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Abstract
When exposed to time-dependent magnetic fields, REBCO Roebel cables generate AC loss
resulting from both magnetic hysteresis and induced inter-strand coupling currents. Until now,
the AC loss has been computed in a two-dimensional approximation assuming fully coupled or
decoupled strands, and a finite inter-strand resistance could be simulated only with
three-dimensional models. In this work, we propose a homogenization procedure that reduces
the three-dimensional geometry of the Roebel cable to two dimensions, without ignoring
connections between the strands. The homogenized cable consists of two parallel ‘monoblocks’
with an anisotropic resistivity. The proposed model enables computation of AC coupling loss
without the need for complex three-dimensional simulations. For experimental validation, a
Roebel cable with soldered strands was prepared. The inter-strand resistance was determined by
applying a transverse current and measuring the voltage profile. Additionally, the AC
magnetization loss of the cable was measured in fields of 1 to 50 mT with frequencies of 1 to
2048 Hz using a calibration-free technique. With the measured inter-strand resistance as input
parameter, the monoblock model gives a good estimate for the AC loss, even for conditions in
which the coupling loss is dominant.

Keywords: roebel cable, ac losses, coupling losses, hts coated conductors

(Some figures may appear in colour only in the online journal)

1. Introduction

The Roebel cable is a way to make fully transposed cables of
REBCO coated conductors [1] (REBCO = rare-earth metal
barium copper oxide). Short lengths of REBCO Roebel cable
were first demonstrated by Karlsruhe Institute of Technology
(KIT) [2] and Industrial Research ltd. (IRL) [3]. IRL later

Original Content from this work may be used under the
terms of the Creative Commons Attribution 4.0 licence. Any

further distribution of this work must maintain attribution to the author(s) and
the title of the work, journal citation and DOI.

automatized the cable assembly process and developed
methods for quality control [4, 5]. Roebel cables have
been considered for use in high-field accelerator [6, 7] or
fusion magnets [8], and also for power applications such
as transformers [9, 10]. A unique property of REBCO
Roebel cables is that the strands are transposed, but not
twisted, and the anisotropic properties of coated con-
ductors are retained. This enables magnet designs that
exploit these anisotropic properties, such as ‘aligned-block’
coils, which use the maximum critical current density by
aligning the conductor with the magnetic field [11]. The
strands in REBCO Roebel cables are usually not insulated
in order to create alternative paths for the current in
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case of defects. A disadvantage is that a time-dependent
magnetic field can induce inter-strand coupling currents,
which lead to an increase in AC loss [12]. In order to
predict the level of AC loss, electromagnetic modelling of
Roebel cables is required. Several different approaches are
already described in literature: often a cross-section of the
Roebel cable is extended to infinity in order to reduce the prob-
lem from three to two dimensions [13–18]. More advanced
three-dimensional models also exist [19–22]. However, none
of these models take into account a finite resistance between
the strands, and thus cannot predict coupling losses. A net-
work model developed by van Nugteren et al simulates the
three-dimensional cable taking into account coupling between
the strands [23]. To our knowledge this is the only numerical
model for Roebel cables that can predict AC coupling losses.

In this work, we aim to compute the magnetization AC
loss in a Roebel cable with finite inter-strand resistance using
a two-dimensional model, and evaluate it with an experi-
ment. An approximation using a homogenization procedure is
applied to evaluate the cable geometry in 2D including connec-
tions and interconnects between strands. This is done using a
‘monoblock’ model with anisotropic resistivity. The AC loss
predicted by the monoblock model is compared to measure-
ments on a cable with controlled inter-strand resistance. The
magnetization AC loss is measured over a wide range of fre-
quencies (1–2048 Hz) and amplitudes up to 50 mT. Due to
limitations of the set-up, we have not been able to validate the
model for higher amplitudes.

