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Abstract

With recent trends such as cloud computing and micro services modern software systems

become more and more decentralized. As a result more and more data processed by the

systems �ows across public networks and environments hosted by third parties. With

recent legal regulations, such as the General Data Protection Regulations of the EU, it

becomes even more important for software developers to ensure that all data �ows of

their software adhere to legal constraints. While several model-based approaches have

been proposed for modeling data �ows and related constraints on architecture level their

automated analysis capabilities are limited. In many cases no automated analysis is

available or an analysis has to be implemented on a per-scenario basis.

We therefore propose a novel meta-model for modeling data �ows of software systems.

Alongside we provide a translation transforming model instances to programs based on the

logic programming language Prolog. This combination allows to easily de�ne automated

analysis of software systems regarding data �ow constraint violations. For the design and

implementation we ensure that our approach is e�cient regarding the scalability. For this

purpose we introduce several techniques for optimizing Prolog programs which are not

only limited to our approach.

In addition we provide an extensive evaluation of our approach. Hereby we investigate

the accuracy, the scalability and the genericness of our approach. We show that our

approach is able to accurately analyse various types of scenarios while maintaining a

good scalability. We show that our proposed Prolog optimizations are e�ective as they

potentially reduce the run time from exponential to constant scaling in certain scenarios.
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Zusammenfassung

Aktuelle Entwicklungen in der Software-Technik zeigen einen Trend zur Dezentralisierung

von Software-Systemen. Mit dem Einsatz von Techniken wie Cloud-Computing oder Micro-

Services �ießen immer mehr Daten über ö�entliche Netzwerke oder über die Infrastruktur

von Drittanbietern. Im Gegensatz dazu führen aktuelle gesetzliche Änderungen wie die

Datenschutz-Grundverordnung dazu, dass es für Software-Entwickler immer wichtiger wird

sicherzustellen, dass die Daten�üsse ihrer Software gesetzliche Beschränkungen einhalten.

Um dies trotz der stetig wachsenden Komplexität von Software-Systemen zu ermöglichen

wurden verschiedene modellbasierte Ansätze auf Architekturebene vorgeschlagen. Ein

Nachteil der meisten Ansätze ist jedoch, dass sie oftmals keine voll automatisierte Analyse

bezüglich der Verletzung von Daten�ussbeschränkungen ermöglichen. Oft sind keine

automatisierten Analysen möglich oder Analysen müssen individuell für jedes Szenario

entwickelt werden.

Aus diesem Grund schlagen wir ein neues Metamodell zur Beschreibung der Daten�üs-

sen von Softwaresystemen vor. Dieses Metamodell ist so entworfen, dass eine automati-

sierte übersetzung von Instanzen in ein Programm der logischen Programmiersprache

Prolog ermöglicht wird. Dieses Programm erlaubt dann die einfache Formulierung von

Regeln zur automatisierten Prüfung der Einhaltung von Daten�ussbeschränkungen. Ein

wichtiger Aspekt für den Entwurf und die Implementierung unseres Ansatzes ist die

Skalierbarkeit: Ziel ist es, sicherzustellen dass unser Ansatz e�zient einsetzbar ist. Hierbei

haben wir insbesondere Techniken zur Optimierung von Prolog Programmen entwickelt,

deren Einsatzmöglichkeiten nicht nur auf unseren Ansatz beschränkt sind.

Desweiteren haben wir eine umfangreiche Evaluation unseres Ansatzes durchgeführt.

Hierbei haben wir die Genauigkeit, Skalierbarkeit sowie die Generizität unseres Ansatzes

untersucht. Wir haben gezeigt, dass unser Ansatz für mehrere Arten von Szenarien ge-

nau arbeitet und dabei eine gute Skalierbarkeit aufweist. Es hat sich herausgestellt, dass

unsere vorgestellten Optimierungen in manchen Fällen sogar zu einer Reduktion von

exponentieller zu konstanter Laufzeit führen können.
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1. Introduction

In this chapter we provide a short introduction to the �eld covered by this masters thesis.

First we motivate the problem this work attempts to solve. Afterwards we outline our

approach for solving it. Finally, an overview of the contents of this work is given in the

last section.

1.1. Motivation

Developing and maintaining modern software systems is becoming more and more di�cult

due to their increased complexity. In addition to classic functional and quality require-

ments, such as performance, the number of data �ow and security related requirements

steadily grows. Decentralized applications commonly make use of modern technologies

and paradigms, such as distributed micro services or cloud computing. Due to the de-

centralization of the software resulting from these approaches, the data �ow via public

networks increases inherently. This however con�icts with the increasing privacy and

security related requirements posed to software systems. With recent legal regulations,

such as the General Data Protection Regulations of the European Union [8] which came

into force in mid 2018 this is becoming even more important. Companies not conforming

to the required privacy and security standards risk being �ned high charges.

In order to aid software developers with meeting the imposed data �ow requirements

several approaches have been proposed. Many of such approaches try to uncover potential

security issues by performing automated analyses through the inspection of the source

code. This way, formal veri�cation tools can help ensuring security requirements such

as non-inference [28]. However, such source code based approaches often operate on a

very �ne-granular level which can impose a high manual overhead for certain security

analyses.

In contrast model based approaches on architecture level try to minimize the manual

e�orts required by performing analyses on a higher abstraction level. In addition such

approaches often can already be applied at design time and therefore can uncover issues

prior to the implementation. Many such approaches enhance existing models used during

development and maintenance with data �ow and security related information. An example

for such an approach is UMLSec [16] which provides an extension to the UML meta

model [20]. As these UML models are still code-centric, an extension of the Palladio

Component Model [27] has been proposed for modeling these concerns on architecture

level. Both approaches provide the means to specify data �ow requirements and constraints

in an intuitive manner for developers. This however comes with the downside that the

corresponding model elements contain much scenario speci�c semantic information. For
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1. Introduction

this reason, an automated evaluation of data �ow constraints is only partially possible or

requires per-usecase specialized analysis tools.

1.2. Contribution

The goal of this thesis is to ease the evaluation of data �ow constraints based on models

at architecture level. While there are several approaches for enhancing models with

information about data �ows, their automatic analysis capabilities are currently limited.

In this thesis we propose a model which allows an easy formulation of automated data

�ow constraint analyses based on the logic programming language Prolog [3]. This model

is designed to have a concretely speci�ed semantic which is easily understandable by

machines. In addition we provide a translator for transforming model instances to Prolog

programs. We chose logic programming for performing the analysis as it removes the

burden of having to implement an analysis algorithm. Instead logic programming allows

us to focus solely on the analysis logic in this thesis. As logic programming language

we decided to use Prolog as it is very wide spread and o�ers a wide range of features.

In our work we design a Prolog API for the easy formulation of constraints. This API is

exposed by programs generated through our approach. Through this API the resulting

Prolog representation of the system allows an automated ad-hoc analysis using queries

based on Prolog terms. As a result of this analysis, our approach will either verify that all

constraints are held or it will provide sample call traces which lead to constraint violations.

The meta model we propose is not designed for allowing an intuitive manual de�nition

of the system. Instead we designed it so that in future work models of existing approaches,

such as the data �ow extension of Palladio [27], can be translated into our proposed model.

The process of this translation is expected to remove implicit semantic information by

translating it into explicit requirements understandable by a machine.

For the design of our approach a central aim is to maximize the performance of both

the translation to a logical program as well as the evaluation of the resulting program.

Hereby, we propose and analyse Prolog optimization patterns for an e�cient mapping

of concepts such as parameter passing and stack management to logical programs. We

provide an extensive evaluation of the performance of the overall approach as well as of

the e�ectiveness of the proposed optimizations.

1.3. Overview

In Chapter 2 we start with an introduction to the concepts required for the understanding

of this thesis. Afterwards in Chapter 3 we de�ne the two main data �ow constraint analysis

scenarios on which we focus for the design of our approach. Next in Chapter 4 we outline

related work. We introduce our proposed meta model in Chapter 5 and the corresponding

translation to Prolog code in Chapter 6. In Chapter 7 we show our proposed performance

optimization for Prolog. Afterwards we experimentally evaluate our approach in Chapter 8.

Finally in Chapter 9 we summarize the results of our work and outline potential future

work.
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In this chapter we brie�y introduce the concepts required for the understanding of this

thesis. In Section 2.1 we give a short introduction to the �eld of software modeling. After-

wards in Section 2.2 we outline the key concepts and properties of the logic programming

language Prolog.

2.1. So�ware Modeling

In software engineering, models are often used as an abstraction of software. Hereby, the

elements of which such model instances are built are itself de�ned in models, which are

called meta models. An example for a set of software meta models is the Uni�ed Modeling
Language (UML) [20]. While models are often used for the design, documentation and

communication during the development of software systems, they also enable analysis in

order to predict properties of the system, such as the performance or con�dentiality.

Data �ow models are commonly used to formalize how information �ows through a

software system. In the proposed thesis we will use the terminology and model proposed

by Seifermann et al. [27]. In this terminology, a data �ow typically consists of a source, a

set of processing operations and a sink. Sources produce information, for instance by Users

entering personal information. This information �ows through the system where it is

possibly accessed and modi�ed, which is modeled by the processing operations. Finally,

the information leaves the system, for example in form of a web page or as record in a

database. This is represented in the model by sinks. Note that the set of sources and sinks

does not have to be disjoint, for example a database can serve as a sink as well as a source.

In previous work [27] an extension for the Palladio Component Model [23] has been

proposed for enriching PCM models with data �ow information with low manual e�ort.

The core idea is to enrich component methods with specialized data-�ow-SEFFs. These

SEFFs describe which information is transferred via method parameters and return values

as well as how the information is modi�ed. Therefore, the complete �ow of information

with sources, sinks and processing operations can be derived by combining the data-�ow-

SEFFs with the assembly model of the modeled system.

2.2. Prolog

Our proposed data �ow analysis tool performs its analysis based on the logic programming

language Prolog [3]. For this reason we �rst introduce the basic concepts of this language

in Section 2.2.1. In the section afterwards we explain more advanced language and im-

plementation details. These are required for understanding our proposed performance

optimizations of our approach introduced in Chapter 7.
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2.2.1. Basic Concepts

Logic programming is an alternative programming paradigm to the classic procedural

programming. In classic procedural programming languages, a program consists of a

set of statements, which are executed one after another. There the developer in�uences

the execution order with control structures, such as loops or if clauses. The processed

information typically is stored in variables.

Logic programming is fundamentally di�erent. Instead of specifying statements in their

execution order, a logic program consists of a list of facts and rules. Based on only these

data sets, a solver for the logical program can decide whether a speci�ed goal can be

proven or not. Note that in contrast to structural programming, the solver is capable of

doing so without the need of the program to specify an algorithm on how the solver �nds

the proof. Details on the di�erentiation between structural and logic programming can be

found in the work of Kowalski [19]. An example for facts in Prolog is given below:

owner ( hans , bmw ) .

owner ( l i s a , f o r d ) .

This examples states that hans owns a bmw and that lisa owns a ford. Hereby hans, bmw,

lisa and ford are called Atoms. Atoms are the objects your program speci�es logical rules

for. Facts can be seen as special rules, which specify that a given fact is true.

Based on a fact base, now it is possible to specify rules, such as the following:

ownsCar (X) : − owner ( X , _ ) .

This rule reads as “given that X owns the car _, then X in general owns a car”. Hereby,

X and _ are variables. The underscore _ is an anonymous variable. With the facts and

rules speci�ed, the logic program can now already be used for deduction. System prompts

can be used to query the fact base. In this work we use the syntax of SWI-Prolog [29]

where prompts are started with the symbols “-?”. For example, executing the following

system prompts will yield the results shown beneath them:

?−owner ( l i s a , f o r d ) .

true .

?−owner ( l i s a , bmw ) .

f a l s e .

?−ownsCar ( l i s a ) .

true .

The �rst prompt is true, as there is a fact exactly specifying that lisa owns a ford. The

second one is false, as there is no fact or rule, with which it can be proven that lisa owns a

bmw. The third examples evaluates to true, as the Prolog implementation is capable of

deducing ownsCar based on its facts. By setting X to lisa and Y to ford, ownsCar(lisa) can

be deduced form the fact owner(lisa,ford).
This deduction is performed using an algorithm similar to a depth-�rst search. A critical

step in this algorithm is the uni�cation of terms. The goal of uni�cation is to �nd variable

bindings to make two terms identical. For example, consider the two terms owner(lisa,X)
and owner(Y,ford). By binding X=ford and Y=lisa, these terms are made identical. An in
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detail explanation of the algorithm to �nd such unifying variable bindings can be found in

the book of Max Bramer [3, p. 31–35].

In order to prove goals such as the ones shown in the listing above, the Prolog interpreter

has to systematically explore the rule and fact database. Consider for example that we

want to prove the goal owner(X,bmw). In other words, we want to �nd all persons who

own a BMW. The interpreter now looks through all facts and rules in the order they are

stated in the program, and tests whether these can be uni�ed with the goal. If this succeeds

for a fact, such as owner(hans,bmw), then a solution has been found.

If however the uni�cation succeeds for a rule, the Prolog interpreter has to step into the

right side of the rule and has to prove its truthness. The proving of this subgoal works

exactly the same way as for the initial goal: Again, we scan the rule and fact database for

uni�able de�nitions. If the proof of this subgoal does not succeed, the interpreter has to

perform backtracking: In order to continue the search of uni�able rules and fact for the

initial goal, all variable bindings performed during the proo�ng of the subgoal have to be

undone.

For this case we consider the goal ownsCar(P). In our database, only one de�nition uni-

fying with this goal exists: ownsCar(X):-owner(X,_). This results in the variable binding

P=X. Next the interpreter has to �nd solutions for the subgoal owner(X,_). This yields

the two solutions P=X=hans;_=bmw and P=X=lisa;_=ford. After these two successes,

the subgoal fails. This means, that backtracking is performed and the variable binding

P=X is undone. Afterwards, the interpreter continues to scan for terms unifying with

ownsCar(P), which also fails. This means, that all solutions have been found. Again, a

more detailed explanation of this algorithm can be found in the book of Max Bramer [3,

p. 39–50].

A noteworthy property of Prolog is that it is very simple to write correct logical programs

as the language speci�es the implementation on how to �nd proofs. However, it can become

quite di�cult to write e�cient programs due to the nature of the depth-�rst search used by

the solver as introduced above. For example, Prolog speci�es that the solver examines the

rules in the order they appear in the program. Therefore, a logical program with a large

number of rules where the rule leading to a successful proof comes early can be expected

to terminate much faster than a program where the rule comes last. In addition, solver

dependent factors can in�uence the performance: For example, a solver might decide

to index the rules based on the �rst argument in case it is an atom. This mechanism is

explained in more detail in Section 2.2.4. Due to this fact, the order of the arguments can

have a noticeable impact on the performance.

2.2.2. Cut Predicate

The built-in cut predicate of Prolog is a feature which allows to prevent backtracking. It is

best explained by an example:

predA ( a ) .

predA (X ) : − ! , f a i l .

predA ( b ) .
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predB (X) : − predA (X ) .

predB ( c ) .

In this example, the cut predicate written as exclamation mark appears in combination

with the fail predicate, which is a common combination. The fail predicate simply causes

the current goal to fail when reached.

The cut predicate prevents the interpreter from backtracking for the current goal when

it is encountered. Consider that we ask the interpret to prove predA(X). The interpreter

�nds a �rst solution with X=a. Afterwards, he examines the rule containing the cut

predicate. The cut predicate succeeds to be proven by de�nition, therefore the interpreter

reaches the fail predicate. As the fail predicate always fails, the proof of the goal using

this rule does not succeed. Without the cut predicate, backtracking would happen and the

interpreter would �nd the next solution with X=b. However, the cut operator prevent the

backtracking from happening, therefore no additional solutions are found.

The cut operator only prevents backtracking for the current goal, this is not the case

for any parent goals. Consider we ask the interpreter to prove predB(X) instead. This

immediately leads to predA(X), which yields only X=a and not X=b as result due to

prevented backtracking. However, as the cut appeared while proving the goal predA(X),
it does not prevent the backtracking for the parent goal predB(X). For this reason X=c is

found as additional solution in this example.

Further examples and explanations of the cut predicate can be found in Chapter 7 of

Max Bramers book [3, p. 99-108].

2.2.3. Negation

The logical negation is a commonly required operator when specifying formal constraints.

Prolog does come with the negation operator \+, which however does have a di�erent

semantic: The interpreter succeeds to prove a negated term \+ myPredicate(. . . ), if the

term is not provable. This means, that the negation is true, if the goal myPredicate(. . . )
cannot be proven as true. For example, given the fact and rule database from Section 2.2.1,

we can execute the following queries:

?−\+ owner ( l i s a , bmw ) .

true .

?−\+ owner ( l i s a , f o r d ) .

f a l s e .

So far, the behaviour looks the same as for the mathematical logical negation. Where it

di�ers is when unbound variables are present in the negated term:

?− \+ owner ( X , bmw ) .

f a l s e .

Based on the logic semantic of a negation, we would expect the query to return us all

people who do not own a bmw. This means we would have expected the query to succeed

yielding the binding X=lisa. What prolog does during the evaluation of this query is that

it tries to prove the term owner(X,bmw). This does succeed for the binding X=hans.

6
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Therefore, because the Prolog negation is de�ned based on the not-provable semantic, the

negation returns fail as result as the term could be proven.

It however is possible to mimic the behaviour of a logical negation using the not-provable

negation of Prolog. This can be done by simply binding all unbound variables prior to

executing the negation. In our example we �rst need to de�ne a predicate in order to make

it possible for Prolog to know which atoms are persons:

person ( l i s a ) .

person ( hans ) .

This predicate can be employed as generator, meaning that it can be used to instantiate

a variable to all possible person atoms. Now we can formulate the logical negation as

follows, which yields the expected result:

?− person (X ) , \+ owner ( X , bmw ) .

X= l i s a

Note that this approach can be very expensive performance wise: The Prolog interpreter

has to try to prove the negated term for every variable combination which are instantiated

using the generators. Depending on the value space of the variables, this can easily lead

to a very long runtime.

2.2.4. Predicate Indexing

In Section 2.2.1 we brie�y described the basic algorithm for proo�ng goals in Prolog. We

explained that it is required to scan the database for rules and facts which unify with the

goal. This can naively be implemented using a linear search where we simply try out

every de�nition. This approach does however not scale well when the size of the program

increases. In order to optimize this search for uni�able rules and facts indexing mechanism

are required which allow a quick lookup of candidates.

We consider again the example predicate ownsCar(P,C) from Section 2.2.1, but we

assume that the program contains much more facts for persons and their cars:

ownsCar ( l i s a , f o r d ) .

ownsCar ( l i s a , vw ) .

ownsCar ( f r i t z , a u d i ) .

. . .

ownsCar ( hans , bmw ) .

ownsCar ( hans , o p e l ) .

Assume that we want to lookup the cars owned by hans: ownsCar(hans,X). The more

facts we have about people and their cars, the longer the linear search approach takes for

�nding the solutions for this goal.

An observation that has been made early, is that often rules and facts are de�ned with

their �rst argument being an atom and not a variable. Similarly, goals as ownsCar(hans,X)
also often have an atom as �rst argument speci�ed. Based on this observation�rst argument
indexing has been proposed early [32] and can be found in almost every modern Prolog

interpreter.
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The idea of �rst argument indexing is simple: The database of facts and rules is realized

as a hashtable. Hereby, the combination of the predicate name, its arity and the atom used

as �rst argument is used as lookup key for the hashtable. In the following example we

solely focus on the atom argument as hash key as we only use one predicate:

%−−−− Hashbucke t f o r ’ l i s a ’
ownsCar ( l i s a , f o r d ) .

ownsCar ( l i s a , vw ) .

%−−−− Hashbucke t f o r ’ f r i t z ’
ownsCar ( f r i t z , a u d i ) .

. . .

%−−−− Hashbucke t f o r ’ hans ’
ownsCar ( hans , bmw ) .

ownsCar ( hans , o p e l ) .

When asking the Prolog interpreter to proof the goal ownsCar(hans,X), he can simply

inspect the rules in the hashbucket for hans and omit inspecting all other rules. This leads

to a signi�cant performance improvement.

However, this indexing approach quickly reaches its limits. For example, queries where

the �rst argument is a variable, such as ownsCar(P,bmw) cannot make use of this index.

In this case linear search has to be used as fallback again. Another example where �rst

argument indexing provides no bene�t is if there are very many rules with the same atom

as �rst argument, as this leads to big hashbuckets.

For this reason, more sophisticated indexing approaches have been proposed [7, 30]. In

contrast to �rst argument indexing, these approaches greatly vary from Prolog implemen-

tation to implementation.
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The goal of this thesis is to design and implement a tool for the automated detection of

violations of data �ow constraints. As the range of such scenarios is very wide, we focus

on two scenario classes for the design of our approach: Access Control and Geolocation

Privacy Restrictions. In this section we provide a general introduction to these two scenario

classes.

3.1. Access Control

A traditional problem in software security is the management of the access rights of

di�erent parties to resources in a multi-user environment. One of the most known examples

for an access control systems is the Unix �le permission management. Other variations of

the access control systems also exist, for example the Bell-LaPadula Model [2] which tries

to prevent the �ow of �ow of information classi�ed as “high” to information classi�ed as

“low”.

In our approach we de�ne the considered Access Control problem as follows: Every

party which accesses restricted data performs its access with one or more Roles. In our

case, this means that every software component of the system-under-investigation has

such a role assigned. In turn every datum is annotated with a set of Authorized Roles.
In this basic form, only components whose role is present in the set of authorized roles

are allowed to access this datum. The set of authorized roles is not static. As the datum

�ows through the system, it may be altered. For example, access rights may be granted

or revoked as the datum is processed by di�erent operations. This model can be further

re�ned by specifying the type of access rights. For example, common types of access rights

are read and write access. In this case, there is a separate set of authorized roles for each

type of rights attached to each datum.

As simple example for a system with access control restrictions is the TravelPlanner

case study
1

of the IFlow project [18]. The TravelPlanner application in the case study is

modeled as a mobile application which allows the user to plan their trip, including the

direct booking of �ights. The data �ow of this booking transaction illustrates how the

authorized roles of a datum can change during processing.

1https://swt.informatik.uni-augsburg.de/swt/projects/iflow/TravelPlannerSite/index.html
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Figure 3.1.: UML sequence diagram of the slightly adapted booking process of the Travel Planner example.
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Actor / System Role
User User
:TravelPlanner User
:CreditCardCenter User
:TravelAgency TravelAgency
:Airline Airline

Table 3.1.: Roles of the involved Actors and Systems of the Travel Planner example.

Datum Authorized Roles
rq:RequestData User, TravelAgency, Airline
o�:FlightO�ers User, TravelAgency, Airline
o�:SingleFlightO�er User, Airline
rr:RoleSet no access control

allowed:RoleSet no access control

ccd:CreditCardData default: User
after declassi�cation: User, Airline

Table 3.2.: Involved Data with its access control restrictions of the Travel Planner example.

In the scenario, the user has in addition to the TravelPlanner application the CreditCard-

Center application installed which is responsible for managing the access to the credit

card data of the user. Initially, the credit card data of the user only has the authorized role

User, implying that no component is allowed to access it. However, for the booking of

the �ight, the credit card data must be sent to the airlines booking application. Therefore,

with con�rmation of the user the Airline role is added to the set of authorized roles of the

credit card details datum. Afterwards, this datum then can be transferred to the airlines

booking application without violating access rights.

Our slightly adapted version of this booking transaction is illustrated in Figure 3.1. The

roles involved in this example are User, TravelAgency and Airline. Hereby it is noteworthy

that the TravelPlanner as well as the CreditCardCenter application have the User roles

as they are installed on the users smartphone. The mapping of the involved parties to

their roles is shown in Table 3.1. In addition, the access control restrictions for all of the

involved data is shown in Table 3.2.

The �ight booking transaction starts with a simple query of the user for all matching

�ight o�ers. For this purpose he passes his preferences via the (rq : ReqeustData) object

to the TravelPlanner application. The request is then forwarded to the TravelAgency,

which contacts the Airline(s) to �nd matching o�ers. These o�ers are represented by the

(o� : FlightO�ers) object. This object is returned as response to the user along the same

call chain backwards. In this part of the transaction, no access control restrictions are

present: Both the request as well as the response are public data, as all involved roles have

access rights as shown in Table 3.2.

This is not the case for the second part of the booking transaction: As the user proceeds

to select and book his �ight, access control restrictions are involved. After the user has
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received all possible �ight o�ers, he selects the one he would like to book in the (o� : Sin-
gleFlightO�er) object. This object may only be accessed under the User or the Airline role,

as the Airline needs to know which �ight is booked. However, the TravelAgency is not

allowed to learn which �ight the user selected and is therefore not authorized.

The booking starts with the user sending his selected �ight to the TravelPlanner ap-

plication. The TravelPlanenr applications then forwards the selection combined with

the credit card data of the user to the Airline. The credit card data is represented by the

(ccd : CreditCCardData) object. However, the TravelPlanner application does not have

access to the credit card data, as it is managed by the CreditCardCenter application. In

addition, it underlies very strict access control restrictions: The credit card data normally

may only be accessed by the user as shown in Table 3.2.

For the booking to proceed, the credit card data has to be declassi�ed �rst to allow it

to be accessed under the Airline role. For this purpose the TravelPlanner sends a request

for the declassi�ed credit card data to the CreditCardCenter application. As payload the

request contains a role request (rr : RoleSet). This RoleSet describes which roles request

access to the credit card data. The CreditCardCenter application in turn asks the user

for permission for declassifying the data for these roles. The user then responds with

(allowed : RoleSet) which contains the roles for which the user has granted access. Then

the CreditCardCenter application returns the credit card data as (ccd : CreditCardData) to

the TravelPlanner. This credit card data has then been declassi�ed for the roles which

where allowed by the user as shown in Table 3.2. So in this case, the credit card data would

be authorized for the roles User and Airline. As last step the TravelPlanner now sends the

credit card data as well as the selected �ight to the Airline to book the �ight.

3.2. Geolocation Privacy Restrictions

The de�nition of the Geolocation Privacy Restrictions scenario type is based on the scenario

presented by Seifermann et al.[27] as well as the work of Weimann [33].

This scenario class is based on the observation, that often legal aspects imply geolocation

restrictions on data �ows. For example with the General Data Protection Regulations
certain personal data is only allowed to be processed or stored within the European Union

or certain countries with equivalent privacy regulations. So in general, this scenario

class restricts data �ows based on (a) the type of the data being transmitted and (b) the

geolocation where the data is being processed or stored.

