Automated Cloud-to-Cloud Migration of Distributed Software Systems for Privacy Compliance

Master’s Thesis of

B.Sc. Philipp Weimann

at the Department of Informatics
Institute for Program Structures and Data Organization (IPD)

Reviewer: Prof. Dr. Ralf H. Reussner
Second reviewer: Jun.-Prof. Dr.-Ing. Anne Koziolke
Advisor: Dr. rer. nat. Robert Heinrich
Second advisor: Dipl.-Inform. Kiana Rostami

I declare that I have developed and written the enclosed thesis completely by myself, and have not used sources or means without declaration in the text.

Karlsruhe, 07.07.2017

..

(B.Sc. Philipp Weimann)
Abstract

With the steadily increasing number of (distributed) cloud systems and more strict data protection regulations, an increasing interest in privacy law compliant cloud applications arises. Many distributed cloud systems are operated without knowing whether the system is compliant the law. When in 2018 the new EU Data Protective Regulations come into force, severe punishments are possible if law violations are detected. A major factor to privacy compliance is the distribution of personal data among the geo-location. We developed, formalized, implemented and evaluated a privacy analyser to ensure privacy law compliance. Further, we extend iObserve after the MAPE feedback loop for automated privacy violation detection, alternative deployment generation and an according cloud system adaptation. This way we can provide continuous privacy compliance on a software architecture level, without code analysis. However, we require the closed world assumption for privacy compliance. PerOpteryx is used for the generation of an alternative, privacy compliant system deployment. Based on this alternative we compute a series of adaptation steps to re-establish privacy compliance. On error occurrence, we make use of the operator-in-the-loop approach of iObserve to help with the system evolution. iObserve and PerOpteryx use the Palladio Component model as Architecture Description Language. In this thesis, we are describing our concepts, point out implementation details and evaluate the iObserve extension. The accuracy evaluation shows our system works as intended and the scalability evaluation reveals the good performance characteristics.
Zusammenfassung

Contents

Abstract ... i

Zusammenfassung iii

1 Introduction 1
 1.1 Motivation 1
 1.2 Problems 2
 1.3 Goals and Research Questions 2
 1.4 Outline 3

2 Foundations 5
 2.1 MAPE-K loop 5
 2.2 Palladio Component Model 5
 2.3 Kieker 6
 2.4 iObserve 6
 2.5 PerOpertyx 7

3 Privacy Concept 9
 3.1 General Concept 9
 3.2 Deployment Constraints 10
 3.3 Component categorization 12
 3.4 Information storage 12

4 Overview 15

5 PCM Extension 17
 5.1 General 17
 5.2 Implementation 17

6 iObserve Extension 19
 6.1 Kieker 19
 6.2 iObserve Privacy 20

7 Privacy Analysis 23
 7.1 Analysis Theory 23
 7.1.1 Required information 23
 7.1.2 Data-flow direction 24
 7.1.3 Joining data streams 24
 7.2 Component categorization 25
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.3</td>
<td>Deployment analysis</td>
<td>27</td>
</tr>
<tr>
<td>7.4</td>
<td>Privacy Analysis implementation</td>
<td>28</td>
</tr>
<tr>
<td>7.4.1</td>
<td>Information preprocessing</td>
<td>29</td>
</tr>
<tr>
<td>7.4.2</td>
<td>Component categorization implementation</td>
<td>29</td>
</tr>
<tr>
<td>7.4.3</td>
<td>Deployment analysis implementation</td>
<td>30</td>
</tr>
<tr>
<td>8</td>
<td>PerOpteryx Extension</td>
<td>33</td>
</tr>
<tr>
<td>8.1</td>
<td>Plug-in Design</td>
<td>33</td>
</tr>
<tr>
<td>8.2</td>
<td>PerOpteryx Modification</td>
<td>33</td>
</tr>
<tr>
<td>9</td>
<td>System Adaptation</td>
<td>35</td>
</tr>
<tr>
<td>9.1</td>
<td>Adaptation Planning</td>
<td>35</td>
</tr>
<tr>
<td>9.1.1</td>
<td>Adaptation Actions</td>
<td>36</td>
</tr>
<tr>
<td>9.1.2</td>
<td>Action Ordering</td>
<td>37</td>
</tr>
<tr>
<td>9.2</td>
<td>Adaptation Execution</td>
<td>38</td>
</tr>
<tr>
<td>9.3</td>
<td>Implementation</td>
<td>38</td>
</tr>
<tr>
<td>10</td>
<td>Evaluation</td>
<td>41</td>
</tr>
<tr>
<td>10.1</td>
<td>Evaluation Design</td>
<td>41</td>
</tr>
<tr>
<td>10.2</td>
<td>Evaluation Scenarios</td>
<td>42</td>
</tr>
<tr>
<td>10.2.1</td>
<td>Scenario 1: Default</td>
<td>42</td>
</tr>
<tr>
<td>10.2.2</td>
<td>Scenario 2: System extension</td>
<td>43</td>
</tr>
<tr>
<td>10.2.3</td>
<td>Scenario 3: Failing Adaptation</td>
<td>43</td>
</tr>
<tr>
<td>10.2.4</td>
<td>Scenario 4: Missing Alternative</td>
<td>43</td>
</tr>
<tr>
<td>10.2.5</td>
<td>Futile Scenario</td>
<td>44</td>
</tr>
<tr>
<td>10.3</td>
<td>Evaluation Models</td>
<td>44</td>
</tr>
<tr>
<td>10.3.1</td>
<td>CoCoME-Cloud</td>
<td>44</td>
</tr>
<tr>
<td>10.3.2</td>
<td>Medi System</td>
<td>44</td>
</tr>
<tr>
<td>10.3.3</td>
<td>Generated Models</td>
<td>45</td>
</tr>
<tr>
<td>10.4</td>
<td>Transformation</td>
<td>46</td>
</tr>
<tr>
<td>10.4.1</td>
<td>Transformation: Accuracy Evaluation</td>
<td>46</td>
</tr>
<tr>
<td>10.4.2</td>
<td>Transformation: Scalability Evaluation</td>
<td>47</td>
</tr>
<tr>
<td>10.5</td>
<td>Privacy Analysis</td>
<td>48</td>
</tr>
<tr>
<td>10.5.1</td>
<td>Privacy Analysis: Accuracy Evaluation</td>
<td>48</td>
</tr>
<tr>
<td>10.5.2</td>
<td>Privacy Analysis: Scalability Evaluation</td>
<td>51</td>
</tr>
<tr>
<td>10.6</td>
<td>Model Generation</td>
<td>52</td>
</tr>
<tr>
<td>10.7</td>
<td>System Adaptation</td>
<td>54</td>
</tr>
<tr>
<td>10.7.1</td>
<td>Adaptation: Accuracy Evaluation</td>
<td>54</td>
</tr>
<tr>
<td>10.7.2</td>
<td>Adaptation: Scalability Evaluation</td>
<td>56</td>
</tr>
<tr>
<td>10.8</td>
<td>Threats to validity</td>
<td>58</td>
</tr>
<tr>
<td>10.8.1</td>
<td>Internal Validity</td>
<td>58</td>
</tr>
<tr>
<td>10.8.2</td>
<td>External Validity</td>
<td>58</td>
</tr>
<tr>
<td>10.8.3</td>
<td>Construction Validity</td>
<td>59</td>
</tr>
<tr>
<td>10.8.4</td>
<td>Conclusion Validity</td>
<td>59</td>
</tr>
</tbody>
</table>
Contents

11 Related Work

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.1 Application Monitoring</td>
<td>61</td>
</tr>
<tr>
<td>11.2 Privacy Analysis</td>
<td>61</td>
</tr>
<tr>
<td>11.3 Data-flow Analysis & Rights Management</td>
<td>63</td>
</tr>
<tr>
<td>11.4 Privacy Analysis</td>
<td>63</td>
</tr>
<tr>
<td>11.5 Automated Model Optimization & Modification</td>
<td>63</td>
</tr>
<tr>
<td>11.6 Automated Cloud Migration & Adaptation</td>
<td>64</td>
</tr>
</tbody>
</table>

12 Conclusion

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1 Limitations & Assumptions</td>
<td>65</td>
</tr>
<tr>
<td>12.2 Future Work</td>
<td>66</td>
</tr>
</tbody>
</table>

Bibliography | 69 |
List of Figures

2.1 iObserve cloud application life cycle [10] 7
3.1 Privacy violating deployment ... 11
3.2 Privacy violating deployment ... 11
3.3 Privacy compliant deployment .. 11
4.1 iObserve Privacy pipeline .. 15
5.1 PCM Privacy meta-model ... 18
6.1 Server Geo-Location Record and Sampler 19
6.2 iObserve Privacy Filter ... 20
7.1 Initial component categorization ... 26
7.2 Post categorization analysis - basic example 26
7.3 Post categorization analysis - advanced example 26
7.4 Deployment analysis example ... 28
7.5 PCM Privacy information spread 29
7.6 Graphs meta-model for Privacy Analysis 30
10.1 Initial component categorization 45
10.2 Transformation runtime & Standard Deviation 48
10.3 Initial system state ... 49
10.4 Initial categorization ... 49
10.5 Categorization analysis result ... 49
10.6 Deployment analysis result (1) .. 50
10.7 Deployment analysis result (2) .. 51
10.8 Privacy Analysis runtime .. 52
10.9 Privacy Analysis runtime standard deviation 53
10.10 Runtime model .. 56
10.11 Redeployment model .. 56
10.12 Adaptation runtime ... 58
10.13 Adaptation runtime SD ... 59
11.1 R-PRIS meta-model ... 62
11.2 R-PRIS runtime model .. 62
List of Tables

7.1 Minimal information for privacy analysis ... 23
7.2 iObserves information for runtime privacy checks 24
9.1 Pre-Execution-Conditions for adaptation actions 37
9.2 Universal action execution order ... 37
10.1 The correct execution set ... 46
10.2 The error execution set ... 47
10.3 Component categorization, runtime deployment and re-deployment ... 53
10.4 The ordered adaptation sequence ... 55
10.5 iObserve input event translated adaptation sequence 55
10.6 Expected adaptation sequence for Scenario #4 57
10.7 Expected adaptation sequence for Scenario #4 57
11.1 R-PRIS information for runtime privacy checks [24] 62
1 Introduction

During the introduction we will motivate (Section 1.1) for the topic at hand and introduce the problems (Section 1.2) arising from it. Further, we will introduce the goal and research questions (Section 1.3) handled in this thesis. Finally, we will give a short outline (Section 1.4) about the remainder of this thesis.

1.1 Motivation

Over the last years, cloud computing has become more and more popular. This is a result of its business advantages, the continuing simplification of its usage and the abundance of own data centres. Netflix, for example, closed all its owned data centre in 2015 and moved completely to Amazons AWS[6]. This trend results in the expected revenue of about 200 Billion $ in 2016[26]. The high degree of elasticity, automation, self-service, flexibility in payment and, as a result, lower costs are only some of the many advantageous points of cloud computing.[3]

However, many – especially European - companies fear dependencies, loss of data control, industrial espionage or privacy law violations. Precautionary measures like encryption or data splitting - among data centres - is not enough to prevent a public relations disaster, due to complex EU Data Protective Regulations[4] or the US HIPAA act[19]. To tell the whole truth, the complexity, the hidden usage of services and the therefore resulting unawareness of many EU citizens (and law enforcement institutes) makes it very unlikely for current law violators to face any consequences. Nevertheless, citizens start to be more aware and the law enforcement point of attention tends to change quickly, like the Max Schrems’ “Facebook Process” showed [14]. Further, in 2018 the “reform of EU data protection rules” will come into force, which states severe punishments for privacy violations[4]. As a result, entrepreneurs, companies and institutions need to be more aware of privacy compliance to prevent major monetary and reputation losses.

The EU General Data Protection Regulations sets the legal boundaries for European companies. It defines multiple regulations about data handling, data trading, personal advertising and more. One rule sets the boundaries for personal data processing and saving. It states, for example, that the processing of personal data is only allowed in data centres inside the EU or certain certified countries with equivalent privacy laws. As a result, software systems require a pre-deployment law compliance checking, considering especially the hosts geo-locations. The problem comes to a head with the ease of migration of whole cloud services during runtime with next to no downtime. With this in mind a potential privacy violation could occur even though the initial deployment was law compliant. This requires a non-stop observation of the applications geo-location and automatic, law compliant redeployment onto other cloud providers.
1 Introduction

1.2 Problems

To create such a privacy aware system adaptor, a couple of non-trivial problems need to be solved. The major ones will be outlined shortly, categorized after the MAPE-K feedback loop [5].

Initially, we need to acquire the geo-location information of a cloud server. This is the fundamental task to be able to determine whether a system is compliant to the EU General Data Protection Regulations or the HIPAA act. Further, we need to store this information adequately in the available information sources. In our case that is the Palladio Component Model (PCM), an architecture description language. However, the PCM is not designed to store geo-information of any kind.

After the acquisition of the geo-location information, we need to determine, whether the observed system is in a privacy compliant state. We refer to this task as privacy analysis. The major obstacles for the privacy analysis are the limited information about the system and the complicated legal regulations. So, the problem is to gain a meaningful result, without significantly extending the information sources or increasing the PCM complexity.