2. Monoblock model

A Roebel cable is a complex three-dimensional structure. The
aim is to simplify the cable to a two-dimensional geometry,
without neglecting the influence of finite resistance between
the strands. We consider a cable with Ns strands and a trans-
position length ℓt (see figure 1(a)). The strands have a thick-
ness ds and awidthws. The width of the entire cable is given by
W. The first step of the simplification is neglecting the influ-
ence of the cross-overs, where the strand go from one cable
half to the other. The result is a ‘tilted stack model’, as shown
in figure 1(b). Since the strands move up and down along the
cable length, they have an angle with respect to the longitud-
inal x-direction. As seen from the sketch, this angle is given
by:

tan(α) =
Nsds
ℓt

(1)

The second step is homogenizing the tilted stack into a uniform
‘monoblock’ (figure 1(c)). The monoblock is invariant in the
x-direction, and thus a two-dimensional electromagnetic cal-
culation in the yz-plane suffices. The monoblock has an aniso-
tropic resistivity: In the direction parallel to the conductor,
the block behaves as a superconductor, while perpendicular
to the conductor the finite inter-strand resistance causes resist-
ive behaviour. In general, the electric field and current density
in the frame of the conductor are related by:[

E∥
E⊥

]
=

[
ρ∥ 0
0 ρ⊥

][
J∥
J⊥

]
(2)

Figure 1. The simplification procedure for a Roebel cable with six
strands.

where E∥,ρ∥,J∥ and E⊥,ρ⊥,J⊥ are the electric field, resistiv-
ity and current densities in the directions parallel and perpen-
dicular to the conductor, respectively. The conductor frame is
rotated with respect to xz-frame by an angle α in clockwise
direction. The current densities in both frames are thus related
by a rotation matrix:[

J∥
J⊥

]
=

[
cos(α) −sin(α)
sin(α) cos(α)

][
Jx
Jz

]
(3)

In the same way one can find for the electric field:[
Ex
Ez

]
=

[
cos(α) sin(α)
−sin(α) cos(α)

][
E∥
E⊥

]
(4)

Substitution of equations (2) and (3) into (4) results in the fol-
lowing E(J) relation in the xz-frame:[
Ex
Ez

]
=

[
cos(α) sin(α)
−sin(α) cos(α)

][
ρ∥ 0
0 ρ⊥

]
×
[
cos(α) −sin(α)
sin(α) cos(α)

][
Jx
Jz

]
=

[
ρ∥ cos2(α)+ ρ⊥ sin2(α)

(
ρ⊥ − ρ∥

)
sin(α)cos(α)(

ρ⊥ − ρ∥
)
sin(α)cos(α) ρ⊥ cos2(α)+ ρ∥ sin

2(α)

]
×
[
Jx
Jz

]
(5)

If ρ∥ = ρ⊥, the diagonal entries of the resistivity matrix are
equal and the off-diagonal elements of are zero, and thus
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Ohm’s law is retrieved.The perpendicular resistivity ρ⊥ is
a constant related to the inter-strand resistance, and can be
experimentally determined. This will be discussed further in
section 4.1. To simulate the behaviour of a superconductor, a
non-linear power-law is used for the parallel resistivity:

ρ∥ =
Ec
|J∥|

∣∣∣∣J∥Jc
∣∣∣∣n (6)

In this equation, Jc is the critical current density of the
monoblock, Ec is the electric field if J∥ = Jc, and n is a non-
linearity index. The value ofEc needs to match the critical field
used to determine Jc frommeasured IV-curves.We used a con-
ventional value of Ec = 10−4 V/m. Once the current distribu-
tion and electric field have been found, the power density can
be obtained from the dot product:

p= E · J= E∥J∥ +E⊥J⊥ (7)

The first term is related to currents in the plane of the super-
conducting tape, and will be referred to as hysteresis loss. The
second term results from currents between the strands and will
be called coupling loss. The loss per cycle is found by integ-
ration of the power density over the monoblock cross-section
and a full cycle of the magnetic field in time.

3. Numerical solution

3.1. Integral formulation

The monoblock model will now be used to compute the AC
loss in a time-dependent but spatially uniform magnetic field
perpendicular to the x-axis, assuming zero transport current.
The current distribution is found numerically using an integral
form of Maxwell’s equations [24, 25]. The advantage of this
formulation is that, unlike in a differential form, no boundary
conditions are required, and the equations have to be solved
only in the conductor volume. This makes the method con-
venient to implement for simple geometries such as the rect-
angular monoblock considered here. This section will give a
short description of our implementation of the method, which
is described in more detail in our previous publication [26].

