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ABSTRACT Increasing demands on reliability and safety of automated driving functions require an
augmented usage of simulation tools for the efficient calibration of these functions. However, finding
an optimal solution can be costly, especially when the objective function is represented by scenario
simulations. To face these challenges, a novel optimization scheme for simulation based calibration
problems, that enables reduced computational effort is introduced. The approach is based on sensitivity
analyses that provide scenario specific influential parameter spaces. Using these information, all parameter
combinations are checked for reference candidates obtained in preceding iterations that are expected to
have an equivalent solution as the new set. Thus, expensive simulation runs can be replaced by taking
results from a reference set. The so called ‘scenario simulation reduction’ approach is applied to the
parameterization of an SAE level 3 automated driving function with a genetic algorithm as optimizer.
In order to take modeling inaccuracies into account, a robustness analysis with respect to simulation
model parameters is conducted. Finally, a validation of the optimization scheme is performed using an
extensive sampling approach. Studies confirm that negligible errors occur that are not expected to disturb
optimization progress.

INDEX TERMS Automated driving, optimization, complexity reduction, simulation.

I. INTRODUCTION

FUTURE automated driving functions will offer extended
functionalities that enable handling more situations than

systems currently available in the market. Especially systems
of SAE level 3 or 4 [1] need to be able to safely maneuver
through urban areas, correctly interpret the traffic environ-
ment (traffic lights, signs, construction sites) and quickly
react to unforeseen incidents. Increased capabilities of driver
assistance systems cause a more time-consuming calibra-
tion process since the complexity and dimensionality of
parameter spaces grow. While safety assessments and vali-
dation studies are already widely conducted virtually [2],
[3], [4], [5], calibration tests are mainly performed on
the target hardware. However, simulation environments can
be used to efficiently obtain solutions with high matu-
rity levels as starting points for a manual calibration in

the vehicle. Besides computational advantages, simulation
based parameter studies enable a cheaper, risk-free testing
of driving scenarios and an improved reproducibility and
analyzability [16]. Even though conducting optimizations in
a simulation environment is by far more efficient than tuning
parameters manually on the target hardware, computational
efforts are still high since every system evaluation is rep-
resented by simulating a set of scenarios relevant for the
respective driving function. In order to enable fast calibra-
tions and short feedback loops in the development process,
new approaches for an optimization with minimum com-
putational effort are required. Next to reducing simulation
times, the transferability of results to the target environment
needs to be taken into account.
The duration of an optimization run is mainly influenced

by the optimization algorithm (and its parameterization) as
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well as the size of the parameter space. The performance
of an optimizer is problem-specific so that its suitability
needs to be evaluated with respect to the problem [6].
Sensitivity analyses are widely used to reduce parame-
ter spaces and therewith constrain the search space to
influential regions. Since the optimal solution is expected
to be located within these areas, the number of rele-
vant parameters to the target output can be reduced and
it may converge earlier. In most application examples,
a sensitivity analysis (SA) is conducted first and the
results afterwards used to remove certain parameters from
the optimization process. The studies of Zhu et al. [7]
expose the efficiency of such sensitivity based optimizations
compared to using gradient-based optimizations and Design-
of-Experiment-methods for optimizing multibody dynamics
of a vehicle system. Further publications in the field of
geometric design optimization confirm the effectiveness of
this approach. Examples include the parameterization of
models for a speed catamaran [8], wheel loader working
device [9] or earthmoving mechanism [10]. In general, the
concept of combining sensitivity analyses and optimiza-
tions can be applied to any calibration problem to improve
system understanding and the efficiency of optimization
runs [11]. It is especially useful when objective function
calculations are computationally expensive and the over-
all number of system evaluations can be reduced [12].
Therefore, influence analyses are widely applied to reduce
dimensionalities of vehicle calibration problems. Since the
objective function is often characterized by one or more
simulation runs, system evaluations are costly. Examples
include the parameterization of transmission systems [13],
engines [14] or hybrid electric vehicle operating strate-
gies [15].
The aforementioned application examples as well as the