During the planning phase, a privacy compliant alternative system deployment needs to be calculated. While automated performance optimization was achieved in the past, the privacy compliance has never been considered during this task. Depending on the parameters, alternative generation and evaluators this is a considerable optimization problem.

To regain a privacy compliant system state, the system needs to be modified towards the generated alternative. For this task, the system adaptation steps need to be calculated and ordered. The migration of a live system usually inflicts man dependencies and ripple effects that have to be considered before executing these steps.

We provided a rough overview of the problems at hand. Further details and the according solution will be explained in the according chapters of this thesis.

1.3 Goals and Research Questions

This thesis’ goal is to contribute and outline a piece of software, that ensures continues privacy compliance, modelled after the MAPE-K feedback loop. Connected to this goal, a number of important research questions arise:

- **Monitoring**
 - RQ-M1: How can the required information be monitored and transformed into the architectural description language?
 - RQ-M2: How accurate is the monitoring and transformation?
 - RQ-M3: How good does the monitoring and transformation scale?

- **Analysing**
 - RQ-A1: How can we detect privacy violations on a architectural level?
 - RQ-A2: Are there scenarios that can not be detect?
1.4 Outline

- **RQ-A3**: How good does the privacy analysis scale with the system size?

• **Planning**
 - **RQ-P1**: How can we generate an alternative, privacy compliant deployment?
 - **RQ-P2**: How accurate is the alternative generation?

• **Executing**
 - **RQ-E1**: How can we calculate an automated system adaptation sequence?
 - **RQ-E2**: How good does the adaptation calculation work?
 - **RQ-E3**: How good does the adaptation scale with the system size and the potential modifications?

1.4 Outline

The remainder of this thesis is structured as follows: The thesis continues by introducing the foundations (chapter 2) of this thesis. The main part starts with the privacy concept (chapter 3), leading into the system overview (chapter 4), followed by the big conceptual work packages: Palladio extension (chapter 5), iObserve extension (chapter 6), privacy analysis (chapter 7), PerOpteryx extension (chapter 8) and the system adaptation (chapter 9). The thesis goes on with the evaluation (chapter 10) and the related work (chapter 11) and finally closes with the conclusion (chapter 12).
2 Foundations

In this chapter we will introduce applications and principles on which this thesis is based on. This introduction aims for a general understanding. We would like to point out that some topics may be discussed in more detail in the corresponding section.

2.1 MAPE-K loop

MAPE-K or MAPE was first introduced by IBM for automatic computing and later discussed in the context of self-adaptive systems. A MAPE system is usually a stand alone application, which is specially build for optimizing and adapting a monitored system. MAPE-K is an acronym, consisting of the first letters of the loops stages: Monitor, Analyse, Plan, Execute and Knowledgebase. These stages are sequentially ordered in a pipeline structure, each one has a well defined task [5]:

- **Monitor**: Collects, aggregates, filters and correlates information about a monitored system.
- **Analyse**: Performs (complex) data analysis and reasoning on the monitored data. The analysis is often supported by data from the knowledgebase. If changes are required, a change request is passed to the plan function.
- **Plan**: Determines what kind of changes are required and develops a transformation which adapts the monitored system towards the desired state.
- **Execute**: Executes the transformation calculated during the planning phase.
- **Knowledgebase**: Additional or advanced information that are shared among all stages.

The monitored system runs independently from the MAPE application. However, the desired monitoring information are usually explicitly provided via specially designed APIs, interfaces or probes [5].

2.2 Palladio Component Model

The Palladio Component Model (short PCM) is an Architecture Description Language (ADL) for component based software, originally designed to enable software architects to run pre-implementation performance analysis. The Palladio Simulator reports on "performance bottlenecks, scalability issues, reliability threats, and allows for a subsequent optimisation." The PCM is composed of several sub-models which depend on another. Each model represents a certain aspect of a component based software:
• **Repository Model**: Defines Components with required and provided interfaces. Interfaces include function signatures.

• **System Model**: Defines the complete software system, by connecting components defined in the repository model.

• **Usage Model**: Defines process workload, based on the systems interfaces.

• **Resource Environment Model**: Defines available host environments with its provided performance.

• **Allocation Model**: Defines the deployment of system components onto the provided hosts.

The separation of concern enables the system architect to manage the complexity of even bigger software systems and still gain meaningful results from the performance simulation.

Since its initial release, the Palladio Component Model was adapted and used in several research fields alongside the performance prediction, like automated Dataflow Analysis and Application Monitoring. Due to its explicit representation of the software architecture and flexible component-host-mapping it is perfectly suited to model distributed cloud systems. Although, PCM was not designed to be used as a runtime model, it has proven to be suited for this task due to its versatile model elements [2].

2.3 Kieker

Kieker is a software system monitoring application with the goal of retrieving runtime information for performance evaluation, (self-)adaptation control and many other tasks. Kieker gains these information from the designated software by instrumenting the system with probes during pre-compilation. Each probe has designated purpose and gathers data accordingly, for example hardware utilization, stack trace or host geo-location. Kieker uses event-based probes, as well as periodic-based (heart-beat) probes [22].

2.4 iObserve

iObserve is a system optimization tool after the MAPE feedback loop. The two primary goals are an automated system adaptation and an *operator-in-the-loop* system evolution (see Figure 2.1).

For the initial MAPE step, monitoring, iObserve uses Kieker. The gathered information are transformed to a Palladio Component Model. Due to the live characteristic this PCM model is called a runtime model. Further, iObserve is designed to support distributed cloud systems. Key features of the transformation are the processing stack trace information for usage model updates, so more precise performance simulations are possible, as well as, the processing of deployment and un-deployment events and hardware utilization measurements.
Currently, iObserve goes as far as updating the model. iObserve uses the TeeTime framework [30], a pipeline-filter-framework with signal based stage invocation. More details on iObserve can be found in [10][11].

2.5 PerOpertyx

"PerOpteryx is an optimization framework to improve component-based software architecture"[17]. The optimization uses model-based quality prediction techniques. Starting from an input model, the framework generates multiple Pareto-optimal alternative deployments, based on given simulation and alternation algorithms. This approach is usually described as Design Space Exploration (DSE). PerOpteryx uses multiple dimensions for its DSE, like alternating component multiplicities, runtime parameters or changing component allocations. The Pareto-optimal models are calculated through multiple iterations of a series of tasks. Initially a variance of candidates is created through an evolutionary algorithm and random generation. In the next step, the candidates are analysed for the desired quality marks along the different dimensions. The iteration concludes with the elimination of poorly performing candidates. PerOpteryx is designed to optimize Palladio Component Models, is based on the Rich Client Platform and uses the Opt4J Framework [18].
3 Privacy Concept

Many say: Data is the new oil and the most valuable resource there is. This shows how important the control of our personal data is. To achieve this, many players have to fulfill their obligations. On the one hand, the personal awareness of every user himself to only communicate the required and necessary information. On the other hand, the data handling institutes duty to guarantee legal compliance to laws like the EU’s general data protective regulations. While one can’t act for the individual, we can provide tools and rules for institutions to help with legal compliance.

3.1 General Concept

The EU General Data Protective Regulations clearly states, that data of EU citizens have to be saved and processed within EU countries [4]. Only a view countries with equal data protective laws are excepted from this constraint. As a consequence, one needs a simple data-flow analysis (Section 11.3) to know the data distribution in our software system. To put it straight, one needs to know, what kind of data are available on which server. This task got especially important, since distributed cloud systems are reality and data saved on "on premise" servers are becoming increasingly rare.

As mentioned in Section 11.3, the automated data-flow analysis on architecture level is still in its early stages and therefore not suited for practice. As a compromise we decided on manual data tagging. To ease the data tagging and analysis process, we decided to use the common well defined categories [24]:

- **Type 0: Personal Information**: Data relates directly or indirectly to personal information. This is independent from encryption or pseudonymization. (e.g. call detail record)

- **Type 1: Personally Identifiable Information**: Data does not contain personal information. However, by combining, fusing or analysing data sets, the personal data could be reconstructed for complete or partial personal information. (e.g. browser history without user)

- **Type 2: Anonymous Data**: Data does not contain any personal information. Even by extensive data analysis no direct or indirect personal information can be extracted. (e.g. shop inventory data)

These three categories are used, since many data do not contain any direct or indirect link onto private data, however still contain indicators onto private data. This means, they neither qualify for the type 0 category (Personal), nor for the type 2 category (Anonymous).
For example an online shop wants to analyse which products usually get ordered together. The orders got anonymized by removing the customer and shipping address. Nevertheless, the time-stamp is required to get a timed evaluation factor. These data are not personal. However, combining and evaluating these with user-login-times, also non-personal data, privacy relevant data can be extracted. This also disqualifies them for Type 2, completely anonymous data [23][24].

Summarizing, a manual, categorized annotation approach to identify the system components privacy level is used. Based on this privacy level categorization, the analysis, whether a systems deployment is privacy compliant, can be performed.

3.2 Deployment Constraints

How can one guarantee legal compliant distribution? As mentioned in Section 1.1, personal data of EU citizens are only allowed to be processed, transferred or saved inside EU countries [...]. We argue that the following constraints, combined with correct manual annotation, are sufficient to accomplish this:

- **Rule #1**: Type 0 components must be deployed in a "save" geo-location.
- **Rule #2**: Type 2 components can be deployed anywhere.
- **Rule #3**: Type 1 components can be deployed anywhere.
- **Rule #4**: Only deploy Type 1 components together in an "un-save" geo-location, if they receive their information (transitively) from the same Type 1 component.

*Rule 1 & 2 does not need any further explanation. *Rule 3* states that Type 1 components can be deployed anywhere. This is due to the fact that Type 1 data should not contain any personal information. *Rule 4* however limits this deployment. This constraint is necessary, because the combination of multiple Type 1 data streams could lead to privacy relevant information. If the data streams, however, have a common type 1 component as data source, the deployment can be considered privacy compliant.

The ideas is, when a depersonalised component (d) has a single edge to a personal component (p), and many edges to other depersonalised components (D), and the components (D) do not have any connection to a personal categorized component, then they share the data passed via the connection between d and p, which can not be personal. Otherwise d would be categorized as personal. Note that data streams with type 2 components can be ignored, since - by definition - they don’t get in contact with any privacy relevant data.

We are aware, that these rules are over-approximations towards legal compliance. However, we are using a software architecture model as the only source of information. Therefore, detailed information about actual privacy symbiotic data streams are not available on this high level ob abstraction. Nevertheless, we argue, that these rules already help to identify illegal deployments and establish privacy compliant (re-)deployments.

Figure 3.1, Figure 3.2 and Figure 3.3 illustrate the different base scenarios applying to Rule 4. In the remainder of this section, we will elaborate their privacy compliance state by applying Section 3.2, rule 4.
3.2 Deployment Constraints

Figure 3.1: Privacy violating deployment

The deployment shown in Figure 3.1 is illegal. Server\#3 contains components with data streams from two different components, where one is a type 1 and one is a type 0 component. Even though A and C receives its data transitively from the same source, component A. This source is categorized as personal (type 0). Further, the data passes via different initial communication edges. As a result, Server \#3 hosts two type 1 components, which don’t contain privacy relevant data by themselves. However, after combination, the data could be privacy relevant. So, this deployment is considered illegal.

Figure 3.2: Privacy violating deployment

Figure 3.2 also shows an illegal considered deployment. Component C and D share the same data source, which is marked as type 0. As previously shown, the combination of data on Component C and D could lead to privacy relevant informations on Server \#3.

Figure 3.3: Privacy compliant deployment
3 Privacy Concept

(Figure 3.3) shows a privacy compliant deployment. Due to, Component C and D sharing the same data source (Component B), which already only contains type 1 data. As a result, Component C and D can only contain data, already obtained by Component B. This means, even through data combination and extensive data analysis, no privacy concerning information can be extracted.

3.3 Component categorization

Components can be very complex due to multiple communication partners and dozens of interfaces. In such cases it can be considered impossible, to keep track of every single information flow on every component. This shows, that a component shouldn’t be categorized by hand.

In contrast, a single data stream between two components is easy to understand and easy to analyse. In a component based software architecture, data exchange happens via component interfaces. During system composition the software architect must be aware of what data he passes through an interfaces.

As a result, the decision was made to categorize each interface communication during system composition. The components privacy categorization is then derived by evaluating the components communication.

We need to point out, that this categorization is only valid with the Closed World Assumption (CWA) [20]. Simplified, the CWA states, that if a system doesn’t contain any information about a given statement, this statement is automatically wrong. Applied onto the privacy concept this means: The model contains all the information and information sources that exist. Naturally, this assumption is wrong, since every component may be connected to the internet and can access a nearly infinite amount of data. However, we need the CWA, in order to be able to make any statement about the systems privacy compliance. Considering the limited information we have available, the system architecture model, the statement we are providing can be considered outstanding, even while using the CWA.

3.4 Information storage

We are using the Palladio Component Model (Section 2.2), which is just one of several Architecture Description Languages. Most ADLs share a comparable structure, which can differ, due to the designated purpose. We will describe the storage exemplarily on the PCM.

The runtime model is supposed to reflect every relevant information, concerning the models purpose. As a result, we need to store the components privacy level and the servers geo-location in the PCM model.