The vector potential in the x-direction can be expressed as
follows:

A(y,z, t) = Aext(y,z, t)−
µ0

2π

∞̂

−∞

∞̂

−∞

× ln

(√
(y− y′)2 +(z− z′)2

)
J(y′,z′, t)dy′dz′

(8)

In this equation, Aext is a the vector potential related to the
applied field and J(y, z, t) is the current density in the x-
direction. The conductor cross-section is divided in rectangu-
lar elements numbered i= 1, 2,…,N, each carrying a uniform
current density Ji (see figure 2). The vector potential can now

be written as a sum:

Ai = Aext,i+
µ0

2π

N∑
j=1

KijJj (9)

where the elements of K are given by

Kij =−
djˆ

cj

bjˆ

aj

ln

(√
(yi− y′)2 +(zi− z′)2

)
dy′dz′ (10)

Element j is bounded by aj < y< bj, cj < z< dj and (yi,zi)
is a point in the center of element i. The expression for K
can be evaluated by substituting u= yi− y′, v= zi− z′ and
repeatedly integrating by parts:

Kij =−1
2

[
[g(u,v)]yi−bj

u=yi−aj

]zi−dj

v=zi−cj
(11)

g(u,v) = uv
(
ln(u2 + v2)− 3

)
+ u2 tan−1

( v
u

)
+ v2 tan−1

(u
v

)
(12)

As seen from figure 2, the problem is symmetric after a
rotation of 180

◦
around the x-axis. The rotation changes the

sign of themagnetic field and thus the following relations hold:

B(−y,−z, t) =−B(y,z, t) (13)

E(−y,−z, t) =−E(y,z, t) (14)

J(−y,−z, t) =−J(y,z, t) (15)

By taking advantage of this symmetry, only one half of the
cable needs to be simulated. This reduces the number of
unknowns by half and improves the computation time by
rougly a factor four (see table 1). The matrix K taking into
account the symmetry becomes:

Kij =−1
2

[
[g(u,v)]yi−bj

u=yi−aj

]zi−dj
v=zi−cj

+
1
2

[
[g(u,v)]yi+aju=yi+bj

]zi+cj
v=zi+dj
(16)

Using the fact that ∂A/∂t=−E−∇ϕ and assuming that the
gradient of the electric potential ∇ϕ is zero, equation (9) can
be rewritten to:

N∑
j=1

Kij
∂Jj
∂t

=−2π
µ0

(
Ex,i+

∂Aext,i

∂t

)
(17)

This system of ordinary differential equations is numerically
integrated to find the current distribution in time. For the simu-
lations in this work,Matlab’s built-in solver ‘ode15s’ was used
[27].
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Figure 2. Division of the monoblock in rectangular elements with uniform current density. This figure shows a cross-sectional plane, to
which the current flows perpendicular.

Table 1. Computation time for the full geometry (N = 800) or only
one half exploiting symmetry (N = 400) with a 100 Hz applied field
of different amplitudes (CPU: Intel Core i5-6500).

B0 [mT] time (full) [s] time (half) [s]

1 8.4 2.4
2 11.9 3.5
5 19.9 5.4
10 28.7 8.0
20 42.8 11.0
50 64.2 17.4

3.2. Evaluation of the right-hand side of equation (17)

In order to evaluate the right-hand side of (17), the electric
field must be computed from the current distribution. This
is done using the anisotropic E(J) relation resulting from
the monoblock model (equation (5)). A difficulty is that the
monoblock model considers two components of the current,
while the numerical approach solves for the x component only.
To overcome this problem, inductive effects in the direction
perpendicular to the conductor are neglected. In other words, it
is assumed that transfer current between two strands is always
homogeneously distributed over the width of the contact sur-
face. The assumption makes it possible to eliminate the per-
pendicular current. However, it is not valid for very high fre-
quencies at which skin effects influence the distribution of
coupling currents. The effect on AC loss at such high frequen-
cies will be discussed in further in section 4.3. From equation
(3) we have:

J⊥ = sin(α)Jx+ cos(α)Jz (18)

By integration over the strand width we find:

y2ˆ

y1

J⊥dy= sin(α)

y2ˆ

y1

Jxdy+ cos(α)

y2ˆ

y1

Jzdy (19)

where y1 = W
2 −ws and y2 = W

2 . The first term is just wsJ⊥
under the assumption of uniform current transfer. The third
integral is zero because no net current can flow in the vertical

direction. Therefore the perpendicular current is described by:

wsJ⊥ = sin(α)

y2ˆ

y1

Jxdy (20)

By solving equation (18), Jz can now be expressed in terms of
Jx:

Jz =
J⊥ − sin(α)Jx

cos(α)

=
1

cos(α)

 sin(α)
ws

y2ˆ

y1

Jxdy− sin(α)Jx


=− tan(α)

Jx− 1
ws

y2ˆ

y1

Jxdy

 (21)

Now that Jz is known, Ex can be computed using equation (5):

Ex =
(
ρ∥ cos

2(α)+ ρ⊥ sin2(α)
)
Jx+

(
ρ⊥ − ρ∥

)
sin(α)cos(α)Jz

(22)

The second term of the right-hand side of equation (17) is
the external contribution to the vector potential. The external
contribution is chosen to be:

Aext(y,z, t) = B0 sin(ωt)(zcos(β)− ysin(β)) x̂ (23)

so that:

Bext(y,z, t) =∇×Aext = B0 sin(ωt)(cos(β)̂y+ sin(β)̂z)
(24)

Thus β is the angle between the applied magnetic field and
the y-axis. Note that this choice of Aext respects the rotational
symmetry and the invariance along x.
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Table 2. Properties of the cable sample and derived quantities α,ρ⊥
and Jc used for the monoblock model.

Cable width W 4.0 mm
Strand width ws 1.9 mm
Strand thickness ds 0.10 mm
Transposition length ℓt 50 mm
Sample length ℓ 150 mm
No. of strands Ns 6
Strand critical current Ic 50.2 A
n-value n 23.7
Adjacent inter-strand resistance ρa 0.265 µΩ m
Crossing inter-strand resistance ρc 1.07 µΩ m
Conductor angle α 0.012 0 rad
Perpendicular resistivity ρ⊥ 4.04 µΩ m
Monoblock critical current density Jc 264 A/mm2

4. Experiment

4.1. Sample preparation

In order to study the effect of partial coupling more closely, we
prepared a Roebel cable whose strands are soldered together.
The cable properties are listed in table 2. A 4-mm-wide coated
conductor manufactured by SuperPower (SCS4050-AP) was
used. As specified by the manufacturer, this wire has a min-
imum self-field critical current of 109 A and an average of
111 A at 77 K. Six strands of 1.9 mm width were prepared
by laser-cutting. A short transposition length of 50 mm was
chosen so that three full transpositions could be measured in
the limited sample area of the AC loss set-up. The critical cur-
rent of the separate strands was measured in a liquid nitrogen
bath (77 K). The average critical current was 50.2± 2.8 A and
the n-value was 23.7± 1.4. The average critical current per
unit width was 27.8 A/mm before and 26.4 A/mm after cut-
ting, a decrease of 5%. The strands were then degreased and
pre-soldered with In52Sn48 using rosin flux. The pre-soldered
strands were then assembled into a cable, and the cable was
once more heated to 170

◦
C under slight pressure to solder the

strands together.
The monoblock critical current density was approximated

by normalizing the strand critical current to the cross-sectional
area which gives Jc = 264 A/mm2. The field dependency of
the critical current was not taken into account.

4.2. Inter-strand resistance

Roebel cables, like Rutherford cables, consist of a single
layer of transposed strands. Even though the shape of the
strands is very different, both cable types are topologically the
same. Inter-strand connections in Rutherford cables are com-
monly described using a network model with two parameters
[28–30], as shown in figure 3. Rc is the resistance at the point
where a strand in the lower touches one in the upper layer.
This connection occurs twice each transposition length for
any pair of strands. A resistor of Ra connects adjacent strands
and occurs 2Ns times in each transposition length. In order to
adapt this inter-strand resistance network for the continuum
model, we introduce length-averaged values for the resistance

Figure 3. Inter-strand resistance model used for Rutherford cables.
Image copied from [31] with permission from Arjan Verweij.

between adjacent and non-adjacent strands:

ρa =
ℓt
2Ns

Ra (25)

ρc =
ℓt
2
Rc (26)

Both quantities have units of Ω m. The resulting inter-strand
resistance network for a cable of length ℓ is shown in figure 4.