For the classi�cation of the data based on its type, a sensible abstraction is to de�ne

con�dentiality levels for the data. We use the de�nition of these levels as well as the

general privacy de�nition from the work of Weimann [33]:

• Type-0: Personal Information: Data which relates directly or indirectly to per-

sonal information.

• Type 1: Personally Identi�able Information: This data does not directly contain

personal information. However, when combined with other Type-0 or Type-1 data,

personal information can be completely or partially reconstructed.
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• Type-2: Anonymous Data: Data which even when anaylzed combination with

any other data cannot provide any personal information.

For the classi�cation of geolocations, the two categories safe and unsafe are used.

Hereby, data of any of the types presented above is allowed to be processed or stored in

safe geolocations. In unsafe locations, it is never permitted to process or store Type-0 data

while Type-2 data does not underlie any restrictions.

A special case is the Type-1 data: When deployed individually in an unsafe geolocation,

no privacy violatiosn are induced according to the de�nition of Type-1 data. However,

when Type-1 data of di�erent sources are processed or stored together in the same location,

it is possible that Type-0 data can be derived. This problem is known as joining data streams
[33]. In conclusion two �ows of Type-1 data are only allowed to be deployed together in

an unsafe location, if their information origins from the same Type-1 data source. This

restriction implies that both data �ows e�ectively contain the same information, which

prevents teh derivation of Type-0 data.

In our work we use an online shop scenario as running example for geolocation data

�ow restrictions. This scenario is based on an example given in Section 3.1 of the work

of Weimann[33]. Figure 3.2 illustrates the interaction of a user with the example online

shop system. The privacy level of the data passed between the user and the components is

indicated by its text color.

The user in the example �rst visits the page of a product and afterwards performs a

checkout of his shopping cart. For these transactions he interacts with the ShopServer
component. He begins by requesting the details page for a product. The ShopServer
generates the product page which includes the recommendations in the form “user who

have bought . . . also bought . . . ” which are common for online shops. In addition, the

ShopServer generates transaction logs for monitoring purposes. The log data is written

into a log database illustrated by the LogDB component. The transaction log entry is

classi�ed as Type-1 data.

Afterwards, the user performs a checkout of his cart. For this purpose he transmits his

shopping cart as well as his customer information, such as his address, to the ShopServer.
Both these data are Type-0 data. His customer information is then stored in the UserDB
component. The shopping cart provided by the user is not directly stored, but instead

is transformed into an AnonymizedOrder. This anonymized order does not contain any

reference to the user, it only consists of a timestamp as well as the bought products. It

is used to update the recommendation model managed by the RecommendationSystem
component.

However, the AnonymizedOrder is not fully anonymous, it is classi�ed as Type-1 data

instead. When combined with the TransactionLog generated during the checkout transac-

tion, personal information can be derived: The TransactionLog also contains timestamps.

This allows a correlation with the timestamp of the AnonymizedOrder, which in turn can

lead to the order being relatable to a shop user.

13
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Figure 3.2.: UML sequence diagram of the interaction of a user with the example online shop system.
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3.2. Geolocation Privacy Restrictions

We chose this example as it illustrates the problem of joining data streams: The Recom-
mendationSystem as well as the LogDB do not have access to Type-0 data. Therefore, they

can be deployed in unsafe locations individually. However, they are note allowed to be

deployed in the same unsafe location, because then their data can be correlated to derive

personal information.

The presented example is a very basic instantiation of this scenario. In this case,

constraint violations can be trivially detected by inspecting the edges of the data �ows

in combination with the �owing data types. However, the complexity increases when

taking additional factors into account: For example, in the work of Seifermann et al.[27] an

exception is made for the restriction of the �ow of private data: In their scenario personal

data is also allowed to �ow across the borders if it is encrypted. However, whether the

data is encrypted depends on the processing performed in the application server before

transmitting the data. In this case the analysis becomes non-trivial.
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4. RelatedWork

In this chapter we give an overview of existing work related to our approach. First, in

Section 4.1 we show the di�erences to other approaches in the �eld of data �ow analysis.

As the scalability is an important aspect for our approach we outline other work related to

the performance of Prolog in Section 4.2.

4.1. Data Flow Analysis

While the UML meta model [20] is widely used in the �eld of software engineering, in

its core it does not include means for modeling data �ow security properties of software

systems. For this reason, UMLSec [16] has been proposed as an extension for UML to

ful�ll this purpose. In UMLSec, security is modeled using UML Stereotypes and UML

Tags paired with constraints. Using these means, the properties of the system as well as

adversaries can be modeled.

In addition an automated analysis for such models has been proposed [17]. However,

this approach requires the de�nition of a specialized constraint analysis on a per-scenario

basis. A list of available implementations for speci�c checks can be found online for the

UMLSec analysis tool CARiSMA1
. In contrast to this, our approach aims to provide a more

generic analysis platform where writing a full-�edged analysis for each scenario is not

necessary.

Other approaches, such as JOANA [12] analyse data �ows on code level. JOANA analyses

Java bytecode to ensure non-inference. Non-inference is a data-�ow requirement, that no

information about data classi�ed as secret may leak into data classi�ed as not-secret for

example through computations. In contrast to this, our proposed approach operates on

architecture level. As a result our approach requires manual modeling, it however allows

the analysis of additional data �ow constraints di�erent from non-inference.

Another data �ow modeling language that has been proposed is EDDY [4]. EDDY has

been designed for managing privacy and security requirements of multi-tier applications.

The goal is to ensure that formulated requirements are met across all tiers, where the

di�erent tiers are owned by di�erent companies or parties in general. In their work,

facebook is used as running example in the role of a platform provider for facebook

games by third-party companies. The formulation of such constraints is performed via

description logic. The main di�erence to our proposed approach is that EDDY tries to

check the compatibility of services based on the requirements de�ned in their contracts.

Our approach in contrast formalizes the system structure and performs the data �ow

analysis there.

1https://rgse.uni-koblenz.de/carisma/checks.shtml
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An approach which operates on both runtime and model level is iObserve [13]. In

general, iObserve aims to support the software evolution process of cloud applications.

This is done by continuously monitoring the target application and updating corresponding

models based on the monitoring data. In further work iObserve was extended to detect

data �ow violations based on the deployment geolocation [33]. The main di�erence to our

approach is that the work of Weimann does not analyse data �ows, but instead uses the

structural features of components to �nd deployment constraint violations.

Many approaches for analysing data �ows focus on mobile applications. TaintDroid

[11] has been proposed for tracking the �ow of privacy-sensitive data within android

applications. The idea of this approach is to detect the �ow sinks of privacy-sensitive data,

such as the geolocation or data from the contact list. Therefore, the approach is similar to

ours as it allows to analyse a specialized constraint: The detection of privacy relevant data

leaving the application. Our approach however aims to be more generic, so that di�erent

types of constraints can also be evaluated.

A similar approach for non-mobile systems is Privacy Oracle [15]. However, in contrast

to TaintDroid this approach does not modify the code. Privacy Oracle treats the monitored

system as a black-box and only monitors the network tra�c of it. In this work the authors

propose a testing technique for correlating perturbations in the input data of the system

with perturbations in the output of the system for detecting privacy leaks. This allows

for example to detect the unencrypted transmission of data classi�ed as sensitive. Again

however, this approach focuses on specialized set of constraints and scenarios, whereas

our approach aims to be more generic.

4.2. Prolog Performance

We decided to use the logic programming language Prolog for the implementation of the

analysis for our approach. As a central aspect of our work is the scalability, it is therefore

necessary to investigate which factors in�uence the performance of Prolog. In Chapter 7

we introduce antipatterns we discovered when generating Prolog code and how they can

be tackled.

Unfortunately we found only few scienti�c sources which examine the performance

in�uence factors of Prolog. Most of the work we found focuses on how to implement a

fast Prolog interpreter and not how to write fast Prolog programs. An example for such a

guideline on how to implement an e�cient Prolog interpreter is the work of Van Roy et

al. [31]. Even though the paper is very old it can be used for deducing how to e�ciently

write Prolog code. For example it is shown how �rst argument predicate indexing is

implemented, which in turn allows to deduce how Prolog code can be written to make

use of this mechanism. In addition, scienti�c resources are also available for advanced

mechanism such as the indexing approach of the ECLiPSe interpreter [26].

A good non-scienti�c guideline on writing e�cient Prolog code is provided on the

homepage of Markus Triska [10]. There general rules are given to improve performance,

for example on how to structure predicates to make use of the implemented indexing

mechanisms.
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In Chapter 4 we outlined the limitations of existing data �ow constraint analysis ap-

proaches: in most cases the models are designed for an intuitive high-level representation

of data �ow constraints instead of for an e�cient automated analysis. Therefore, often

specialized per-scenario analysis tools or manual analyses based on domain knowledge

are required for analysing the data �ows of systems regarding constraints. For this reason,

we de�ne our own data �ow system model in this chapter, which supports automated

analysis. In contrast to existing models, our data �ow system model is designed to be

translatable to an e�cient Prolog program. At the same time, we aim to keep our model

generic enough so that a wide range of scenarios can be represented using it.

Our model is not designed to be manually de�ned by developers. Instead, it is designed

in a fashion that it can easily be derived form existing data �ow modeling approaches,

which in turn can be manually de�ned in an intuitive way. We expect several bene�ts

from our approach: Firstly, our model enables a consistent way of de�ning the input data

for data �ow analyses. This consistency in turn eases the de�nition of di�erent analyses.

Secondly, this reduces the coupling between the system de�nition and the analysis.

However, for this idea to be applicable, it is required that our analysis runs reasonably

e�cient. This is ensured through performance optimization we present in Chapter 7 and

evaluated in Chapter 8.

We start by giving a conceptual overview of our model in Section 5.1 and Section 5.2.

Afterwards in Section 5.3 to Section 5.6 we give a detailed de�nition of it. Finally, in

Section 5.7 we show how the example scenarios presented in Chapter 3 can be represented

using our meta model.

5.1. Conceptual Overview

We can identify the following two core requirements for our system model: It (a) has to

be capable of expressing most of the common data �ow analysis scenarios and (b) must be

translatable into an e�cient Prolog program.

Figure 5.1 shows a simpli�ed illustration of an instance of our system meta model. The

basic idea is to model data �ows very similarly to the typical structure of software: data

�ows through the system in the form of parameters for operation calls and in the form of

their return values. Similarly to the Data Centric Palladio approach, the data is hereby

de�ned by its meta-attributes, not the concrete data values. The available attributes for

each type of data are de�ned in data types. Note that the parameters and operations in our

model do not necessarily correspond to variables or methods in the modeled application.

Our meta model de�nes a data �ow, whereas the variables and methods of applications

are usually de�ned based on the control �ow.
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Source 1Source 1
P

Source 1
P

Operation 1Operation 1
P

Operation 1
P

Sink 1Sink 1
P

Sink 1
P

(a : d1) 3. ()

Operation 2Operation 2
P

Operation 2
P1. ()

(b: d1)

2. (c : d2) ()

d1 : Datatyped1 : Datatype

encryption ⊆ {DES, AES, RSA}

authorizedRules ⊆ {customer, admin}
...

d2 : Datatyped2 : Datatype

allowedLocations ⊆ {EN,GER,US,FR,..}
...

PropertiesProperties

location = {GER}
role = {user}
...

Call Parameters

Return 
Values

Figure 5.1.: Conceptual illustration of an instance of our meta model

A data type consists of a set of attributes, which represent meta-attributes of the data.

Examples for such meta-attributes are the encryption status or the set of roles which are

authorized for access. Every attribute has a set of possible values assigned.

An instance of a data type de�nes which subset of the values of each attribute of the

corresponding data type is present. This is explained in detail in Section 5.3. For example,

the operation Source 1 calls Operation 1 with the parameter a of type d1. The data type

d1 consist of the two attributes encryption and authorizedRoles. These two attributes each

de�ne their set of possible values. As the parameter a is an instance of d1, it de�nes which

of the possible values are present for each attribute. For example, a could be de�ned with

a.encryption = {} and a.authorizedRoles = {customer, admin}. This instantiation would

de�ne a as unencrypted data which is allowed to be accessed by the customer as well as

the admin role. In other words each data instance dat de�nes boolean variables in the

form of dat.attribute.value = true/f alse for each of the attributes and the values of its

data type. This set of boolean expressions allows for a simple transformation into a logical

program, which is presented in Chapter 6.

DecryptDecrypt
P

Decrypt
P(in : d1)

(out : d1)

d1 : Datatyped1 : Datatype

encryption ⊆ {DES, AES, RSA}

authorizedRoles ⊆ {customer, admin}

out.encryption.DES := false
out.encryption.AES := false
out.encryption.RSA := false
out.authorizedRoles.customer := in.authorizedRoles.customer
out.authorizedRoles.admin := in.authorizedRoles.admin

Figure 5.2.: Example of an decryption operation
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5.1. Conceptual Overview

In our model operations are actions which transform data. Hereby, transformation

means that the values of attributes are possibly changed or newly de�ned. It is even

possible to generate data of a di�erent type from the input data. Each operation has a

signature, which contains a named and typed list of parameters. The types hereby are

data types which have to be de�ned as explained previously. In addition, each operation

also has a well de�ned named and typed list of return values. The modi�cation of the

data an operation performs is formalized using propositional logic. An example for such a

de�nition of a modi�cation is given in Figure 5.2. In this example an operation performing

a decryption is shown. For each attribute and value of the return value out, a boolean logic

formula de�nes its truthness. This formula is allowed to depend on the values of input

parameters to the operation. While in the example only simple assignments are performed,

the formulas are allowed to be of any complexity by employing logical operators, such

as or, and or not. In addition to depending on input parameters of the current operation,

the action may also depend on Properties of the operation as well as the return values

of previously issued calls to other operations. An additional variable type such terms

can depend on are state variables which we introduce in Section 5.2. The idea is that the

logical program for evaluating constraints starts with the de�nition of the return value.

The interpreter then traces through the dependencies of the return value de�nition to

prove the constraints.

For example, consider that an operation calls the decryption operation shown in Fig-

ure 5.2. When querying the return value of this call, the Prolog interpreter looks at the

de�nition of the return value of the decryption operation. Because this return value

depends on the call parameters, the interpreter then looks at the de�nition of the cor-

responding call parameters. As these again may depend on other variables, the Prolog

interpreter transitively follows the de�nitions through the system.

Note that this explicitly does not require a trial of all possible call sequences up to their

root. Instead, a trial is only required until all dependencies are resolved. For example,

consider we wanted to prove that a datum is not encrypted. If we trace backwards through

the system and �nd an “decrypt” operation on our way we do not need to trace further.

The reason is that the decrypt operation de�nes the encryption attribute without any

dependencies.

As illustrated by the numbering on the edges of Operation 1 in Figure 5.1, outgoing calls

must have a �xed order. Properties are sets of values de�ned per operation. These are

used to model properties of operations which are independent of their input parameters.

An example where properties are useful is the modeling of the geolocation of the server

which performs this operation. Another example is the modeling of the role under which

the operation accesses its data in case of an access control scenario. Note properties are

de�ned as constant and cannot be modi�ed during the execution of the operation.

Operations are allowed to call other operations, as done by Operation 1 in Figure 5.1.

For such a call to take place, the required call parameters of the called operation have to

be speci�ed. This is done exactly as for the speci�cation of the return values: for each call,

a set of propositional logic formulas de�nes the truthness of each attribute and value pair

for each call parameter. These formulas again are allowed to depend on several variables:

the properties of any operation, the parameters with which the current operation was

called as well as the return values of other called operations. However, as these calls are
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performed in their speci�ed order, the parameter de�nition of a call may only depend on

the return values of previously issued calls. They are not allowed to depend on the return

values of calls which are performed after the current one.

5.2. Data Flows without Control Flow

So far, operations have been modeled as stateless: Their computation only depends on

input parameters and the return values of called operations. Across di�erent calls of the

same operation, no data is shared so far. In addition according to our current de�nition,

the data �ow is bound to the control �ow. This means, that it is not possible to pass data

around without explicitly calling the receiving operation. However, in data �ow modeling

this kind of �ow is not uncommon as illustrated by the example in Figure 5.3.

Operation 1Operation 1
P

Operation 1
P

Operation 2Operation 2
P

Operation 2
P1. ()

()

2. (p2 : Data)

(ret : JoinedData)

JoinDataJoinData
P

JoinData
P

 (p1 : Data)

Computes the 
return value 

using p1 and p2

Data flow only,
No control flow

Figure 5.3.: Minimal example of a data joining scenario where a data �ow without control

�ow is required.

In this example the operation JoinData joins the data from two di�erent sources. This

example can not be modeled yet using the features of our approach we explained so far:

we only have de�ned data �ows bound to control �ows. However, we can transform this

scenario so that it represents the same functionality while being representable with our

meta model. This is illustrated in Figure 5.4.

As shown in Figure 5.4, the problematic data �ow has been removed. It was replaced

with a return value of Operation2 and an additional parameter of JoinData. Instead of

directly passing the data to JoinData, we attach it to the control �ow until it reaches its

destination.

This example shows how data �ows which are not bound to control �ow can be erased

in general: For each such data �ow, an implicit return value and call parameter is added to

each operation. These parameters and return values then represent the datum. However,

we decided for usability reasons to include a mechanism into our meta-model for passing

data around without being bound to the control �ow. Our Prolog translator presented in

Chapter 6 performs the task of transforming these �ows to implicit parameters and return

values.

The mechanism we introduced for such special data �ows are state variables. Just like

operation parameters and return values, they have a type and belong to a certain operation.
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Operation 1Operation 1
P

Operation 1
P

Operation 2Operation 2
P

Operation 2
P1. ()

(p1 : Data)

2. (p2 : Data, p1 : Data)

(ret : JoinedData)

JoinDataJoinData
P

JoinData
P

Computes the 
return value 

using p1 and p2

p1 is the value returned 
from Operation 2

Figure 5.4.: Functionally equivalent scenario to the scenario in Figure 5.3 with all data

�ows bound to the control �ow.

However, in contrast they are globally accessible: They can be written and read at any

time by any operation, not only by the operation which owns them. A write on a state

variable remains persistent until it is overridden.

With state variables we can now trivially model the example shown in Figure 5.3:

JoinData de�nes a state variable for p1. Operation 2 now writes to this state variable when

it is called. As the variable is persistent, it can be read and processed by JoinData as soon

as this operation is executed.

5.3. Type Definitions

In our meta model, the root element System acts as a container for all �rst class entities.

Figure 5.5 is an excerpt from the meta model which shows the System de�nition including

its contents. Such a system de�nes which Operations it contains as well as the usage of

system entry points through SystemUsage elements. In addition, it contains typing related

elements: DataTypes, Attributes, Properties and their common type ValueSetType.
We decided to introduce System as a container for �rst class entities for technical reasons.

Apart from this, System elements are not relevant for our approach.

As explained in the previous section DataTypes are used to model information about a

datum on meta level. Variables represent operation parameters, return values and state

variables. To specify their type they reference a DataType. This is explained later in more

detail in Section 5.4. As it is common for variables to have the same type, we decided to

model DataType as �rst class entities.

DataTypes are de�ned just as a named set of Attributes. Attributes hereby model the

previously explained meta attributes of data which �ows through the system. Examples

for such meta attributes are the authorized roles in an access control scenario which

are allowed to access the data or the encryption of the data. The encryption attribute

example also shows why it is bene�cial to model Attributes as �rst class entities instead of

being owned by a single DataType: Often, DataTypes have attributes such as encryption

in common. For example, for the geolocation restrictions scenario the customer data as

well as the order information can be modeled as di�erent data types. However, depending
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SystemSystem

name : String

ValueSetTypeValueSetType

name : String

ValueValue

name : String

PropertyProperty

name : String

AttributeAttribute

name : String

DataTypeDataType

name : String

OperationOperation

SystemUsageSystemUsage
**

**

**

**

**

**

**

**

* type 1* type 1

*

type 1

*

type 1

CallerCaller

name : String

Figure 5.5.: Excerpt of the UML class diagram of the system element and its contents

on the context it can make sense for both to specify the encryption. Therefore, it is useful

to share an encryption Attribute between these to avoid redundancies in the model and

later in the generated code.

Properties allow to specify constant meta information about operations. From a technical

perspective it would have been possible to avoid the de�nition of separate Properties.
Instead it would have been possible to reuse the Attributes of a system. However, we

decided to keep them separated due to the semantic di�erence: While Attributes of data

can change as the data �ows through the system and is processed by Operations, Properties
are constants attached to Operations. Now it can be questioned why Properties where

introduced in the �rst place if they are constants. As we expect that instances of our

model are generated automatically and not altered by developers, constants could just

be directly inlined where they are used. However while we expect that the model is

generated automatically, we do not expect the formulation of constraint queries to be done

fully automated: For example, all Operations could have a Property deploymentLocation

attached. If this property was not present and instead inlined everywhere it is used, it

would be hard to formulate a query such as “For all operations which are not deployed

in the EU the input parameters must be encrypted”. When modeling Properties explicitly,

a simple Prolog generator-predicate can be used for a readable de�nition of this query.
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Without the de�nition of Properties one would have to manually enumerate all operations

which are not deployed in the EU.

The �nal element of the typing system in our meta model are ValueSetTypes which

contain a set of Values. A ValueSetType speci�es the type of an Attribute or Property. The

contained Values de�ne all possible values of which a certain subset is present for the

instances. This is best explained by a simple example: Let’s say we have the Property
“deploymentLocation” and theAttribute “origin”, which speci�es from which country a data

originates. One can observe that both share the same ValueSetType, which could be named

“geolocation”. This ValueSetType now de�nes which values are possible geolocations.

Depending on the required granularity and countries, the Values could be “US”, “EU” and

“Asia”. This example also shows why we decided to model ValueSetTypes as �rst class

entities: they are commonly shared between multiple Attribute and Properties.
In addition, Figure 5.5 shows that Operations and SystemUsages share a common super

type: Caller. This super type was extracted due to the fact that both have the ability to

call Operations. This is explained in more detail in the next section.

5.4. Operations

OperationOperation

SystemUsageSystemUsage

CallerCaller

OperationCallOperationCall

caller1

calls
*

{ordered}

caller1

calls
*

{ordered}

VariableVariable

name : String

*

1 callee

*

1 callee
0..1*

stateVariable

0..1*

stateVariable

0..1*
returnValue

0..1*
returnValue

PropertyDefinitionPropertyDefinition

ValueValue

name : String

PropertyProperty

name : String

*

*

presentValues *

*

presentValues

*1

property

*1
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1

*

1

*

DataTypeDataType

name : String

*

1 type

*

1 type
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0..1*

parameter

0..1*

parameter

Figure 5.6.: Excerpt of the UML class diagram of the operation class and its related elements

An Operation is closely related to functions or methods in traditional programming

languages: It is a formal speci�cation on how output data is generated based on input values.
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In this section we introduce the structural elements required for de�ning operations. The

elements required for a de�nition of what an Operation does are introduced in Section 5.6.

An overview of the structural elements required for the Operation de�nition are shown in

Figure 5.6

An Operation has a signature which de�nes the required input data and speci�es the

format of the output data. However, an Operation has to be uniquely identi�able in the

system by just its name. In contrast to many programming languages the signature is not

used for this purpose. This requirement does however not restrict the applicability of our

approach: As our model is designed as an intermediate model, composite identi�ers in the

source model can usually be automatically concatenated to a single identi�er string for

our model.

In our model the signature is represented by the contained parameter, returnValue and

stateVarible Variables. The order of the Variables hereby does not matter: they are identi�ed

based on their name and the context in which they are referenced. The context is hereby

de�ned by a) which Operation is referenced and b) whether a return value or a parameter

is referenced. A Variable is basically a referenceable instance of a DataType.
As outlined in the previous section, meta information about Operations can be de�ned

using Properties. For this purpose, each Operation contains a set of PropertyDe�nitions. A

PropertyDe�nition is associated with the Property which is being de�ned as well as with

the Values which are present. Hereby, it is required that these Values are owned by the

ValueSetType which is the type of the de�ned Property. Every Value of this type which is

not present in the presentValues association is implicitly set to false for this Property. For

each Property, an Operation may contain only one PropertyDe�nition at maximum.

As previously explained Operations and SystemUsages share the common super type

Caller. This type was introduced due to the fact that both have the ability to call Operations.
In the model a call to an Operation is represented by an OperationCall instance, which

is owned by the Caller. An OperationCall has to reference which Operation is being

called, which is done through the callee association. Note that the list of OperationCalls is

ordered and that each OperationCall has a name which is unique in the list. The list order

semantically represents the order in which the calls occur. This is important because for

OperationCalls which appear later in the list it is possible to reference the return values of

previously issued OperationCalls.
OperationCalls are named to make it possible to represent call sequences without ambi-

guities. An OperationCall cannot uniquely be identi�ed by the callee and caller, as it is

possible for an Operation to call another Operation more than one time. While in theory

it would be su�cient to just use the index of each OperationCall within its containing

Caller, we decided to introduce the name �eld instead. The reasoning behind this decision

is that call sequences will often be shown to the user of our constraint analysis tool when

constraint violations are found. In such a case, call sequences like

(processData
storeUserData
→ storeInDB)

are more speaking than:

(processData
2

→ storeInDB)
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5.5. Propositional Logic Terms

Each OperationCall also needs to provide values for the parameters of the called Operation.

An explanation on how this is done is given in Section 5.6.

SystemUsages are used for modeling the entry points which can also act as data sources.

They de�ne a sequence ofOperationCalls which are issued and may have interdependencies

in their parameter assignments. Basically SystemUsages are Operations which cannot be

called and which do not have parameters, return values or state variables.

A noteworthy limitation of our approach is that recursion is not supported: This means,

that the directed graph formed byOperations through their OperationCalls has to be acyclic.

The reason for this limitation is that as previously explained the Prolog interpreter tries

to �nd proofs by tracing backwards through the dependencies of the variables. However,

if the call graph contains cycles, there are cyclic dependencies. This would result in an

in�nite recursion of the Prolog interpreter.

5.5. Propositional Logic Terms

LogicTermLogicTerm

AndAnd

OrOr

NotNot

2
operands
2
operands
2
operands
2
operands
1
operand
1
operand

TrueTrue

FalseFalse

Figure 5.7.: Excerpt of the UML class diagram of the basic propositional logic terms.

In our approach the combination of a variable within its calling context with an attribute

of it and one of its possible values can be seen as a boolean variable. Therefore, we employ

propositional logic terms for formulating the value of assignments. The operators we use

are functionally complete, therefore any truth table can be represented.

In the model we express propositional logic in a tree structure, as shown in Figure 5.7.