The geo-location belongs to a server, which is part of the resource environment model in PCM. The resource environment contains resource containers, which represents a server or virtual machine. So the resource container is the perfect place for storing the sever geo-location.
As mentioned in Section 3.3, we need to categorize the communication between two connected component interfaces. The PCM system model uses the Assembly Connector to connect two component interfaces. This is the optimal model element to store the data privacy level for the inter interface communication.
4 Overview

In this chapter we will give an overview on the approach developed during this thesis and the according research. The system is massively extending iObserve, while keeping its original purpose. For the fundamentals on iObserve see Section 2.4. All extensions are made for accomplishing the goals, defined in Section 1.3. The extended iObserve is referred to as *iObserve Privacy* during this thesis. iObserve Privacy’s architecture is a filter pipeline, where each filter represents one stage of the MAPE feedback loop (Section 2.1).

The initial step, monitoring, is provided by the original iObserve. However, iObserve does not support geo-location processing. So, iObserve needs to be extended. This extension is made directly in the original iObserve and Kieker. Upon detected geo-location or deployment changes, the runtime model is updated and the next filter stage is invoked. We have determined the required data for a privacy analysis and provide a suited transformation of these information to the PCM Privacy runtime model.

The compliance checker, mostly referenced as *Privacy Analysis*, represents the analysis phase in the MAPE loop. It analyses the current runtime model for privacy violations. The fundamental principles were discussed in chapter 3. When a privacy violation is detected, the MAPE Planning phase gets activated.

The planning stages task is to find a privacy compliant redeployment model. For this job PerOpteryx is used. PerOpteryx (Section 2.5) is a complex model generation and
optimization framework. However, PerOpteryx doesn’t support privacy or deployment constraints and therefore needs an extension. Furthermore, an output model needs to be selected as the final redeployment candidate, which is transmitted to the final pipeline filter stage.

The execute phase of the MAPE loop compares the architectural re-deployment model to the architectural runtime model. Based on comparison, a migration adaptation sequence is calculated. The adaptation sequence is technology independent and consists of individual adaptation actions. Finally, the adaptation sequence is executed. The execution is based on scripts, that represent a technology dependent implementation of the individual adaptation actions. After the execution the observed software system needs to be in privacy compliant state.
5 PCM Extension

As mentioned in Section 2.2, the Palladio Component Model was designed for early architectural performance analysis. On this basis, the PCM was modified many times to fulfil many adjacent tasks. Instead of a modification, we decided to extend the existing PCM meta-model. This enables us to keep compatible with the existing Palladio Models and other Palladio applications.

5.1 General

The standard Palladio meta-model is insufficient for privacy compliance analysis. To save the required information, an extension is the best practice approach. The extension was designed to be as minimal invasive as possible and to keep the adaptation effort for existing Palladio models to a minimum.

Our extension is based on deriving the PCM meta-model entities. This way the new models stay compatible to other PCM applications like the Performance Simulators or PerOpteryx. Further, other extension possibilities like the stereotype extension needs to be updated with every PCM meta-model update. This is not necessary, when the model is derived. Only changes in reference structure require the derived model to apply minor alterations. For details on referencing and modularizing in meta-models see [28].

The concept was described in Section 3.4.

5.2 Implementation

The Palladio meta-model was modelled with the Eclipse Modeling Framework [EMF]. So, our extension, namely PCM Privacy, is also modelled with EMF and references the original Palladio meta-model. The required classes were extended in corresponding sub-packages.

As described in Section 3.4, we need to save a servers geo-location. The Resource Container was extended and the attribute Geolocation added. The derived element is named Resource Container Privacy. The geo-location itself is saved as an EInt Ecore type, a standard integer, encoded in the ISO country code (ISO 3166-1 [32]). By using an integer encoded international standard we stay widely compatible with other applications. Further, potential error sources like spelling differences, shifting borders and name changes are avoided.

The Assembly Connector Privacy is derived from the Assembly Connector and saves the data privacy categorization. The attribute is designed as an EEnum Ecore type, with the values Personal, Depersonalized, Anonymized. This way, extending the potential categorization values requires minimal effort and is less error prone then a dynamic
categorization via a float or an integer value. The value *Personal* is set as default, to provide a over-estimation towards the legally compliant categorization, when the categorization if a connector was not performed. Figure 5.1 shows a simplified PCM meta-model with the three added privacy elements.
6 iObserve Extension

iObserve was briefly introduced in Section 2.4. iObserve uses Kieker (Section 2.3) to gain real-time information about an observed (distributed) software system. iObserve transforms these information onto a Palladio Component Model. This model is referenced as runtime PCM or runtime model, since it reflects the actual observed software system during runtime [11].

6.1 Kieker

Kieker was also briefly introduced in Section 2.3. Kieker had already specified the geo-location record for transporting the geo-location information form the observed system to Kieker. However, a probe was still missing. As a result, we created a heart-beat/perodic probe (ServerGeoLocationSampler). This probe uses a ICountryInvestigator to determine the actual geo-location and creates a ServerGeoLocation record (see Figure 6.1).

As an alternative, we could have created an event-based geo-location probe. Possible event could have been the component deployment or un-deployment or the server acquisition or release. This however, would mean, there would not be a geo-location update between these events and potential privacy violation could stay undetected indefinitely or for a long period. Even though a heart-beat probe often takes longer to send an initial record, eventual changes will definitely be detected due to the regular updates.

Figure 6.1: Server Geo-Location Record and Sampler
Kieker gather the information from the observed system probes and redirects them to iObserve. More information on Kieker can be found at [22].

6.2 iObserve Privacy

iObserve uses the TeeTime framework. Its allows easy pipeline building by connecting matching input and output ports during runtime [30]. This mechanism is used by iObserve to invoke different transformations. Based on the received Monitoring Record, the according output port gets invoked and the matching transformation will be executed.

For the ServerGeoLocation Record (see Figure 6.1) another output port and transformation was added. The transformation uses the records host and address field to find the record sending resource container. The according geo-location attribute of the Resource Container Privacy is compared to the incoming geo-location and updated if needed.

![iObserve Privacy Filter](image)

Figure 6.2: iObserve Privacy Filter

iObserve has a well defined structure due to the TeeTime framework. We decided to keep this structure and extend it. Figure 4.1 shows the conceptual filter pipeline structure for our planned extension. One conceptual stage usually consists of several sub tasks. The system adaptation, for example, consists of an adaptation calculation, an adaptation planning and an execution. To embrace re-usability and lose coupling, we decided to keep on using the TeeTime framework structure and compose one conceptual stage out of several sub-stages. Figure 6.2 shows the general structure of a conceptual stage. The Composition Stage functions as a wrapper for the conceptual filter, while the Stages I to III represent the sub-tasks.

This structure does not only allow easy restructuring of the conceptual pipeline and encapsulates the sub-tasks, it also allows for simple reuse and a clear separation of concerns. For the TeeTime framework, the filter stages looks like a series of linear connected stages, while the developer gets easy to handle packages. It is worth mentioning, that Stages...
linked to each other require matching data. The actual task executed, must be placed inside the `execute` method.

The extended iObserve contains the following conceptual filter stages: Monitoring, Snapshot (creates a copy of the current runtime model), Privacy Analysis, Model Generation, System Adaptation and Evaluation. In the remainder of this thesis the extended iObserve is referenced as iObserve Privacy, so potential misunderstandings are avoided.
7 Privacy Analysis

The Privacy Analysis represents the analysis stage in the MAPE-K feedback loop (Section 2.1). The goal is to check whether the runtime model contains any deployment related privacy violations. The privacy concept, described in chapter 3, states that privacy analysis consist of two major tasks. First, the correct privacy categorization for each software components needs to be determined. Second, the deployment evaluation, based on the deployment rules, defined in Section 3.2, needs to be performed.

The remaining chapter is divided into a theoretical part (Section 7.1), a component categorization part (Section 7.2), a deployment evaluation part (Section 7.3) and the implementation part (Section 7.4).

7.1 Analysis Theory

The exclusive source of information for the privacy analysis is the systems PCM Privacy runtime model. For an efficient analysis one first need to identify the minimal required information and substitute them, depending on the available sources.

7.1.1 Required information

In the context of Privacy Analysis there is a minimum of two pieces of information which are required for privacy analysis:

<table>
<thead>
<tr>
<th>#</th>
<th>Required information for privacy analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1</td>
<td>Information on components privacy level</td>
</tr>
<tr>
<td>M2</td>
<td>Information on components geo-location</td>
</tr>
</tbody>
</table>

Table 7.1: Minimal information for privacy analysis

Usually $M1$ and $M2$ is not directly available. As a consequence other ones must substitute these, while containing the same information. A suitable substitution, differs based on the sources and their contained information.

The used PCM Privacy meta-model provides a data privacy categorization of the communicated information between component interfaces. This enables a component classification, based on the most critical communication with another component. As a result, a components privacy level can be determined without knowing its exact purpose, analysing any inner processes or knowing the exact data-flow. So, $M1$ gets substituted by information about inter interface communication and its privacy categorization.

In order to get an information equivalent of $M2$, a components host must be determined, as well as that hosts geo-location. The PCM Privacy model provides these information.
However, it is spread over multiple models. As a result we require only four pieces of information (Table 7.2), compared to R-PRISs six pieces of information (Table 11.1).

<table>
<thead>
<tr>
<th>#</th>
<th>Required information to carry out runtime check</th>
</tr>
</thead>
<tbody>
<tr>
<td>I1</td>
<td>Interactions of two components per interface</td>
</tr>
<tr>
<td>I2</td>
<td>Information on component deployments on physical resources</td>
</tr>
<tr>
<td>I3</td>
<td>Geo-location information of physical resources</td>
</tr>
<tr>
<td>I4</td>
<td>Data Privacy categorization per interface communication</td>
</tr>
</tbody>
</table>

Table 7.2: iObserves information for runtime privacy checks

7.1.2 Data-flow direction

Usually component interfaces are categorized into providing and requiring interfaces. Interface connections are made between a pair of required and provided interfaces of the same type. This suggests a certain data- and control-flow direction. This is a wrong assumption. While there are cases, when the control-flow can be derived from this structure, the data-flow is completely independent from this categorization.

For example, a database component (usually) only has provided interfaces. These interfaces allows the user to store and retrieve data from the database and therefore contains getter and setter methods. This means, there is no data-flow direction for the whole interfaces, since the data needs to "flow" into both directions. Note, that we are explicitly speaking of an interface as a whole, since individual methods can have a data-flow direction.

Information passed through an interface are available on the providing and requiring component. In other terms, if an component connector got categorized as Personal, information of this type are available in both components. These components need to get categorized accordingly.

7.1.3 Joining data streams

In Section 3.2 we elaborated on the danger of two Personally Identifiable Information (Type 1) data streams, from two sources, joining on a single server. In such a case, the combination of these data streams could lead to personal, privacy relevant data. (Compare Section 3.2, Rule 4). This concept applies on the described deployment level and also on the component categorization process.

While on deployment level, the information streams are not actively merged, this is a realistic possibility on the component categorization level. So the argument of applying an overestimation is not valid and this scenario must be taken seriously. In the following this special case will be refereed to as joining data streams (short: JDS). In the following section, a couple of categorization and deployment examples will help clarifying this scenario.
7.2 Component categorization

The component categorization requires two tasks. The initial categorization of every component and the analysis for with join data streams.

The initial data privacy level of a component is equal the component's most critical communication level (see Subsection 7.1.2). This task is performed during the model graph construction. The search for joining data streams is more complex and requires a formalization, as well as an extended explanation. We will continue with the formal description, followed by a textual explanation and close with some examples.

Definitions

- The Graph $G := (N, E)$
- The Nodes N consist of personal Nodes $p \in N_p$, depersonalised Nodes $d \in N_d$ and anonymized Nodes $a \in N_a$.
- The edges E consist of personal Edges $e \in E_p$, depersonalised Edges $e \in E_d$ and anonymized Edges $e \in E_a$.
- Path $P = ((p_1, p_2, \ldots, p_n), (e_1, e_2, \ldots, e_{n-1}))$ with $p \in N$ and $e \in E$

Formalization

Every component is correctly categorized

$$\iff \nexists \text{ Path } P \text{ with let } i, j \in [0, n - 1] \land i \neq j : e_i \neq e_j \land e_i \in E_d$$

$$\land (p_2, p_3, \ldots, p_{n-1}) \in N_d \land \{p_1, p_n\} \in N_p \land n \geq 3$$

The formalization states, that every component in the graph G is correctly categorized if no path from one personal component to a personal component exists. However, the path must traverse at least three components, while every edge is only used once and only depersonalised edges are used. Further, all internal nodes must have a depersonalised categorization.

When such a case is found, the depersonalised components of the path must be categorized as Personal. As a result, the case is eliminated and categorization is corrected according to the joining data stream. The following examples will illustrate the categorization and point out certain special cases.

Figure 7.1 shows the components data privacy level after the initial categorization phase. Figure 7.2 shows the result of categorization analysis. The comparison of these two states show, that component D and E get "upcasted" and gain a Personal - more critical - data privacy categorization. This is due to the fact, that component D and E have a connection onto two personal data sources (Component A and B). Applying the formalization, a path from component A to B via component E and D, using only depersonalised edges, can be found. This means, as mentioned above, a joining data stream exists and component D and E needs to be categorized as Personal.
Two special cases are shown in Figure 7.3. So is component D categorized as Personal even though it has only one other component as data source. However, it has two individual connections to component B, which could contain a joining data stream, since B has a personal categorization. The formalization states, that a personal component needs to be reached, while using every edge only once. This conditions are fulfilled.