The values of ρa and ρc were determined by applying a cur-
rent between strand 3 and strand 6 and recording the voltage
profile. This measurement was done at 77 K and therefore
the strands were in the superconducting state. Because the
applied current of 10 A is much lower than the critical cur-
rent, the strands can be assumed to be equipotential planes.
The strands can therefore be represented by the nodes of
an electrical network, as shown in figure 4. By least-squares
fitting of the network model to the measured voltage pro-
file, inter-strand resistance values of ρa= 0.265 µΩ m and
ρc= 1.07 µΩ m were found. The monoblock model considers
current transfer between adjacent strands only. These are con-
nected by ρa and ρc in parallel, thus the unit-length resistance
between adjacent strands is (1/ρa+ 1/ρc)−1. By multiplying
this value with the strands width ws, the surface contact resist-
ance is obtained. The perpendicular volume resistivity of the
monoblock is found bymultiplying this contact resistancewith
the number of contacts per unit length 1/ds.

ρ⊥ =

(
1
ρa

+
1
ρc

)−1 ws
ds

= 4.04 µΩm (27)

4.3. AC loss measurement

The AC loss per cycle in a sinusoidal field was measured
at 77 K using a calibration-free technique [32]. The applied
magnetic field was uniform in space and perpendicular to the
wide face of the cable (β= 90

◦
). The measurements as well

as the calculations using the monoblock model are shown in
figure 5.
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Figure 4. Inter-strand resistance measurement scheme (left) and result (right). The least-squares fit is found for ρa= 0.265 µΩ m and
ρc= 1.07 µΩ m.

Figure 5. Measured and calculated AC loss of the soldered Roebel
cable as a function of frequency and for field amplitudes ranging
from 1 to 50 mT.

Hysteresis loss is frequency independent according to the
critical state model [33], although it can have a slight fre-
quency dependence when a finite steepness of the transition
is taken into account [34, 35]. Coupling currents are expec-
ted to have a stronger frequency dependence of the form
ω/(1+ (ωτ )2) [36], where τ is a decay time constant. To be
able to detect the frequency dependent coupling loss, themeas-
urement is done over a frequency range as wide as possible.

At the lowest amplitude of 1 mT, the AC loss increases
by an order of magnitude as the frequency goes from 1 Hz to
1 kHz. This is seen in both the measurement and the calcula-
tion. Below penetration, the hysteresis losses are proportional
to the third power of the magnetic field amplitude, while the
coupling losses only increase with the amplitude squared. This
explains the lower frequency dependence at higher amplitudes.

There is a reasonable agreement between calculation
and measurement for frequencies up to 1 kHz. At higher

Figure 6. Contributions of hysteresis and coupling to the AC loss
for field amplitudes of 1 and 10 mT.

frequencies, a decrease in AC loss is observed in both meas-
ured and predicted AC loss. Such a peak in AC loss of multi-
filamentary conductors can be explained using skin effect the-
ory [37]. Due to limitations of the set-up, we could obtain only
two measurement points at on the right side of the peak. The
model could therefore not be adequately validated for these
conditions.

In figure 6, the different contributions to the total loss can
be seen in more detail. At the lowest frequencies (f < 10 Hz),
the loss is dominated by hysteresis loss. The hysteresis loss
has a very slight frequency dependence due to the finite n-
value [34, 35]. The coupling loss increases linearly with fre-
quency and becomes the dominant contribution for frequen-
cies above roughly 100 Hz. At the highest frequencies, the
coupling loss is limited by a skin effect [13]. We observe a
remarkable drop of the hysteresis loss near 1 kHz. Above this
frequency the strands become effectively coupled, which leads
to lower hysteresis loss at field amplitudes below penetration

6
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Figure 7. Current distribution and magnetic field lines at peak field (B0 = 10 mT) at frequencies of 100 Hz and 10 kHz.