For this reason, every logic term inherits from the abstract super class LogicTerm. A logic

term can either be atomic or compound depending on whether it is a root or a leaf in

the tree. For the representation of the constants true and false, the atomic terms True
and False were introduced. As compound terms we added Not as logical negation, And as

conjunction and Or as disjunction.
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5. Data Flow System Model

We chose these three compound operators for several reasons: First, this operator system

is the typical logical operator system which is also implemented in classic programming

languages, such as Java. This allows terms to be easily de�ned by developers. While we

do not expect that it is necessary for developers to alter the logic terms used in variable

assignments, logic terms will also be used for formulating the constraints. The latter part

can be expected to be done at least partly manually.

A second reason for this choice of operators is that it potentially reduces the amount of

negations: Whereas for example the operator systems {∧,¬} or {∨,¬} are functionally

complete, they typically require more negations to represent the same formula as when

using the system {∧,∨,¬}. Negations however can be expensive in terms of performance

in Prolog if no special optimization steps are taken. This is explained in Section 2.2.3.
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name : String
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*
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*

1
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OperationCallOperationCall
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1

*

1

name : String

Figure 5.8.: Excerpt of the UML class diagram of the reference types for logic terms.

In addition to basic atomic and compound terms Figure 5.8 shows the second type of

atomic terms available: references to parameters, return values and properties. References

to return values and call parameters are required as these variables are non constant and

context dependent. Property references could in theory just be replaced by their value
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5.5. Propositional Logic Terms

with True or False terms. However, as previously explained it is useful to have the ability

to reference properties when formulating constraint queries, which is potentially done

manually.

PropertyRefs are simple to de�ne: They just require an association to the Operation they

refer to, the Property to read and the corresponding Value of which the truthness shall

be queried. It is required, that the Operation has a PropertyDe�nition for this Property and

that the Value given belongs to the type of the Property. Note that the reference to the

Value is optional. If no Value is de�ned, a wildcard is assumed for the value, which means

that the actual Value read gets chosen based on the context. For example, a wildcard can be

used to initialize all values of a variable to false with a single assignment. The wildcarding

mechanics are explained in detail in the next section.

A ParameterRef is used to reference call arguments of an Operation. The concrete value

of the parameter depends on from where the operation was called. A ParameterRef is

de�ned by a reference to the Variable, which must be a call parameter, and the Attribute
and Value to query. TheOperation which is referenced is implicitly referenced as it contains

the Variable as parameter. For type safety, it is required that the Attribute is part of the

DataType of the referenced Variable. In addition, the referenced Value must belong to the

type of the Attribute.
Return values are referenced very similarly to call arguments through ReturnValueRefs.

They also have references to a Variable, Attribute and Value. While for the Attribute and

Value the same restrictions apply as when used in a ParameterRef, the Variable must

reference a return value Variable instead of a parameter. In addition, the OperationCall of

which the return value shall be queried has to be referenced. The callee of this call has to

be the Operation which owns the referenced Variable.

VariableVariable

name : String

ValueValue

name : String

AttributeAttribute

name : String
*

1

*

1

*0..1 *0..1

*

0..1
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0..1
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DefaultStateRefDefaultStateRefStateRefStateRef

*

0..1

*

0..1

* 0..1* 0..1

*

1

*

1

Figure 5.9.: Excerpt of the UML class diagram of the state reference types for logic terms.
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Logic Term Notation
And [�rstOperand] ∧ [secondOperand]

Or [�rstOperand] ∨ [secondOperand]

Not ¬[operand]

True true
False f alse
PropertyRef pr ([operation].[property].[value])

ParameterRef pa([variable].[attribute].[value])

ReturnValueRef rv([call].[variable].[attribute].[value])

StateRef st([operation].[variable].[attribute].[value])

DefaultStateRef dst([operation].[variable].[attribute].[value])

Table 5.1.: Notation for logic terms. The values in square brackets are replaced with their

real values when used.

As shown in Figure 5.9 references to state variables using StateRef or DefaultStateRef
are highly similar to ParameterRefs. They also require a reference to a Variable, which in

this case has to be a state variable. In addition, an Attribute and Value can be speci�ed, for

which the same restrictions apply as for ParameterRefs or ReturnValueRefs. In contrast to

these there is no restrictions on which Variable can be referenced as long as it is a state

variable. As previously mentioned, state variables of any operation can be read and written

at any time.

The di�erence between StateRef and DefaultStateRef is that StateRef refers to the

current value of the given variable. This means that the value is returned, to which the

variable has previously been set. In contrast, DefaultStateRef refers to the default value

of the variable. The default value is the value a state variable has when it has not been

written yet. This default value is de�ned by the operation which owns the variable, which

is shown in the next section.

Note that for all kinds of variable references the reference to both the Attribute and the

Value are optional. Again, if no value for these is given, a wildcard is used instead when

generating the Prolog code.

Instead of using UML instance graphs for Logic terms as concrete syntax, we introduce

the notation shown in Table 5.1. This notation is the same as the classic notation for

propositional logic terms with the addition of a special syntax for property and variable

references.

5.6. Variable Assignments

In the previous section we explained how logic terms are represented in our meta model.

In this section we introduce how they are used for the speci�cation of the behaviour of

Operations. For this purpose we employ logic terms to provide de�nitions for return values,

call parameters and state variables.

Figure 5.10 shows the VariableAssignment which is used for this task. A VariableAssign-
ment can either be owned by an Operation or by an OperationCall. If it is owned by an
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Figure 5.10.: Excerpt of the UML class diagram of the VariableAssignment type.

Operation, it is used to de�ne a return value of this operation or a state variable. For state

variables Operations own two types of assignments. First there are defaultStateDe�nitions
which de�ne the default value of state variables which are owned by this Operation. This

means that the value de�ned by these assignments is returned if the corresponding state

variable is read before it was written. The second type of state assignments of Operations
are postExecutionStateDe�nitions. These assignments de�ne the changes to make to state

variables before the Operation returns.

In case that a VariableAssignment is contained within an OperationCall, it is either used

to de�ne the value of the arguments passed to the callee for this call or to de�ne state

changes prior to performing the call. Both postExecutionStateDe�nitions and preCallStat-
eDe�nitions are optional: If none are de�ned, the value of the state variables are not

altered.

In all cases state variables are assigned last. This means that when performing a call, the

call arguments are de�ned �rst and state variable changes are executed directly afterwards.

Similarly, when an Operation returns it �rst de�nes its return values and changes state

variables afterwards. This order ensures that the de�nitions of return values and call

parameters can refer to state variables before they are overridden.

The left-hand side of the assignment is de�ned by a reference to a Variable, Attribute
and a Value. Depending on the container of the VariableAssignment, the Variable must

either be a return value, a call parameter or a state variable. The Attribute must be part

of the type of the Variable and the Value must belong to the type of the Attribute. The

right-hand side of the assignment, the value, is de�ned by a LogicTerm. This LogicTerm
can be a compound term of any complexity as introduced in the previous section.

For the remainder of this work, we use the following notation for representing assign-

ments:

[variable].[attribute].[value] := [logicterm]
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5. Data Flow System Model

The logic term on the right side hereby is noted as described by Table 5.1.

Again, the Attribute and Value references are optional. If they are not present, they are

interpreted as wildcards. We note wildcards using a single asterisk “*” in our notation. We

explain the semantic of a wildcards in the various positions on the left-hand side of an

assignment in the following using examples:

• input.authorizedRoles.* := f alse
For the variable input set all values of the attribute to false. This is useful for example

for initializing all values of a single attribute before selectively overwriting them.

• output.*.* := f alse
For the variable output set all values of all attributes to false. This is useful for

initializing all values of all attribute before selectively overwriting them.

• output.*.EU := true
For the variable output set the value EU of all attributes which have the ValueSetType
of EU to true. This is mainly useful for copying certain values from other variables.

To summarize, wildcards can be used to write a single assignment instead of multiple

ones. For example if a wildcard is used in place of the Value, one could just duplicate the

assignment for each Value manually. There are several bene�ts of such a reduction of

the number of assignments even though assignments are not planned to be generated or

maintained by developers: Firstly, the total size of model instances is reduced. Secondly,

we implement an optimization which allows the translation of wildcard rules to single

Prolog rules, which therefore potentially speeds up the analysis.

Whereas in the examples above we only used constant logic terms on the right-hand

side of the assignments, logic terms of any complexity can be used. The wildcarding

mechanism is especially powerful when using variable references with wildcards. Consider

the following example:

output.*.* := pv(input.{A}.{V})

In this example the Attribute and the Value on the left hand side are wildcards. In addition,

the logic term used on the right hand side of the assignment is ParameterRef of which the

Attribute and the Value are also wildcards. However, wildcards on the left hand side of an

assignment have a di�erent semantic than wildcards on the right hand side: wildcards

on the left hand side quantify for which Attributes and Values the assignment should be

used. Wildcards on the right hand side refer to the corresponding bound values instead.

This is comparable to the semantic of the classical mathematical quantors: wildcards on

the left side act as universal quantors (∀x ∈ . . .), wildcards on the right side refer to the

quanti�ed variable (x ).

Because of this di�erence of the semantic we note wildcards on the right-hand side

using {A} or {V} depending on whether they refer to the currently bound Attribute or the

currently bound Value. In order to further clarify this, the example above could be unrolled
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as follows:

output.authorizedRoles.User := pv(input.authorizedRoles.User)

output.authorizedRoles.Airline := pv(input.authorizedRoles.Airline)

output.authorizedRoles.TravelAgency := pv(input.authorizedRoles.TravelAgency)

output.encryption.AES := pv(input.encryption.AES)

output.encryption.DES := pv(input.encryption.DES)

· · ·

Due to the wildcarding mechanism it is possible that multiple rules match for the

assignment of certain Attribute and Value combinations. For this reason, the assignment

associations are ordered as visible in Figure 5.10. Assignments appearing later in these

overwrite previous matching rules.

As illustrated by the initial examples in this section, the position of wildcards on the

left side of assignments has an impact on which Attribute and Value combinations are

possible in an assignment. This is due to the typing system we introduced in Section 5.3.

In addition, wildcards in the LogicTerm used as value for the assignment also restrict the

set of possible combinations. These restrictions are listed in Table 5.2.

Logic Term Induced Restrictions
pr ([operation].[property].{V } {A} must have the same ValueSetType
pa([variable].[attribute].{V } as [property].

rv([call].[variable].[attribute].{V }
st([operation].[variable].[attribute].{V }
dst([operation].[variable].[attribute].{V }
pa([variable].{A}.{V } {A} must be an Attribute of the DataType
rv([call].[variable].{A}.{V } of [variable].

st([operation].[variable].{A}.{V }
dst([operation].[variable].{A}.{V }
pa([variable].{A}.[value] {A} must have the ValueSetType
rv([call].[variable].{A}.[value] containing [value].

st([operation].[variable].{A}.[value]
dst([operation].[variable].{A}.[value]

Table 5.2.: Typing restrictions induced by reference logic terms based on wildcards.

5.7. Example Instances

In this section we illustrate how the meta model de�ned in the previous sections can be

used for modeling data �ow constraint scenarios. For this purpose we provide two example

model instances, one for each of the scenarios introduced in Chapter 3. In Section 5.7.1 we

model the TravelPlanner example as access control scenario. Afterwards in Section 5.7.2

we show how our example shop system with its geolocation constraints can be represented

using our model.
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DataType Attributes
RequestData authorizedRoles

FlightO�sers authorizedRoles

SingleFlightO�er authorizedRoles

CreditCardData authorizedRoles

RoleSet roles

Table 5.3.: DataTypes of the model instance for the TravelPlanner example.

5.7.1. Access Control Scenario

In Section 3.1 we introduced the TravelPlanner example as an instance of an access

control scenario. In this section we show how the TravelPlanner system can be accurately

represented using our proposed meta model. In addition, we give an informal explanation

on how the corresponding access control constraint can be formulated in relation to this

model.

5.7.1.1. Model Definition

The model instance for the TravelPlanner example is shown in Figure 5.11. The model

elements are visually represented in the same way as in Section 5.1. Operations are shown

as white boxes with solid arrows for their out-going calls and dashed arrows for return

values. The properties of each operation are shown as annotation. The corresponding call

parameters and return values are annotated to each arrow. In addition, each call has a

number assigned to specify the order in case of multiple outgoing calls.

The used data types are not de�ned in Figure 5.11, they are listed in Table 5.3 instead. Ev-

ery data type underlying access control restrictions has the attribute authorizedRoles. The

attribute authorizedRoles has the ValueSetType Roles, which contains the three values User,
TravelAgency and Airline representing the corresponding roles from the TravelPlanner

example.

During the process of the declassi�cation of the credit card data, the RoleSet type is

required for de�ning for which roles a declassi�cation is requested and in turn granted.

For this purpose, the data type RoleSet contains the attribute roles, which again has the

type Roles. Data of the type RoleSet however does not underlie access control restrictions,

therefore the attribute authorizedRoles is not present.

In addition to the data being classi�ed with authorizedRoles, the operations have to de�ne

under which role they access the data. This is done using the roles property illustrated by

the annotations of the operations in Figure 5.11.

The VariableAssignments for call parameters and return values are shown as annotations

for each call and return. Hereby, we use the notation for the assignments which we

introduced in the previous sections.
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al_input.*.* := pa(ta_input.{A}.{V})

al_offers.authorizedRoles.* := 
pa(al_input.authorizedRoles.{V})

ta_offers.*.* := rv(1.al_offers.{A}.{V})

roles = {Airline}roles = {TravelAgency}roles = {User}

tp_input.authorizedRoles.* 
:= true

tp_offers.*.* := rv(1.ta_offers.{A}.{V})

roles = {User}

flight.authorizedRoles.User := true
flight.authorizedRoles.Airline := true

flight.authorizedRoles.TravelAgency := false
rq.roles.* := false

rq.roles.Airline := true

ta_input.*.* := pa(tp_input.{A}.{V})

requested.*.* := pa(rq.{A}.{V})

roles = {User}

roles = {User}

allowed.*.* := 
pa(requested.{A}.{V})ccd.authorizedRoles.* := rv(1.allowed.roles.{V})

ccd.authorizedRoles.User := true

ccd.*.* := rv(1.ccd.{A}.{V})
flight.*.* := pv(flight.{A}.{V})

roles = {Airline}

Figure 5.11.: Full system model of the excerpt from the TravelPlanner case study.
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The de�nition of the model for the TravelPlanner example is straightforward: As the

user in the example initiates the booking transaction, he is mapped to the BookingUsage

pictogram shown in Figure 5.11 as the person pictogram. In the example scenario, the user

�rst requests the set of possible �ights from the Airline indirectly via the TravelAgency

and the TravelPlanner application. This call chain is directly mapped to corresponding

operation calls in our model.

The same applies to the process of booking a selected �ight. Hereby, the BookingUsage
initially de�nes that the selected �ight o�er may only be accessed by the Airline and User
roles using the authorizedRoles attribute. This o�er then gets passed to the TravelPlan-

ner, which in turn requests the declassi�ed credit card data from the CreditCardCenter

application. Hereby, the operation CreditCardCenter-requestDeclassi�edCCD is generic: A

declassi�cation can be requested for any set of roles. In this example, it is declassi�ed for

the role Airline.
The interaction where the user is asked whether he grants access to the data for the

requested roles is represented by the operation User-askForCCDDeclassi�cation. This

interaction is realised through an operation instead of a system usage because usages are

only entry points. In this case however, the user is not the entry point but is called instead.

The user then responds with a set of roles for which he granted access to the credit card

data. The CreditCardCenter afterwards sends back the correctly declassi�ed data to the

TravelPlanner application, which in turn books the �ight by invoking Airline-bookFlight.

5.7.1.2. Constraint Definition

In the previous section we showed how to map the TravelPlanner example to an instance

of our meta model. However, this model does not contain any semantic information on

how to check for access control violations. This semantic is added by formulating the

constraint as logic program which refers to the model elements.

In this case we de�ne the authorizedRoles attribute as marker for data which underlies

access control restrictions. It contains the roles which are authorized, whereas each

operation speci�es the roles property to de�ne under which roles it accesses the data.

Therefore, we can de�ne the access control constraint as follows:

For each operation owithin any call sequence, for each parameter p of owith the
attribute authorizedRoles, a role rmust exist so that both p.authorizedRoles.r
and o.roles.r are true.

More informally speaking, whenever a parameter is passed to an operation, one of the

operations roles must be authorized for the access to this parameter value.

5.7.2. Geolocation Constraints Scenario

In this section we model the online shop example we introduced in Section 3.2 as an

example for geolocation based data �ow constraints. Like in the previous section, we

�rst show how to model the occurring data �ows using our meta model. Afterwards, we

explain how the constraints for the di�erent privacy levels of the data can be formulated.
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DataType Attributes
ProductId level

Recommendation level

ProductPage level

TransactionLog level

Cart level

CustomerInfo level

AnonymizedOrder level

Table 5.4.: DataTypes of the model instance for the online shop example.

5.7.2.1. Model Definition

The model for the example online shop system is shown in Figure 5.12. Hereby, we use the

same visual representation as in Figure 5.11: The operations are illustrated using white

boxes, operation calls are represented using solid arrows. The operation calls hereby are

annotated with call parameters and return values. The de�nition of call parameters, return

values and operation properties are represented using annotations.

Like in the previous section, the used types are enumerated separately in Table 5.4. All

used types consist of the same single attribute: level. It de�nes the privacy level of the

data. Therefore, its ValueSetType de�nes the three Values type0, type1 and type2. These

correspond exactly to the privacy level we introduced in Section 3.2.

For this de�nition the design the question may arise why di�erent data types were used

when they all consist of the same single attribute. The reason is that we decided to use the

data type to di�erentiate between the contained information of variables: For detecting the

problem of joining data streams, it is required to di�erentiate between data �ows which

have the same information source and data streams which have di�erent sources. This is

required because only Type 1 data from di�erent sources imposes a constraint violation

when deployed at the same unsafe location. We decided to de�ne that data has the same

information source when it has the same data type in our model. This decision was made to

keep the model easily understandable, as it is used for illustration purposes. An alternative

representation would be to add an additional attribute to the data which speci�es the

information source.

The geolocation of the operations is represented using the location property. In our

example we used the three regions EU, US and Asia. If required, this can be modeled on a

more �ne granular level, e.g. for representing individual data centers within the regions.

Our model does not include a classi�cation of which regions are considered unsafe and

which are considered safe. We decided to leave this classi�cation open for the analysis,

because this way di�erent analysis can be performed based on the viewpoint: For example

when analysing under US legal restrictions di�erent countries may be considered safe

than when checking EU legal constraints.

The actual operations and operation calls are directly derived from the UML sequence

diagram of the online shop presented in Figure 3.2. Hereby, also the level of the data is

assigned according to the level speci�ed in Figure 3.2.
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1. (product:ProductId)
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1. (product:ProductId)

(rec:Recommendation)

2. (log:TransactionLog)()
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2. (cart:Cart,
      info:CustomerInfo)

3. (log:TransactionLog)()

1. (info:CustomerInfo)

()

2. (order:AnonymizedOrder)

()

page.level.* := false
page.level.type2 := true

product.level.* := false
product.level.type2 := true

product.level.* := pa(product.level.{V})

rec.level.* := false
rec.level.type2 := true

log.level.* := false
log.level.type1 := true

log.level.* := false
log.level.type1 := true

info.level.* :=  pa(info.level.{V})

order.level.* := false
order.level.type1 := true

cart.level.* := false
cart.level.type0 := true

info.level.* := false
info.level.type0 := true

location = {EU}
location = {US}

location = {EU}

location = {US}

location = {EU}

location = {Asia}

Figure 5.12.: Full system model of the online shop example for geolocation constraints.
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5.7. Example Instances

5.7.2.2. Constraint Definition

In this section we show how the geolocation constraints can be formulated as constraints

for our model of the online shop example. We apply the geolocation constraints we

explained in general in Section 3.2 onto our meta model de�nition.

The constraint for Type-0 data is straight forward: No data of Type-0 may be processed

or stored in an unsafe location. Applied onto our model, this imposes the following

constraint:

For each operation o within any call sequence, for each parameter p of o where
the level is type0, the deployment speci�ed by the location property of o must
be a safe location.

For Type-1 data, the constraint is more complex due to the problem of joining data
streams. However, as we de�ned for our model that data has the same source exactly when

its data type is the same, it also can be expressed:

For each operation o1 within any call sequence, for each parameter p1 of o1
where the level is type1, no other operation o2meeting all the following restric-
tions may exist:

• o2 is deployed in the same location as o1, which is de�ned via the location
property of both.

• o2 has a parameter p2 which has the level type1, which however has a
di�erent datatype than p1.

This constraint ensures, that for no location it is possible that Type-1 data of a di�erent

type (and therefore of a di�erent source) �ows there.
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6. Translation to Prolog

In this section we show how instances of our data �ow system meta model can be auto-

matically translated to Prolog programs. These programs can be queried in order to detect

constraint violations in the modeled systems.

We �rst introduce our Prolog API for formulating data �ow constraint queries in

Section 6.1. Afterwards, in Section 6.2 we illustrate the usage of the API based on examples.

Finally, in Section 6.3 we show how the translation can be realized.

6.1. Constraint Query API

In this section we introduce our Prolog API for formulating data �ow constraint queries.

The goal is that after a system has been modeled using our meta model presented in the

previous section, it can be automatically translated to a Prolog program. Using the API we

present in this section, the system can then be queried for constraint violations.

6.1.1. Type Information

The meta model of our approach includes a type system. This type system is useful for

formulating queries for which one would normally use the universal or the existential

quantors. For example, queries starting like “For all operations with property XYZ, . . . ” can

be formulated based on the predicates for the type system. The predicates exposed by our

API for this purpose are as follows:

isProperty(P)
true when P is the name of a Property

isDataType(D)
true when D is the name of a DataType

isAttribute(A)
true when A is the name of an Attribute

isOperation(OP)
true when OP is the name of a Operation

isSystemUsage(SU)
true when SU is the name of a SystemUsage

The names of the elements are de�ned by the name attribute used in the meta model. They

are used as Prolog atoms. The predicates presented above can be used for both testing
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6. Translation to Prolog

or as generators. To use them as generators, the predicate just has to be called with an

uninstantiated variable. For example, when calling “isOperation(X)”, the Prolog interpreter

will instantiate X with all available operations.

Both Attributes and Properties have a ValueSetType. The members of a ValueSetType can

be queried using the following predicate:

valueSetMember(T,V)
true when V is the name of a Value which belongs to the ValueSetType with the

name T.

The relation between ValueSetTypes and Attributes and Properties is represented using the

following predicates:

attributeType(A,T)
true when A is the name of a Attribute and T is the name of its ValueSetType.

propertyType(P,T)
true when P is the name of a Property and T is the name of its ValueSetType.

As DataTypes consist of a set of Attributes, their relationship can be queried using the

following predicate:

dataTypeAttribute(D,A)
true when D is the name of a DataType and A is the name of one of its Attributes.

The last part of type system query API is about the parameters, return values and state

variables of Operations. Every Operation has named Variables, of which each one has a

type. This can be queried using the predicates shown below:

operationParameter(OP,P)
true when OP is the name of a Operation and P is the name of one of its parameters.

operationParameterType(OP,P,T)
true when OP is the name of a Operation and P is the name of one of its parameters.

In addition T has to be the name of the DataType of P.

operationReturnValue(OP,R)
true when OP is the name of a Operation and R is the name of one of its return

values.

operationReturnValueType(OP,R,T)
true when OP is the name of a Operation and R is the name of one of its return

values. In addition T has to be the name of the DataType of R.

operationState(OP,ST)
true when OP is the name of a Operation and ST is the name of one of its state

variables.

operationStateType(OP,ST,T)
true when OP is the name of a Operation and ST is the name of one of its state

variables. In addition T has to be the name of the DataType of ST.
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6.1. Constraint Query API

6.1.2. Operations, SystemUsages and Calls

For operations we showed in the previous section how their call and return signature as

well as their state variables can be queried. In this section we introduce how the actual

values of these variables can be referenced for formulating constraints. However, for

this purpose we �rst have to introduce the concept of call stacks in Prolog. Consider the

following example call sequence:

Usaдe
call1
→ Operation1

call2
→ Operation2

In this example sequence, the invocation chain starts with the SystemUsage Usage. Usage
then calls Operation1. This call is named call1. Operation1 then invokes Operation2 with a

call named call2.

The values of the variables for these calls, namely parameters, return values or state

variables as explained in Section 5.2 are de�ned via VariableAssignments as introduced in

Section 5.6. These assignments allow variables to depend on parameters, on the return

values of previously invoked Operations or on arbitrary state variables. In tun, these

values can have dependencies on other calls. This implies that the actual value of these

parameters can be dependent on the entire call history.

For this reason, we have to provide the call history as call sequence (also referred to

as call stack) when querying such variable values. We decided to use Prolog lists for

this purpose. The Prolog syntax hereby is optimized for adding or removing the head

of such lists via the “|” operator [3]. This implies that Prolog lists should have similar

timing characteristics as Single-Linked lists in most applications. This makes them ideal

for representing stacks, where the list head is used as stack top.

As we identify model elements from Chapter 5 by using their names as atoms, we can

therefore represent the call sequence shown above using a Prolog list as follows:

[ ’ O p e r a t i o n 2 ’ , ’ c a l l 2 ’ , ’ O p e r a t i o n 1 ’ , ’ c a l l 1 ’ , ’ Usage ’ ]

This list represents the call sequence leading to Operation2 from Usage. Note that we use

single quotes to prevent Prolog from interpreting names starting with upper case letters as

variables instead of atoms. At �rst sight the list might seem reversed, as it starts with the

top of the stack. However, this is due to the Prolog notation, where the leftmost element is

the head of the list. In addition it is noteworthy that both the names of the operations as

well as the names of the operations are listed by themselves and not in combination, for

example as tuples. This design choice was made to make the handling of call sequences

easier with the Prolog list concatenation operator.

If we wanted to refer to the call of Operation1, we could use the following list instead:

[ ’ O p e r a t i o n 1 ’ , ’ c a l l 1 ’ , ’ Usage ’ ]

The power of this representation of call stacks becomes visible in combination with the

Prolog “|” concatenation operator. Given for example a call stack list as variable S. The only

thing we know about S is that Operation1 is at the stack top. This means that S represents

an arbitrary call sequence leading to Operation1. In Prolog notation, this means that the

following uni�cation holds:
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S =[ ’ O p e r a t i o n 1 ’ | _ ]

What if we wanted to refer to the call to Operation2 given the previous invocation sequence

S? This is for example useful when de�ning the call arguments for Operation2 if they are

context dependent. We can now simply formulate this in Prolog using list concatenation:

[ ’ O p e r a t i o n 2 ’ , ’ c a l l 2 ’ , ’ O p e r a t i o n 1 ’ | S ]

This new list refers to the call to Operation2 from Operation1 given the previous call history

S.