Component F doesn’t get an Personal categorization since it can only contain privacy relevant data that are already present on component E. And component E has a depersonalized categorization. All anonymized categorized connections and components are ignored,
since they don’t contain any privacy related information. Applying the formalization, no path from A to a personal component can be found, using only depersonalised edges and each edge only once. So, the categorization is correct.

7.3 Deployment analysis

The deployment analysis’ goal is to find out whether the current deployment is privacy compliant. A deployment is considered privacy compliant if no deployment violation is found. The rules for a privacy compliant deployment were described in Section 3.2. In the following we will formalize the deployment analysis, describe the formalization textually and finally give an example.

Definitions

- The Graph \(G := (N, E, S) \)
- The Nodes \(N \) consist of personal Nodes \(p \in N_p \), depersonalised Nodes \(d \in N_d \) and anonymized Nodes \(a \in N_a \wedge N_p \cup N_d \cup N_a = N \wedge N_p \cap N_d \cap N_a = \{\emptyset\} \)
- The edges \(E \) consist of personal Edges \(e_p \in E_p \), depersonalised Edges \(e_d \in E_d \) and anonymized Edges \(e_a \in E_a \wedge E_p \cup E_d \cup E_a = E \wedge E_p \cap E_d \cap E_a = \{\emptyset\} \)
- The servers \(S \) consist of save Servers \(s_s \in S_s \) and un-save Servers \(s_u \in S_u \wedge S_s \cup S_u = S \wedge S_u \cap S_s \cap N_a = \{\emptyset\} \)
- Let \(N_{si} \) are the nodes deployed on server \(s_i \)
- Path \(P = ((p_1, p_2, \ldots, p_n), (e_1, e_2, \ldots, e_{n-1})) \) with \(p \in N \) and \(e \in E \)

Formalization

The deployment is illegal

\[\iff \exists n \in N_{si} : n \in N_p \wedge n \text{ deployed on } s_i \wedge s_i \in S_u \]

\[\vee \exists s_x \in S_u \exists \text{ Path with } N_{sx} \subseteq P \wedge p_i \in N_d \wedge e_j \in E_d \]

\[\vee \exists \text{ Paths } \{P_1, P_2, \ldots, P_n\} \text{ from } N_p \text{ to } N_{si} \text{ with } i \in [0, n], j, k \in [0, |P_i|] : e_j \in E_d \wedge e_{pj} \cap e_{pk} = \{\emptyset\} \wedge n \geq 2 \]

The formalization states three independent conditions for an illegal deployment. First, the deployment of an as personal categorized component on a server located in an un-save geo-location. Second, the depersonalised components on an un-save server are not connected. The potential connection must consist of depersonalised edges but can be transitive via depersonalised components and edges. The third condition states, that if there is more then one path, from the set of personal components to the depersonalised
components hosted by an un-save server, then the deployment is illegal. However, must consist of individual, non overlapping and depersonalised edges.

Figure 7.4 shows an illegal deployment. The deployment of Component A and B is obviously valid, due to its deployment on a “save” geo-location. Component C and F are also legally deployed, since both components share a single communication edge onto privacy relevant information and the joining data streams situation does not apply. Applying the formalization, the first condition is broken, since server #3 does not host a personal component, the second condition is also false, since the components C and D are transitive and direct connected via depersonalised edges. The third condition does also not apply, since only one individual path via depersonalised edges from the personal components exists.

Server#2, however, hosts an illegal deployment. Component D and E have different single data sources edges and can therefore save, process or transmit data, which can combine to privacy relevant data. The second and the third condition of the formal specification are true. So, are component E and D not transitively connected via depersonalised nodes. Further, two individual paths from the set of personal components to the components hosted by server #2 exist.

7.4 Privacy Analysis implementation

The PCM meta-model defines multiple models, each providing knowledge about a certain aspect of the target system (see Figure 7.5). This is not suited for an efficient privacy analysis and therefore requires an information preprocessing. So the implementation is spread over three steps:

1. build efficient data structure
2. categorize components
3. analyse deployment
7.4 Privacy Analysis implementation

7.4.1 Information preprocessing

In the first algorithm phase, all informations I_1 to I_4 are extracted from the different models. I_1 and I_4 is part of the System models Assembly Connector Privacy. Where I_1 consist of the Providing Assembly Context and the Requiring Assembly Context. I_4 is the Data Privacy Level. I_3 is a field in the Resource Container, which represents a server in the Resource Environment model. The Allocation model contains I_2 in Allocation Contexts, which provide a mapping of an Assembly Contexts on a Resource Containers.

After extracting all required information, the basic data privacy level for every component/Assembly Context is calculated by applying the most critical privacy level from the corresponding Assembly Connectors.

As last step of the preprocessing, the data are reassembled by constructing a sufficient graph (Figure 7.6). The graph is a simple, more direct representation of host-component-allocation structure from the PCM model. The graph contains two types of nodes: the DeploymentNode, a host representation, and the ComponentNode, a component representation. The data streams/interfaces are represented by the ComponentEdge:

![Graph Diagram](image)

Figure 7.5: PCM Privacy information spread

7.4.2 Component categorization implementation

The second phase of the privacy analysis algorithm finalizes the component categorization. As described in Section 7.2, joining data streams need to be found and fitting components’ data privacy level corrected.
The algorithm (Algorithm 1) searches for depersonalised-marked connections from one personal categorized component to another. It uses a *deep search first* approach, while never using an edge twice. Note, that once a joining data stream is found, the involved components are appended to the list of personal components.

7.4.3 Deployment analysis implementation

The final privacy analysis phase is the deployment evaluation. The base analysis is very simple, since it simply checks whether every as personal categorized component is deployed on an as save considered geo-location. The a geo-location is considered as save, when it is contained in the save-geo-location list. When a server is located in an un-save geo-location and contains more then one depersonalised component, an extensive analysis for joining data streams has to be made. This extensive analysis is described in Algorithm 2.

The Algorithm works similar to Algorithm 1. Initially, it extracts all as depersonalised categorized components on the server. These components have to form a transitive hull and share a single depersonalised communication link to a single personal component. The algorithm uses a *deep search first* approach to traverse through the components. If a second link to a personal component is found or not every depersonalised component on the server is reached, the deployment is illegal.

Note, that anonymized categorized components and edges can be ignored during analysis. Also, a server won’t contain any personal marked component since such a deployment would be automatically illegal due to the servers un-save geo-location.
Algorithm 1 Component categorization algorithm

1: List of Components $\textit{components}$
2: Set of Edges $\textit{usedEdges}$
3:
4: procedure $\textsc{StartCategorization}(\text{List}<\text{Components}>: \textit{components})$
5: \hspace*{1em} \textit{personalComponents} ← \textit{componentswithPrivacyLvL} == \text{PERSONAL}
6: for all \textit{personalComponent} ← \textit{Components} do
7: \hspace*{1em} \textsc{TraverseComponent}(\textit{personalComponent})
8: end for
9: end procedure
10: end function

12: function $\textsc{TraverseComponent}(\text{Component} \ \textit{component})$
13: \textit{dePersonalEdges} ← \textit{component}.\text{GetEdges with PrivacyLvL} == \text{DEPERSONAL}
14: for all \textit{edge} ← \textit{dePersonalEdges} do
15: \hspace*{1em} if \textit{usedEdges}.\text{CONTAINS(edge)} then
16: \hspace*{2em} \textsc{CONTINUE}
17: \hspace*{1em} else
18: \hspace*{2em} \textit{usedEdges}.\text{ADD(edge)}
19: \hspace*{2em} \textit{edgePartner} ← \textit{edge}.\text{GETEDGEPARTNER(component)}
20: \hspace*{1em} if \textit{edgePartner}.\text{PrivacyLvL} == \text{PERSONAL} then
21: \hspace*{2em} return \textit{edgePartner}
22: \hspace*{1em} else
23: \hspace*{3em} \textit{secondSource} ← \textsc{TraverseComponent}(\textit{edgePartner})
24: \hspace*{3em} if \textit{secondSource} ≠ \text{PERSONAL} then
25: \hspace*{4em} \textit{component}.\text{PrivacyLvL} ← \text{PERSONAL}
26: \hspace*{4em} \textit{components}.\text{ADD(component)}
27: \hspace*{3em} return \textit{secondSource}
28: end if
29: end if
30: end for
31: return Null
32: end function
Algorithm 2 Deployment analysis algorithm

1: Set of Components compToReach
2: Set of Edges usedEdges
3: Edge dataSourceEdge
4:
5: procedure ExtensiveAnalysis(Server server)
6: compToReach ← server.GetComponents with PrivacyLvl == DEPERSONAL
7: dataSourceEdge ← Null
8: startComp ← compToReach.GetAny
9: clear usedEdges
10: singlePersonalDataSource ← TraverseComponent(startComp)
11: return singlePersonalDataSource AND compToReach.IsEmpty
12: end procedure
13:
14: function TraverseComponent(Component component)
15: compToReach.Remove(component)
16: dePersonalEdges ← component.GetEdges with PrivacyLvl == DEPERSONAL
17:
18: for all edge ← dePersonalEdges do
19: if usedEdges.Contains(edge) then
20: continue
21: else
22: usedEdges.Add(edge)
23: edgePartner ← edge.GetEdgePartner(component)
24: if edgePartner.PrivacyLvl == PERSONAL then
25: if dataSourceEdge == Null then
26: dataSourceEdge ← edge
27: else
28: return False
29: end if
30: else
31: singleDataSource ← TraverseComponent(edgePartner)
32: if singleDataSource then
33: return False
34: end if
35: end if
36: end if
37: end for
38: return True
39: end function
8 PerOpteryx Extension

PerOpteryx, briefly introduced in Section 2.5, is a model optimization framework. It is designed to calculate performance and cost optimised PCM models. For this purpose PerOpteryx uses an evolutionary algorithm to generate new PCM candidates. PerOpteryx uses a Design Decisions EMF model to create a Design Space. The design space is defined via Degrees Of Freedom. Every degree of freedom allows for a finite amount of Decisions. A Candidate consists of one choice per degree of freedom and represents a PCM instance.

Every candidate needs to be evaluated in order to decide if the Decisions made during its constructions lead to a good results. Each evaluator can produce multiple results per analysis run. Each result belongs to a certain QML dimension. A dimension has Objectives and/or Constraints, which helps the evolutionary algorithm to find the Pareto-optimal candidates. Every evaluator is encapsulated in an Eclipse Plug-in [17]. Since we need another evaluator, we need to create a new plug-in.

Some plug-ins require additional data. The cost analysis for example uses a cost model to provide a cost result for the resource containers allocation and usage costs.

8.1 Plug-in Design

We want to provide a Privacy Analysis evaluator for PerOpteryx, while using our previously developed Privacy Analysis (chapter 7). Since both systems are based on the Palladio Component Model, the privacy analysis itself can be used as described in chapter 7. However, PerOpteryx does not know a "Privacy Dimension", which is required, since every analysis result needs an according dimension. A new dimension is required, since using a pre-existent dimension - like the "cost dimension" - would undermine the evolutionary algorithms optimizations effort. The privacy analysis has a single result, which is a Constraint. It states, that no privacy violation is permitted.

As mentioned before, we need to create a new QML Dimension, the Privacy Dimension, which is referenced in a QML Contract Type. The contract type references all the evaluation dimensions. The QML Declaration references the contract type and specifies the actual objectives and constraints for the dimensions. Further, it specifies a QML Profile, which Usage Model is used for the evaluation.

8.2 PerOpteryx Modification

PerOpteryx’ prior structure considers every generated candidate to be valid, only with different runtime results. This is incorrect, when the privacy dimension is included. Only privacy compliant models are valid options. As a result, we can abort the evaluation of the
current PCM model, if the privacy constraint is broken. However, this means we need to execute the privacy evaluation first, check if the constraint is broken, break the evaluation if the model is invalid and fill all other objectives and constraints with according values.

As mentioned above, every evaluation is encapsulated in an Eclipse Plug-in. So, every evaluation is represented as Proxy Analysis in PerOpteryx, who has no information on what evaluation he is actually currently executing. To save evaluation time and increase our search space, we need to execute the Privacy Analysis first, while not breaking the generic evaluation characteristic. As a result, the IAnalysis interface for every evaluation was extended with a Evaluation Complexity query, returning an Enum representing the analysis runtime duration. PerOpteryx was modified in a way, that analysis returning the value VERY_SHORT get executed first. The Privacy Analysis evaluator returns this value.

Further, PerOpteryx was modified, to output the most cost efficient candidate once all evaluation iterations are completely executed. The cost criteria was chosen over performance due to PerOpteryx’s tendency to spread the allocation over many server to optimize the performance. The cost optimal model tends to group components on servers, reducing the servers required and therefore saving money, while still having a decent performance.
9 System Adaptation

In the system adaptation stage of iObserve Privacy the observed software system is modified to match the re-deployment PCM. This file stage represents part of the planning and the complete execution phase of the MAPE loop (Section 2.1).

The remainder of this chapter is divided into the calculation of an adaptation plan (Adaptation Planning, Section 9.1) and the execution of this adaptation plan (Adaptation Execution, Section 9.2). It closes with a look onto the implementation (Section 9.3).

