano tests conducted to evaluate the statistical significance
of the superiority of one forecasting approach over another. Reading example: ANNw/C
(Design 1) is superior to Naive24 (Design 2) in all countries at a significance level p < 0.01 as

depicted by the respective grey tone.

only exception from these results is Poland, where LRw/C is able to outperform
ANNw/C.

When it comes to the benefit of the additional classifier, the Diebold-Mariano
tests confirm the previously described findings (see Fig. |§| in Appendix : While
the linear regression with classifier (LRw/C') clearly outperforms the approach with-
out classifier (LRw/0C') in all considered countries (significance level p < 0.01, as
before), this does not apply for the ANN approach. However, also the ANN approach
with classifier (ANNw/C') is statistically significantly better than the one without
classifier (ANNw/oC') in six out of ten countries, with one draw (no significantly bet-
ter approach in Switzerland) and three defeats. Thus, while the focus of our paper is
not on whether or not classifiers should be used, we can still state that the practice
of doing so seems leads to preferable outcomes. Yet, the use of a classifier is clearly
much more relevant when working with linear rather than non-linear approaches.

4.3 Impact of Forecasting Accuracy on Market Outcomes

Instead of solely focusing on the forecasting performance, we now want to inspect
another key aspect of model-endogenous price forecasting: the impact on the eventual
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market outcomes of the simulation. For this purpose, Fig. [§| shows the development
of the volume-weighted average prices in all simulated market areas.

Firstly, we can observe a notable increase of the general price level as the simu-
lation moves on. This is related to the model assumptions described in Section
most notably the assumed increase of the carbon price to 150 EUR /tco, in 2050 with
20% of the electricity demand remaining to be covered by non-renewable generation
in this year.

Secondly, however, we can also observe that the price curves of the LRw/C and
the ANNw/C approaches appear to be quite similar, while the price level using the
Naive2j method is elevated. This is an important finding as it directly highlights
the crucial importance of sufficiently accurate model-endogenous price forecasts in
ABMs of electricity markets. Otherwise, distorted bidding behavior may occur, e.g.,
if agents incorrectly assume that start-up costs occur and integrate these into their
bids. Ultimately, this may result in distorted market outcomes. In that sense, the
prices simulated under the more accurate price forecasts can be expected to be closer
to reality, since real-world electricity price forecasting is a very advanced field with
high levels of accuracy. This aspect is crucial, since simulated day-ahead market
electricity prices are typically one of the major results of electricity market models.

An interesting side result of our analyses is that we indirectly confirm the state-
ment of Ghoddusi et al,| (2019), who claim that real-world electricity markets have
already become much more efficient through the use of more sophisticated price
forecasting methods. Thus, the benefit of increasing forecasting performance even
further may be limited.

Yet, our most important finding is that while ANN approaches are found to be
very useful in the context of ABMs and are increasing the quality and reliability
of the model results, simpler approaches, e.g., based on linear regression, can be
considered as a feasible alternative in future work. In our particular case, a linear
regression with logistic classifier, too, performs reasonably well (only slightly worse
than the ANN), but reduces the computational time required for the price forecasts
by roughly 60% as compared to the ANN approach.

5 Conclusion and Outlook

In this article, we developed an electricity price forecasting technique using artificial
neural networks and successfully integrated the novel approach into the established
agent-based electricity market simulation model Power ACE. Our proposed method-
ology combines the fields of machine learning and agent-based modeling, both of
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than the other two approaches, which highlights the crucial importance of forecasting accuracy.

3

w



which are very popular in the field of energy research.

In a case study covering ten interconnected European countries and a time hori-
zon from 2020 until 2050 at hourly resolution, we benchmarked the new forecasting
approach against a more simple linear regression model as well as a naive persistence
forecast. Using Diebold-Mariano hypothesis tests, we then evaluated the statisti-
cal significance of the superiority of one approach over another. The major results
of our simulations can be summarized as follows. Firstly, in contrast to real-world
electricity price forecasts, we found naive approaches to perform very poorly when
deployed model-endogenously in an agent-based framework. Secondly, although the
linear regression performs reasonably well, it is outperformed by the neural network
approach, which we could prove with strong statistical significance. Thirdly, the use
of an additional classifier for outlier handling substantially improves the forecasting
accuracy, particularly when linear approaches are deployed. Fourthly, the choice of
the model-endogenous forecasting method has a clear impact on simulated electric-
ity prices, which is crucial since these prices are a major results of electricity market
models. Please note that this finding does not only apply to our particular simulation
model, but is relevant for any agent-based approach in the field of electricity market
simulation that relies on a price forecast to define agents’ actions.

On the one hand, we can conclude that despite the superiority of the neural
network approach, less computationally expensive approaches, e.g., based on linear
regression, should always be considered as an alternative. If well fit to the scope,
such approaches may — as in our particular case — come close to the accuracy of more
advanced methods, yet at a much lower computational burden.

However, on the other hand, we are also well aware that far more sophisticated
types of neural networks exist than simple feedforward networks we used. While
the objective of our study was mostly on showing the potential of integrating neural
networks into an agent-based modeling framework, we can well imagine that more
advanced methods may bring additional benefits. In particular, recurrent neural
networks may help to better account for time dependencies caused by electricity
storage. Yet, the trade-off between accuracy and computational performance always
needs to be considered.

Although our analysis focused on one particular field of application, we also see
great potential in the joint application of methods from machine learning and agent-
based modeling in other research contexts. Thus, we hope that our paper serves as
a starting point and encourages fellow researchers to adapt our approach to their
respective field of application.
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A Additional Results

Tables [ and [§ show the MAEs and MAPEs in all countries and years for the linear
regression approach without classifier (LRw/0oC) and the ANN approach without
classifier (ANNw/oC), respectively. In Fig. [9] the results of the Diebold-Mariano
tests are depicted for all investigated forecasting approaches. Moreover, in Tables
adjusted MAEs and MAPEs with the 0.25% worst forecasts per country and
approach being filtered are presented. This highlights the strong impact of few
wrongly classified extreme outlier prices.
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