With the concept of representing call stacks using lists we now have a mechanism

to unambigously identify variables given their call context. This allows us to de�ne the

following predicates for querying the values of parameters and return values of our API:

callArgument(S,P,A,V)
true when the Value V of the Attribute A of the parameter P is present given the call

stack S. The operation which owns the Parameter P is de�ned by the stack top of

returnValue(S,R,A,V)
true when the Value V of the Attribute A of the return value R is present given the

call stack S. The operation which owns the Return Value R is de�ned by the stack

top of S.

An intuitive interpretation of these predicates can be done by viewing the combination

variable.attribute.value as boolean variable. This view was already introduced in Chapter 5.

For each Operation we de�ned assignments for this variable. The value of callArgument
or returnValue is now exactly true when the assignment of the corresponding variable

leads to a propositional logic formula which evaluates to true. hereby the full formula

is derived by transitively replacing dependencies to other variables with the help of the

given call sequence.

Both predicates can be called with any of their arguments bound, partially bound

or unbound. Consider that Operation2 has a parameter named �le with the Attribute
encryption of which a possible Value is AES. If we want to know all call sequences for

which the �le is encrypted, we can use the following query:

?− S =[ ’ O p e r a t i o n 2 ’ | _ ] ,

c a l lArgument ( S , ’ f i l e ’ , ’ e n c r y p t i o n ’ , ’ AES ’ ) .

In this example we partially bind the stack list, as we de�ne its head but not the tail. The

Prolog interpreter will then provide all instantiations for S, where the �le is encrypted

with AES. A special ability of the Prolog solver is that in many cases it does not need to

fully instantiate the stack up to the SystemUsage where the call sequence begins. Instead,

the interpreter might just return the following solution:

S =[ ’ O p e r a t i o n 2 ’ , ’ c a l l 2 ’ , ’ O p e r a t i o n 1 ’ | _ ] .

This solution reads as that for any call to Operation2 from Operation1 the �le is encrypted.

It hereby does not matter from where Operation1 was called.
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However, often it can be useful to enumerate all possible call stacks fully instantiated.

For this purpose the following predicate was introduced:

stackValid(S)
true when the list S represents a correct call sequence starting at a SystemUsage.

This predicate can be used for testing or as a generator for call stacks. Extending the

example above to provide a fully instantiated stack works as follows:

?− S =[ ’ O p e r a t i o n 2 ’ | _ ] ,

c a l lArgument ( S , ’ f i l e ’ , ’ e n c r y p t i o n ’ , ’ AES ’ ) , s t a c k V a l i d ( S ) .

S =[ ’ O p e r a t i o n 2 ’ , ’ c a l l 2 ’ , ’ O p e r a t i o n 1 ’ , ’ c a l l 1 ’ , ’ Usage ’ ] .

In this example we only have one call path leading to Operation2 via Operation1, therefore

only one solution is returned. However, if more paths existed, the Prolog interpreter would

list them all.

So far, we presented the predicates for querying call arguments and return values.

In addition we need to de�ne predicates for accessing state variables. As explained in

Section 5.2, state variables are handled as implicit parameters and return values which are

passed with every call. However, in order to di�erentiate between them and normal call

parameters and return values, we decided on introducing separate predicates for them:

preCallState(S,OP,ST,A,V)
true when the Value V of the Attribute A of the state variable ST owned by the

operation OP is present before the call to the operation on top of the call stack S is

executed. The operation OP hereby is completely independent of the stack S.

postCallState(S,OP,ST,A,V)
true when the Value V of the Attribute A of the state variable ST owned by the

operation OP is present after the call to the operation on top of the call stack S is

executed. The operation OP hereby is completely independent of the stack S.

E�ectively, these predicates are realized in exactly the same manner as callArgument
and returnValue. preCallState corresponds to callArgument and postCallState cor-

responds to returnValue. The main di�erence is that in order to unambiguously identify

state variables, their containing operation is required as additional parameter. This is not

required for return values and call parameters as their containing operation is de�ned by

the call stack top.

Another unique property of state variables is the fact that they have a default value.

This default value can be queried using the following predicate:

defaultState(OP,ST,A,V)
true when the Value V of the Attribute A of the state variable ST owned by the

operation OP is present by default.
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Note that defaultState is a constant value and therefore does not require a call stack

as parameter.

In addition to these value queries, our API also allows to simply query whether a direct

call from one operation to another one exists:

operationCall(SRC,DEST,CALL)
true when the caller SRC performs a call to the Operation DEST with the name CALL.

Note that in this predicate, the source SRC is a Caller. This means that it can be either an

Operation or a SystemUsage.
The last uncovered aspect is the querying of operation property values. We de�ne the

following two predicates for this purpose:

hasProperty(OP,PR)
true when the Operation OP contains a PropertyDe�nition for the Property PR.

operationProperty(OP,PR,V)
true when the PropertyDe�nition of Operation OP for the Property PR has the Value
V as present value.

6.2. Constraint Formulation Examples

In this section we illustrate based on examples how the introduced API can be used to

formulate queries for data �ow constraint violations. We show how the informal constraint

de�nitions given in Section 5.7 can be formulated in Prolog for the presented examples.

A common approach hereby is to query for constraint violations instead of proo�ng that

the constraint holds. In the case that violations are present, asking Prolog to proof that

the constraint holds would just yield fail as result. Querying for violation instead gives us

an exact context, e.g. a call sequence when the constraint is violated. If no violations are

present, the query for violations will just yield fail as result.

6.2.1. Access Control Scenario

In this section we show how the model presented in Section 5.7.1 can be validated using

our API. In Section 5.7.1.2 we already gave the following informal de�nition for the access

control constraint:

For each operation owithin any call sequence, for each parameter p of owith the
attribute authorizedRoles, a role rmust exist so that both p.authorizedRoles.r
and o.roles.r are true.

Note that in this de�nition we solely focus on call parameters which are su�cient for

our example model instance. When access control is required on return values or state

variables, the constraint query can be formulated similarly. In addition we assume that

only data with the attribute authorizedRoles and operations with the property roles
underlie access control. This means that for other data and operations by default no checks
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are performed. As previously stated we however do not query that the constraint holds,

but instead we query for violations. This means we query for the negation of the statement

above, which looks as follows:

Does an operation o exist within any call sequence, where for any parameter p of
owith the attribute authorizedRoles, no role r exists so that both p.authorizedRoles.r
and o.roles.r are true.

We can now directly translate this de�nition to the following Prolog query:

1 ?− i s O p e r a t i o n (OP ) , h a s P r o p e r t y (OP , ’ a c c e s s R o l e s ’ ) ,

2 S =[OP | _ ] ,

3 o p e r a t i o n P a r a m e t e r T y p e (OP , P , PT ) ,

4 d a t a T y p e A t t r i b u t e ( PT , ’ a u t h o r i z e d R o l e s ’ ) ,

5 a c c e s s R o l e s (OP , R ) ,

6 i s N o R o l e A u t h o r i z e d ( R , S , P ) .

At the end, the query uses the helper predicates accessRoles(OP,R) and isNoRoleAu-
thorized(R,S,P) which we will de�ne later. We will now go over each line step by step

and show how they map to the informal de�nition of the query from above.

• In line 1 we use isOperation(OP) as generator: Prolog will cycle through every op-

eration in our system and instantiate OP with it. Afterwards we �lter for operations

which underlie access control restriction by ensuring that the accessRoles property

is present using hasProperty(OP,’accessRoles’).

• In line 2 we de�ne that we are interested in any call stack S, which leads to the

current Operation OP.

• In line 3 and 4 we iterate over all call parameters of the operation OP. First in line

3 we use operationParameterType(OP,P,PT) as generator: We cycle through

every parameter of OP, where the name of the parameter is stored in P and its

data type is stored in PT. As we are only interested in parameters which under-

lie access control restrictions, we have to �lter for parameters whose type has

the authorizedRoles attribute. This �ltering is performed using the dataTypeAt-
tribute(PT,’authorizedRoles’) term.

• In line 5 we query all roles under which OP accesses the data and store it in the list

R.

• In line 6 we check that none of the roles in R is authorized for an access to P.

The accessRoles(OP,R) predicate called in line 5 is de�ned as follows:

a c c e s s R o l e s (OP , R ) :−

f inda l l ( X , o p e r a t i o n P r o p e r t y (OP , ’ a c c e s s R o l e s ’ ,X ) , R )
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The goal of accessRoles(OP,R) is that given the operation OP, R is the list of all roles

under which OP accesses its data. These roles are de�ned by the accessRoles prop-

erty. Therefore, we use the built-in predicate �ndall, which returns all solutions for

a given query as a list. As query for �ndall we use our API predicate operationProp-
erty(OP,’accessRoles’,X).

Finally, in line 6 the predicate isNoRoleAuthorized(R,S,P) is called, which we de�ne

as follows:

1 i s N o R o l e A u t h o r i z e d ( [ ] , _S , _P ) .

2 i s N o R o l e A u t h o r i z e d ( [ Ro le | R ] , S , P ) :−

3 s t a c k V a l i d ( S ) , \+ ca l lArgument ( S , P , ’ a u t h o r i z e d R o l e s ’ , Ro le ) ,

4 i s N o R o l e A u t h o r i z e d ( R , S tack , P ) .

Given a list of roles R, a call stack S and a operation parameter P, it is de�ned to return

true if none of the roles in R are authorized to access P. Hereby, this check is performed

for the operation which is on the top of the call stack S. Note that is explicitly not required

for S to be fully instantiated: only the call stack top has to be bound. If the predicate is

successful in �nding a violation, S will be instantiated further to contain the call sequence

leading to the violation.

In the de�nition of isNoRoleAuthorized(R,S,P) the base case is de�ned in line 1: If

the list of roles is empty, none of the roles can be authorized. In line 2 we recursively iterate

over the list of roles, ensuring that none is authorized. This means that we have to ensure

that for a given Role, the authorizedRoles attribute of the parameter is false. Therefore

we need a logical negation, which is performed in line 3. As explained in Section 2.2.3,

the Prolog negation is only equivalent to a logical negation if all variables of the negated

term are bound. This is already the case for all variables except for the call stack. For this

reason S is bound using stackValid(S) as generator prior to the negation.

Note that this variable binding before the negation can be potentially expensive perfor-

mance wise. For this reason we introduce in Chapter 7 an optimized way of expressing

logical negations.

6.2.2. Geolocation Constraints Scenario

In this section we show how the constraints for our geolocation restrictions example

presented in Section 5.7.2 can be expressed in Prolog. For the example we derived the

following two constraints. First, we presented one for Type-0 data:

For each operation o within any call sequence, for each parameter p of o where
the level is type0, the deployment speci�ed by the location property of o must
be a safe location.

The second constraint was de�ned for Type-1 data to prevent the problem of joining data
streams:

For each operation o1 within any call sequence, for each parameter p1 of o1
where the level is type1, no other operation o2meeting all the following restric-
tions may exist:
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• o2 is deployed in the same location as o1, which is de�ned via the location
property of both.

• o2 has a parameter p2 which has the level type1, which however has a
di�erent datatype than p1.

Again, data which has no privacy type assigned is ignored in our analysis. If this

behaviour is not desired it is possible for example to de�ne an additional constraint which

forces data to have type de�ned. As done previously, we have to negate these constraints

in order to �nd violations. For the Type-0 constraint, this leads to the following informal

query:

Does an operation o exist within any call sequence, where for any parameter p
of o the level is type0 and the deployment speci�ed by the location property of
o speci�es an unsafe location.

This de�nition can now be easily translated to Prolog based on our API:

1 t y p e 0 V i o l a t i o n (OP , P , L ) :−

2 S =[OP | _ ] , c a l lArgument ( S , P , ’ l e v e l ’ , ’ Type−0 ’ ) ,

3 o p e r a t i o n P r o p e r t y (OP , ’ l o c a t i o n ’ , L ) , i s N o t S a f e ( L ) .

In line 2 we de�ne that we are looking for a call sequence with an operation which has

a Type-0 parameter. Afterwards in line 3, we ensure that the location speci�ed by the

location property is an unsafe location. However, for this to work, we need to specify

which locations we consider as safe and which we consider as unsafe. This is done using

the following statements:

1 i s S a f e ( ’EU ’ ) .

2 i s N o t S a f e (X ) :− valueSetMember ( ’ L o c a t i o n s ’ ,X ) , \+ i s S a f e (X ) .

For our example, we only consider the EU as safe. We de�ne this using the fact in line 1.

Our de�nition for the unsafe location is performed in line 2: We de�ne every location

which is not speci�ed as safe to be unsafe.

The second constraint is more complex because we have to �nd a combination of call

sequences which leads to a joining data stream. Negating the de�nition of the constraint

leads to the following informal de�nition for �nding violations:

Does a combination two operations o1 and o2 exist meeting all the following
restrictions:

• o2 is deployed in the same location as o1, which is de�ned via the location
property of both.

• o1 has a parameter p1 which has the level type1

• o2 has a parameter p2 which has the level type1, which however has a
di�erent datatype than p1.

It is translated to Prolog as shown below:
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1 t y p e 1 V i o l a t i o n ( S1 , P1 , S2 , P2 , L ) :−

2 S1 =[OP1 | _ ] , S2 =[OP2 | _ ] ,

3 o p e r a t i o n P r o p e r t y ( OP1 , ’ l o c a t i o n ’ , L ) , i s N o t S a f e ( L ) ,

4 ca l lArgument ( S1 , P1 , ’ l e v e l ’ , ’ Type−1 ’ ) ,

5 o p e r a t i o n P r o p e r t y ( OP2 , ’ l o c a t i o n ’ , L ) ,

6 ca l lArgument ( S2 , P2 , ’ l e v e l ’ , ’ Type−1 ’ ) ,

7 o p e r a t i o n P a r a m e t e r T y p e ( OP1 , P1 , T1 ) ,

8 o p e r a t i o n P a r a m e t e r T y p e ( OP2 , P2 , T2 ) ,

9 \+ T1=T2 .

In line 2 we de�ne that we are looking for two call stacks with the operations OP1 and

OP2 on top. In line 3 we de�ne that OP1 has to be deployed in an unsafe location L and

in line 4 we de�ne that OP1 has to have a parameter P1 of Type-1. In line 5 and 6 we

de�ne the same requirements for OP2: It has to be deployed at the same location and also

needs to have a Type-1 parameter P2. In the lines 7 to 9 we de�ne the �nal requirement:

The problem of joining data streams only occurs when P1 and P2 originate from di�erent

data sources. We de�ned that the source is equal when both parameters have the same

Datatype. Therefore we specify in our rule that the types of both parameters have to be

di�erent.

6.3. Deriving the Prolog Program

In this section we introduce how a Prolog program can be automatically generated from

a system speci�ed using our meta model from Chapter 5. This program is designed to

conform to the API from Section 6.1.

An overview of the structure of the resulting logical program is given in Figure 6.1.

The �rst part of the program is the header section: It starts with a preamble, where the

predicates which are independent of the modeled system are de�ned. An example for

such a predicate is stackValid(S). Afterwards, the required types of the system, namely

ValueSetTypes, Properties, Attributes and DataTypes are de�ned as facts. The process of

deriving the header section is explained in Section 6.3.1.

In the following two sections of the program, a block of predicates is generated for

each Operation and SystemUsage. These blocks are especially responsible for de�ning the

values of parameters, return values and state variables. The generation of these predicates

is explained in detail in Section 6.3.2.

6.3.1. Program Header Definition

The header section of the generated program contains model-independent predicate

de�nitions as well as the de�nition of the types speci�ed in the model. For each of the

subsections of the header presented in Figure 6.1, we explain how they are derived in the

following sections.
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Preamble

ValueSetType - Definitions

Property - Definitions

Attribute - Definitions

DataType - Definitions

Operation n
...

Operation 1

Properties

Call 1

Call n

...

...

SystemUsage 1

Call 1

Call n

...

...

SystemUsage n
...

SystemUsage n
...

Return Values

Header Section

Operation - Definitions

SystemUsage - Definitons

Default State Definitions

Post Execution State Definitions

Figure 6.1.: Illustration of the resulting program structure of our proposed Prolog

translator.

6.3.1.1. Preamble

The header of the generated Prolog program starts with a preamble which is independent

of the generated model. The idea is that several API predicates de�ned in Section 6.1 can

be derived from existing de�nitions of other predicates. An example is the isAttribute(A)
predicate: Every Attribute has exactly one ValueSetType assigned as type. This type can be

queried using attributeType(A,T). As we know that each attribute has exactly one type,

we can therefore de�ne isAttribute(A) in the preamble as follows:

i s A t t r i b u t e (A) :− a t t r i b u t e T y p e (A , _ ) .

The de�nition of attributeType(A,T) is generated for each Attribute in the Attribute-
De�nitions section, which is explained in Section 6.3.1.3.
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The bene�t of this de�nition of isAttribute(A) in the preamble is that it reduces the

number of rules required and therefore the total program size: Instead of having one

isAttribute(A) de�nition as fact for each attribute, only one in the preamble is required.

The same idea is used for the de�nition of isProperty(P), operationParameter(OP,P),
operationReturnValue(OP,R) and operationState(OP,ST):

i s P r o p e r t y ( P ) :− proper tyType ( P , _ ) .

o p e r a t i o n P a r a m e t e r (OP , P ) :−

o p e r a t i o n P a r a m e t e r T y p e (OP , P , _ ) .

o p e r a t i o n R e t u r n V a l u e (OP , R ) :−

o p e r a t i o n R e t u r n V a l u e T y p e (OP , R , _ ) .

o p e r a t i o n S t a t e (OP , ST ) :−

o p e r a t i o n S t a t e T y p e (OP , ST , _ ) .

The stackValid(S) predicate is also de�ned in the preamble. We de�ne a stack as valid

if it meets the following requirements:

• The top of the stack must be an Operation.

• The bottom of the stack must be a SystemUsage.

• Between every called Operation and its Caller there must be the name of the call on

the stack.

Based on these requirements we can easily de�ne stackValid(S) as follows:

s t a c k V a l i d ( [OP , CALL , SU ] ) :− i s Sys t emUsage ( SU ) ,

i s O p e r a t i o n (OP ) , o p e r a t i o n C a l l ( SU ,OP , CALL ) .

s t a c k V a l i d ( [ DEST , CALL , SOURCE | S ] ) :−

s t a c k V a l i d ( [ SOURCE | S ] ) , o p e r a t i o n C a l l ( SOURCE , DEST , CALL )

The implementation of the predicates used in this de�nition is explained in Section 6.3.2.

Finally, we de�ne the following predicates as facades in the preamble:

• callArgument(S,P,A,V)

• returnValue(S,R,A,V)

• preCallState(S,OP,ST,A,V)

• postCallState(S,OP,ST,A,V)

• defaultState(OP,ST,A,V)

In our implementation of these predicates in Section 6.3.2 we rely on the fact that all

variables except for the call stack S are bound. However, to keep our API as �exible as

possible, we do not want to pose this restriction to the user of the API. The solution is to

use corresponding generators for the de�nition in the preamble:
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ca l lArgument ( [OP | S ] , P , A , V ) :−

i s O p e r a t i o n (OP ) , o p e r a t i o n P a r a m e t e r T y p e (OP , P , T ) ,

d a t a T y p e A t t r i b u t e ( T , A) , a t t r i b u t e T y p e (A , VT ) ,

valueSetMember ( VT , V ) ,

c a l lArgument Imp l ( [OP | S ] , P , A , V ) .

r e t u r n V a l u e ( [OP | S ] , R , A , V ) :−

i s O p e r a t i o n (OP ) , o p e r a t i o n R e t u r n V a l u e T y p e (OP , R , T ) ,

d a t a T y p e A t t r i b u t e ( T , A) , a t t r i b u t e T y p e (A , VT ) ,

valueSetMember ( VT , V ) ,

r e t u r n V a l u e I m p l ( [OP | S ] , R , A , V ) .

. . .

The de�nition of the corresponding predicates for state variables was omitted here, as it

works in exactly the same manner. Note that in the shown examples we call callArgu-
mentImpl and returnValueImpl after the generators. These predicates are the hidden

implementations we de�ne in Section 6.3.2. Again, the corresponding de�nitions for state

variables also delegate to -Impl variants of their predicates.

6.3.1.2. ValueSetType Definitions

ValueSetTypes are exposed through our API only via the valueSetMember(T,V) predi-

cate. The generation of this predicate is trivial: For each ValueSetType in the model, one

valueSetMember(T,V) fact is generated for each of its Values.
For example, the generated code for the ValueSetType role of the TravelPlanner example

model from Section 5.7.1 looks as follows:

valueSetMember ( ’ r o l e ’ , ’ User ’ ) .

va lueSetMember ( ’ r o l e ’ , ’ A i r l i n e ’ ) .

va lueSetMember ( ’ r o l e ’ , ’ Trave lAgency ’ ) .

6.3.1.3. Property and Attribute Definitions

Properties are exposed via the isProperty(P) and propertyType(P,T) predicates. isProp-
erty(P) is already de�ned in the preamble. Therefore, we just add one propertyType(P,T)
fact for each Property of the model. For the TravelPlanner example this results in the

following code:

proper tyType ( ’ a c c e s s R o l e s ’ , ’ r o l e ’ ) .

The approach for Attributes with the isAttribute(A) and attributeType(A,T) predi-

cates is exactly the same. For this section, the code for the TravelPlanner example is the

following:

a t t r i b u t e T y p e ( ’ a u t h o r i z e d R o l e s ’ , ’ r o l e ’ ) .

a t t r i b u t e T y p e ( ’ c o n t a i n e d R o l e s ’ , ’ r o l e ’ ) .
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6.3.1.4. DataType Definitions

ForDataTypes our API de�nes the predicates isDataType(D) anddataTypeAttribute(D,A).
Again, these can be generated as facts by iterating over the DataTypes of the model. For

each DataType one isDataType(D) fact is generated. In addition, for each Attribute of the

DataType, one dataTypeAttribute(D,A) fact is added to the program.

The corresponding code for the TravelPlanner example looks as follows:

i sDataType ( ’ Reques tData ’ ) .

d a t a T y p e A t t r i b u t e ( ’ Reques tData ’ , ’ a u t h o r i z e d R o l e s ’ ) .

i sDa taType ( ’ F l i g h t O f f e r s ’ ) .

d a t a T y p e A t t r i b u t e ( ’ F l i g h t O f f e r s ’ , ’ a u t h o r i z e d R o l e s ’ ) .

i sDa taType ( ’ S i n g l e F l i g h t O f f e r ’ ) .

d a t a T y p e A t t r i b u t e ( ’ S i n g l e F l i g h t O f f e r ’ , ’ a u t h o r i z e d R o l e s ’ ) .

i sDa taType ( ’ R o l e S e t ’ ) .

d a t a T y p e A t t r i b u t e ( ’ R o l e S e t ’ , ’ c o n t a i n e d R o l e s ’ ) .

i sDa taType ( ’ C r e d i t C a r d D a t a ’ ) .

d a t a T y p e A t t r i b u t e ( ’ C r e d i t C a r d D a t a ’ , ’ a u t h o r i z e d R o l e s ’ ) .

6.3.2. Definition of Operations and SystemUsages

In this section we show how the meta information about Operations and SystemUsages as

well as their execution semantic is translated to Prolog. The execution semantic is hereby

speci�ed via operation calls as well as the de�nition of return values and state variables as

explained in Section 5.6.

The translation of SystemUsages is very similar to the translation of Operations. As

already hinted by Figure 6.1, the only di�erence is that SystemUsages do not de�ne return

values or state variables and do not have Properties. For this reason we only explain the

translation of Operations and point out when the translation of SystemUsages behaves

di�erently.

As shown in Figure 6.1, each Operation of the model is translated as an independent

block of Prolog statements. This block consists of subblocks for the de�ned Properties, the

return values, state variables as well as one subblock for each outgoing call.

The de�nition of an Operation starts with a fact for the isOperation(OP) predicate.

Correspondingly, the de�nition of a SystemUsage begins with a isSystemUsage(SU) fact.

The de�ned Properties are accessible through our API via hasProperty(OP,PR) and

operationProperty(OP,PR,V). The code generation hereby works similar as for the type

de�nitions shown in the previous section: Firstly, for each PropertyDe�nition of an Opera-
tion a hasProperty(OP,PR) fact is generated. Afterwards, for each of the present Values
of the corresponding Property, a operationProperty(OP,PR,V) fact is added. For the

Airline-bookFlight operation from the TravelPlanner example, the resulting code therefore

looks as follows:

h a s P r o p e r t y ( ’ A i r l i n e −b o o k F l i g h t ’ , ’ a c c e s s R o l e s ’ ) .

o p e r a t i o n P r o p e r t y ( ’ A i r l i n e −b o o k F l i g h t ’ ,

’ a c c e s s R o l e s ’ , ’ A i r l i n e ’ ) .
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After the de�nition of the Properties every operation de�nes the default values for its

state variables. The translation of these assignments works exactly the same as for other

assignment based predicates, such as callArgument. We will illustrate the approach

for translating this type of predicates based on the callArgument predicate later in this

section. The reason is that the term used in assignments cannot make use of all types of

LogicTerms while assignments for call arguments can. Default state de�nitions are not

allowed to reference variables as their value depends on the execution stack.

For each outgoing call of the operation a separate block of code is generated. To

allow the querying the topology of the system, the operationCall(SRC,DEST,CALL)
was introduced. Again, one fact per call is added for the de�nition of this predicate. In

case of the call from TravelPlanner-bookFlight to Airline-bookFlight, this looks as shown

below:

o p e r a t i o n C a l l ( ’ T r a v e l P l a n n e r −b o o k F l i g h t ’ ,

’ A i r l i n e −b o o k F l i g h t ’ , ’ 2 ’ ) .

Note that the name of the call is 2, as we used in Figure 5.11 numbers instead of names for

the calls.

For each call, it is required that the values of the parameters are speci�ed. This is done

by adding rules for the callArgumentImpl(S,P,A,V) predicate, which we introduced

in Section 6.3.1.1. In our model, the de�nition of the parameters is performed via the

VariableAssignments in the OperationCall. Given this list of assignments, we generate the

rules as follows: For each parameter of the callee, we add one rule for each combination of

its Attributes with its Values.
As example we again consider the call toAirline-bookFlight from TravelPlanner-bookFlight.