9.1 Adaptation Planning

The planning phases job is to calculate what actions are required to bring the observed software system into the state defined by the re-deployment model. While the task is pretty clear, the available source of informations are quite uncertain.

There are multiple potential sources of information that can be used to calculate adaptation steps. For example, the Design Decisions file used and modified by PerOpteryx (see chapter 8). This file contains all choices made during generation of the re-deployment model. These informations are a viable source for the action computation. However, this source create a strong dependency on PerOpteryx. This means, when PerOpteryx would be exchanged for another model optimization tool, the complete adaptation planning needs to be re-thought and developed.

Another information source for the adaptation planning could be the close observation of the candidate calculation/generation. This could be achieved by logging decisions made by the evolutionary algorithm. When considering that the starting point of an evolutionary algorithms is usually a given input, the modification steps could be traced and remodelled for the system adaptation. However, evolutionary algorithms usually don’t take the shortest path onto their end result and also random mutations are an valid generation factor. This means, the results needs to be analysed and optimized, while also injecting observations probes. While being a good potential information source, the effort for post-generation analysis and the resulting dependencies make it a bad choice.

We decided to make a direct comparison of the architectural runtime model and the architectural re-deployment model. This builds up no further dependencies and the shortest adaptation path can be found. However, the information preprocessing and the comparison algorithm can be more complex than the other options. The comparison itself is based around identifier and content equality. The Adaptation Calculation compares the model graphs (see Subsection 7.4.1) whether a component was added, removed or modified, as well as a server was acquired or released. Derived from these differences, Adaptation Actions are created.
9 System Adaptation

9.1.1 Adaptation Actions

Palladio models are independent from programming languages, technologies and other specifics. We decided to enforce this characteristic by defining technology independent actions. They contain the required information, without knowing anything about the used technologies.

Further, we designed a set of basic actions which allows us to (theoretically) transform any PCM runtime instance into any PCM re-deployment instance. These are derived from the runtime changes specified in [10] and the potential variation PerOpteryx calculates during its optimization process. The actions can be grouped into two major disjunct subgroups: the Assembly Context Actions and the Resource Container Actions.

- **Assembly Context Actions**
 - Allocate Action
 - Deallocate Action
 - Migrate Action
 - Change Repository Component Action

- **Resource Container Actions**
 - Acquire Action
 - Replicate Action
 - Terminate Action

Assembly Context Actions reflect all model changes around a software component. The Allocate action represents a new or first deployment of a system component, the Deallocate action represents the exact opposite, the deleting or un-deployment of a component. And Migration action moves a component from a server to another. The Change Repository Component action addresses the possibility to exchange a software component with an equivalent one. This can happen due to better fitting performance characteristics, while required and provided interfaces stay the same. As a result, the structure of the system model stays unchanged, but an encapsulated component gets exchanged for another one.

Resource Container Actions reflect changes around a virtual or physical server. Acquire and Terminate Actions start and release a server/virtual machine. A Replicate Action clones a server instance with its containing components.

We decided to model these actions into an EMF model and reference the PCM meta-model. This allows us to directly reference the affected resource container or assembly contexts without any technology implications. Writing this code by hand would cause more effort on a PCM meta-model update, however, the generated EMF models perform poorly during debugging. Nevertheless, EMF meta-models are easily extendable and modifiable and therefore perfect for the task at hand. These actions were designed and developed in cooperation with [21].
9.1 Adaptation Planning

9.1.2 Action Ordering

For each action a set of pre-execution-conditions can be determined. Using this sets, a universal order can be derived. However, we need two assumptions for this order to be valid:

- Each component is affected by an action only once.
- The Change Repository Component Action does not affect a component.
- A server never gets acquired a terminated in one sequence.

The assumptions state, that neither assembly contexts, nor resource container are affected by transitive actions. These assumptions are true, since the Adaptation Calculation (Section 9.1) is designed to calculate a direct transition into an entities final (re-deployment) state. As a result, the order inside a set of actions from the same type does not matter. Further, the order within all Assembly Context Actions does not matter. The pre-execution-condition per action are:

<table>
<thead>
<tr>
<th>Action</th>
<th>Pre-Execution-Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allocate</td>
<td>execute after Acquire</td>
</tr>
<tr>
<td>Deallocate</td>
<td>execute before Terminate</td>
</tr>
<tr>
<td>Migrate</td>
<td>execute after Acquire & before Terminate</td>
</tr>
<tr>
<td>Change Repository Component</td>
<td>execute before Migrate</td>
</tr>
<tr>
<td>Acquire</td>
<td>–</td>
</tr>
<tr>
<td>Terminate</td>
<td>–</td>
</tr>
<tr>
<td>Replicate</td>
<td>–</td>
</tr>
</tbody>
</table>

Table 9.1: Pre-Execution-Conditions for adaptation actions

Note, that the change repository component condition is not a "hard" condition, since the encapsulated component could be exchanged even after the migration is performed. However, the action appended data reference the hosting resource container and assembly context before the component is migrated. Without this condition, the action execution would have to check, whether the component was migrated.

Based on the pre-execution-conditions of Table 9.1 the following order was calculated:

1. Acquire
2. Change Repository Component
3. Deallocate & Allocate & Migrate
4. Terminate & Replicate

Table 9.2: Universal action execution order

This order is a universal execution order for the actions calculated by the Adaptation Calculation. When the actions are executed in this order no dependency conflicts will occur. Note, execution errors are not considered, since the are independent form planning.
9.2 Adaptation Execution

The adaptation executions task is to execute the adaptation sequence calculated by adaptation planning. Since the actions are technology independent, we require a technological dependent script/function that represents the action. A script can be considered the implementation of an action. These scripts are given to iObserve Privacy via input parameter.

The technological implications are not considered by this thesis and are therefore not further discussed. However, the separation of technology independent and dependent part of the execution is very futile to the whole iObserve principle.

We recommended to execute the scripts asynchronous. This enables iObserve privacy to track the changes in real-time. This allows for post-adaptation evaluation. This means, iObserve (privacy) can check, whether the runtime model is now semantically equivalent to the re-deployment model. Further details on the execution of the adaptation actions can be found in [21].

9.3 Implementation

The implementation is split into three parts: the action calculation, the action ordering and the action execution. The calculation is based on the same graph as used during the Privacy Analysis (Figure 7.6). The Assembly Context Actions get calculated independently from the Resource Container Actions, the principle however is the same. See Algorithm 3 for the pseudo code.

Initially the algorithm adds all assembly components to a dictionary. In the main procedure, the algorithm iterates over all re-deployment assembly components and tries to find a matching one in the runtime model. If no match as found, it is a new assembly component and needs to be allocated. If an equivalent was found, different comparisons are performed, to check whether adjustments have to be made. Keep in mind, that the migration of an assembly component and the exchange of encapsulated repository component do not exclude each other. At the end of every iteration, the found runtime components get removed from the dictionary. At the end of the algorithm all remaining runtime assembly components are no longer required and can be deallocated. We need to point out, that the comparing operators are simplified for the purpose of a pseudo-code.

The calculation of the Resource Container Actions is implemented similar. Initially all servers get added to a dictionary, all re-deployment servers get compared against those and the actions calculated accordingly.

The whole calculation is build around the stability of IDs on Palladio model elements. If the re-deployment model creates a completely new system model, while changing only minor details, the calculation will deallocate the old system and allocate a totally new one. PerOpteryx modifies the system model, keeping the assembly context IDs - as intended - stable and therefore produces only minimal actions.
Algorithm 3 Action Calculation algorithm

1: Dictionary components
2: List of Action actions
3:
4: \textbf{procedure} INIT(List<Components> runtimeComponents)
5: \hspace{1em} \textbf{for all} runComponent ← runtimeComponents \textbf{do}
6: \hspace{2em} components.PUT(runComponent.AssemblyContextID, runComponent)
7: \hspace{2em} \textbf{end for}
8: \textbf{end procedure}
9:
10: \textbf{procedure} CALCULATEACTIONS(List<Components> reDeplComponents)
11: \hspace{1em} \textbf{for all} reDeplComp ← reDeplComponents \textbf{do}
12: \hspace{2em} runComp ← GET(reDeplComp.AssemblyContextID)
13: \hspace{2em} \textbf{if} runComp == Null \textbf{then}
14: \hspace{3em} actions.ADD(new AllocateAction(...))
15: \hspace{2em} \textbf{else}
16: \hspace{3em} \textbf{if} runComp.ComponentID != reDeplComp.ComponentID \textbf{then}
17: \hspace{4em} actions.ADD(new ChangeRepoAction(...))
18: \hspace{3em} \textbf{end if}
19: \hspace{3em} \textbf{if} runComp.ResContainerID != reDeplComp.ResContainerID \textbf{then}
20: \hspace{4em} actions.ADD(new MigrateAction(...))
21: \hspace{3em} \textbf{end if}
22: \hspace{2em} \textbf{end if}
23: \hspace{2em} components.REMOVE(reDeplComp.AssemblyContextID)
24: \hspace{2em} \textbf{end for}
25: \hspace{1em} \textbf{for all} runComp ← components \textbf{do}
26: \hspace{2em} actions.ADD(new DeallocateAction(...))
27: \hspace{2em} \textbf{end for}
28: \textbf{end procedure}
10 Evaluation

This chapter is structured as follows: Initially the concept is elaborated (Section 10.1), followed by evaluation scenarios (Section 10.2) and the evaluation models (Section 10.3). The actual evaluation consists of the single tasks: monitoring (Section 10.4), privacy analysis (Section 10.4), model generation (Section 10.5) and system adaptation (Section 10.7). Finally we are analysing the threats of validity (Section 10.8). Note, all evaluation models, test data and results can be found at [31].

10.1 Evaluation Design

iObserve Privacy is a complex approach with many depending tasks. Evaluating the program as a whole is next to impossible due to the multiplexing dependencies. The evaluation factors would not be manageable and inconclusive results would make the evaluation itself pointless. So we decided to evaluate every task independently. The order and structure was inspired by the iObserve pipeline.

The task evaluation is generally split into an Accuracy evaluation and a Scalability evaluation. The accuracy evaluation aims for the correct functionality. This means, we are testing whether the actual results are equal to expected results. For the evaluation we are creating a set of Evaluation Scenarios, which reflect real-world situations by defining a starting point and an expected endpoint. If the systems result differs from the endpoint, the reasons must be found and analysed.

The scalability evaluation aims for the systems runtime characteristic, based on an increasing work load. The actual accuracy result of the task is of no interest during the analysis. The primary measurement is the tasks execution time, dependent on the assembly context count and resource container count. Both axis are logarithmic scaled, so the execution behaviour is clearly visible. The individual models are randomly generated, based on a repository model input.

We will use the Jaccard Coefficient to evaluate model changes during the accuracy evaluation. Prior to the execution a target model is created, representing the desired post-execution state. The runtime model is compared to the target model, differences are calculated, as well as the jaccard coefficient. The coefficient is defined as the intersection set of runtime and target model divided through the union set of these models:

\[JC(A, B) = \frac{|A \cap B|}{|A \cup B|} \]

If the models are completely equal, the result is 1.0 [1]. We are comparing the system model, the resource environment model and the allocation model. The repository and the usage model model is not modified by iObserve Privacy and therefore do not need
any comparison. All models elements are matched by element content. The system and
resource environment model are also compared by element ID. All models modified by
iObserve Privacy are order independent, so an order match, like the Spearman Coefficient,
is not required.

The test device is a Surface Pro 4 using Windows 10 as Operating System. The important
hardware specifications are a i7-6650U processor with 2.2 up to 3.4 GHz, 4 MB cache and 2
cores with hyper-threading. The system uses 16 GB of RAM and a 265 GB Solid State Drive.
For more details see [33]. The used Java version is 1.8.0_121 form Oracle.

10.2 Evaluation Scenarios

The scenarios are structured in PRE, EVENT, REACTION and POST. PRE describes the
distributed software system before the event takes place. The EVENT is a trigger for a
certain process or task chain, usually referenced as REACTION. POST defines the state of
the software system after the reaction.

The scenarios describe the behaviour of iObserve Privacy through out all tasks, while
each task gets evaluated individually. Nevertheless, details of a scenario may need clari-
ification during the evaluation of this task.

The following scenarios are derived from the runtime changes mentioned in [10]. This
runtime changes are possible modification to a distributed software system. However,
not all mentioned scenarios are of interest in the privacy analysis context, these will be
discussed in Subsection 10.2.5. Scenarios 1 and 2 represent the observed system runtime
changes, which trigger the iObserve privacy pipeline. These are designed to show the
successful execution of a pipeline run with different triggers. Scenario 3 and 4 cover
the operator-in-the-loop scenarios. The operator is required, when an error occurs that
iObserve privacy can not handle itself. These scenarios are design specific and therefore
not derived from the runtime changes described in [10].

10.2.1 Scenario 1: Default

This scenario describes the "default" setting. It is used to evaluate the geo-location transfor-
mation, the privacy analysis, a successful execution of the re-deployment generation and
the adaptation planning.

