KIT | KIT-Bibliothek | Impressum | Datenschutz

Extended probabilistic climatology (EPC) as a reference forecast for precipitation in the tropics

Walz, Eva-Maria; Maranan, Marlon; Fink, Andreas; Knippertz, Peter ORCID iD icon

Zugehörige Institution(en) am KIT Institut für Meteorologie und Klimaforschung Troposphärenforschung (IMKTRO)
Institut für Stochastik (STOCH)
KIT-Zentrum Klima und Umwelt (ZKU)
Publikationstyp Forschungsdaten
Publikationsdatum 17.08.2020
Erstellungsdatum 01.06.2020 - 10.08.2020
Identifikator DOI: 10.5445/IR/1000122539
KITopen-ID: 1000122539
HGF-Programm 12.01.02 (POF III, LK 01) Proc.res.f.multisc.predictab.of weather
Lizenz Creative Commons Namensnennung – Weitergabe unter gleichen Bedingungen 4.0 International

Die aktualisierten Daten finden Sie unter:

Base dataset: Integrated Multi-satellitE Retrievals for GPM (IMERG) V06 dataset (doi:10.5067/GPM/IMERG/3B-HH/06)

Data format: netCDF

Time resolution: daily (365 calendar days)

Latitude band: 40°S–40°N

Spatial resolution: 0.1°x0.1° (800x3600 points)

Content: Parameters (prob, shape, scale) of a fitted Bernoulli-gamma distribution derived from +/-15 days windows around each calendar day of the years 2001–2018.

Value: The EPC dataset provides statistical distributions of daily rainfall for the entire global tropics with a high spatial resolution using one of the most accurate satellite-based rainfall estimates. This can be used for a climatological characterization and as a probabilistic reference forecast against which weather forecasts generated with computer or statistical models can be evaluated.

Application example: Vogel et al. (2018, doi:10.1175/WAF-D-17-0127.1)

Reference: The research leading to these results has been accomplished within project C2 "Statistical-dynamical forecasts of tropical rainfall" of the Transregional Collaborative Research Center SFB/TRR 165 Waves to Weather funded by the German Science Foundation (DFG).

Art der Forschungsdaten Dataset
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page