The left sides of the rule de�nitions then look as follows:

ca l lArgument Imp l (

[ ’ A i r l i n e −b o o k F l i g h t ’ , ’ 2 ’ , ’ T r a v e l P l a n n e r −b o o k F l i g h t ’ | S ] ,

’ f l i g h t ’ , ’ a u t h o r i z e d R o l e s ’ , ’ User ’ ) :− . . .

c a l lArgument Imp l (

[ ’ A i r l i n e −b o o k F l i g h t ’ , ’ 2 ’ , ’ T r a v e l P l a n n e r −b o o k F l i g h t ’ | S ] ,

’ f l i g h t ’ , ’ a u t h o r i z e d R o l e s ’ , ’ Trave lAgency ’ ) :− . . .

c a l lArgument Imp l (

[ ’ A i r l i n e −b o o k F l i g h t ’ , ’ 2 ’ , ’ T r a v e l P l a n n e r −b o o k F l i g h t ’ | S ] ,

’ f l i g h t ’ , ’ a u t h o r i z e d R o l e s ’ , ’ A i r l i n e ’ ) :− . . .

c a l lArgument Imp l (

[ ’ A i r l i n e −b o o k F l i g h t ’ , ’ 2 ’ , ’ T r a v e l P l a n n e r −b o o k F l i g h t ’ | S ] ,

’ ccd ’ , ’ a u t h o r i z e d R o l e s ’ , ’ User ’ ) :− . . .

c a l lArgument Imp l (

[ ’ A i r l i n e −b o o k F l i g h t ’ , ’ 2 ’ , ’ T r a v e l P l a n n e r −b o o k F l i g h t ’ | S ] ,

’ ccd ’ , ’ a u t h o r i z e d R o l e s ’ , ’ Trave lAgency ’ ) :− . . .

c a l lArgument Imp l (

[ ’ A i r l i n e −b o o k F l i g h t ’ , ’ 2 ’ , ’ T r a v e l P l a n n e r −b o o k F l i g h t ’ | S ] ,

’ ccd ’ , ’ a u t h o r i z e d R o l e s ’ , ’ A i r l i n e ’ ) :− . . .
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We will explain later in this section what the right side of the rule de�nitions looks

like. In the example above, we have the two parameters �ight and ccd, which both only

have authorizedRoles as single Attribute. As authorizedRoles has three possible Values, this

yields six rules in total.

Note how we de�ned the call stack in the rules: The speci�cation of the parameters,

namely its propositional logic formula, solely depends on the call itself. It does not depend

on the previous call history. The actual value however may depend on the previous call

history, for example as it can reference the return value of other calls.

Through our rules we de�ne the values using their propositional logic formula. For this

reason, we de�ne the call stack in the rule de�nitions with our call on top and allow any

valid call history to be stored in the variable S.

To summarize, we now have one rule de�nition for each parameter, Attribute and Value
combination per call. On the right side of these de�nitions we want a Prolog representation

for the propositional logic formula of the corresponding tuple.

The propositional logic formulas are de�ned via the list of VariableAssignments. For

each (parameter, Attribute, Value)-tuple, we select the last matching assignment in the

list. We select the last one in order to implement the override-semantic we speci�ed for

assignments in Section 5.4. Hereby, we have to consider the wildcarding mechanism we

introduced in Section 5.6. An VariableAssignment matches for the tuple, if its wildcards can

be replaced with the given Attribute and Value without violating the typing requirements.

After this selection process, we have exactly one LogicTerm for each (parameter, At-
tribute, Value)-tuple. This term now has to be translated to Prolog to form the right side of

the rule de�nitions shown above. As LogicTerms form a tree, we translate them to nested

Prolog statements.

First, we explain how the atomic terms are translated. The most basic atomic terms

we have are True and False. These are simply translated to the Prolog statements true
and fail. For example, the value of (rq,roles,Airline) of the call to CreditCardCenter-
requestDeclassi�edCCD from TravelPlanner-bookFlight was de�ned using the following

assignment:

rq.roles.Airline := true

This assignment translates to the following Prolog rule de�nition:

ca l lArgument Imp l (

[ ’ C r e d i t C a r d C e n t e r − r e q u e s t D e c l a s s i f i e d C C D ’ , ’ 1 ’ ,

’ T r a v e l P l a n n e r −b o o k F l i g h t ’ | S ] ,

’ rq ’ , ’ r o l e s ’ , ’ A i r l i n e ’ ) :− true .

The translation of references to Properties is also simple: We can directly call the

operationProperty(OP,P,V) predicate we speci�ed earlier in this section.

The last types of atomic terms are references to variables. Parameter and return

value references are translated to calls to callArgumentImpl, returnValueImpl. De-
faultStateRefs are translated to calls to defaultStateImpl and StateRefs to pre/postCall-
StateImpl. Whether a StateRef is translated to preCallStateImpl or postCallStateImpl
depends on the context of the current LogicTerm. As explained in Section 5.2 state variables

are realized by passing each of them with operations calls and returns. If now the current
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state for the current LogicTerm originates from an executed call, postCallStateImpl is

used. If the current state was passed to the current operation preCallStateImpl is used

instead.

All variable references except for DefaultStateRefs require a call stack as context infor-

mation. This call stack is derived using the call stack variable de�ned on the left side of the

assignment predicate de�nitions. For example, consider we are de�ning the values for the

call of Airline-bookFlight from TravelPlanner-bookFlight. As shown above, we therefore

have the following list as call stack on the left hand side of the rule de�nition:

[ ’ A i r l i n e −b o o k F l i g h t ’ , ’ 2 ’ , ’ T r a v e l P l a n n e r −b o o k F l i g h t ’ | S ]

Based on this, the stack representing the call to ’TravelPlanner-bookFlight’ within the same

history can be de�ned as follows:

[ ’ T r a v e l P l a n n e r −b o o k F l i g h t ’ | S ]

This means, that we can simply reference the call values of ’TravelPlanner-bookFlight’
using the following statement:

ca l lArgument Imp l ( [ ’ T r a v e l P l a n n e r −b o o k F l i g h t ’ | S ] , . . . )

The referencing of return values works similarly: if we want to reference the return

value of the call to ’CreditCardCenter-requestDeclassi�edCCD’, we can use the following

statement:

r e t u r n V a l u e I m p l ( [ ’ C r e d i t C a r d C e n t e r − r e q u e s t D e c l a s s i f i e d C C D ’ ,

’ 1 ’ , ’ T r a v e l P l a n n e r −b o o k F l i g h t ’ | S ] , . . . )

Note how we reused in both cases the variable S. When looking for proofs, Prolog will

systematically instantiate S by tracing through our de�nitions for callArgumentImpl
and returnValueImpl. The de�nition of the stack works the same way for StateRefs.
Hereby, the stack is used which references the previous value of the corresponding state

variable.

For the compound LogicTerms the de�nition is much simpler. For And and Or Prolog

already comes with the built-in operators (,) and (;) [3]. For the logical negation Not we

use the Prolog negation by failure \+.

As we explained in Section 2.2.3 the Prolog negation only works as a logical negation if

all variables are fully instantiated. We however often use the call stack S as only partially

instantiated variable. For this reason, the negation of any {Term} is translated as follows:

( s t a c k V a l i d ( S ) , \+ { Term } )

We use stackValid(S) as a generator prior to performing the negation. This ensures that

S is instantiated.

While this approach works, it can come at a severe performance cost: Even though a

proof potentially could be found by inspecting only a few operations at the top of the

stack, this negation results in every stack being examined fully up to the root. For this

reason, we introduce an optimization in Chapter 7 which eliminates the need for using

stackValid(S) as generator prior to negations.
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As the de�nition of the returnValueImpl predicate works exactly the same as for

the callArgumentImpl, we omit a detailed explanation for it here. At the end of every

Operation, a set of returnValueImpl rules are generated based on the speci�ed Variable-
Assignments in the same manner as the call arguments for outgoing calls are de�ned.

For state variables, we have three sets of assignments in total: The de�nition of the

default state, the de�nition of pre-call state changes and the de�nition of post execution

state changes. The de�nition of assignments is done using sets of defaultStateImpl
predicate. Again, the generation works the same way as for callArgumentImpl except

that no variable for the call stack is used. The default state is context independent. As

explained in Section 5.2 state variables are realized by implicitly translating them as

parameters and return values. Therefore, the translation of pre-call state changes works

the same way as the translation of call arguments. Correspondingly the translation of

post execution state changes is realized the same way as the translation of return values.

The main di�erence is that each of these assignments have implicit VariableAssignments
for copying the previous state values. For each state variable var of the corresponding

owning operation op in the system the following assignment is added to the pre-call and

post execution state changes:

op.var.*.* := st(op.var.{A}.{V})

The only exceptions hereby are the pre-call state changes of the �rst call of every

SystemUsage. There no previous state exists. Therefore the default state is used:

op.var.*.* := dst(op.var.{A}.{V})

This ensures that state variables are always transferred with each call, even if no explicit

de�nitions are given.
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In the previous section we introduced our API for formulating constraints and showed

how instances of our meta model can be translated to Prolog. Despite the fact that the

presented translation should work correctly, the analysis can perform badly regarding the

runtime in certain scenarios.

For this reason we introduce several performance optimizations for our approach in this

chapter. Even though the optimizations are presented for our approach, their application

is not limited to it: The ideas on which the optimizations are based on can be used in other

Prolog based approaches as well.

First, in Section 7.1 we show how to enable Prolog to perform �rst-argument indexing

on lists in order to allow more e�cient call stack based lookups. Afterwards, in Section 7.2

we tackle the problem of logical negations requiring the exploration of the entire variable

space. Finally, in Section 7.3 we remove the need for unrolling VariableAssignments for

each Attribute-Value combination.

We explain analytically in this chapter why we expect performance gains from these

optimizations. These hypothesis are experimentally validated in Chapter 8.

7.1. First Argument Indexing

In Section 2.2.4 we explained how Prolog can perform �rst argument indexing on rules: If

the �rst argument of a speci�ed rule is an atom the interpreter can use hashing to minimize

the rule lookup time.

Fortunately, this is already the case for most of our generated Prolog rules: The generated

static type information for DataTypes, Attributes and Values all are based on facts which

have atoms as �rst argument. The same is the case for Properties as well as the structural

information on Operations, such as the call parameters and return values.

However, we discovered that the indexing currently does not work for predicate lookups

which depend on the call stack. This means, that most Prolog Interpreters perform a linear

search for a lookup of all of the following predicates:

• returnValue(S,R,A,V)

• callArgument(S,P,A,V)

• preCallState(S,OP,VAR,A,V)

• postCallState(S,OP,VAR,A,V)

For all of these predicates, the call stack represented as Prolog list is used as �rst

argument. However, in all of our rule de�nitions the head of these lists, which represent the
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top of the call stack, is an atom. For example, in the de�nitions of returnValue(S,R,A,V)
generated by our translator the head of S is always instantiated to the Operation whose

return values are de�ned. However, we discovered that many Prolog interpreters are

unable to detect this pattern. Therefore, even when returnValue is used in a goal with

the top of the stack initialized, a linear search still is performed for �nding matching rules.

This is especially performance critical as the number of de�nitions of the predicates listed

above scales linearly with the number of operations.

In the following we present our approach for solving this issue using the returnValue
predicate as example. However, the found solution can be applied in the same manner to

all the predicates listed above.

One solution for enabling �rst argument-indexing on returnValue(S,R,A,V) is to sim-

ply change the parameter order: We can put the return value R, the Attribute A or the

Value V to the front of the predicate. This does enable the interpreter to use �rst argument

indexing because in all rule de�nitions generated by our translators these values are

instantiated with atoms.

This solution, however, does come with a downside: Both the Attribute and the Value
are commonly reused: As a result it can be expected, that in a large system very many

returnValue de�nitions occur with exactly the same values for the Attribute and the

Value. If these are used as keys for the �rst argument indexing, this leads to very large

hash buckets. Such large hash buckets reduce the gain of the indexing, because then a

long running linear search has to be performed within the corresponding hash buckets.

The same is the case for the return value R: Variable names are often reused in di�erent

operations as they commonly document the semantic of the stored values. Again this

leads to large hash buckets when used as �rst argument.

For this reason we assumed that it would be best to index by the top of the call stack

S. For the returnValue predicate this would mean that each operations return value

de�nitions are put together in unique hash buckets. This is a desirable result as especially

in combination with the optimization for shorter assignments we present in Section 7.3

we expect the number of such rule de�nitions per operation to be relatively low.

As previously stated many Prolog interpreters are unable to index by the head of the

list used as �rst argument. The idea to circumvent this is that we simply add a redundant

parameter to our rule de�nition which enables indexing. Consider the following example

rule de�nition generated by our Prolog translator:

r e t u r n V a l u e I m p l (

[ ’ op1 ’ | S ] , ’myRV ’ , ’ myAtt ’ , ’ myVal ’ ] ) :− . . .

The idea for our optimization is simple: we just copy the top of the call stack and put it

to the front as a new parameter. This means, that all rules now look as follows

r e t u r n V a l u e I n d e x e d (

’ op1 ’ , [ ’ op1 ’ | S ] , ’myRV ’ , ’ myAtt ’ , ’ myVal ’ ] ) :− . . .

The problem we face with this code generation is that we only de�ned returnVal-
ueIndexed rules. In our generated code we however reference return values using the

returnValueImpl predicate. For this reason, we have to add the following indexing

resolution rule to the program preamble:
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r e t u r n V a l u e I m p l ( [ T | S ] , R , A , V ) :−

r e t u r n V a l u e I n d e x e d ( T , [ T | S ] , R , A , V ) .

When the Prolog interpreter now has to prove a returnValueImpl goal, it directly

jumps to this indexing resolution rule as it is the only de�nition for returnValueImpl.
This rule extracts the top of the call stack and then calls returnValueIndexed. On

returnValueIndexed then the �rst argument indexing takes place. A bene�t of this

index resolution rule is that all other aspects of the code generation can be left unchanged.

Especially our API facade presented in Section 6.1 is not touched. In our provided translator

implementation, we implemented this optimization for all of the predicates listed in the

beginning of this section.

7.2. E�icient Logical Negations

We explained in Section 2.2.3 that Prolog does not support a logical negation. However,

we showed how a logical negation can be implemented based on Prologs not-provable

negation operator. For our realization of logic terms we therefore de�ned the logical not

as follows in Section 6.3.2:

( s t a c k V a l i d ( S ) , \+ { Term } )

As we already hinted, this implementation for logical negations has a very bad worst-

case performance: It is possible that an exponential amount of di�erent call sequences

have to be tried when using this approach, even though a proof could normally be found

in constant time. Consider for example that we have the following de�nition in our code:

r e t u r n V a l u e I m p l ( [ ’ op1 ’ | S ] , ’ rv ’ , ’ a t t ’ , ’ v a l ’ ] ) :− true .

We now want to �nd all call stacks to op1, where the Value val of the Attribute att of

the return value rv is false. Obviously, no such call stack exists because of the de�nition

above. However, when formulated as logical term query the proof can still be very time

consuming:

?− ( s t a c k V a l i d ( [ ’ op1 ’ | S ] ) ,

\+ r e t u r n V a l u e I m p l ( [ ’ op1 ’ | S ] , ’ rv ’ , ’ a t t ’ , ’ v a l ’ ] ) ) .

Even though returnValueImpl([op1|S],rv,att,val]) can never be false, the Prolog in-

terpreter will still try to prove it for every call stack with op1 on top.

Our solution for this problem is to implement a custom logical negation operator lnot.
This means our query from above looks like this instead:

?− l n o t ( r e t u r n V a l u e I m p l ( [ ’ op1 ’ | S ] , ’ rv ’ , ’ a t t ’ , ’ v a l ’ ] ) ) .

Note that there is no more a stackValid statement used as generator. Instead, our

operator lnot by de�nition instantiates the callstack S to all values, for which the negated

term yields false.
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The idea is that we provide the interpreter a way of proo�ng that a statement is false
in the same manner as it currently proves that a statement is true. For example, for each

de�nition of returnValueImpl such as

r e t u r n V a l u e I m p l ( [ ’ op1 ’ | S ] , ’ rv ’ , ’ a t t ’ , ’ v a l ’ ] ) :− { term } .

we add a dual de�niton to the code:

n o t _ r e t u r n V a l u e I m p l ( [ ’ op1 ’ | S ] , ’ rv ’ , ’ a t t ’ , ’ v a l ’ ] ) :−

l n o t ( { term } ) .

.

Note that the actual value of {term} is the same in both de�nitions. However, for not_-
returnValueImpl it is negated. This means that a query of not_returnValueImpl succeeds

exactly when a query of the corresponding returnValueImpl would fail. Given these dual

de�nitions, we can now add the following rule to the preamble for resolving lnot predicates:

l n o t ( r e t u r n V a l u e I m p l ( S , R , A , V ) ) :−

n o t _ r e t u r n V a l u e I m p l ( S , R , A , V ) .

When the prolog interpreter now encounters a lnot predicate during its proof, it searches

for a rule to resolve it. Above, we provided a rule for resolving the atomic ReturnValueRef
logical term. For the negation to be fully resolvable for complex terms, we have to provide

such resolution rules for all logical terms we introduced in Section 5.6. For the atomic

terms True and False we simply add the following two rules to the preamble:

l n o t ( true ) :− f a i l .

l n o t ( f a i l ) :− true .

For all other atomic terms such as ParameterRef or PropertyRef the approach is the same as

as for ReturnValueRef : This means for example that for every callArgument de�nition, we

add a dual not_callArgument de�nition alongside with a resolution rule in the preamble.

With these rules we are now able to succesfully perform logical negations using lnot on

all atomic terms. However, the compound terms And, Or and Not are not resolvable yet.

To resolve these we use the following basic logical identities:

¬(A ∧ B) ↔ (¬A ∨ ¬B)

¬(A ∨ B) ↔ (¬A ∧ ¬B)

¬¬A↔ A

By repeatedly applying these rules on any complex logical terms, the negations are pushed

towards the atomic terms. When representing logical terms in tree form this means that

the negation are pushed down towards the leafs. If we apply these rules repeatedly until

none is applicable, negations only occur on atoms in the result term.

Fortunately, it is trivial to translate these rules to Prolog:

l n o t ( ( A , B ) ) :− ( l n o t (A ) ; l n o t ( B ) ) .

l n o t ( ( A ; B ) ) :− ( l n o t (A ) , l n o t ( B ) ) .

l n o t ( l n o t (A ) ) :− A .
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After adding these rules to the preamble, Prolog now automatically performs the push-

down of logical negations when proving negated compound terms. After this pushdown

has been performed, negations only occur on atomic terms. However, for atomics terms

the lnot predicate is already well de�ned based on our de�nitions from above.

To further illustrate this mechanism, the following listing shows how Prolog applies

the rules for performing the pushdown of negations:

l n o t ( ( c a l lArgument Imp l ( . . ) ; l n o t ( r e t u r n V a l u e I m p l ( . . ) ) )

%App ly ing l n o t ( ( A ; B ) ) : − ( l n o t (A ) , l n o t ( B ) ) .
( l n o t ( ca l lArgument Imp l ( . . ) ) , l n o t ( l n o t ( r e t u r n V a l u e I m p l ( . . ) ) ) )

%App ly ing l n o t ( l n o t (A) ) : −A .
( l n o t ( ca l lArgument Imp l ( . . ) ) , r e t u r n V a l u e I m p l ( . . ) )

% f i n i s h e d ! now on ly a t omi c t e rms a r e n e ga t e d

With these changes we now have enabled the Prolog interpreter to proof negated terms

exactly in the same manner as it proves non-negated terms. This means we erased the

performance hit of negation at the cost of having one additional dual de�nition for each

VariableAssignment and a few more rules in our program preamble. As a result, we expect

an increased load time of the program by a factor of two. This is however little cost

compared to that we now prevent the interpreter from running for exponential time for

even simple proofs containing negations.

Note that our introduced lnot() predicate does not act as a universal replacement for

the Prolog negation-by-failure operator “\+”. The di�erence is that our negation is limited

to be used to negate combinations of the following predicates:

• The Prolog conjunction with two arguments (,)

• The Prolog disjunction with two arguments (;)

• The lnot predicate, meaning that chains of negations can be resolved

• The Prolog true and fail predicates

• The callArgument and callArgumentImpl predicates

• The returnValue and returnValueImpl predicates

• The preCallState and preCallStateImpl predicates

• The postCallState and postCallStateImpl predicates

• The operationProperty predicate

This set of negatable predicates is su�cient to allow the negation of all terms which

can be modeled using LogicTerms. A minor downside of our negation approach is that

when adding new types of terms we also have to add rules for resolving the negation of

them. For example consider that we want to use logical implications for de�ning some

constraints:
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i m p l i e s (A , B ) :− ( l n o t (A ) ; B ) .

When the interpreter now encounters negated implications of the form lnot(implies(. . . )),
it will fail as no rule for resolving negations of the implies predicate. Therefore, we have

to add a resolution rule for the negation:

l n o t ( i m p l i e s (A , B ) ) :− l n o t ( ( l n o t (A ) ; B ) ) .

7.3. Cut-Based Assignments

In Section 5.6 we introduced VariableAssignments. They are used for the de�nition of

all types of variables, such as parameters, return values or state variables. As for a

datatype the number of attribute-value combinations can easily become very high, we

introduced wildcards: with wildcards, we can specify the value of multiple attribute-value

combinations using a single assignment. When used correctly this implies that the number

of required assignments for a single variable is typically much lower than the number of

combinations of all attributes and their values of the variables datatype.

However, during the translation to Prolog shown in Section 6.3.2 this bene�t is lost.

The translator looks for the matching assignment for every attribute-value combination

and generates one Prolog rule for each. This means that the number of generated rules

can easily become very high, leading to a long loading time of the program. For example

consider that we have a parameter data which has origin as only attribute. origin
hereby is meant to specify the country where the data was acquired. Therefore it has a

ValueSetType which contains one value for each country. If we now want to specify that

data originates from Germany we can use the following two assignments:

data.origin.* := f alse

data.origin.germany := true

However, during the code translation the Prolog translator generates one statement for

every existing country:

ca l lArgument ( . . . , ’ d a t a ’ , ’ o r i g i n ’ , ’ germany ’ ) :− true .

c a l lArgument ( . . . , ’ d a t a ’ , ’ o r i g i n ’ , ’ f r a n c e ’ ) :− f a i l .

c a l lArgument ( . . . , ’ d a t a ’ , ’ o r i g i n ’ , ’ s p a i n ’ ) :− f a i l .

c a l lArgument ( . . . , ’ d a t a ’ , ’ o r i g i n ’ , ’ a u s t r i a ’ ) :− f a i l .

c a l lArgument ( . . . , ’ d a t a ’ , ’ o r i g i n ’ , ’ s w i t z e r l a n d ’ ) :− f a i l .

. . .

c a l lArgument ( . . . , ’ d a t a ’ , ’ o r i g i n ’ , ’ be lg ium ’ ) :− f a i l .

c a l lArgument ( . . . , ’ d a t a ’ , ’ o r i g i n ’ , ’ i t a l y ’ ) :− f a i l .

In the following we introduce a more complex realization of VariableAssignments in

Prolog, which in contrast generates only one statement per assignment.
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As �rst observation we make use of the fact that every Prolog interpreter is guaranteed

to examine rules in the order they appear in the Program. For a list of VariableAssignments
we want the last matching to be used. Therefore as initial idea we could translate the

assignments from above simply by using Prolog variables and reversing the order of the

assignments:

ca l lArgument ( . . . , ’ d a t a ’ , ’ o r i g i n ’ , ’ germany ’ ) :− true .

c a l lArgument ( . . . , ’ d a t a ’ , ’ o r i g i n ’ , _V ) :− f a i l .

In the second rule we simply translated the wildcard of the �rst assignment as an

anonymous variable. While this approach works for this example, it can easily break as

shown by the next example assignments:

data.authorizedRoles.* := true

data.authorizedRoles.nsa := f ail

This translates to the following rules according to our new approach:

ca l lArgument ( . . . , ’ d a t a ’ , ’ a u t h o r i z e d R o l e s ’ , ’ nsa ’ ) :− f a i l .

c a l lArgument ( . . . , ’ d a t a ’ , ’ a u t h o r i z e d R o l e s ’ , _V ) :− true .

These rules do not have the desired behaviour: When asking the Prolog interpreter for

the value of callArgument(. . . ,’data’,’authorizedRoles’,’nsa’) it yields true instead of the

expected false. This happens because of backtracking: The interpreter encounters the �rst

rule which speci�es the value for nsa. However, because this value is fail, the interpreter

scans for the next matching rule, which in turn yields true. In terms of VariableAssignments
this is equivalent to scanning for matching assignments until we �nd one for which result

is true.
To summarize, we need a mechanism of stopping the interpreter from backtracking

as soon as he found a rule (representing a single assignment) that matches for the query.

This is exactly what the cut predicate introduced in Section 2.2.2 does. As soon as it is

reached, no other rules are examined even if the current rule yields fail. This means that

we now translate our assignments from above as follows:

ca l lArgument ( . . . , ’ d a t a ’ , ’ a u t h o r i z e d R o l e s ’ , ’ nsa ’ ) :− ! , f a i l .

c a l lArgument ( . . . , ’ d a t a ’ , ’ a u t h o r i z e d R o l e s ’ , _V ) :− ! , true .

This approach now provides the correct results. When querying for the value nsa, the

�rst rule is used. There, the cut is reached meaning that no other rule will be examined. As

the rule fails, the result for nsa is fail. For all other roles, the �rst rule does not match on

the left side. Therefore, the second rule is used, which also yields the correct result true.
However, this approach is still not fully correct. In Table 5.2 we listed combinations of

wildcards which induce typing restrictions. An example for such a typing restriction is

the following assignment:

retVal.*.* := pa(param.{A}.germany)
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In this example the Value germany is part of the ValueSetType geolocation. This

assignment therefore has to be applied only for attributes which also have the ValueSet-
Type geolocation, because otherwise typing errors would be induced. With our current

approach we would translate this assignment to the following Prolog rule:

r e t u r n V a l u e ( . . . , ’ r e t V a l ’ ,A , V ) :−

! , c a l lArgument ( . . . , ’ param ’ ,A , ’ germany ’ ) .

The problem we observe now is that the left side of the rule matches for every Attribute,
even for ones which do not have the geolocation type. As result of this typing error, the

callArgument(. . . ) on the right side will always yield fail as result.

The solution for this problem is to perform type checks before the cut is reached. If these

type checks fail, the Prolog interpreter will continue to scan for the next matching rule. As

shown in Table 5.2, we only have two kinds of type restrictions in fact: either an Attribute
has to be part of a certain DataType or it is required to have a certain ValueSetType. In

both cases, the corresponding DataType or ValueSetType is known at translation time

due to static typing. Therefore we can simply use the dataTypeAttribute(D,A) and

attributeType(A,T) predicates we introduced in Section 6.1.1 to perform the type checks.

