KIT | KIT-Bibliothek | Impressum | Datenschutz

Enzyme Scaffolds with Hierarchically Defined Properties via 3D Jet Writing

Steier, Anke; Schmieg, Barbara; Irtel von Brenndorff, Yannic; Meier, Manuel; Nirschl, Hermann; Franzreb, Matthias; Lahann, Joerg

Abstract:
The immobilization of enzymes into polymer hydrogels is a versatile approach to improve their stability and utility in biotechnological and biomedical applications. However, these systems typically show limited enzyme activity, due to unfavorable pore dimensions and low enzyme accessibility. Here, 3D jet writing of water‐based bioinks, which contain preloaded enzymes, is used to prepare hydrogel scaffolds with well‐defined, tessellated micropores. After 3D jet writing, the scaffolds are chemically modified via photopolymerization to ensure mechanical stability. Enzyme loading and activity in the hydrogel scaffolds is fully retained over 3 d. Important structural parameters of the scaffolds such as pore size, pore geometry, and wall diameter are controlled with micrometer resolution to avoid mass‐transport limitations. It is demonstrated that scaffold pore sizes between 120 µm and 1 mm can be created by 3D jet writing approaching the length scales of free diffusion in the hydrogels substrates and resulting in high levels of enzyme activity (21.2% activity relative to free enzyme). With further work, a broad range of applications for enzyme‐laden hydrogel scaffolds including diagnostics and enzymatic cascade reactions is anticipated.

Open Access Logo


Verlagsausgabe §
DOI: 10.5445/IR/1000122687
Veröffentlicht am 14.08.2020
Originalveröffentlichung
DOI: 10.1002/mabi.202000154
Scopus
Zitationen: 1
Dimensions
Zitationen: 1
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Funktionelle Grenzflächen (IFG)
Institut für Mechanische Verfahrenstechnik und Mechanik (MVM)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2020
Sprache Englisch
Identifikator ISSN: 1616-5187, 1616-5195
KITopen-ID: 1000122687
HGF-Programm 47.02.06 (POF III, LK 01) Zellpopul.auf Biofunk.Oberflächen IFG
Erschienen in Macromolecular bioscience
Verlag John Wiley and Sons
Band 20
Heft 9
Seiten Art.Nr. 2000154
Vorab online veröffentlicht am 08.07.2020
Nachgewiesen in Web of Science
Dimensions
Scopus
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page