calibration problem considered in this work are based on
simulation models which represent the actual dynamics of
the system. They are denoted as ‘simulation optimization
problems’ [16]. Since the effect chain for calibrating power-
train systems consists of few components with well-defined
interfaces, parameter optimizations can be performed using
only the simulation models of the respective component (e.g.,
the engine, transmission) [13], [17], [18]. On the contrary, the
effect chain for automated driving functions is more complex
(see Figure 1). Many different sub-models (that represent the
environment model, vehicle dynamics, . . . ,) are required to
enable a closed-loop simulation of the whole system [19].
The more interacting and complex these sub-models are,
the more likely are modeling inaccuracies to occur along
the chain of effects that are not negligible. Therefore, the
presented optimization method examines the robustness of
optimal parameter combinations towards changing simu-
lation model behavior. In general, high robustness for a
parameter means that its magnitude and effect direction
remain unchanged regardless the value of other parameters.
However, in the context of this work robustness of param-
eter combinations with respect to vehicle model parameters

FIGURE 1. Optimization problem for the calibration of automated driving functions.

are calculated. If optimal calibration parameter combina-
tions are robust, it can be concluded that equivalent results
occur regardless of the value of simulation model parame-
ters. As a result, the respective solution is assessed to be
stable towards deviating dynamics under real conditions. On
the contrary to previous contributions from the field of ‘sim-
ulation optimization problems’ that address vehicle system
calibrations, the model quality is taken into account.
In order to minimize computational efforts, aforementioned

literature references already show the potential of sensitiv-
ity analyses. In most cases influence information represent
dependencies between an objective function and input param-
eters. However, as mentioned before, driving functions are
optimized with respect to a scenario catalogue (see Figure 1).
Therefore, the parameters’ influence is additionally depen-
dent on the driving maneuver. Even though sensitivity values
could be averaged among all scenarios, valuable information
would get lost that could decrease simulation times. As a
result, to best use scenario specific influence information, the
parameter space cannot be limited beforehand as suggested
in other papers. Instead, the presented calibration scheme
integrates scenario specific sensitivity information into the
optimization algorithm to decide whether a simulation run
of a parameter combination can be omitted.
If the initial search space cannot be notably reduced,

a combination of SAs and optimizations can be compu-
tationally more expensive than conducting a simulation
based parameterization alone. However, it should be noted
that influence analyses are not only helpful to increase
optimization efficiency but also to improve system under-
standing. Especially for complex models such as the effect
chain shown in Figure 1, parameter effects and interdepen-
dencies can be exposed that may not be obvious to the
calibration engineer. As a result, obtained information from
the SA can not only be used as described in the presented
scenario simulation reduction method but also for subsequent
automated or manual calibrations in the vehicle.
The remainder of the paper is organized as follows. The

first section provides the theoretical background to this
work. In the following, a method is introduced to efficiently
use sensitivity information for an optimization with mini-
mum computational effort. The sensitivity based optimization
method is thereafter used to find optimal solutions for a
SAE level 3 driving function. An optimizer for solving the
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calibration problem is identified based on an experimental
comparative study. Finally, a validation approach is described
and outcomes of its execution analyzed.

II. THEORETICAL BACKGROUND
The following section provides the theoretical background
for the calibration approach derived later. Therefore, a
complexity reduction method, optimization algorithms and
robustness measures are described.

A. COMPLEXITY REDUCTION OF THE PARAMETER
SPACE
The introduced optimization approach in this work is based
on a complexity reduction for an identification of influ-
ential areas in the parameter search space. The method
introduced in a previously published contribution by the
authors of this paper [20] deals with the same problem as
addressed in this work and shown in Figure 1: Simulation
based calibration of automated driving functions, i.e., find-
ing parameter combinations for an optimal performance in
a scenario catalog.
The method is based on a sensitivity analysis called ‘ele-

mentary effects method’ (EEM) introduced by Morris [21].
For the EEM an initial random sampling of size r (e.g.,
latin hypercube sampling) is conducted over the input space.
In a second step, for each parameter combination np new
sets are created following a ‘one-factor-at-a-time’ (OAT)
radial variation scheme using Sobol’s quasi-random num-
bers [22]. On the contrary to trajectory and cell based designs
which suggest a uniform sampling over each input parameter
space, the radial design provides the best performance with
respect to result and efficiency as exposed by the studies of
Campolongo et al. [23]. Convergence analyses carried out
in [20] confirm that the SA provides reproducible results
for different input samples using the radial approach. Thus,
the number of samples for the original EEM is r · (np + 1).
The output of Morris method are two metrics which indi-
cate the main effect of each parameter (μ) and the degree of
nonlinearity and interdependencies to other parameters (σ ).
The EEM is based on the calculation of elementary effects
denoted as EEi which are defined as relative changes of the
objective function subject to changes of a single parameter
i at a time. For the computation of μi all elementary effects
are averaged. σi denotes the standard deviation:

μi = 1

r
·
∑

EEi (1)

σi =
√

1

r − 1
·
∑

(EEi − μi)2 (2)

To enable a relative comparison of parameters among each
other these two metrics are summarized to one relative sen-
sitivity using an euclidean distance in the μ − σ -space:
srel = √

μ2 + σ 2. Using the EEM, the complexity reduction
method aims to derive scenario specific influential parame-
ter spaces. Therefore, conservative initial bounds for every
parameter are estimated. Within these bounds, the EEM

is applied to obtain sensitivity values for each parame-
ter. Moreover, each parameter domain is split equally into
nInt intervals to limit initial bounds to influential bounds.
Thereafter, the relative sensitivity srel for every interval per
parameter is calculated with Morris’ method while keeping
remaining domains unchanged. Having calculated srel for
all intervals and parameters, those intervals with a relative
sensitivity below a certain threshold srelmin can be neglected
for further evaluations. Since the method is applied to every
interval for each parameter a total of

nCR = npnIntr · (np + 1) (3)

system evaluations needs to be performed.
Since experimental studies have shown that for the cali-

bration of vehicular driving systems areas at upper and lower
bounds of conservatively estimated parameter ranges tend to
have smaller impact [20], the initial domain can be narrowed
down based on this method. After the redefinition of sensi-
tive ranges, samples laying inside the influential hyperbox
can be further processed for a global sensitivity analysis of
all parameters. If a parameter’s global sensitivity remains
below the above mentioned threshold, it can be completely
neglected for further optimizations.

B. OPTIMIZATION ALGORITHMS
In general, optimization algorithms can be divided into
gradient-based and gradient-free direct search methods. The
first category needs derivatives of the objective function
and is based on deterministic, mathematical operations.
Algorithms are mostly not parallelizable and computation-
ally expensive [24]. Since simulation optimization problems
are nonlinear and allow a derivative representation only with
an unreasonably high effort, gradient-based approaches are
inapplicable for the discussed problem in this work.
The suitability of an algorithm from the class of global

gradient-free optimizers is mainly dependent on the respec-
tive calibration problem [6]. Preceding research in the field of
vehicle system calibrations has mostly been carried out with
the genetic algorithm (GA) [13], [15] and particle swarm
optimization method (PSO) [25], [26], [27]. Therefore,
these two population-based approaches are described and
experimentally compared in the following.

1) GENETIC ALGORITHM

The GA is based on Darwin’s theory of natural selection and
reproduction governed by rules that assure the survival of
the fittest. In each iteration a new population of individuals
(parameter combinations) is produced by means of selection
and reproduction. These two phases are based on probabilis-
tic rules that utilize a fitness function (objective function).
The genetic operations selection and reproduction performed
in each iteration of the GA as well as the once performed
initialization are exemplary shown in Figure 2 and can be
described as follows:

• Initialization: In the first iteration a starting popula-
tion is generated randomly (e.g., by latin hypercube
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FIGURE 2. Application of recombination and mutation operators on a binary string
for the genetic algorithm.

sampling or halton sequence). Alternatively individuals
may be placed based on expert knowledge.

• Selection: As a first step for creating the next gener-
ation, the fittest individuals from the last iteration are
chosen for later reproduction.

• Reproduction: Taking the selected individuals, a new
generation is created through recombination and
mutation:

– Recombination: During recombination the genetic
information of two selected individuals are bene-
ficially combined to create new offspring. Thus,
recombination operations push the population to
best available solutions and support convergence.

– Mutation: Mutation is used to avoid getting stuck
in local optima and support breadth-first-search. It
introduces genetic diversity by randomly altering
one or more genes of each individual.