Now, our example translates fully correctly as follows:

r e t u r n V a l u e ( . . . , ’ r e t V a l ’ ,A , V ) :−

a t t r i b u t e T y p e (A , ’ g e o l o c a t i o n ’ ) ,

! , c a l lArgument ( . . . , ’ param ’ ,A , ’ germany ’ ) .

While the left side of the rule still matches for every attribute, the predicate

attributeType(A,’geolocation’) fails for every attribute which does not have the correct

type. As this check is performed before the cut is reached, the interpreter continues to

scan for the next matching assignment.

The �nal problem that needs to be resolved is the fact that di�erent sets of assignments

can interfere with each other. Consider for example that we have two calls to the same

operation:

%Ca l l t o op1 from s r c 1
ca l lArgument ( [ op1 , c1 , s r c 1 | _ ] , ’ a rg ’ ,A , V ) :− ! , true .

%Ca l l t o op1 from s r c 2
ca l lArgument ( [ op1 , c1 , s r c 2 | _ ] , ’ a rg ’ ,A , V ) :− ! , true .

We now want to �nd all call stacks for which the value germany of the attribute geolo-
cation is true. Therefore, we execute the following query:

?− ca l lArgument ( S , ’ a rg ’ , ’ g e o l o c a t i o n ’ , ’ germany ’ ) .

The interpreter now �nds S=[op1,c1,src1,. . . ] as the only solution. This is not correct

because S=[op1,c1,src2,. . . ] is a valid solution too. This happens because the cut from

the de�nition of the call arguments from src1 prevents the interpreter from scanning for

additional solutions. This problem can be solved by moving each group of assignments to

a separate predicate which is called as sub goal:
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%Ca l l t o op1 from s r c 1
ca l lArgument ( [ op1 , c1 , s r c 1 | _ ] , ’ a rg ’ ,A , V ) :−

a s s i g n m e n t s _ 1 ( ’ a rg ’ ,A , V ) .

a s s i g n m e n t s _ 1 ( ’ a rg ’ ,A , V ) :− ! , true .

%Ca l l t o op1 from s r c 2
ca l lArgument ( [ op1 , c1 , s r c 2 | _ ] , ’ a rg ’ ,A , V ) :−

a s s i g n m e n t s _ 2 ( ’ a rg ’ ,A , V ) .

a s s i g n m e n t s _ 2 ( ’ a rg ’ ,A , V ) :− ! , true .

As we generate a separate subgoal assignments_x for each group of assignments, the

e�ects of cuts are guaranteed to be local for each assignment set. The cut now prevents

backtracking within the assignments_x predicate, but not for the callArgument(. . . )
query. Executing the query from above now correctly gives both solutions.

To summarize this optimization, the following steps have to be taken to generate correct

rules for a set of VariableAssignments for a single variable:

• For each set of assignments a unique predicate assignments_x is generated and

used for the de�nitions. The predicate for which the assignments are performed (e.g.

callArgument or returnValue) call this predicate as subgoal.

• The order of the assignments has to be reversed. This ensures that the assignment

with the highest priority appears �rst in the code.

• If the Attribute or the Value of the assignment are wildcards, Prolog Variables are

used in their place. If these wildcards are not referenced on the right side of the

assignment, anonymous variables are used.

• The pattern {type restrictions},!,{logic term} is used for the right side of each

generated rule:

– The type restrictions are generated using dataTypeAttribute(D,A) and

attributeType(A,T) according to Table 5.2.

– The cut is used to prevent the interpreter from backtracking when a matching

assignment was found.

– The logic term generation is left unchanged. The only di�erence is that the

introduced Prolog variables are used at places where wildcards are referenced.

With this approach we now generate exactly one Prolog rule per VariableAssignment
instead of requiring one for each attribute-value combination.
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In this chapter we evaluate our proposed approach. Firstly, we introduce the goals of the

evaluation and the resulting research questions in Section 8.1. Afterwards in Section 8.2

we explain the evaluation design we use for answering the research questions. The results

are then given in Section 8.3. In Section 8.4 we show the threats to the validity of our

evaluation. Finally, in Section 8.5 we discuss the assumptions and limitations of our

approach.

8.1. Goals and Questions

The general goal of the evaluation of this thesis is to examine how well the combination

of our proposed meta-model (Chapter 5) and the Prolog Translator (Chapter 6) perform

regarding accuracy, scalability and genericness. To quantify this, we apply the Goal-

Question-Metric approach [1]. In this section we introduced the corresponding goals

alongside with their research questions. The metrics are introduced separately for each

goal in Section 8.2.

In order to derive the goals it is required that we �rst specify our expectations regarding

our approach. In terms of functionality, our approach is primarily designed for detecting

data �ow constraint violations for two main scenarios. The two main scenarios are access

control and geolocation based �ow restrictions as presented in Chapter 3. However, while

our approach was designed with these scenarios in mind, we still aimed to keep it as

generic as possible for being applicable in additional scenarios.

A central additional requirement we impose on our approach is a good performance

and scalability. In order for our approach to be as applicable as possible, it is required

that it provides analysis results in a timely manner. In order to achieve this, we proposed

several performance optimizations in Chapter 7. Therefore another central aspect of the

evaluation is to examine the e�ectiveness of the proposed optimizations.

Based on these requirements regarding our approach, we can identify the following

three evaluation goals:

G1 Evaluate whether our approach enables the accurate analysis of data �ow constraint

violations in access control and geolocation based restrictions scenarios.

G2 Examine how well the translation and analysis scale with the size of the model as

well as the e�ectiveness of the proposed optimizations.

G3 Examine how well our approach is suited for the analysis of data �ow constraints

other than access control and geolocation based privacy restrictions.
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With G1 we evaluate the functional accuracy of our approach. As it is hard to prove

that a software system is fully correct, we focus on the accurate handling of our two main

scenarios. In addition we need to ensure that our proposed performance optimizations do

not in�uence the accuracy of our approach. This leads to the following research questions

which allow an experimental evaluation:

RQ-1.1 Does our approach accurately detect access control violations for the TravelPlanner

example?

RQ-1.2 Does our approach accurately detect data �ow violations for the shop example?

RQ-1.3 Does any of the performance optimizations in�uence the accuracy of the analysis?

In these research question we assume that our approach functions accurately when it

�nds all constraint violations without returning false positives. In order to experimentally

evaluate these questions we add speci�c violations to our example models before analysing

them. Details can be found in Section 8.2.2.

The scalability analysis of our approach G2 is performed regarding two aspects. Firstly

we examine how well the Prolog Translator as well as the Prolog analysis scale with the

size of the model. Secondly, we evaluate the e�ectiveness of our proposed performance

optimizations.

For the �rst aspect we identi�ed the following research questions:

RQ-2.1 How well does our approach scale with an increasing number of operations at

constant callgraph complexity?

RQ-2.2 How well does our approach scale with an increasing callgraph complexity?

RQ-2.3 How well does our approach scale with an increasing number of call parameters

and return values per operation?

RQ-2.4 How well does our approach scale with an increasing number of attribute-value-

combinations?

RQ-2.5 How well does our approach scale with an increasing number of properties and

property de�nitions?

We identi�ed these research questions based on in which dimensions instances of our

meta-model are explicitly scalable given a base model. These dimensions can be scaled

automatically without changing the semantic of the model instance. Other dimensions,

such as the number of variable assignments are scaled indirectly through these dimension.

Even though variable assignments are a central aspect of our approach, they cannot

be scaled automatically without altering the semantic of the model. The scaling of the

callgraph complexity for RQ-2.2 means that we scale the length of the paths the Prolog

interpreter has to instantiate to �nd variable values. For each research question we perform

an analysis with multiple combinations of optimization con�gurations. For RQ-2.3 the

question may arise how practically relevant it is to scale the number of parameters and
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return value per operation. Usually, operations are comparable to functions in the modeled

system which on average have a low, constant number of parameters. However, in our

approach we introduced state variables. As explained in Section 5.2 state variables are

e�ectively realized using the same mechanisms as parameters and return values. Therefore

we assume that we can quantify the impact of state variables by scaling the number of

parameters and return values for each operation.

The second aspect of G2 is the evaluation of the e�ectiveness of our optimizations. As

we introduced three di�erent optimizations, this leads to the following reasearch questions:

RQ-2.6 How does the �rst argument indexing optimization a�ect the performance of our

approach?

RQ-2.7 How does the logical negation optimization a�ect the performance of our approach?

RQ-2.8 How does the cut-based assignments optimization a�ect the performance of our

approach?

To answer these questions, we use the experiments from RQ-2.1 to RQ-2.5 as indicators

for the average case performance. However, we provided a theoretical motivation of the

performance problem that is tackled for each optimization in Chapter 7. In order to

evaluate the hypothesis of these performance problems, we also measure specialized

model instances where we provoke the expected performance problems. These can be

seen as best-case for the e�ectiveness of the proposed optimizations.

For the last goal G3 an experimental evaluation is di�cult to achieve. We therefore

decided to evaluate this goal argumentation based. For this purpose we performed addi-

tional research in order to �nd additional data �ow constraint scenarios. This lead to the

following research questions, where each refers to a found scenario class:

RQ-3.1 Is our meta-model capable of expressing information �ow constraint scenarios?

RQ-3.2 Is our meta-model capable of expressing data secrecy and integrity constraint sce-

narios?

RQ-3.3 Is our meta-model capable of expressing data lifecycle constraint scenarios?

Details on how we identi�ed these scenario classes can be found in Section 8.2.4. In

order to answer these questions, we discuss which features of our meta-model can be used

for modeling the speci�c characteristics of each scenario class.

8.2. Evaluation Design

In this section we explain how we plan on answering the research questions we introduced

in Section 8.1. The experiments are de�ned for each goal separately in Section 8.2.2 to

Section 8.2.4. Prior to this, we introduce the randomized call graph scaling technique in

Section 8.2.1 as it is used for the experiments. Finally, we explain our choice of Prolog

implementations in Section 8.2.5 and list the speci�cation of our experiment system in

Section 8.2.6
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8.2.1. Randomized Call Graph Scaling

In order to maximize the informative value of RQ-1.1 and RQ-1.2 it is required that we

execute our approach on many di�erent model instances for each scenario. However,

we decided that manually de�ning semantically equivalent models for our base models

introduced in Section 5.7 is too time consuming for this thesis. Instead, we designed a

method for automatically generating models with a randomized topology given a base

model: the randomized call graph scaling.

The goal of this method is to alter the call graph of the given model without in�uencing

the expected analysis results. This means that we change the calls between operations.

However, to preserve the semantic of the model it is required that the data �ows remain

the same: If data �ows from a certain operation to another one in the original model, the

same �ow has to be present in the derived scaled model. However, the �ow may happen

across other operations which do not alter the data.

Branching Randomization

Mediator Randomization

Original Call

CallerCaller
P

Caller
P

CalleeCallee
P

Callee
P1. (param:Data)

(rval:Data)

CallerCaller
P

Caller
P

GenOPGenOP
P

GenOP
P1. (param:Data)

(rval:Data) CalleeCallee
P
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P1. (param:Data)
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CallerCaller
P

Caller
P

CalleeCallee
P

Callee
P2. (param:Data)
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P

GenOP
P

1. (param:Data) (param:Data)

Figure 8.1.: Basic structural change actions for call graph scaling.

To achieve this, we �rst de�ne two basic structural change actions which can be applied

to any model instances. We de�ne these actions so that the data �ow is preserved while
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the call graph topology is changed. By repeatedly applying these change actions we can

then derive highly randomized model instances.

The two change actions are illustrated in Figure 8.1. Firstly, we de�ne the Mediator
Randomization. For this change we chose a random call to a random operation. Given this

call, we insert a generated operation, which is named GenOp in Figure 8.1. The original

call is then replaced with a call to and a call from GenOp. The original caller calls the

generated operation and the original callee is the only operation called from GenOp. The

key point is the fact that GenOp copies the parameter and return value signature of the

callee. This makes it possible that GenOp simply passes the data through: GenOp de�nes

the call arguments for the outgoing call by simply copying its input parameters. Similarly,

the return value is de�ned by copying the values returned by the callee. This way, the

original data �ow is preserved.

The insertion of mediator operations alone is not su�cient for a good randomization of

the call graph topology: Edges are simply replaced by chains of operations, however no

new branching occurs. For this reason we de�ne an additional structural change action,

the Branching Randomization. For the �rst part it is similar to the Mediator Randomization:

We generate a new operation which we name GenOp in the example. Instead of the

original callee this operation receives the call parameters from the caller. In contrast to the

Mediator Randomization GenOp does not call the callee. Instead, GenOp simply returns its

input parameters unchanged. These returned values are then used by the caller to call

the original callee. Again, the original data �ow is preserved. The di�erence is that we

introduced a branch: The single original call was replaced by two outgoing calls.

The randomized call graph scaling now works as follows: We select a random call in the

model. Then we either apply the Mediator Randomization or the Branching Randomization,

either one is chosen equally likely. Afterwards we chose another random call and repeat

the process. The number of repetitions de�nes the size of the randomized model: If we

apply 100 change actions, the resulting model has 100 more operations than the original

model. As each individual change action preserves the data �ow, the data �ow is also

preserved in the resulting model.

8.2.2. G1 - Accuracy

In order to answer RQ-1.1 and RQ-1.2 we perform an experimental evaluation where

we apply our approach in order to detect data �ow constraint violations. Hereby, we use

the models we presented in Section 5.7 in combination with the presented analysis from

Section 6.2. However, these models do not contain any constraint violations. For this

reason it is required that we inject violations in order to evaluate our analysis. We decided

on injecting two di�erent violations for each model.
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Figure 8.2.: System model of the TravelPlanner case study with violations injected. The changed parts in comparison to Figure 5.11 are
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7
4



8.2. Evaluation Design

For our shop scenario (Figure 5.12) which is an example for geolocation based restric-

tions the injection of violations is simple. We just need to alter the deployment of some

operations which is speci�ed via properties. In order to keep the violations representative

it is required that we inject one violation for each privacy type we presented in Section 3.2.

Therefore we choose the following violations:

1. The location property of UserDB-store is changed from EU to US. This operation

receives CustomerInformation, which is personal information. As we de�ned that

only the EU is a safe location, we therefore induce a type-0 violation as described in

Section 3.2.

2. The location property of RecommSys-getRecommendations and RecommSys-update is

changed from US to Asia. This is a redeployment from one unsafe location to another

unsafe location. However, LogDB-store is already deployed in Asia. RecommSys-
getRecommendations and LogDB-store both have type-1 data as input, but their inputs

have a di�erent sources. We therefore injected a type-1 violation due to joining data

streams.

Note that in our analysis this root violation manifests as two violations in the

Prolog analysis results: There are two di�erent call stacks which call LogDB-store:
one via ShopServer-viewProduct and one via ShopServer-buy. Both call stacks lead in

combination with a call stack to RecommSys-update type-1 violations in our speci�ed

analysis.

For the TravelPlanner example the choice of model changes is simple. The model

contains two types of data which underlie access control: The selected �ight as well as

the credit card data. Therefore we decided on injecting one unauthorized access for each

of these data. As the model changes are more complex, we give an illustration of the

di�erences to the original model (Figure 5.11) in Figure 8.2. The two induced violations

are as follows:

1. The user does not declassify the CCD for the Airline role. This is realized by changing

the return value assignment of User-askForCCDDeclassi�cation. However, the CCD
is still passed to Airline-bookFlight via TravelPlanner-bookFlight. As the Airline is

not allowed to access the CCD this is an access control violation.

2. The new operation TravelAgency-notify is added. This operation is called to let the

TravelAgency know which �ight was chosen by the user, for example in order to

improve the marketing. TravelAgency-notify is called by TravelPlanner-bookFlight
with the �ight o�er which was chosen by the user. However, the TravelAgency

role is not allowed to access the �ight o�er. Therefore an access control constraint

violation is induced.

Based on these violations we de�ne four equivalence classes of model instances per

scenario: One for each of the two violations, one without any violations and one with

both violations injected. So far, we only have one model instance per class: For every

class we have the corresponding base model de�ned in Section 5.7 with the violations of
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the equivalence class injected. In order to improve the informative value we decided on

automatically generating more models for each class given the existing instance. For this

purpose we use the randomized call graph scaling we introduced in Section 8.2.1. The

scaling does not in�uence the semantic of the model, as original data �ows are preserved.

However, we randomize the topological structure of the call graph of the models. Therefore

this evaluation approach allows us to make statements about the accuracy of our approach

independent of the topological call graph structure.

To minimize the probability that we just generated model instances for which our

approach works by accident, we decided on generating 100 models for each equivalence

class. These are generated using the randomized call graph scaling given the base models

from Section 5.7 with the violations for the equivalence class injected. The randomized call

graph scaling is executed with 100 iterations, which means that 100 operations are injected

into each model. These numbers were chosen to keep the run time of an experiment low.

With 100 model instances per class all experiments execute in a total time of about two

hours on our experiment system.

It is noteworthy that these equivalence classes where chosen due to the structure of our

used models. Our proposed equivalence classes focus on the analysis of call arguments

according to the de�nition of the analyses in Section 6.2. This implies that additional

equivalence classes can be constructed based on analysis de�nitions which examine return

values and state variables. However, in our model instances these analysis are not suited

as we model data �ows only through call arguments. An exception is hereby that call

arguments depend on return values. However, as the underlying conceptual mechanism

of call arguments, return values and state variables are highly similar we would not expect

to see di�erent evaluation results for these additional classes. Therefore we decided on

only evaluating the four classes proposed above for practical reasons due to the limited

time for this thesis.

To answer RQ-1.1 and RQ-1.2 we now execute our Prolog Translator and the Prolog

analysis with all chosen interpreters. The choice of interpreters is explained in Section 8.2.5.

As result the interpreters return the locations of all found violations, e.g. the call stacks

in combination with parameter names. We compare these detected violations with the

violations that were injected into the model and apply the following classi�cation for each

violation:

• A violation that has been injected into the model and is found by the Prolog inter-

preter is a true positive (tp)

• A violation that is found by the Prolog interpreter but that was not injected into the

model is a false positive (fp)

• A violation that is not found by the Prolog interpreter but that was injected into the

model is a false negative (fn)

• A violation that that neither has been injected into the model nor is found by the

Prolog interpreter is a true negative (tn)
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Given this classi�cation, we can now use precision and recall as accuracy metrics for

each equivalence class. Precision and recall are commonly used metrics for classi�cation

problems. They are de�ned as follows[22]:

precision =
tp

tp + f p
recall =

tp

tp + f n

We also employ the F-measure which is de�ned as the harmonic mean of precision and

recall [25]:

F −measure =
2

1

precision +
1

recall

Note that these metrics cannot be used for the equivalence classes where we did not

inject any violations. The reason is that the number of true positives for these classes

is zero. Therefore we use the absolute number of false positives as metric for these two

classes.

In chapter 7 we de�ned three performance optimizations for our translator which could

potentially a�ect the accuracy. Therefore to answer RQ-1.3 we execute our analysis

pipeline of translator and Prolog interpreter twice for each model of each class for each

Prolog implementation: once with all optimization disabled and once with all enabled.

For the logical negation optimization (Section 7.2) to be used it is required that negations

in the analysis are altered to use the lnot predicate. For the shop example scenario

this is not a problem as no negations are used in the query. However, the analysis

code of the TravelPlanner example presented in Section 6.2.1 needs to be adapted. The

isNoRoleAuthorized predicate contains a negation and therefore has to be changed:

1 i s N o R o l e A u t h o r i z e d ( [ ] , _S , _P ) .

2 i s N o R o l e A u t h o r i z e d ( [ Ro le | R ] , S , P ) :−

3 ( c u r r e n t _ p r e d i c a t e ( l n o t / 1 ) −>

4 l n o t ( ca l lArgument ( S tack , P , ’ a u t h o r i z e d R o l e s ’ , Ro le ) ) ;

5 ( s t a c k V a l i d ( S ) , \ + ca l lArgument ( S , P , ’ a u t h o r i z e d R o l e s ’ , Ro le ) )

6 ) ,

7 i s N o R o l e A u t h o r i z e d ( R , S tack , P ) .

The term current_predicate(lnot/1) is exactly true when the lnot predicate is de�ned.

Therefore we can use this term to switch between the optimized and the unoptimized

negation based on if the corresponding optimization is enabled.

In total we execute 4800 experiments: we have two scenarios with four equivalence

classes for each where each class contains 100 di�erent models. For each model the

analysis is executed for each of the three chosen Prolog implementations twice: once with

all optimizations disabled and once with the optimizations enabled.

8.2.3. G2 - Scalability

A central aspect of the evaluation is the analysis of the scalability of our approach for G2.

Hereby we quantify the impact of the size of the model on the runtime of our approach as

well as the e�ectiveness of the implemented performance optimization.
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The measurement approach is the same for all research questions of G2. We measure

the time required given an in-memory model instance until all analysis results are available.

This means that we execute the pipeline of our Prolog Translator implementation followed

by the Prolog interpreter loading the resulting program and afterwards executing the

analysis. We measure the timing of each stage, which therefore yields the following

metrics:

• Translation Time: The execution duration for our Prolog Translator implemen-

tation. The input model is assumed to be already present in-memory. This time

includes the IO time required for writing the result program to the disk.

• Load Time: The time required for the Prolog interpreter to load the program from

the disk into its database. Depending on the Prolog interpreter this is the runtime of

the consult/1, load_�les/1 or compile/1 predicate.

• Analysis Time: The time required for executing the analysis query after the pro-

gram has already been loaded.

• Total Time: The time required given an in-memory model instance until the analysis

results are available. It is the sum of the translation time, the load time and the

analysis time.

We use a Java implementation for automatically executing the experiments. Hereby,

the Prolog interpreters are accessed through their o�ered Java interfaces. For measuring

the timings we use the System.nanoTime() method.

With RQ-2.1 to RQ-2.5 we evaluate how our approach scales with the input model

size. For each of these research questions we generate scaled instances of a base model

and execute our pipeline while measuring the timings as explained above. We decided on

using the TravelPlanner model without any constraint violations as base model for these

experiments. We chose the TravelPlanner model over the shop example model because

of its higher analysis complexity: In the TravelPlanner example the variable de�nitions

induce longer dependency chains. In other words we expect that the Prolog interpreter

is required to instantiate longer call sequence prior to �nding values for variables. We

therefore assumed that the TravelPlanner model is better suited for a performance analysis.

In addition we assume that the worst case performance can be observed when no violations

are present in the model. The reason is that then the analysis e�ectively proofs for the

entire model that no violation exists. If violations are present in contrast the Prolog

interpreter would halt as soon as a violation is found.

Depending on the research question, we scale the base model in a certain dimension by

a parameter n. The scaling per research question is performed as follows:

RQ-2.1 We copy the entire call graph of operations and system usages n-times including

their contained features such as variables, assignments and operation calls. In the

result model we therefore have n disjoint copies of the TravelPlanner scenario which

however do share their data types. This copying ensures that the average call graph

depth for each operation stays constant with n while the total number of operations

to analyse increases linearly.
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RQ-2.2 We scale the model by using the randomized call graph scaling presented in Sec-

tion 8.2.1 with n iterations. This implies that exactly n operations are added to the

model. Note that these added operations are excluded from the analysis: They do

not de�ne the roles property and are therefore ignored. However, they do increase

the length of the call sequences which need to be instantiated for the analysis of

the existing operations of the TravelPlanner model. To keep the results comparable

across the used Prolog implementations, we use the same randomized model instance

as input for each interpreter.

RQ-2.3 In order to scale the number of parameters and return values while keeping their

usage realistic we decided to copy each operations parameters and return values

n times. Hereby not only the variables are copied but also their assignments. As a

result we get n sets of variables, where the assignments within each set only refer

to variables within the same set.

RQ-2.4 For scaling the number of attribute-value combinations we found that two ap-

proaches for scaling the model size are feasible. As �rst approach it is possible to add

a single new ValueSetType with n values. In addition one new attribute is generated

and this attribute is added to every data type. Based on our scenario examples we

would expect to see a high but constant number of values per ValueSetType in a real

world scenario. For this reason we use the following scaling approach: We generate

n new ValueSetTypes with 100 values each. For each generated type, a new attribute

is generated and added to every existing datatype.

RQ-2.5 For scaling the number of properties we chose a similar approach as for the scaling of

the number of attribute-value combinations. Again we generaten new ValueSetTypes
with 100 values each. For each type we then de�ne a new property. A new property

de�nition is added for each generated property to each operation. Hereby, the

present values are chosen randomly, where each value has a 50% chance of being

present. So on average 50 values are de�ned for each property de�nition.

In addition to measuring the scaling of our approach with the model size we also want

to quantify the impact of the performance optimizations we introduced in Chapter 7. We

therefore execute all experiments on each Prolog implementation with all optimizations

enabled as well as with all optimizations disabled. To ensure that the negation optimiza-

tion is properly used when enabled we use the adapted analysis query we presented in

Section 8.2.2. This way we can measure the impact of all optimizations combined on the

runtime. However, as we also �nd it desirable to see the impact of each optimization

individually, we decided on performing three additional experiments per model where

each of the optimizations is enabled individually.

As we are measuring timing information which potentially has a high variance we

decided on running each experiment ten times. We can then use the mean measured time

in combination with the observed standard deviation to asses the results.

With the experiments for RQ-2.1 to RQ-2.5 we measure the scalability of our approach

with the size of the input model. Hereby, we also measure the impact of our performance

optimizations on a model which we consider to be a representative use case. However,
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our performance optimizations target speci�c scenarios which introduce performance

problems. In Chapter 7 we theoretically explained why we expect the optimizations

to improve the run time of our approach in these scenarios. In order to evaluate these

theoretical assumptions and therefore to give a more detailed answer for RQ-2.6, RQ-2.7
and RQ-2.8 we perform additional experiments on minimal models where we inject the

performance problems. These experiments allow us the evaluate if our optimizations are

e�ective in their expected best-case in contrast to the average case which we evaluate

with the experiments for RQ-2.1 to RQ-2.5.
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Figure 8.3.: Model used for performance testing of the indexing optimization. The number

of paths to the process operation scales linearly with n

The minimal model we use for the performance measurement of the indexing opti-

mization (Section 7.1) is shown in Figure 8.3. The only used DataType in the model is

called Data. It contains two attributes: isPersonalInformation and isEncrypted. Both are

boolean variables and therefore use a ValueSetType with only the single Value isTrue. The

main operation of the model is process. This operation takes a parameter of the type Data,

encrypts it and then returns the encrypted datum. The process operation is called through

a chain of operations which can be linearly scaled by the scaling parameter n. This chain

is started by the system usage, which initializes the datum to be unpersonal, unencrypted

information. The chain of operations does nothing but assign the datum through to the

process operation.