- PRE: All components of the software system are deployed on Amazons EC2 service
 on the EU Frankfurt location. The system is privacy compliant.
- EVENT: Amazons EU Frankfurt data centre has a critical failure. As a result Amazon
 starts migrating local virtual machines towards the US Ohio and EU Ireland locations.
- REACTION: iObserve Privacy monitors the migration and starts a privacy analy-
sis. The analysis shows a privacy violation and as a result an alternative, privacy
 compliant re-deployment is generated. A system adaptation plan is calculated based
 on the re-deployment and finally executed.
- POST: The software system is in a privacy compliant state.
10.2 Evaluation Scenarios

10.2.2 Scenario 2: System extension

This scenario describes the deployment runtime change. It is used to evaluate the deployment transformation, the privacy analysis, a successful execution of the re-deployment generation and the adaptation planning.

- **PRE**: All personal categorized components of the software system are deployed on Amazon's EC2 service on the EU Frankfurt location. All other components are hosted by an Ukrainian provider. The system is privacy compliant.

- **EVENT**: The system operator adds another component categorized as depersonalised to the Ukrainian server.

- **REACTION**: iObserve Privacy monitors the migration and starts a privacy analysis. The privacy analysis shows a privacy violation due to joining data streams. An alternative, privacy compliant deployment is computed by PerOpteryx. A system adaptation plan is successfully calculated by the adaptation planning. Finally the adaptation sequence is executed.

- **POST**: The software system is in a privacy compliant state.

10.2.3 Scenario 3: Failing Adaptation

This scenario is used to evaluate the operator-in-the-loop during the execution of the adaptation sequence. Due to at least one non-automated adaptation action the operator needs to be informed.

- **PRE**: All components of the software system are hosted by multiple server instances of a cloud reseller.

- **EVENT**: The reseller migrates some of his servers to another cloud provider.

- **REACTION**: iObserve Privacy monitors the migration and starts a privacy analysis. The privacy analysis results in a privacy violation. An alternative privacy compliant deployment is computed. The adaptation calculation and planning is successful. The adaptation sequence contains actions that can not be executed automatically. The operator is informed about the action that can not be executed by the adaptation execution.

- **POST**: iObserve Privacy shows the operator the adaptation sequence with emphasis on the manual tasks.

10.2.4 Scenario 4: Missing Alternative

This scenario is used to evaluate the operator-in-the-loop during the re-deployment generation. PerOpteryx did not provide a privacy compliant re-deployment model and therefore the operator is notified.

- **PRE**: All components of the software system are hosted by multiple server instances of a cloud resellers.
10 Evaluation

- **EVENT**: The reseller starts migrating his servers to another cloud provider.

- **REACTION**: iObserve Privacy monitors the migration and starts a privacy analysis. The privacy analysis shows a privacy violation. The computation of an alternative privacy compliant deployment fails. iObserver privacy detects that the re-deployment model is missing or not privacy compliant. The operator is notified about the situation.

- **POST**: iObserve Privacy notifies the operator about the missing privacy compliant re-deployment model.

10.2.5 Futile Scenario

There are a couple of scenarios which do not apply to iObserve Privacy, due to various reasons [10]. We will elaborate those scenarios shortly.

Performance or workload characteristics are not tackled, since performance and privacy analysis combined wouldn’t be manageable in the scope of this thesis.

The un-deployment or de-replication are two scenarios which reduce the complexity of the privacy analysis. A privacy violation can not be triggered by eliminating a component and/or a server from the system.

The replication of a server, with all its components, will trigger a deployment event. This means, this scenario is already covered by **Scenario 2**.

10.3 Evaluation Models

In the previous sections we defined a couple of scenarios for the evaluation. In order to execute these scenarios, we need PCM Privacy models (chapter 5). Scenario and model need to get selected individually, depending on the task to evaluate.

10.3.1 CoCoME-Cloud

The CoCoME Cloud PCM model is a representation of the CoCoME system as a distributed cloud variant. It is a representation of a supermarket IT infrastructure. It consists of six individual deployed components: logic.webservice.cashdeskline.cashdeskservice, cloud.web, tradeingsystem.inventory, tradeingsystem.cashdeskline, webservice.inventory and tradeingsystem.external.bank. The system design is oriented on real distributed software systems with dozens of interfaces and multiple composite components. As a result, CoCoME-Cloud is very complex and not suited for the evaluation of specific aspects like the component categorization or the deployment analysis. However, it is as the only available model fully specified and "PerOpteryx ready". See [12] for detailed information on CoCoME.

10.3.2 Medi System

The Medi System is an PCM model, specially developed for the evaluation of this thesis. It is supposed to reflect the web system of a medical insurance. The required and provided interfaces are reduced to the minimal necessity, to limit side effects and to gain meaningful
results. Figure 10.1 shows the medi system with all components and interface connections. The deployment will depend on the evaluation scenario.

10.3.3 Generated Models

We developed a model generator and model modifier for the scalability analysis. The generator requires an input repository and creates a valid PCM Privacy model with the given amount of assembly contexts and resource containers. The contained component in the assembly context is randomly selected, as well as the resource container it is allocated on. All required interfaces are correctly connected, primarily to provided interfaces without an existing connection.

The model is usually constructed with a distribution of 40% Resource Container and 60% Assembly Contexts. This means, a model with 1000 nodes consists of 400 servers and connected 600 components. We argue, that this leads to a near real-world distribution of servers with the majority of servers hosting one or two components, a few hosting three or more components and some empty servers. The classification of the Assembly Connectors is distributed among 15% Personal, 35% Depersonalised and 50% Anonymous. This distribution is oriented on the CoCoME classification.

The combination of node and classification distribution leads to every possible execution path during the execution, as tests have shown. This is the primary concern for the scalability tests, since the tests aim for a near real-world setting.

The model modifier adapts the system randomly, based on action counts specified. The modification supports server acquisition and termination and assembly context allocation, deallocation and migration. Further, it supports the exchange of the contained repository component for a component with the same interfaces. Note, the generated models are only suited for the scalability analysis.
10 Evaluation

10.4 Transformation

The Transformation evaluation consists of an accuracy and a scalability evaluation. The main purpose is to test the transformation of the sent information to the architectural runtime model. Further, the iObserve privacy pipeline has to be triggered upon changes. Scenario #1 (Subsection 10.2.1) and Scenario #2 (Subsection 10.2.2) describe the two possible triggers: the Deployment Event, when a component is deployed on a server, and the GeoLocation Event, when the geo-location of a server changes.

10.4.1 Transformation: Accuracy Evaluation

For the accuracy evaluation we are using the CoCoME-Cloud model (Subsection 10.3.1), since it is completely specified and reflects a real-world system the most appropriate way available. We need to show, that the TDeployment, TUndeployment and TGeoLocation Transformations apply the sent data correctly to the PCM model. Potential errors must be handled and processed. For this purpose we will use two executions. First, we will execute a logically valid input set of events, to show the correctness of the transformation. In a second execution we will show, that logically wrong inputs are processed correctly. Both runs start with an empty allocation model.

Table 10.1 shows the initial input event sequence. Initially all components are being deployed, followed by a geo-location update for each server and a re-deployment of the cloud.web component from Server1-EU to Server5-EU and finally a geo-location update on Server4-EU to Ukraine.

<table>
<thead>
<tr>
<th>Action</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deployment</td>
<td>tradingsystem.external.Bank on Server6-EU</td>
</tr>
<tr>
<td>Deployment</td>
<td>tradingsystem.cashdeskline on Server4-EU</td>
</tr>
<tr>
<td>Deployment</td>
<td>cloud.web on Server1-EU</td>
</tr>
<tr>
<td>Deployment</td>
<td>webservice.inventory on Server1-EU</td>
</tr>
<tr>
<td>Deployment</td>
<td>tradingsystem.inventory on Server2-EU</td>
</tr>
<tr>
<td>Deployment</td>
<td>logic.webservice.cashdeskline.cashdeskservice on Server3-EU</td>
</tr>
<tr>
<td>GeoLocation</td>
<td>Server1-EU on 276 (GER)</td>
</tr>
<tr>
<td>GeoLocation</td>
<td>Server2-EU on 276 (GER)</td>
</tr>
<tr>
<td>GeoLocation</td>
<td>Server3-EU on 250 (FRA)</td>
</tr>
<tr>
<td>GeoLocation</td>
<td>Server4-EU on 250 (FRA)</td>
</tr>
<tr>
<td>GeoLocation</td>
<td>Server5-EU on 826 (GBR)</td>
</tr>
<tr>
<td>GeoLocation</td>
<td>Server6-EU on 826 (GBR)</td>
</tr>
<tr>
<td>UnDeployment</td>
<td>cloud.web from Server1-EU</td>
</tr>
<tr>
<td>Deployment</td>
<td>cloud.web on Server5-EU</td>
</tr>
<tr>
<td>GeoLocation</td>
<td>Server4-EU on 804 (UKR)</td>
</tr>
</tbody>
</table>

Table 10.1: The correct execution set

We expect a run without any errors, an allocation model, which represents the described deployment and a design decisions model, with the according degree of freedoms.
The results are true to our expectations. The system reports no errors and the models represent the system exactly as intended. The *Jaccard Coefficient* is 1.0.

<table>
<thead>
<tr>
<th>Action</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deployment</td>
<td>cloud.web on Server1-EU*</td>
</tr>
<tr>
<td>UnDeployment</td>
<td>cloud.web from Server5-EU</td>
</tr>
<tr>
<td>UnDeployment</td>
<td>cloud.web from Server5-EU*</td>
</tr>
<tr>
<td>Deployment</td>
<td>cloud.web on Server7-EU*</td>
</tr>
<tr>
<td>Deployment</td>
<td>IllegalComponent on Server1-EU*</td>
</tr>
<tr>
<td>UnDeployment</td>
<td>IllegalComponent from Server1-EU*</td>
</tr>
<tr>
<td>UnDeployment</td>
<td>tradingsystem.inventory from Server3-EU*</td>
</tr>
<tr>
<td>GeoLocation</td>
<td>Server7-EU on 826 (GBR)*</td>
</tr>
</tbody>
</table>

Table 10.2: The error execution set

To test the error behaviour, we need to input logically false events. To gain a valid system state, we are starting with the valid order (Table 10.1) and append illegal orders. Table 10.2 shows the exact execution sequence. Illegal events are marked with a * . We expect these orders to give a warning and to be ignored. The system must continue running. The test includes the following cases: Deployment of an already deployed component, deployment or undeployment on a non-existing server, geo-location record from a non-existing server, un-deployment of a non-existing deployment.

The error run ends up to be exactly as intended. All faulty commands got ignored and the *Jaccard Coefficient* is 1.0. Both Jaccard coefficients show, that the (un-)deployment and geo-location transformation works as anticipated. As a consequence we argue, that the *monitoring* research question, RQ-M1, was successfully answered and that we have a very good accuracy (see RQ-M2), since no case could be identified that did not work as intended.

10.4.2 Transformation: Scalability Evaluation

For the scalability analysis we are using the Medi-System model with generated input. The Medi-Model is chosen due to its less generic characteristic then the Gen-Model and therefore more realistic result. Further, the Medi-Model as complex as the CoCoME model in the field to test, while easier to understand and less error prone during input generation.

The inputs are logically and syntactically valid. 30% of the inputs are deployments and un-deployments, distributed relative to the current allocation status. The other 70% of inputs are geo-location events, randomly distributed over all available servers. This ratio is an over-approximation towards the more complex and computation intensive allocation and de-allocation events. The expected real-world occurrence of a deployment events to the geo-location event is about 1 to 10000. This way, we expect the deployment and un-deployment event to have a more significant impact on the runtime behaviour. Every measurement was repeated ten times to eliminate potential measurement errors. The log
outputs remain active, the snapshot creation is deactivated, so no further pipeline filters are activated. We use input sizes from 10 to one million events on a logarithmic scale.

![Figure 10.2: Transformation runtime & Standard Deviation](image)

The results (Figure 10.2) show a linear runtime behaviour, for the maximum input size of 1 million events the execution takes about 820 seconds. The according standard deviation of 22 makes it a stable and fast result, concerning RQ-M3.

10.5 Privacy Analysis

The Privacy Analysis was discussed in chapter 3 (Privacy Concept) and chapter 7 (Privacy Analysis). As described there, the privacy analysis consists of two sequential parts: Component Classification and Deployment Analysis. According to this tasks, the accuracy evaluation is also split. The accuracy evaluation uses the Medi-System model (Subsection 10.3.2), due to its moderate complexity level, where effects like the Joining Data Stream occur, but the results are still traceable.

10.5.1 Privacy Analysis: Accuracy Evaluation

We will show, that the Component Classification categorizes components correctly. This includes the correct initial categorization (C1), the finding of joining data streams (C2) and single data stream (C3). Further, we will show, that the Deployment Analysis finds illegally deployed personal components on un-save geo-locations (D1), joining data streams on the deployment level (D2) and ignores joining data streams on a save geo-location (D3). As a result, we demonstrate the correctness of our privacy analysis, as specified in the goal section (Section 1.3).

The scenarios #1 (Subsection 10.2.1) and #2 (Subsection 10.2.1) aim to trigger a privacy analysis and describe different privacy violations. We showed in Section 10.4, that both trigger, the deployment event and the geo-location event are correctly processed and the
information, are successfully transformed to the PCM model. Both pipeline triggers lead to the same privacy analysis and are therefore equivalent for this accuracy evaluation.

Figure 10.3: Initial system state

The initial system state is as shown in Figure 10.3. The system is privacy compliant and only the GovStatistics component is not allocated on a server. iObserve will trigger the pipeline by processing a TGeoLocation transformation, which migrates the Server2 to Belarus. With this trigger, we will show, that the component categorization works as intended.