For each genetic phase probabilities are defined that influ-
ence optimization progress towards convergence speed. The
selection probability ps determines how many individuals are
chosen for the selection operator. Accordingly, the recom-
bination probability pr decides how many individuals are
recombined and the mutation probability pm influences the
number of mutations per iteration.
Each individual in nature stores genetic information in a

chromosome. For the GA chromosomes can be represented
by bit arrays so that continuous variables are approximated
with a binary decomposition [28]. For a binary representa-
tion of a parameter with nValues values, the number of bits
k needs to be chosen so that the condition 2k ≥ nValues
is met. Decimal values associated with each bit array are
obtained by splitting the parameter domain equally in 2k parts
and allocate every bit array to one value along the domain.
The parameter combination (individual) is finally created by
attaching all parameter specific bit arrays. Genetic operations
are performed on the summarized array (see Figure 2).

2) PARTICLE SWARM OPTIMIZATION

The PSO is inspired by the swarm behaviour of organisms
and its common search for food or resting areas [29]. On
the contrary to the GA, individuals collaborate on finding an

FIGURE 3. Particle motion as implemented in the PSO-algorithm.

optimal solution. Therefore, particles (or parameter combina-
tions) are moved through the search space whereby positions
and velocities are updated in every iteration [30]. The intelli-
gence for a particle’s movement is based on a combination of
three operations: evaluation, comparison and imitation [31].
The evaluation is conducted through the objective function.
A comparison is made based on the particle’s own best
known position as well as the entire swarm’s best position.
In the imitation phase all particles aim to derive promising
actions from dominating individuals.
The three phases can be mathematically described as fol-

lows: In the beginning, an initial population with size N is
randomly sampled in the search space. Each individual n is
assigned a position vector �Xnt ∈ R

np and a velocity vector
�Vnt ∈ R

np . The total number of parameters is denoted by
np. In every iteration t the own historically best parameter
combination �Xnt,best ∈ R

n
p of each particle and the global best

parameter combination �Gt ∈ R
n
p are saved. Based on these

reference points every individuals’ next movement can be
determined using the following equations of motion:

�Vnt = ·�Vnt−1 + c1 · �rnt · (�Xnt,best − �Xnt−1) + c2 · �snt · ( �Gt − �Xnt−1)

(4)
�Xnt = �Xnt−1 + �Vnt (5)

The constants c1, c2 ∈ [0, 1] regulate the orientation on
the individual and globally best solution. Therefore, they
define the algorithm’s parameterization towards breadth-first
and depth-first search. The factors �rnt ∈ R

np and �snt ∈ R
np

represent imitation heuristics and are calculated in every
step of the algorithm. Figure 3 shows the particle motion
implemented in the PSO.

C. ROBUSTNESS ANALYSIS
In literature different definitions for robustness exist.
However, in the context of this work a robustness analysis is
applied to examine influences of (slightly) different parame-
terizations compared to an optimal parameter combination on
the objective function. In other words, a robustness analysis
allows to expose the steepness of local optima in the param-
eter search space. Steepness in this case means that only
one very good solution exists and samples in its immediate
environment (i.e., with slightly deviating parameterizations)
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FIGURE 4. Definition of neighborhoods in the calibration parameter space (left) and
objective function space (right). Solution B does not fulfill robustness conditions
defined by η whereas solution A does.

provide a worse objective function value. Hence, if a solution
was found at a steep peak, it is not stable towards slightly
changed parameter values and thereby not robust. Many algo-
rithms for finding robust solutions in multi-objective [32],
[33], [34] and single-objective [35], [36] optimization prob-
lems were presented in the past. Since the analyzed problem
in this work has only one objective function, approaches for
multi-objective cases are not further discussed.
The calculation of a robustness measure for a parameter

combination xS ∈ R
np with objective function value f (xS)

involves analyzing its immediate neighborhood. Figure 4
illustrates the concept for a parameter space with two param-
eters (x1, x2). In this figure, parameter combinations sampled
inside a δ-hyperbox in the calibration parameter space around
solution A and B (left plot) cause objective function values
laying inside the respective dark gray polygons (right) in the
objective function space. The variable η denotes a predefined
robustness threshold. Since the polygon associated with solu-
tion A remains inside a hyperbox with radius η it is assessed
robust. On the contrary, small deviations from parameter
combination B cause larger objective function deviations that
do not fulfill robustness conditions.
In this work, the approach is adapted to examine stability