The analysis query we now use for this model for answering RQ-2.6 is the following:

1 l i n e a r D e p e n d e n c y ( S ) :−

2 S =[ ’ p r o c e s s ’ | _ ] ,

3 r e t u r n V a l u e ( S , output , ’ i s P e r s o n a l I n f o r m a t i o n ’ , ’ i s T r u e ’ ) .

This query tries to look for a call path where personal information is passed to process.
Such a path does not exist. However to detext this the Prolog interpreter has to trace back

along the chain of operations to the system usage. This means that about O(n) predicate

lookups of callArgument have to be performed. As the number of callArgument
de�nitions also grows linear with the number of operations, we expect each lookup to
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take O(n) time when the �rst argument indexing optimization is not enabled. If it is

enabled, we expect to see a lookup time per operation of O(1) instead. This means that

with the optimization enabled we expect a total analysis time in O(n) whereas without the

optimization we expect it to be in O(n2).
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Figure 8.4.: Model used for performance testing of the negation optimization. The number

of paths to the process operation scales exponentially with n

For answering RQ-2.7 we use a very similar model which is shown in Figure 8.4. The

model is exactly the same except for one di�erence: the operations in the call chain to

process call their successor twice. The datum that is passed is still left unchanged. This

small change now causes the number of call paths to process to grow exponentially. For

measuring the impact of the negation optimization (Section 7.2) we use the following

analysis query:

1 cons tantDependency ( S ) :−

2 S =[ ’ doSomething ’ | _ ] ,

3 ( c u r r e n t _ p r e d i c a t e ( l n o t / 1 ) −>

4 l n o t ( r e t u r n V a l u e ( S , output , ’ e n c r y p t e d ’ , ’ i s T r u e ’ ) ) ;

5 ( s t a c k V a l i d ( S ) ,

6 \+ r e t u r n V a l u e ( S , output , ’ e n c r y p t e d ’ , ’ i s T r u e ’ ) ) ) .

With this query we look for a call stack where process returns an unecrypted datum.

This is of course impossible as process always encrypts datum. However, due to the way

the logical negation is implemented if the negation optimization is disabled, the interpreter

has to inspect all paths to process to proof this. In this case we therefore expect to see an

analysis time in O(2n). When the negation optimization is enabled, we instead expect that

the interpreter only needs to trace back one call from process to encrypt to �nd the proof.

Therefore, with the negation optimization enabled we expect to see an analysis time in

O(1).
In contrast to the other two optimizations, the cut-based assignments optimization

(Section 7.3) we evaluate in RQ-2.8 aims to improve the load time instead of the analysis

time. For the best case of this optimization no additional experiments are required, as

81



8. Evaluation

the model scaling for RQ-2.4 already covers the best case. We expect the optimization to

perform best when the number of attribute-value combinations grows while the number

of assignments remains constant. This is exactly what we do in the model scaling for

RQ-2.4. Therefore we can use these experiments to answer RQ-2.8.

8.2.4. G3 - Genericness

For the goal G3 we want to analyse our approach for further applications. Our approach

was designed with two scenarios in mind: the access control scneario and the geolocation

based restrictions scenario which we both explained in Chapter 3. However, we tried to

keep our approach as generic as possible in order to also be applicable for other scenarios.

For this reason we decided to answer G3 by �nding additional types of scenarios which

can be modeled and analysed using our approach.

For �nding additional scenario types we performed a literature research. We performed

a keyword based search with keywords which are related to data �ows and their typical

potential risks. The keywords we chose are “data �ow”, “security” and “privacy”. We

performed our search on Google Scholar with an disjunctive linkage of these keywords on

the 3rd of September. As the focus of the thesis and the evaluation lies on the scalability

and not the genericness, we decided to stop when we �nd three additional scenario

types. For each found scenario type we analyse the applicability of our approach via the

corresponding research questions RQ-3.1, RQ-3.2 and RQ-3.3. In this section we explain

the key characteristics we extracted from the found scenario types. The research questions

are answered in Section 8.3.3 where we analyse how these key characteristics can be

modeled using the features of our approach.

RQ-3.1 The �rst scenario type we discovered is information �ow control. It is closely related

to the access control scenario we presented in Section 3.1. Two traditional models

of this type are the Bell-La-Padula model [2] as well as the Brewer-Nash model [5].

Both are also access control models: They restrict the access to data based on the role

of the accessing entity as well as the con�gured accessed rights of the accessed data.

In its original form the Bell-La-Padula model hereby manages the access to �les, it

however can be used for any type of data other than �les. In addition to restricting

the read access to data, both models try to prevent unwanted information leakage.

In the Bell-La-Padula model every datum has a classi�cation level assigned, for

example public, secret and topsecret. The model now prevents information leakage

by restricting write access based on previously read data. For example, if a secret
datum was read by a user, the user is not allowed to write to public data anymore:

the user could potentially leak secret information. The Brewer-Nash model has a

similar mechanism, it however does not classify the data but instead directly models

con�icts using a relation.

RQ-3.2 The second scenario type focuses on the concept of secrecy and integrity of data.

Both have been identi�ed as crucial properties of data �ows in certain scenarios

[21] and are also covered by UMLSec [16]. The concept of secrecy ensures that no

or only limited information can be extracted from data if one does not posses a key
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to it. In practice, secrecy is realized using encryption schemes. The goal of integrity

is to ensure that data is not modi�ed or corrupted without being detected when

transmitted from a sender to a receiver. This is most commonly realized using digital

signatures, which also ensure authenticity: When data is received alongside with a

signature, the receiver can check if the datum was sent by a certain sender. However,

other mechanism are also usable for achieving secrecy and integrity, such as for

example using a physically secure link which cannot be accessed by an adversary.

The goal of a data �ow analysis therefore would be to ensure that sensitive data is

securely transmitted from its sender to its receiver. Hereby, it is required that for

every hop the data takes one of the mechanism is active.

RQ-3.3 The third scenario type is about restrictions regarding the life cycle of managed data.

This is especially considered important for data containing personal information

[21, 6]. Hereby we focus on a crucial part of the lifecycle, the deletion of the data.

Depending on the type of data a person gives to the software system, di�erent rules

may apply on how long the data is allowed to be stored. Data may for example

be persisted for the duration of a session, for a certain time span or may not be

persisted at all and only processed. Such rules can already be illustrated based on a

simple online shop: If we consider the checkout process in a shop, it is common that

multiple steps are performed during the checkout: the user enters his address and

afterwards the payment method. This is often realized through separate forms which

are sent to the server of the shop. Initially, the sent address may only be persisted for

the duration of the user session: The user has not completed the checkout process

yet and therefore the shop is not allowed to persists personal information. However,

when the user submits the checkout, the data needs to be persisted for a longer time:

It is required for example to handle warranty cases.

8.2.5. Prolog Implementations

The Prolog code which is generated by our Prolog Translator as explained in Chapter 6

only uses ISO Prolog features. For this reason, theoretically any ISO compilant Prolog

implementation can be used. We selected the following three implementations:

• SWI-Prolog (64 bit, Version 7.6.4) [29]

• ECLiPSe (Version 7.0) [9]

• JIProlog (Version 4.1.6.1) [14]

Firstly, this choice was made for practical reasons: To answer our research questions

it is required that a very high number of experiments with varying inputs is executed.

Therefore, an experiment automation is required, which includes the execution of the used

Prolog interpreter. All of the implementations listed above o�er a Java interface through

which the interpreter can be controlled and queries can be executed. These interfaces

therefore allow an automated experiment execution.

Secondly, SWI-Prolog and ECLiPSe were chosen as they both implement more sophisti-

cated predicate indexing algorithms than only �rst argument indexing [30, 26]. Therefore
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they are especially interesting for the scalability evaluation performed for G2. In contrast,

JIProlog was chosen with the practical applicability of our approach in mind. JIProlog is a

cross-platform Java-only implementation of Prolog. Whereas the other two implementa-

tion require an installation to the system prior to usage, JIProlog is available as a single,

standalone jar �le which does not require an installation.

8.2.6. Experiment System Specification

All experiments are executed on a Lenovo Thinkpad P51. The relevant hardware speci�ca-

tion of it are as follows:

• CPU: Intel Core i7-7820HQ CPU (2.9 Ghz, 4 Cores, 8 Logical Cores)

• RAM: 32 GB

• Disk drive: Samsung MZVLW1T0HMLH 1Tb solid state disk

The system uses Windows 10 (64-bit) as operation system. All experiments are executed

with power plugged in to prevent CPU throttling. The installed Java Runtime Environment

is OpenJDK 1.8.0.161 (64-bit). For all experiments the JVM is started with 4gb starting and

maximum heap memory.

8.3. Results

In this section we present the results of our evaluation. In Section 8.3.1 to Section 8.3.3 we

answer the research question for G1, G2 and G3. Afterwards, we summarize and discuss

the results in Section 8.3.4.

8.3.1. G1 - Accuracy

As result for the accuracy experiments as presented in Section 8.2.2 we can state that

our approach correctly detects all covered violations for both the access control and the

geolocation restrictions scenario with our used models. For all equivalence classes where

we injected at least one violation we observe a precision and recall of 100%. Therefore the

F-Score also is 100%. This value was observed with all optimizations enabled as well as

with all disabled. We can therefore state that for these classes of models our approach �nds

exactly the present constraint violations without returning false positives independent of

the callgraph topology.

For the model classes where we did not inject any violations we observed zero false

positives. Again this was observed with all optimizations enabled as well as with all

disabled. Therefore we can also state that for this classes of models our approach works

accurately. In addition we found that the performance optimizations do not have an impact

on the analysis results in the investigated cases.
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8.3.2. G2 - Scalability

For the analysis of the scalability (G2) we performed 245 measurement series. As an

in-depth analysis of the results of each measurement would be out of scope of this thesis

we use the following approach for answering the research questions: In this section we

only show a selection of measurement results. In addition we provide the plots of all

other experiments in Appendix A. Our selection is made based on similarities across the

measurements. When we observe the same scaling behaviour across multiple interpreters,

only the plot for one is shown. The representativeness of the selected measurements can

be traced using the plots given in the appendix. In addition the raw measurement data of

all experiments as well as all plots have been archived online
1
.

All measurements results are presented as line plots of the average measured time. In

addition, vertical error bars are used to show the observed standard deviation. Therefore

the error bars can be used to analyse the stability of the observed timings. In order to allow

statements about the scalability we also show the Pearson correlation coe�cient r for each

series in the legend of each plot. The closer the value of the correlation coe�cient is to

one, the more likely is a linear scaling behaviour of the series. The correlation coe�cient

is computed based on the mean values given in the plots. As our observed measurement

data only has a low variance we require a correlation coe�cient greater or equal to 0.995
to assume a linear scaling.

8.3.2.1. Scalability with the number of operations (RQ-2.1)
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Figure 8.5.: Translation time measured for the scaling with the number of operations

(RQ-2.1).

For RQ-2.1 the observed translation time is shown in Figure 8.5. The plot indicates

a quadratic scaling with a low quadratic component for all optimization con�gurations.

1https://doi.org/10.5281/zenodo.1477608
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Hereby, the timing is slightly worse when the negation optimization is enabled. This can

be easily explained due to the fact that more predicates have to be generated in total in

this case.
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Figure 8.6.: Load time of ECLiPSe measured for the scaling with the number of operations

(RQ-2.1).

For JIProlog and SWIProlog the measured load times grow linearly for all optimization

con�gurations. For ECLiPSe the measured values are shown in Figure 8.6. Here, for the

most con�gurations also a linear growth can be observed as shown by the correlation

coe�cient value. The slightly lower correlation coe�cient value when only the indexing

optimization is enabled can be explained by the variance of the measured timings. However,

when only the negation optimization is enabled, the scaling seems to be super linear for

the observed model sizes. This is only the case for ECLiPSe, the other two interpreters

have a strictly linear growth in load time. All interpreters share the fact that the two best

performing optimization con�gurations are the ones where the assignments optimization

is enabled: This can be easily explained by the fact that this optimizations reduces the total

number of rules in the program. The absolute impact of the optimizations is dependent on

the interpreter.

We also observed that the analysis time for RQ-2.1 is highly dependent on the chosen

implementation. The analysis time of JIProlog is shown in Figure 8.7 and of ECLiPSe

in Figure 8.8. The observed analysis times of SWIProlog are highly similar to the ones

of ECLiPSe. In all cases we can see the positive impact of the �rst-argument indexing

optimization on the analysis time: If this optimization is disabled, a quadratic scaling of

the performance can be observed for all interpreters. With the optimization enabled, our

approach scales much better.

For JIProlog, the scaling is still quadratic for the observed model sizes but with a much

lower constant factor. For ECLiPSe the observed analysis time in contrast is near constant

when the indexing optimization is enabled. An interesting fact that can be observed is

that when only the negation optimization is enabled, the analysis time is worse than
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Figure 8.7.: Analysis time of JIProlog measured for the scaling with the number of opera-

tions (RQ-2.1).
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Figure 8.8.: Analysis time of ECLiPSe measured for the scaling with the number of opera-

tions (RQ-2.1).

without any optimizations. This can be explained by the fact that in our scenario not

many di�erent call graph paths exists, which makes the naive negation perform decently.

We assume that the performance hit of the negation optimization can be explained by

the overall larger fact base the interpreter has to maintain. Also it is noteworthy that the

analysis time of JIProlog is much higher than the analysis time of SWIProlog and ECLiPSe.

It is greater by a factor of 50 to 100. This shows that JIProlog is not as much optimized as

the other two interpreters. In addition we can often observe measurement points with a
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very high standard deviation and a slight higher average time for JIProlog. We assume

that this is caused by garbage collection pauses as JIProlog is a pure Java implementation.

8.3.2.2. Scalability with the call graph complexity (RQ-2.2)

For RQ-2.2 we observed highly similar results to the experiments of RQ-2.1. For this

reason we focus on the di�erences in this section.
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Figure 8.9.: Load time of ECLiPSe measured for the scaling with the complexity of the call

graph (RQ-2.2).
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Figure 8.10.: Analysis time of JIProlog measured for the scaling with the complexity of the

call graph (RQ-2.2).

88



8.3. Results

0 200 400 600 800 1000
Number of Operations

0

500

1000

1500

2000

2500

3000

3500
An

al
ys

is 
Ti

m
e 

[m
s]

RQ2.1: No optimizations (r=0.967)
RQ2.1: Indexing optimization (r=0.969)
RQ2.2: No optimizations (r=0.966)
RQ2.2: Indexing optimization (r=0.981)

Figure 8.11.: Comparison of the analysis times of JIProlog with and without the indexing

optimization for RQ-2.1 and RQ-2.2.

Again, the observed translation time seems to scale quadratic with a low quadratic

component as for RQ-2.1. The load time is shown exemplary for ECLiPSe in Figure 8.9.

When comparing it to the load time for RQ-2.1 shown in Figure 8.6 the results are almost

the same. This is also the case for all other interpreters. To summarize, we observe a linear

to quadratic scalability for ECliPSe and a linear scalability for JIProlog and SWIProlog.

The observed analysis time also shows the same behaviour as for RQ-2.1 with two

di�erences. Firstly as shown in Figure 8.11 the e�ectiveness of the indexing optimization

has improved for JIProlog. When it is enabled, now JIProlog also shows a low linear or

near constant scaling of the analysis time. Secondly, we observe a much higher standard

deviation for each model size for each interpreter. This can be explained due to the

randomness of the models: As we applied the randomized call graph scaling, the actual

length of call sequences the interpreter has to inspect is also random. This therefore

induces variance to the observed timings.

8.3.2.3. Scalability with the number of parameters and return values (RQ-2.3)

When only the number of parameters and return values is scaled we can now observe a

linear translation time as shown in Figure 8.12.

This is di�erent to the quadratic translation time observed for RQ-2.1 and RQ-2.2
and therefore indicates that there is possibly optimization potential in our translator

implementation. According to our de�nition of the translation process in Chapter 6 it

should be possible to implement the translation in linear time.

In contrast the load times show no di�erent behaviour than in the experiments of

RQ-2.1 and RQ-2.2. Again a linear growth of the load time can be seen in the plots of all

interpreters with the exception of ECLiPSe: for ECLiPSe the load time grows linearly for

89



8. Evaluation

0 500 1000 1500 2000 2500
Total number of Parameters and Return Values

0

10

20

30

40

50

60

70

Tr
an

sla
tio

n 
Ti

m
e 

[m
s]

No optimizations (r=0.997)
Cut-Assignment optimization (r=1.000)
Indexing optimization (r=0.998)
Negation optimization (r=0.998)
Negation, Indexing and Cut-Assignment optimizations (r=0.999)

Figure 8.12.: Translation time measured for the scaling with the number of parameters

and return values (RQ-2.3).
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Figure 8.13.: Load time of ECLiPSe measured for the scaling with the number of parameters

and return values (RQ-2.3).

all con�gurations except when only the negation optimization is enabled. In this case a

super linear load time is observed. The load time of ECLiPSe is illustrated in Figure 8.13.

This is not the case for the observed analysis times: Whereas for all interpreters and

all optimization con�gurations the analysis time scales either linear or quadratic, the

impact of the performance optimizations has changed. For ECLiPSe the analysis times are

shown in Figure 8.14. The �gure shows that the timings scale linearly for all optimization

90



8.3. Results

0 500 1000 1500 2000 2500
Total number of Parameters and Return Values

0.5

1.0

1.5

2.0

2.5

3.0

An
al

ys
is 

Ti
m

e 
[m

s]
No optimizations (r=0.999)
Cut-Assignment optimization (r=0.998)
Indexing optimization (r=1.000)
Negation optimization (r=0.999)
Negation, Indexing and Cut-Assignment optimizations (r=0.998)

Figure 8.14.: Analysis time of ECLiPSe measured for the scaling with the number of pa-

rameters and return values (RQ-2.3).
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Figure 8.15.: Analysis time of SWIProlog measured for the scaling with the number of

parameters and return values (RQ-2.3).

con�gurations. In addition the di�erence of the timings between the optimizations is very

low.

For SWIProlog the results are shown in Figure 8.15. The analysis time of SWIProlog

and JIProlog show almost the same behaviour, with the exception that again JIProlog is

slower by a big constant factor. The observed scalability is di�erent than the one observed

for ECLiPSe: all timings scale quadratically. In addition now the chosen optimizations

have a big impact. In these experiments, con�gurations where the indexing optimization
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is enabled perform the worst. This is an unexpected behaviour as we assumed that the

�rst-argument indexing optimization has little to no overhead. A possible explanation

here is that in these experiments it is more bene�cial to index by the parameter name than

by the operation. Our optimization possibly misleads the SWIProlog just-in-time indexing

to index the operation �rst. The best performance is observed when only the assignments

optimization is enabled. For JIProlog this is the other way around. There the indexing

optimization outperforms the assignments optimization.

8.3.2.4. Scalability with the number of attribute-value combinations (RQ-2.4)

When the number of attribute-values combinations is scaled we expect to see the best

performance by the assignments optimization as the number of assignments remains

constant.

250 500 750 1000 1250 1500 1750 2000
Total number of Attribute-Value combinations

0

50

100

150

Tr
an

sla
tio

n 
Ti

m
e 

[m
s]

No optimizations (r=0.960)
Cut-Assignment optimization (r=0.597)
Indexing optimization (r=0.961)
Negation optimization (r=0.983)
Negation, Indexing and Cut-Assignment optimizations (r=0.589)

Figure 8.16.: Translation time measured for the scaling with the number of attribute-value

combinations (RQ-2.4).

The positive e�ect can already be observed for the translation times as shown in

Figure 8.16. When the assignments optimization is enabled, an overall linear growth of the

time can be seen for the observed model sizes. However, when the optimization is enabled

the load time remains nearly constant. As previously mentioned this can be explained due

to the fact that with the optimization enabled one rule is generated per assignment and

not per attribute-value combination.

The smaller number of rules in total also greatly impacts the load time. The load times

of ECLiPSe are shown in Figure 8.17 and the one of JIProlog in Figure 8.18. The timings of

SWIProlog are exactly the same as for JIProlog except that they are faster by a factor of

about 10. For all interpreters we can see a near constant load time when the assignments

optimization is enabled. When it is disabled, we observe a linear growth. The worst

performance can be again observed when only the negation optimization is enabled: For

SWIProlog and JIPRolog the load times grows linearly but with a much greater constant
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Figure 8.17.: Load time of ECLiPSe measured for the scaling with the number of attribute-

value combinations (RQ-2.4).
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Figure 8.18.: Load time of JIProlog measured for the scaling with the number of attribute-

value combinations (RQ-2.4).

factor. For ECLiPSe the load time even scales quadratic in this case. Even though the

assignments optimization was primarily designed for reducing the translation and load

time, we can also observe a positive e�ect on the analysis time.

For SWIProlog the analysis timings are shown in Figure 8.19. Again the scaling behaviour

of the timings is similar to the one of JIProlog, except that this time JIProlog is slower by

factor of 50 to 100. Even though the overall timings are relatively low, a linear growth

can be observed for all cases except when the assignments optimization is enabled. In

this case the timing remains constantly near zero. We expect that this is due to the fact
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Figure 8.19.: Analysis time of SWIProlog measured for the scaling with the number of

attribute-value combinations (RQ-2.4).
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Figure 8.20.: Analysis time of ECLiPSe measured for the scaling with the number of

attribute-value combinations (RQ-2.4).

that SWIProlog performs just-in-time indexing, which therefore is impacted by the total

number of rules. For JIProlog the linear growth can be explained by the fact that JIProlog

is possibly unable to index by attributes and values at all. This would also explain the

much higher constant factor of the timings.

For ECLiPSe the analysis times are shown in Figure 8.20. Here the opposite e�ect can

be observed: When the assignments optimization is disabled, the analysis time remains

constant at a near zero level. When it is enabled, the observed values vary greatly with
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no observable trend. However, the overall values still remain at a near zero level. To �nd

the root cause of this behaviour we expect that it is required to analyse implementation

details of ECLiPSe. As this would be out of scope for this thesis we therefore cannot give

an answer for the reason of this behaviour here.

8.3.2.5. Scalability with the number of property-value combinations (RQ-2.5)

For properties we did not implement a dedicated optimization as we expect them to not

have a great impact on the performance. This hypothesis is evaluated by the experiments

for RQ-2.5.
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Figure 8.21.: Translation time measured for the scaling with the number of properties

(RQ-2.5).

The translation time for RQ-2.5 is shown in Figure 8.21. As expected, all optimization

con�gurations perform nearly identically. With the exception of a few outliers an overall

moderate linear growth can be observed.

The measured load times are also as expected. For all interpreters and all optimizations

the load time grows linearly with the number of properties. The results are shown

exemplary for ECLiPSe in Figure 8.22. The linear growth can be explained by the linearly

increasing number of operationProperty de�nitions. Hereby, the constant factor of the

growth is greater when the negation optimization is enabled. This is due to the fact in

addition the negated operationProperty de�nitions are present in the program.

The results for the analysis times are similar to the ones for the load times. For SWIProlog

the timings are presented in Figure 8.23 and for ECLiPSe in Figure 8.24. Again, the results

of JIProlog are the same as the ones of SWIProlog with the exception of one outlier. We

assume that this outlier is caused by a garbage collection.

For ECLiPSe the analysis times are nearly constant independently of the enabled op-

timizations. For SWIProlog and JIProlog the analysis time grows linearly. Hereby, the

times are slightly worse when the negation optimization is enabled. For SWIProlog we
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Figure 8.22.: Load time of ECLiPSe measured for the scaling with the number of properties

(RQ-2.5).
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Figure 8.23.: Analysis time of SWIProlog measured for the scaling with the number of

properties (RQ-2.5).

can again assume that the growth is caused by the just-in-time indexing performed by the

interpreter.

8.3.2.6. E�ectiveness of the indexing optimization (RQ-2.6)

The results of RQ-2.1 and RQ-2.2 already indicated the positive e�ect of the indexing

optimization on the analysis time. With the experiment design for RQ-2.6 we aimed to

show the best case of the �rst-argument indexing by using a specialized model.
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Figure 8.24.: Analysis time of ECLiPSe measured for the scaling with the number of prop-

erties (RQ-2.5).
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Figure 8.25.: Analysis time of ECLiPSe measured for the �rst argument indexing optimiza-

tion performance experiment (RQ-2.6).

As expected, the translation time and the load times show no di�erence to the obser-

vation we made in the experiments for RQ-2.1 and RQ-2.2. For this reason, we solely

focus on the analysis time in this section. The analysis times of ECLiPSe are shown in

Figure 8.25 and of SWIProlog in Figure 8.26. The plot for JIProlog has been omitted as the

growth of the analysis time are the same as for ECLiPSe.

For all three interpreters we can observe a quadratic growth of the analysis time when

the indexing optimization is not enabled. When it is enabled, we can see a very low linear,

near constant growth for JIProlog and ECLiPSe at least for the observed model sizes. For
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Figure 8.26.: Analysis time of SWIProlog measured for the �rst argument indexing opti-

mization performance experiment (RQ-2.6).

SWIProlog the growth seems to be quadratic, but with a very low quadratic factor. These

are exactly the results we expect to see based on our hypothesis that the interpreters are

unable to use �rst-argument indexing on the callArgument and returnValue predicates

when the indexing optimization is disabled. Hereby, a linear scaling is possible because with

perfect indexing the lookup of a single callArgument or returnValue is algorithmically

possible in O(1). As the proof for the model requires a linear number of such lookups, a

total analysis time in O(n) therefore is possible. For SWIProlog we can explain the still

quadratic growth again by just-in-time indexing: As the indexing possibly requires O(n)
time, the overall scaling can be quadratic. However, as shown by our measurement the

analysis time is still greatly reduced in comparison to when the indexing optimization is

disabled.

An unexpected observation is the fact that the assignments optimization also has

a positive impact on the analysis time. Even though the used datatype in the model

has only two attribute-value combinations, the assignments optimization improves the

performance for SWIProlog. This means that the assignments optimization only reduces

the total number of rules by a factor of about two. However, this reduction of the size of

the fact base already seems to have an positive impact on the performance. For ECLiPSe

and JIProlog only a minor improvement can be seen.

8.3.2.7. E�ectiveness of the negation optimization (RQ-2.7)

For the negation optimization the experiments have only shown a negative impact of this

optimization so far. In almost all experiments, the translation and load time has increased

by a factor slightly less than two. The analysis time has mostly been una�ected.