[14]. This effect is illustrated in figure 7, which shows the cur-
rent distribution and magnetic field at frequencies of 100 Hz
and 10 kHz. At 10 kHz, coupling currents shield the center
from the external field. As a result, very little flux enters the
superconductor from the cable center, and hysteresis loss is
reduced.

5. Summary and outlook

The monoblock approximation reduces the three-dimensional
cable geometry to much simpler two-dimensional problem. A
finite resistance between strands can be introduced into the
monoblock model by using an anisotropic resistivity. In this
way, induced coupling currents and associated losses can be
computed. We have used an integral formulation of Maxwell’s
equations to numerically solve the monoblock model.

A Roebel cable with soldered strands was prepared to val-
idate the model. The inter-strand resistance was measured by
applying a current between opposite strands and recording
the voltage profile over all strands. From the measured inter-
strand resistance, an equivalent perpendicular resistivity of the
monoblock of ρ⊥ = 4.04 µΩm was found. The AC magnet-
ization loss of the cable was measured using a calibration-
free technique in magnetic fields amplitudes ranging from 1
to 50 mT. The measured loss had a reasonable agreement with
the monoblock model for frequencies up to 1 kHz. Due to lim-
itations of the set-up, it was not possible to validate the model
at higher frequencies, at which the loss characteristic of the
sample may be influenced by skin effects.

The approximation with a uniform but anisotropic material
may be used as well for coupling loss calculations in other
structures involving tilted stacks of coated conductors, such
no-insulation racetrack or pancake coils. This will be the topic
of a future investigation.
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Vojenčiak M 2014 Roebel cables from REBCO coated
conductors: a one-century-old concept for the
superconductivity of the future Supercond. Sci. Technol. 27
093001

[2] Goldacker W, Nast R, Kotzyba G, Schlachter S I, Frank A,
Ringsdorf B, Schmidt C and Komarek P 2006 High current
DyBCO-ROEBEL assembled coated conductor (RACC) J.
Phys.: Conf. Series 43 901–4

[3] Long N J, Badcock R, Beck P, Mulholl M, Ross N, Staines M,
Sun H, Hamilton J and Buckley R G 2008 Narrow strand
YBCO roebel cable for lowered AC loss J. Phys.: Conf.
Series 97 012280

[4] Badcock R A, Long N J, Mulholland M, Hellmann S, Wright
A and Hamilton K A 2009 Progress in the manufacture of
long length ybco roebel cables IEEE Trans. Appl.
Supercond. 19 3244–7

[5] Long N J, Badcock R A, Hamilton K, Wright A, Jiang Z and
Lakshmi L S 2010 Development of YBCO roebel cables for
high current transport and low AC loss applications J.
Phys.: Conf. Series 234 022021

[6] Rossi L et al 2015 The eucard-2 future magnets european
collaboration for accelerator-quality hts magnets IEEE
Trans. Appl. Supercond. 25 4001007

[7] Lorin C et al 2015 Cos-theta design of dipole inserts made of
rebco-roebel or bscco-rutherford cables IEEE Trans. Appl.
Supercond. 25 4000305

[8] Kario A, Vojenciak M, Grilli F, Kling A, Ringsdorf B,
Walschburger U, Schlachter S I and Goldacker W 2013
Investigation of a rutherford cable using coated conductor
roebel cables as strands Supercond. Sci. Technol. 26 085019

[9] Glasson N, Staines M, Allpress N, Pannu M, Tanchon J, Pardo
E, Badcock R and Buckley R 2017 Test results and
conclusions from a 1 mva superconducting transformer
featuring 2g hts roebel cable IEEE Trans. Appl. Supercond.
27 5500205

[10] Fetisov S S et al 2016 Development and characterization of a
2g hts roebel cable for aircraft power systems IEEE Trans.
Appl. Supercond. 26 4803204

[11] van Nugteren J, Kirby G A, de Rijk G, Rossi L, Kate H H J
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