We expect the initial component categorization to be equal to the most personal interface level the component has (C_1). After the Categorization Analysis the MarketingAnalysis component should be classified as personal, due to its two personal communication partners (C_2). The privacy level categorization of the components ErrorDetection, TreatmentAnalysis and CourseAnalysis must remain unchanged, since they share a single depersonalised interface as data source (C_3). The deployment must remain legal.

Figure 10.4: Initial categorization Figure 10.5: Categorization analysis result

After the execution we calculated a Jaccard Coefficient of 1.0. This shows us that the pipeline trigger was correctly processed. Figure 10.4 shows the initial component categorization, Figure 10.5 shows the categorization analysis result. This states show, that our expectations on the component categorization, C_1, C_2 and C_3, were met. The
deployment analysis reports a legal deployment, which is also what we anticipated. So, the results are true to our expectations.

To trigger the pipeline another time, we will deploy the GovStatistics component onto Server2. The component must be tagged depersonalised and the deployment analysis must report a joining data stream on Server2 (D2).

Figure 10.6 visualises the component categorization and deployment analysis result. The execution of the second pipeline trigger, reports a privacy violation. The cause is a joining data stream on Server2. This is what we provoked and expected (D2). The Jaccard Coefficient for the trigger processing is 1.0, again.

For the final pipeline trigger, we will migrate Server2 into the EU, to Italy. We expect, that the server no longer reports a illegal deployment, despite the potential joining data stream on the server (D3). During the migration, Great Britain is removed from the save country list, due to a management decision. As a consequence, we predict a new privacy violation concerning the deployment of the personal MarketingAnalysis component on Server4 (D1).

Figure 10.7 shows the final trigger result. As expected, the Marketing Analysis deployment on Server4 is reported as privacy violation. Further, Server2 is now privacy compliant. The Jaccard Coefficient is 1.0, so the geo-location transformation was successfully executed. The result is true to our expectations, this means, we have successfully shown D1 and D3.

We have shown, that the Component Classification algorithm and the Deployment Analysis works as intended. Further, we proofed the concept of a privacy analysis on an architectural level as intended in Section 1.3 (RQ-A1). We exemplary showed the correctness of the component categorization and the deployment analysis. This includes the two major tasks of detecting joining data streams on component categorization and deployment analysis level. Further, we showed the correct identification of a set of components, located on a server, sharing a single depersonalised component as a data source. So, concerning RQ-A2, we have a perfect accuracy. Further, exemplary privacy violations will be used in the other accuracy evaluations.
For the scalability evaluation of the privacy analysis, we will use the generated model (Subsection 10.3.3), since models of the intended scale are not constructable by hand.

The time measurement starts before the graph is constructed from the model. Time measures are taken for the component classification and the deployment analysis. Complex console outputs, like the system structure, are deactivated to minimise random performance influences.

We measure a graph size of 10 to one million nodes on a logarithmic scale. The model set-up was described in Subsection 10.3.3. The legal geo-locations consist of 40 random chosen countries, while the server geo-locations are distributed among roughly 200 countries. This proportion was chosen to provoke many privacy violations and a significant amount of joining data stream analysis. Each model measurement is repeated ten times to minimize runtime effects.

Figure 10.8 shows the accumulated runtime in the order the tasks are executed. Initially, the graph for the privacy analysis is created, followed by the component classification and finally the deployment analysis. The graph shows a nearly linear increasing runtime. The major time is consumed by the graph construction, while the component classification and deployment analysis only show minor size effects. The accumulated runtime for one million nodes is still significantly below ten seconds. The limiting task for further scalability tests is the graph generation due to memory limitations and java HashMap overflow errors. However, graphs with the size of 1000 and more nodes are already very unlikely.

The standard deviation Figure 10.9 is increasing - in general - linear with the model size. The deployment analysis however, shows some irregular behaviour. This could be due to the randomly selected save countries. A standard deviation of three times the actual mean runtime shows significantly runtime computation differences. Nevertheless, a maximum deployment analysis time of ten seconds on a one million nodes graph is still
considered very fast. And an overall privacy analysis runtime of maximum 15 seconds is also very quick. So, concerning the research question **RQ-A3**, we can argue, that the privacy analysis has good scaling characteristics and a very fast execution time.

10.6 Model Generation

The privacy compliant model generation is only evaluated under the *Accuracy* aspect. The *Scalability* evaluation was already performed by the creators of PerOpteryx (see [16]) and our Privacy Analysis was evaluated in Section 10.5. We will focus on the problem specified in Section 1.2, the generation of a privacy compliant re-deployment model.

For this evaluation we use the CoCoME model (Subsection 10.3.1) together with the scenarios #2 (Subsection 10.2.2) and #4 (Subsection 10.2.4). Scenario #2 describes a complete iObserve Privacy execution, including the successful execution of PerOpteryx for the re-deployment model generation. Scenario #4 describes the case, in which PerOpteryx fails to generate a privacy compliant candidate. We will start with Scenario #2.

We deploy the CoCoME components on one EU server each and adjust the individual server costs to reflect EU and Non-EU status (see chapter 8). We will trigger the pipeline by moving the `Server4-EU`, which hosts the component, categorised as personal, `webservice.inventory`, to Ukraine.

After the execution of our model generation framework, PerOpteryx, we expect the re-deployment model to be privacy compliant. This is the major concern and primary focus. However, we further anticipate a deployment with fewer server in use, as well as a migration of multiple *depersonalised* components to Non-EU servers.

PerOpteryx is configured to execute *four iterations* with *20 candidates* per iteration. This means, a total of 80 candidates will be created and evaluated.
The Table 10.3 shows the components, their data privacy level classification, the initial deployment and the generated re-deployment. A performed privacy analysis on the re-deployment model shows, that the model is privacy compliant. So, the major goal (see Section 1.3) was accomplished. Further, depersonalised components were moved to more cheap Non-EU severs and two components were deployed onto the same server. Both deployment goals indicate, that the most cost efficient model was chosen - as intended. However, no component stays at this original server, which produces (unnecessary) migration costs. The execution time of PerOpteryx was about 30 seconds and elven of 80 candidates were privacy compliant.

In scenario #4, no privacy compliant re-deployment model can be found, PerOpteryx crashes or any kind of error occurs. However, the end result stays unchanged, no valid re-deployment model is available after the PerOpteryx execution. We are provoking this situation by deploying all components onto a single server. As the pipeline trigger we are moving this server to a Non-EU geo-location. We expect iObserve Privacy to report, that no privacy compliant PCM model was found. Basically, we expect, that iObserve invokes the operator-in-the-loop for manual error treatment.
The execution shows an error, which states, that the given re-deployment model is not privacy compliant. If a listener would be registered, the listener would have been notified. The execution lives up to our expectations.

Concerning the research questions in Section 1.3, we have shown that we are able to generate a privacy compliant re-deployment model (RQ-P1) and that we are able to invoke the operator-in-the-loop on an error situation (RQ-P2).

10.7 System Adaptation

The Adaptation Planing, described in chapter 9, aims for calculating a sequence of adaptation actions. The execution of this adaptation order must result in a runtime model, that is equivalent to the redeployment model. This is one of the research goals stated in Section 1.3. We will evaluate this task towards its accuracy and scalability.

10.7.1 Adaptation: Accuracy Evaluation

We will continue with scenario #2 from the generation evaluation (Section 10.6). This means, we use the input model from model generation, as well as the calculated re-deployment model to calculate the adaptation sequence. We will show the correctness of the adaptation sequence calculation, by translating the adaptation order to an equivalent iObserve privacy input event sequence. After iObserve privacy processed the events, the Jaccard Coefficient - between the computed re-deployment model from PerOpteryx and the iObserve runtime model - must be 1.0. As mentioned, this example shows the continues MAPE loop and is therefore as close as possible to a real world example.

We expect the calculated adaptation sequence to represent a series of adaptation actions that migrates the runtime model towards the re-deployment model. Further, we anticipate the order to be sorted after the Universal Action Order specified in Table 9.2. This means, the sequence is initially acquiring the newly used servers, followed by a series of migration actions, that move the components to their new servers. Finally there should be three terminate actions to release the servers, that are no longer needed.

Table 10.4 shows the output adaptation sequence for scenario #2. The result is true to our expectations. The Universal Action Order is met. For the transformation onto iObserve input events, we can ignore the acquire actions, since the resource containers already exist in the resource environment model. Every migrate action needs to be translated into two events: a Undeployment event and a Deployment event. The terminate actions can also be ignored, since there is no real server to release or terminate. We expect the system to be in a privacy compliant state after the execution of the iObserve input events. Table 10.5 shows the resulting iObserve input events.

The execution of the transformed adaptation sequence (Table 10.5) results in a privacy compliant PCM model and the Jaccard Coefficient of the post-execution runtime model and the calculated redeployment model is 1.0. So, the result fulfills our expectations and solves the in Section 1.2 stated research question RQ-E1 concerning automated privacy compliance re-establishment.
We will continue to evaluate the System Adaptation with scenario #3 to show the limitations and so far unseen capabilities of the adaptation calculation. PerOpteryx only adapts the system given according to the Design Decision model (see chapter 8). For iObserve Privacy PerOpteryx will only produce acquire, migrate and terminate actions. These are (usually) automatically executable.

For this scenario the Medi-Sys is used. We will modify the Medi-Sys model to provoke one of each action. Figure 10.10 shows the runtime model, Figure 10.11 shows the redeployment model. The anticipated difference between these models is shown in Table 10.6. We expect each of the seven actions to be detected, except the replicate action, since this is not (yet) supported by the adaptation calculation. It will be subsided by an acquire Server2-2 and an allocate GovStatistics on Server2-2.

The execution of the adaptation calculation shows the expected result (see Table 10.7). The replicate action is split into the expected acquire and allocate actions (marked with an *). To summarize, the results are true to our expectations.
Scenario #4 intends to invoke the operator-in-the-loop. We are unable to evaluate this scenario, since no technology dependent scripts (see Section 9.2) for the actual execution are available to decide whether an action is automatically executable. This depends strongly on the used system binary management tools.

Concerning the research questions stated in Section 1.3, we have proved the concept of calculating an automated system adaptation sequence (RQ-E1). However, not all defined corner cases could be detected correctly. Nevertheless, the default real-world CoCoME example was successfully calculated and proven to be correct. Overall, RQ-E2 shows a moderate to good accuracy.

10.7.2 Adaptation: Scalability Evaluation

For the scalability analysis we are using generated, logically valid PCM Privacy models (Subsection 10.3.3). These models are randomly modified with respect to the logically validity. This means, that the model does not contain any errors like unconnected required interfaces, not allocated assembly contexts and deployments on non-existing resource containers. So, the model is error-free. We are measuring the time it takes to build the
model graphs, as well as the time for the execution of the *Adaptation Calculation* and the *Adaptation Planning*.

The initial model is constructed as described in Subsection 10.3.3. The modification is linear distributed over the acquire, terminate, allocate, deallocate, migrate and exchange component modifications. However, not every modification in the model leads to an adaptation action. The adding of another resource container is only recognized as an acquire action, if an assembly context is allocated on that new resource container. The termination of a resource container, that hosts one or more components, leads also to a migration action. With this in mind, we measure the time of the adaptation calculation and adaptation planning based on the amount of modifications in the model. The model itself is three times as big as the modifications provoked, so the anticipated amount of changes are possible. A model with 100 nodes can not contain 1000 modifications. We decided against a static model size due to long evaluation runs. Each measurement is repeated ten times, to reduce the impact of runtime effects. The input sizes are 10, 100, 1000 and 10000. An evaluation run with 100000 provoked changes was aborted after twelve hours of computation.

Figure 10.12 shows the runtime results. The graph creation shows a linear runtime behaviour, like in Subsection 10.5.2 already noticed. The adaptation calculation consumes an increasingly amount of time. This can be explained with the increasing model size, since the actual action calculation is optimized for $O(1)$ operations, while the action creation operates with PCM model elements directly. The EMF framework in general shows poor performance characteristics, which can also be seen at the failed 100000 changes evaluation
10 Evaluation

Figure 10.12: Adaptation runtime

The adaptation planning needs next to no time, shown by the timeline on top of the adaptation calculation line.

The standard deviation (Figure 10.13) shows mostly constant deviations. However, the adaptation calculation increases significantly on the last evaluation run. We assume this is due to JVM memory management and EMF effects. However, a standard deviation of roughly 3 seconds to a runtime of 30 seconds is within an acceptable ratio, considering that two models and graphs of 30000 nodes have to be managed.

The Adaptation Planning scalability evaluation shows satisfying results. Concerning the research question RQ-E3 it is considered very fast with an acceptable variance.

10.8 Threats to validity

Like in any scientific publications, the evaluation has threats to its validity. We will scope the most important points and highlight the crucial aspects.

10.8.1 Internal Validity

Our decision to evaluate every major iObserve Privacy task independently is a key stone to the internal validity. It allowed us to provoke every possible reaction and effect without potential side effects. As a result, we could perfectly track cause and result of certain effects.