The reason for this bad performance of the negation optimization is that it is designed for

a scenario which is not present in the TravelPlanner example. For the negation optimization
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to become e�ective it is required that proofs for negated terms can be found faster than it

is possible to try out every existing call sequence. For this reason we designed the still

practically relevant model for the experiment of RQ-2.7 as explained in Section 8.3.2. This

model illustrates-the best case where the number of call sequences grows whereas the

actual complexity of the proof remains constant.

Just like the experiments for RQ-2.6 the translation time and the load time can be

observed to grow linearly. Hereby, the timings are slower by factor of up to two when the

negation optimization is enabled.
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Figure 8.27.: Analysis time of SWIProlog measured for the negation optimization experi-

ment (RQ-2.7).

The e�ectiveness of the negation optimization is illustrated by the analysis time shown

in Figure 8.27. In the �gure the timings are shown for SWIProlog, however the observed

timings are the same for ECLiPSe and JIProlog with di�erent constant factors. When the

negation optimization is enabled, the analysis time remains constant at a near zero level.

However, when it is disabled the time grows exponentially.

This therefore veri�es our hypothesis from Section 8.3.2. Without the optimization, the

interpreter has to try every call path in order to proof a negation. With the optimizations

enabled, negations can be used freely with only a constant impact on the translation and

load time of the resulting program. In this case, the analysis time does not get negatively

a�ected by the use of negations.

8.3.2.8. E�ectiveness of the cut-based assignments optimization (RQ-2.8)

In order to answer RQ-2.8 we use the results of the experiments for RQ-2.4. The cut-

based assignments optimization targets scenarios where the number of attribute-value

combinations is higher than the number of assignments. In these cases, we expect to see

an improved load and translation time due to the decreased number of rule de�nitions.
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In the experiments for RQ-2.4 we clearly observed these bene�ts. As shown in Fig-

ure 8.16 the assignments optimization causes the translation time to stay nearly constant.

The same results can be observed regarding the load time: As shown in Figure 8.17 and

Figure 8.18 the load time also remains constant when the assignments optimization is

enabled.

An unexpected bene�t of the assignments optimization is that we observed an improved

analysis time for SWIProlog and JIProlog. We expected that the total number of rule

de�nitions would not a�ect the analysis time due to the presence of �rst-argument indexing.

However, for both SWIProlog and JIProlog the optimization caused the analysis time to

stay constant whereas without the optimization it grows linear. For SWIProlog this is

shown in Figure 8.19.

In the experiments for RQ-2.4 we observed the best case for the assignments optimiza-

tion. However, the results for other experiments, for example for RQ-2.1 showed that even

in other scenarios this optimization provides performance gains. As shown in Figure 8.6

the best load time was observed when only the assignments optimization is enabled. In

contrast to the results for RQ-2.4 the overall scalability is not a�ected, instead the timings

are just improved by a constant factor.

In general it is possible to deduce from the experiment results that the assignments

optimization is an optimization with no downsides performance wise. We observed no

metrics where enabling the optimization caused a decreased performance.

8.3.3. G3 - Genericness

In Section 8.2.4 we identi�ed three additional scenario types for which our approach

should be applicable. For each scenario type we identi�ed key characteristics which should

be covered by our meta model and analysis. In this section we therefore answer RQ-3.1,

RQ-3.2 and RQ-3.3 by explaining how these key characteristics can be modeled and

analysed using our approach.

8.3.3.1. Information Flow Constraints (RQ-2.8)

To answer RQ-2.8 we exemplary show how the key features of the Bell-La-Padula model

can be modeled and analysed using our approach. First of all, the Bell-La-Padula model

provides access control similar to our scenario presented in Section 3.1. A core di�erence

is that the access control does not work role based but based on classi�cation levels. For

example the ordered set of classi�cation levels could be public, secret and topsecret. These

could be realized as a ValueSetType. This means that a datum which is for example classi�ed

as secret may only be accessed by a user who has the access level secret or topsecret. This

implies that a comparison operator needs to be implemented for the classi�cation levels.

As the number of levels is �nite, this comparison can be realized as a boolean function

and therefore using our LogicTerms.
The second part of the model is fundamentally di�erent from the access control model

we presented in Section 3.1: the information �ow control. This means that when a user

has read highly classi�ed data, he is not allowed to write to lower classi�ed data anymore.

In order to implement this, we �rst need a way of explicitly specifying when data is
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read and written. For this purpose two operations can be de�ned: read(data: Data) and

write(data : Data). Whenever now any operation semantically reads or writes a datum, the

corresponding operation calls these operations. The Data data type hereby only contains

the classi�cation level of the datum. The model needs the ability to remember the highest

classi�cation level of the data a user previously read. When assuming that we are in a

single user scenario, this can be done using a state variable. The read operation de�nes

a state variable userState : State. Hereby State has only a single attribute which stores

the highest classi�cation level of previously read data. The read operation now has to

de�ne post execution state changes where userState is updated. This update is again just a

boolean function which can be realized via our LogicTerms.
With this infrastructure, the formulation of the analysis is straightforward: We look for

a call sequence to write(data : Data), where the given datum is lower classi�ed than the

level stored in the userState variable. For the comparison we can reuse the same boolean

function as for the access control.

In this model we assumed a single-user scenario. If multiple users are present, the user

state cannot be realized as a state variable but instead has to be a parameter of the read

and write operations.

8.3.3.2. Data Flow Secrecy and Integrity (RQ-3.2)

To answer RQ-3.2 we show how to ensure the secrecy and integrity of �owing data. Hereby

the goal is to ensure that these properties are present for each �ow. The goal is not to show

that a given encryption or signature algorithm is secure. We model three approaches for

achieving these properties on a high level: encryption, digital signatures and physically

secure links.

The modeling of encryption and digital signatures is trivial. In the most simple case

we can just add the boolean attributes isEncrypted and isSigned to every datum. If these

attributes are set to true, the datum is assumed to be encrypted and signed correspondingly.

This simple modeling can also be expanded if multiple parties and therefore public-key

cryptography is involved. In this case a ValueSetType is required for modeling the identity

of the parties. The parties can be identi�ed based on their public keys. Therefore the

ValueSetType is de�ned as partyIds = {pk1,pk2, . . . ,pki}. We can now use this type as type

for the attributes isEncrypted and isSigned. The meaning for isEncrypted is now changed

that the datum has been encrypted with the selected public keys. Similarly the value of

isSigned now states with which public keys the signature can be veri�ed. To model the

identity of operations a property can be added which lists the public keys to which the

operation knows the private keys.

The modeling of a physically secure link is more complex. The link of data �ow is

implicitly represented in our model by the OperationCalls. However, in our model it is

not possible to add properties to OperationCalls which makes it impossible to distinguish

between secure and unsecure links. This issue can be overcome by modeling the links

as operations instead. Similar to the inserted mediator operation used in Section 8.2.1

an intermediate operation is placed in every call. These operations represent links and

therefore just pass their call arguments through. In order to distinguish between links and
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normal operations in the analysis a property is required to identify these link operations.

In addition a property is required for specifying whether the link is secure or unsecure.

With this modeling the analysis to ensure secrecy and integrity is now trivial. For every

hop a datum takes it either has to be encrypted or the hop must be across a secure link for

secrecy to be achieved. Therefore (a) the isEncrypted attribute of the datum has to be set

accordingly or (b) either the source or the receiver of the �ow must be a link operation

which is secure. For integrity the analysis looks the same: (a) the isSigned attribute of the

datum has to be set accordingly or (b) either the source or the receiver of the �ow must be

a link operation which is secure.

8.3.3.3. Data Life Cycle Management (RQ-3.3)

For answering RQ-3.3 we focus exemplary on one critical part of the life cycle of data: the

deletion.

First of all it is required to model the allowed lifetime for the data. This can be done

by adding an attribute to the data whose ValueSetType speci�es the lifetime. For example

possible values for the lifetime attribute could be processingOnly, sessionPersistence and

longTermPersistence. The classes required have to be identi�ed based on the concrete

system which is being modeled.

The second part that has to be modeled is how the data is used persistence wise.

Therefore we add a property named persistenceType to every operation. As ValueSetType
we use the same type as for the lifetime attribute. However, the semantic is a little di�erent:

The property now states how every incoming datum is persisted: does the operation only

process the data and not persist it at all or is it a database persisting the data for a long

time? Note that we require that this persistence level is the same for every incoming

datum. This strict requirement is needed for the analysis. How can operations be modeled

which have multiple persistence levels? For example what about a servlet which (a) only

processes some data and (b) stores some data for the time of the session? Such operations

have to be split into multiple operations. In our example the operation can be split in a

Servlet operation and a ServletStorage operation. The Servlet operation has processingOnly
as persistenceType whereas ServletStorage has sessionPersistence. Servlet now receives all

the data but only delegates the data to be persisted to ServletStorage.
The strict requirement that persistenceType speci�es the persistence for every incoming

datum makes it possible to formulate the analysis. We can now simply compare the lifetime
attribute of all parameters with the persistenceType property for every operation. This

comparison can be written as a propositional logic formula as the number of combinations

is �nite.

8.3.4. Summary

With our evaluation goals G1, G2 and G3 we aimed to show that our approach is accurate,

scalable and also applicable to additional scenarios.

For G1 the evaluation showed that our approach accurately detects constraint violations

for our access control and geolocation restrictions scenario presented in Chapter 3. Hereby

in all tried models all violations have been found without any false positives. As we
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employed the call graph randomization technique (Section 8.2.1) for generating the model

instances we can state that the �ndings are independent of the topological structure of the

model.

We analysed scalability of our approach (G2) regarding two main aspects: (a) the scal-

ability with the size of the input system model and (b) the impact of our implemented

performance optimizations. The results showed that at worst our approach scales quadrat-

ically with the size of the input model. However, in most cases with our optimizations

enabled the performance scaled either linearly or only with a very low quadratic compo-

nent. We also observed that the �rst argument indexing and the cut based assignments

optimizations never reduced the performance by a signi�cant factor and can therefore be

always enabled. The logical negation optimization comes at the cost of a higher constant

factor regarding the load time of the model, it however potentially reduces the analysis

time from exponential to constant scaling.

As a side e�ect we discovered that the absolute run time highly depends on the chosen

Prolog implementation. In most experiments ECLiPSe is the fastest at analysing but has a

longer load time. SWIProlog is slightly slower performing the analysis but has a much

lower loading time. For JIProlog the loading times are similar, however the analysis times

we observed usually are slower by a factor of about 50 to 100.

To answer G3 we selected three additional scenario types and evaluated how well they

can be modeled with our approach. The scenarios we selected are information �ow control,

secrecy and integrity enforcement and data lifecycle management. For all three we showed

that it is possible to model scenarios in these domains using the features our model and

analysis API o�er. However, the modeling often required special tweaks, such as the

modeling of physically secure links using additional operations.

8.4. Threats to Validity

In this section we brie�y discuss the threats to the validity of our evaluation. Hereby

we apply the classi�cation scheme for threats to validity proposed by Runeson et al. [24,

Section 5.4].

Threats to internal validity are threats where factors the researcher is unaware of

possibly in�uence the results. If such threats are present it is questionable that the

experiments actually can be used for answering the research questions. For our evaluation

of the accuracy (G1) we only used two base models for the evaluation: one for the access

control scenario and one for the geolocation based restrictions scenario. Therefore a

potential internal threat is that not all features of our approach are covered by these models.

As we already mentioned in Section 8.2.2 our analyses only examine call arguments, which

can depend on return values in our used models. State models have not been used as they

were added later to our approach. However, as explained in Section 5.2, state variables are

e�ectively realized using the same techniques as parameters and return values. In addition

even though our analyses do not directly reference return values, the models have call

arguments which depend on return values. For this reason return values are also covered

by our evaluation. Because our evaluation shows that parameters and return values work

accurately, we assume that with a high probability there are no conceptual issues with
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state variables either. However, we cannot exclude implementation errors at this point.

For this reason it would be bene�cial to evaluate return values and state variables through

additional experiments in future work.

For the scalability evaluation (G2) we considered three in�uence factors in our exper-

iment design: The size of the model in multiple dimensions, the enabled performance

optimizations as well as the used Prolog implementation. Hereby, a minor threat we see

is the possibility that we missed out an important dimension of the model. However, as

we chose the dimensions to scale the model instances based on the structure of the meta

model as well as the translation process, we classify this as a minor threat.

An additional threat to internal validity can be identi�ed regarding the evaluation of the

genericness (G3) of our approach. To evaluate the genericness, we identi�ed additional

scenario types and explained how their key characteristics can be modeled using the

features of our approach. A possible threat is the fact that we might have missed some

important features of these scenario types. However, as the features we identi�ed are

su�cient for building functional models, we therefore assume that we covered at least the

most important ones. Regarding that the focus of our work lies on the scalability of our

approach, we therefore consider this a minor threat.

Threats to the external validity of our evaluation impact how well our �ndings can be

generalized. For the experiments regarding accuracy a threat is induced by the fact that we

investigated only two speci�c model instances. However, both models have been designed

to cover the important aspects of the scenarios they target. In addition, we employed

the call graph randomization technique (Section 8.2.1) during our analysis. Whilst this

technique does not fully randomize the model, at least the topological structure of the

callgraph is randomized.

For the analysis of the scalability there is always the threat that the chosen input sizes

are to small to uncover the actual scalability. As we executed very many experiments,

we had to keep the per experiment run time low for practical reasons. However, we can

assume that the size of the model instances we analysed is big enough in comparison to the

model size we would expect in a real world usage of our approach at least for small systems.

The models we used as input for the scalability experiments are up to 200 times the size

of the base TravelPlanner model presented in Section 5.7.1. Still when all optimizations

are enabled we observed very low run times in many experiments. In these cases more

measurements with larger models as future work are required to fully answer the question

of the scalability.

The external validity of the genericness evaluation is threatened by the fact that we did

not explicitly build example model instances, but instead only showed how key concepts

of the scenario types can be realized. Therefore no experimental proof is given that this

realization works. Nevertheless, we showed the functional correctness of most of the

features our approach provides experimentally through (G1). As the realization of the key

concepts of the scenario types we presented using these features is straight forward, we

can assume that this threat is minor.
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8.5. Assumptions and Limitations

During the design and implementation of our approach we made several assumptions and

design decisions which in turn induce limitations. In this section we brie�y discuss these

assumptions and limitations.

One central assumption we made during the design of our meta model is that we assume

that all variables of the system can be expressed as boolean values via ValueSetTypes. This

assumption was made as these types of variables are su�cient for our two main scenarios,

access control and geolocation based restrictions. Therefore this allowed us to provide a

working implementation of our meta-model and the Prolog translator despite the limited

time available for the thesis. Note that this limitation is not induced by Prolog: as Prolog

is a constraint programming language it has built-in support for numeric values and

constraints. Therefore a future extension of our approach to support numeric variables

should be possible. In addition in theory our approach as-is is capable of representing

numeric values at a �xed range. Numeric values can be represented in their binary form

using multiple boolean variables. The arithmetic in turn has to be expressed via boolean

equations. However, in practice this approach can be expected to be too cumbersome and

slow to be useable.

The second central assumption we made during our meta model speci�cation is the

fact that we assume that operations are essentially stateless. While we introduced state

variables for modeling state within the execution of a single SystemUsage state variables

are not persisted across the execution of SystemUsage. This means that in our model no

long-term persistence outlasting a single usage execution exists. However, we expect that

this assumption does not severely limit the applicability of our approach. Depending on

the scenario, restrictions regarding data persistence can be modeled with other means. An

example for such a ways of modeling persistence restrictions is given with RQ-3.3.

Another important assumption we made is that we can express every kind of operation

using our proposed LogicTerms. Due to the fact that we assumed that all in- and output

variables of operations are boolean we can show that this assumption does not induce any

limitation regarding the expressiveness. Given any set of input variable con�guration, it

is possible to de�ne the desired output variables based on truth tables. These truth tables

can be expressed using boolean formulas, for example by using the disjunctive or the

conjunctive normal form. As we have modeled And, Or and Not as LogicTerms, we can

express these formulas in our model.

A limitation of a more practical nature is the fact that our model is not as expressive

as Prolog which is used for the analysis. In certain cases it might not be possible to

express additional required information using our meta model, where code in addition to

the analysis has to be added manually. An example for such a case is our example shop

scenario for geolocation based restrictions. There, the classi�cation whether a geolocation

is considered safe or unsafe was manually added using the analysis prolog code. We

however assume that this limitation is not severe because (a) every model element can be

easily referenced and therefore annotated based on its name and (b) additional code has to

be added anyway for the formulation of most analysis.
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To conclude this thesis, we brie�y summarize our approach and the �ndings of our

evaluation in Section 9.1. Finally, we outline possible enhancements we see as future work

in Section 9.2.

9.1. Summary

The goal of this thesis was to provide an e�cient model based approach for analyzing

software systems regarding data �ow constraints on architecture level. To achieve this we

designed a specialized meta-model for modeling data �ows within systems. In addition we

de�ned a Prolog translator which allows the translation of model instances of our meta

model to Prolog programs. The resulting Prolog programs expose the data �ows and the

structure of the modeled system through a specialized API. Based on this API, it is possible

to formulate queries for uncovering data �ow constraint violations. For the design of our

approach we focused on two main application scenario: access control and geolocation

based privacy restrictions.

The central idea we based our meta-model on is the modeling of data based on its

meta-attributes. Representing such meta-attributes using sets of boolean variables allowed

us to model data manipulation using boolean algebra. This approach enables us to de�ne

data manipulation through Operations in our model with a high degree of �exibility. In

addition we allowed Operations to interact with each other, allowing a decomposition to

closely match the underlying modeled system.

To allow an automated analysis for data �ow constraint violations we provided a

translator transforming instances of our meta-model to Prolog programs. These programs

can be queried for violations using our proposed API. During the design of the translator

we introduced new fundamental concepts, for example the representation of system call

stack traces using Prolog lists. With the combination of these concepts and our API it is

now possible to easily formulate various types of data �ow constraint queries.

In addition a central aspect of this thesis was the scalability of our approach. For this

reason we designed and evaluated three di�erent optimizations of the generated Prolog

code: The e�cient usage of �rst-argument indexing, an implementation of e�cient logical

negations and a reduction of the number of required rules based on the Prolog cut predicate.

The concepts these optimizations are based on are not limited to our work. They are

potentially also applicable to other Prolog based approaches.

We evaluated our approach regarding its accuracy, scalability and genericness. For

the accuracy we showed that our approach is able to express and analyse our example

scenarios for access control and geolocation based restrictions. For the scalability we

showed that the translation as well as the analysis scale well with the size of the input.

107



9. Conclusion

In addition we showed that our proposed performance optimizations provide signi�cant

gains in most of the investigated cases. In some cases we were able to reduce the runtime

of the analysis from exponential to constant time. To show the genericness we discussed

how additional types of scenarios can be expressed and analysed using our approach.

9.2. Future Work

While our approach is functional as-is, we still discovered several aspects which could be

addressed as future work.

Add support for numeric variables Currently our meta-model models all variables as sets

of boolean variables. While this variable type has shown to be su�cient for the scenarios

we focused on, we assume that it is likely that other types of scenarios require numeric

variables. The addition of a numeric type is especially feasible because Prolog has built-in

support for numeric values. In order to support numeric types, another type has to be

added beside the existing ValueSetType. In addition, custom term types have to be added

for expressing arithmetic terms and constraints.

Realization of a translation from Data-Centric Palladio to our approach Our approach has

been designed for expressing data �ow systems so that they can be analysed automatically.

For this reason, the manual de�nition of model instances can easily become cumbersome.

Therefore, it is desirable to implement additional model transformations to bridge this

gap. For example, Data-Centric Palladio o�ers an intuitive way for users to de�ne the

data �ows of a system. However, currently its automated analysis capabilities are limited.

Therefore it would be desirable to have a translation to the meta-model of our approach

to enable an automated analysis in combination with an easy model de�nition.

Evaluation of our approach with additional scenarios During the design of our approach

we focused on two main scenario types: access control and geolocation based restrictions.

However as we tried to keep our approach as generic as possible during the design, we

assume that it also can be applied to other scenario types. Supporting this assumption we

provided a discussion based evaluation where we showed our approach potentially can be

applied to other scenarios. However it would be desirable to have concrete system models

and analysis for such additional scenario types to validate the genericness of our approach.

In addition our choice of models did not directly cover all features of our approach, such

as state variables. Therefore it is desirable to have an additional accuracy evaluation with

models which cover these features.

Improve thescalabilityof thePrologTranslator implementation In the evaluation we found

out that in certain scenarios our Prolog Translator scales quadratic (e.g. see Figure 8.5).

However, according to our de�nition of the translation process in Chapter 6 it should be

possible to implement the translator with a linear scalability. While the impact is minor

due to the low total run time of the translator, this fact still shows that there is optimization

potential for the implementation.
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Figure A.1.: Load time of JIProlog measured for the scaling with the number of operations

(RQ-2.1).
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Figure A.2.: Load time of SWIProlog measured for the scaling with the number of opera-

tions (RQ-2.1).
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Figure A.3.: Analysis time of SWIProlog measured for the scaling with the number of

operations (RQ-2.1).
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Figure A.4.: Total time of ECLiPSe measured for the scaling with the number of operations

(RQ-2.1).
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Figure A.5.: Total time of JIProlog measured for the scaling with the number of operations

(RQ-2.1).
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Figure A.6.: Total time of SWIProlog measured for the scaling with the number of opera-

tions (RQ-2.1).

0 200 400 600 800 1000
Number of Operations

0

20

40

60

80

100

120

Tr
an

sla
tio

n 
Ti

m
e 

[m
s]

No optimizations (r=0.978)
Cut-Assignment optimization (r=0.981)
Indexing optimization (r=0.988)
Negation optimization (r=0.989)
Negation, Indexing and Cut-Assignment optimizations (r=0.990)

Figure A.7.: Translation time measured for the scaling with the complexity of the call

graph (RQ-2.2).
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Figure A.8.: Load time of JIProlog measured for the scaling with the complexity of the call

graph (RQ-2.2).
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Figure A.9.: Load time of SWIProlog measured for the scaling with the complexity of the

call graph (RQ-2.2).
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Figure A.10.: Analysis time of ECLiPSe measured for the scaling with the complexity of

the call graph (RQ-2.2).
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Figure A.11.: Analysis time of SWIProlog measured for the scaling with the complexity of

the call graph (RQ-2.2).
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Figure A.12.: Total time of ECLiPSe measured for the scaling with the complexity of the

call graph (RQ-2.2).
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Figure A.13.: Total time of JIProlog measured for the scaling with the complexity of the

call graph (RQ-2.2).
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Figure A.14.: Total time of SWIProlog measured for the scaling with the complexity of the

call graph (RQ-2.2).
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Figure A.15.: Load time of JIProlog measured for the scaling with the number of parameters

and return values (RQ-2.3).
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Figure A.16.: Load time of SWIProlog measured for the scaling with the number of param-

eters and return values (RQ-2.3).
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Figure A.17.: Analysis time of JIProlog measured for the scaling with the number of pa-

rameters and return values (RQ-2.3).
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Figure A.18.: Total time of ECLiPSe measured for the scaling with the number of parameters

and return values (RQ-2.3).
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Figure A.19.: Total time of JIProlog measured for the scaling with the number of parameters

and return values (RQ-2.3).
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Figure A.20.: Total time of SWIProlog measured for the scaling with the number of param-

eters and return values (RQ-2.3).
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Figure A.21.: Load time of SWIProlog measured for the scaling with the number of attribute-

value combinations (RQ-2.4).
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Figure A.22.: Analysis time of JIProlog measured for the scaling with the number of

attribute-value combinations (RQ-2.4).
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Figure A.23.: Total time of ECLiPSe measured for the scaling with the number of attribute-

value combinations (RQ-2.4).
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Figure A.24.: Total time of JIProlog measured for the scaling with the number of attribute-

value combinations (RQ-2.4).
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Figure A.25.: Total time of SWIProlog measured for the scaling with the number of

attribute-value combinations (RQ-2.4).
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Figure A.26.: Load time of JIProlog measured for the scaling with the number of properties

(RQ-2.5).
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Figure A.27.: Load time of SWIProlog measured for the scaling with the number of prop-

erties (RQ-2.5).
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Figure A.28.: Analysis time of JIProlog measured for the scaling with the number of prop-

erties (RQ-2.5).
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Figure A.29.: Total time of ECLiPSe measured for the scaling with the number of properties

(RQ-2.5).
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Figure A.30.: Total time of JIProlog measured for the scaling with the number of properties

(RQ-2.5).
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Figure A.31.: Total time of SWIProlog measured for the scaling with the number of prop-

erties (RQ-2.5).
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Figure A.32.: Translation time measured for the �rst argument indexing optimization

performance experiment (RQ-2.6).
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Figure A.33.: Load time of ECLiPSe measured for the �rst argument indexing optimization

performance experiment (RQ-2.6).
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Figure A.34.: Load time of JIProlog measured for the �rst argument indexing optimization

performance experiment (RQ-2.6).
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Figure A.35.: Load time of SWIProlog measured for the �rst argument indexing optimiza-

tion performance experiment (RQ-2.6).
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Figure A.36.: Analysis time of JIProlog measured for the �rst argument indexing optimiza-

tion performance experiment (RQ-2.6).
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Figure A.37.: Total time of ECLiPSe measured for the �rst argument indexing optimization

performance experiment (RQ-2.6).
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Figure A.38.: Total time of JIProlog measured for the �rst argument indexing optimization

performance experiment (RQ-2.6).
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Figure A.39.: Total time of SWIProlog measured for the �rst argument indexing optimiza-

tion performance experiment (RQ-2.6).
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Figure A.40.: Translation time measured for the negation optimization experiment (RQ-
2.7).
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Figure A.41.: Load time of ECLiPSe measured for the negation optimization experiment

(RQ-2.7).
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Figure A.42.: Load time of JIProlog measured for the negation optimization experiment

(RQ-2.7).
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Figure A.43.: Load time of SWIProlog measured for the negation optimization experiment

(RQ-2.7).
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Figure A.44.: Analysis time of ECLiPSe measured for the negation optimization experiment

(RQ-2.7).
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Figure A.45.: Analysis time of JIProlog measured for the negation optimization experiment

(RQ-2.7).
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Figure A.46.: Total time of ECLiPSe measured for the negation optimization experiment

(RQ-2.7).
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Figure A.47.: Total time of JIProlog measured for the negation optimization experiment

(RQ-2.7).
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Figure A.48.: Total time of SWIProlog measured for the negation optimization experiment

(RQ-2.7).
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