Scalability tests often require an even more isolated and specialised testing. In our case the individual task had to be called from outside their ordinary call scheme, the TeeTime framework. This was necessary so enable tests of the performed size. This blurs the results in the context of the whole system, however, sharpens the individual tasks runtime behaviour.
10.8 Threats to validity

One threat towards external validity are the missing live tests. Since testing on a real software system takes way longer, technology specific side effects, dependencies and errors have to be handled, we created inputs by hand. The input is logically and syntactically valid, however, potential corner cases could have been missed, despite extensive testing. Nevertheless, all tests aiming for a real-world authenticity were using the CoCoME PCM model. This model was designed to provide a scientific comparable, near real-world standard. So, iObserve Privacy was evaluated as close to a real-world application as possible, while using realistic inputs.

10.8.2 External Validity

One threat towards external validity are the missing live tests. Since testing on a real software system takes way longer, technology specific side effects, dependencies and errors have to be handled, we created inputs by hand. The input is logically and syntactically valid, however, potential corner cases could have been missed, despite extensive testing. Nevertheless, all tests aiming for a real-world authenticity were using the CoCoME PCM model. This model was designed to provide a scientific comparable, near real-world standard. So, iObserve Privacy was evaluated as close to a real-world application as possible, while using realistic inputs.

10.8.3 Construction Validity

While the individual task evaluation was the internal validities strength, it is a weakness of the construction validity. However, during the accuracy evaluations, the whole pipeline was (usually) invoked, evaluation scenarios were continued and an internal logically validity was established. So, the evaluation is well interleaved and the likelihood of construction errors should be, despite the individual task evaluation, minimized.

Nevertheless, the target evaluation models are constructed by hand, which tends to be error prone. However, to produce the same error in the evaluation target model like iObserve Privacy does is very unlikely.

10.8.4 Conclusion Validity

The accuracy evaluation is considered very conclusive with sufficient tests, scenarios and models. Most of the scalability evaluations are also quite conclusive. However, the bad
EMF performance limits the test sizes. This is especially true for the adaptation planning scalability evaluation, with the maximum input of 10000 changes. This makes the result not as meaningful as possible, but still viable.
11 Related Work

In this chapter we are presenting a couple of related publications, this work can be referenced to. The sections are oriented on the task and problems mentioned in Section 1.3.

11.1 Application Monitoring

The monitoring of software systems is common task in many research fields. Automated data-flow analysis, software profiling and hardware utilization are only a small selection of groups, using this term. In the following, we use application monitoring in the sense of online extraction of runtime data form a (distributed cloud) application for architecture optimization.

R-PRIS (Section 11.2) and Kieker are application monitoring frameworks. While iObserve uses Kieker to extract the desired information, R-PRIS is independent from other programs. Neither of them uses a meaningful architecture description language (ADL) to process and store the gathered information. iObserve however gathers the transmitted data, processes them and stores them into a PCM model, enabling all kind of PCM-based applications to use the gathered information [22][23][11].

11.2 Privacy Analysis

R-PRIS is a monitoring and analysing tool for distributed cloud systems. Like iObserve, R-PRIS updates a runtime model by monitoring the cloud systems. During the analysis phase the model is checked for (potential) privacy violations.

Like Kieker, R-PRIS combines push-based heartbeat monitoring with event processing, and graph grammars for efficiently updating those models [23]. R-PRIS uses a formal specification for geo-location policies. These consists of data classification S, data content types T and geo-locations L. Every specified policy $p = (S, T, L)$ is forbidden. This means, a data modelling is required with a Classification and the containing ContentType (see Figure 11.1). During privacy analysis R-PRIS checks whether a privacy protected information can be accessed from an non-privacy compliant location. This can be transformed into an st-connectivity problem, a standard problem in graph theory and analysis. Based on the runtime model (Figure 11.2) - with its meta-model (Figure 11.1) - R-PRIS performs a reachability check [24].

In terms of software, R-PRIS searches for communication paths in the distributed system, which can potentially transmit personal data to a non-privacy compliant geo-location. In order to detect these communication paths a policy p must be specified, representing exactly this case, which however doesn’t necessarily communicate private data. As a
result, a lot of policies have to be specified, which prohibit many potentially harmless communication paths.

Based on their runtime model, Schmieders et al. identified four relevant migration-cases and extracted six required informations to detect a policy violation[24]:

<table>
<thead>
<tr>
<th>#</th>
<th>Required information to carry out runtime check</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td>Interactions of two components</td>
</tr>
<tr>
<td>R2</td>
<td>Access of components to locally stored files</td>
</tr>
<tr>
<td>R3</td>
<td>Meta-information of stored or processed data</td>
</tr>
<tr>
<td>R4</td>
<td>Information on component deployments on physical resources</td>
</tr>
<tr>
<td>R5</td>
<td>Geo-location information of physical resources</td>
</tr>
<tr>
<td>R6</td>
<td>Explicit or implicit information on transitive data transfers</td>
</tr>
</tbody>
</table>

Table 11.1: R-PRIS information for runtime privacy checks [24]

Due to the comparable core task of detecting privacy violations, we are comparing the R-PRIS privacy analysis against the iObserve Privacy privacy analysis. More detailed information on R-PRIS can be found in [23][24].

Runtime Model R-PRIS uses the specially developed model shown in Figure 11.1. Even while it models components, VMs and process, it does not capture the systems architecture as the Palladio Component Model does. Further, it is not known, whether tool support or other compatible programs exist, like the PCM has.

Categorization We are utilizing a component communication classification, which leads to a component classification and a deployment analysis. Therefore, we do not know what data are actually processed in a component or on a server. R-PRIS, however, tags the data itself, traces the transitive access and prohibits rule violating access. As a result, R-PRIS, uses the more accurate data tracking, which requires more information and a more detailed knowledge about the observed system then iObserve privacy. While iObserve privacy uses data categorization by hand, the R-PRIS approach does not explain their modelling and categorization process.
Rule Compliance iObserve Privacy is clearly build to stay EU General Data Protection Regulation and HIPAA compliant. Therefore, a simple file input with save geo-locations is sufficient. R-PRIS requires a rule input, which specifies prohibited data access. Compared to iObserve privacy, this is a more powerful and flexible input. Nevertheless, it complicates the usage and scales poorly with the system size, deployment locations and data variety, since every prohibited access needs to be specified for every data type per geo-location and content type.

11.3 Data-flow Analysis & Rights Management

(Access) Rights Management, like the Bell-LaPadula Model or Role-based access control, are fundamentals in our modern information society. These systems restrict or allow access on certain entities with the intention of information protection. The fundamentals are well researched, so research currently is focused on resource and time efficient rights management in large scale systems like companies, as well as automated rights management on small, mobile devices [7].

Data-flow Analysis is a hot research topic due to the omnipresence of cloud services and mobile devices with rich data sources. Applications like JOANA [25], TaintDroid [9], Privacy Oracle [15] or automated privacy instrumentation [29] are only some of many applications and approaches around data-tracking, data-flow analysis and leak detection. However, nearly all of these approaches are using actual code or information rich models.

For our purposes we need automated data-flow analysis on architecture level, to determine if a system violates privacy regulations. This research is still in its early stages and therefore not suited for applications with our designated level of complexity.

11.4 Privacy Analysis

Most research in this field focuses on prevention of policy violation. “However, changes of data geo-locations imposed by migration or replication of the component storing the data are not considered. Data transfers between the client services and further services are not covered. Transitive data transfers that may lead to policy violations thus remain undetected.”[24]

As mentioned in Section 11.2, R-PRIS is searching for potential access violations in the application model, by using a st-connectivity analysis.[24][23] This approach is overestimating the privacy aspects by not including which kind of data are actually communicated between components and geo-locations. This makes it impractical for many business applications, due to the high likelihood of allowing only deployments on save-considered geo-locations.

11.5 Automated Model Optimization & Modification

The research field of model analysis based performance optimizer can be roughly divided into two sections. First, the rule-based approaches, which apply a predefined rule, based
11 Related Work

on the detected problem, onto the system model. Second, metaheuristic-based approaches, which use a generic framework and evolutionary algorithms for multiple arbitrary quality criteria.[18]

PerOpteryx (Section 2.5) is a metaheuristic-based approach. However, PerOpteryx does not consider a hosts geo-location during its optimization process. This can be changed by adding an allocation constraint, preventing privacy violating deployments.

11.6 Automated Cloud Migration & Adaptation

Since the start of cloud computing there has been plenty of research on how to migrate regular on premise applications and software into the cloud. Either software is cloud-enabled in the most automatic fashion possible or the software is cloud-native, meaning specially developed or redesigned, by developers, for running inside the cloud. While there has been good progress semi-automatically cloud-enabled software, the field of migrating cloud applications form one cloud provider to another is just beginning. One of the main issues is resulting in provider individual Cloud-APIs. Current, state of the art is the “Docker” or container-technology, which wraps the application like a VM and is suitable for many cloud provider. Nevertheless, many cloud provider offer special purpose solutions, where a docker solution is not viable. The technology side of cloud to cloud migration will be left out in this thesis. [13][3]
12 Conclusion

In this chapter we will wrap up this thesis with the limitations and the future work sections.

12.1 Limitations & Assumptions

Like every other scientific work, we can not build a universal, world ready system. We need to accept and sometimes even require limitations to produce meaningful results for certain aspects.

Cloud Provider objectives A cloud provider, like any other person or company, has his own objectives. In the most cases profit maximization can be assumed as the primary goal. This can be interpreted in multiple ways, from law in-compliant behaviour over SLA violations to premium prices for extended services. Nevertheless, in general the assumption stands, that Cloud Providers want to stay SLA and law compliant to avoid lawsuits and reputation loss. Based on this, we assume our providers are law and SLA compliant.

Separation of virtual servers For simplicity reasons, we need to assume that we can deploy multiple Type 1 Data, depersonalised data, (Section 3.1) onto one data-centre, but on different (virtual) server, without considering joining data stream (Subsection 7.1.3) implications. Basically we assume, every virtual server has its own independent disk and memory storage. If this assumption wouldn’t be made, massive per-instance encryption or per data-centre deployment would be the valid solution. However, encryption as a cloud-ready middle wear is a hot research topic around the globe and not considered by this thesis.

Geo-location API To make a statement about the systems current privacy compliance, we need the Resource Containers geo-location. If we don’t want to make extensive geo-location determination process, like the ping round trip measurement, we need the cloud provider to provide the geo-location via his cloud API.

Closed World Assumption As mentioned in Section 3.3 we need the close world assumption to make any statement about the privacy compliance. The implications of privacy and data protective laws are too complex to make a automated, detailed and well balanced statement on privacy compliance without the CWA.

Privacy Analysis Overestimation For the privacy analysis we forbid joining data streams (Subsection 7.1.3). We are aware, that this is a considerably overestimation, especially during the deployment analysis. We are doing so to ensure privacy compliance without taking any chances and prevent deep component inspection and extensive data protective law discussions.
(In-)Correct Component Based Architecture Modern software systems and distributed cloud applications in particular, are designed after the separation of concern principle. Systems designed after this principle encapsulate cohesive functionality in a component. If a system ignores this basic design principle, it is possible that our approach does not detect a privacy violation. Since a component gets its data privacy level from the Assembly Connector, a component that saves personal data, but does not communicate them via an Assembly Connector can receive an incorrect data privacy level. An example is a component, that receives personal information via an user interface (e.g. Graphical User Interface) and saves or processes them itself. We argue that such a monolithic system stands contrary to the fundamental idea of distributed cloud systems. As a result, we ignored this case during this thesis.

12.2 Future Work

During the work on iObserve Privacy a couple of future oriented tasks and development directions came visible to improve iObserve. In the following we are introducing a couple of them.

Thesis merge B. Sc. Tobias Pöppke developed in his master thesis, Design Space Exploration for Adaptation Planning in Cloud-based Applications [21], another iObserve modification. His modification aims for the automated support of modern cloud system. The development of our iObserve systems happened under close cooperation and is therefore well aligned for merging.

PerOpteryx integration PerOpteryx provides one of the core features of iObserve Privacy, as a model generation framework. However, its huge dependencies, immense complexity and plug-in architecture makes it nearly impossible to directly migrate it into iObserve Privacy. Even small modifications take major effort. The changed mechanic must be well understood to prevent the system from breaking while modifying. A well thought and designed re-engineering is required to keep the core functionality while reducing dependencies and complexity to a minimum. Such a radical re-development effort should not be taken lightly, however would make future extensions way easier.

Live tests Due to a missing distributed test system, iObserve Privacy could not be tested in a real situation. Even though many test were run during the evaluation (see chapter 10) and proven Kiker concepts were used, a live test provides further reassurance and validity to the system as a whole.

Re-deployment model choice PerOpteryx chooses the most cost efficient model in the set of privacy compliant models as the re-deployment model. This selection can be improved by adding more factors to the decision process. Potential factors could be the amount of potential migrations, more performance characteristics or the communication links.
(Semi-)automated Assembly Connector Privacy categorization We are using a manual approach for the Assembly Connectory Privacy data privacy level categorization. Further, we don’t have any tool support, except the EMF editors. A heuristic-based or neuronal network-based approach could support during the connector categorization or even categorize the connector automatically. The potential angles of approach are as wide as the imagination goes: from signature analysis to structure analysis.

Data modelling The Palladio Component Model does not support data modelling. However, Schmieders et al. based his complete privacy analysis around a data model with geo-location access [24][23]. By modelling the system data a more accurate approach could be created. However, the current extension to the base PCM meta-model are as minimal as possible. The modelling of the data used by the system would change this and increase the model complexity significantly.
Bibliography