of optimal solutions with respect to changing environ-
ment conditions represented by vehicle model parameters.
Therefore, parameter combinations in the calibration parame-
ter space are held constant whereas vehicle model parameters
are varied inside a δ-hyperbox. If these variations cause devi-
ations from the optimal objective function value larger than
η, the corresponding calibration parameter combination is
assessed not robust towards changing vehicle dynamics. The
robustness measures therewith provide an estimate whether
calibration parameter combinations found in a simulation
setup provide a similar performance under real conditions.
For a robustness evaluation of one solution, new parameter

combinations (H) are randomly sampled inside a δ-hyperbox.
The variable y may denote a parameter combination of
vehicle model parameters with yS being the combination
associated with xS. The respective objective function values
are defined by f (yi) with i ∈ 1, . . . ,H. For the decision
whether robustness is achieved the mean deviation between
new function values f (yi) and f (yS) is compared to η:
1
H

∑H
i=1

|f (yi)−f (yS)|
|f (yS)| < η. Since outliers may be neglected

through averaging, alternative measures such as the max-
imum absolute difference maxi=1,...,H

|f (yi)−f (yS)|
|f (yS)| < η or a

factor-dependent evaluation |f (yi)−f (yS)|
|f (yS)| < ηi, i = 1, . . . ,H

can be used [37]. A maximum hyperbox size δmax that still
fulfills one of the above mentioned conditions is calculated
through means of optimization and serves as robustness met-
rics. The higher the maximum hyperbox size, the more stable
is a solution towards parametric changes. Alternatively to
optimizations, the allowable hyperbox size δmax can be cal-
culated by taking multiples of an initial δmin until robustness
conditions are not met anymore. The maximum number
of box enlargements that still enables parametric stability
determines the ‘degree of robustness’.

III. SCENARIO SIMULATION REDUCTION METHOD FOR
AN EFFICIENT OPTIMIZATION OF CALIBRATION
PARAMETERS
The goal of the optimization scheme introduced in this sec-
tion is to beneficially use the complexity reduction (CR)
approach as described before to reduce needed simula-
tion runs for solving the optimization problem shown in
Figure 1. The CR method provides information about influ-
ential parameter bounds and parameters, both with respect
to a specific scenario. If overlapping non-influential regions
for all parameters and scenarios exist, a decreased parameter
search space can be easily derived and used for optimization
by taking the smallest common area. However, it is expected
that the relevant parameter search space varies depending on
the characteristics of a scenario. Moreover, by reducing the
search space to smallest common areas, potentials of scenario
specific sensitivity information would be neglected.
In order to use full potential of the CR method out-

come, this approach aims to integrate scenario specific
sensitivity information in the optimization algorithm to min-
imize simulation efforts in each iteration. As pointed out
before, population-based optimizers seem most promising
for solving the herein considered calibration problem. The
individuals are created by the optimizer in each iteration and
need to be evaluated (in parallel) before the algorithm can
proceed. In the herein considered optimization problem eval-
uating an objective function for one individual (or parameter
combination) means simulating all ns scenarios and sum-
marizing their individual results to one combined objective
function value using a weighted sum. This approach is cho-
sen to obtain a single-objective optimization problem (more
details are provided in Section IV-A).
By taking scenario specific influential parameter spaces

into account, a simulation run might be obsolete if paramet-
ric changes compared to a previously evaluated parameter
combination are expected to have a negligible influence.
In this case the objective function value for the current
parameter combination can be copied from a previously
evaluated reference parameterization and an expensive sim-
ulation run can be avoided. Parametric changes are expected
to be negligible if a new parameter combination only differ-
entiates from a reference combination inside non-sensitive
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FIGURE 5. Top: Example for a replacement of a scenario simulation (solid line)
through previously evaluated parameter combinations (dashed and dotted lines) since
they only deviate from the reference combination within non-influential (white) areas.
Bottom: Example for a parameter combination that does not qualify for scenario
simulation reductions since all parameters lay within influential (gray) area.

areas. That means, if a parameter of the current combina-
tion is located within influential bounds it should have the
exact same value in the reference combination. However,
parameters laying inside non-sensitive regions might take
any other value within this region since parametric changes
in this area were assessed non-influential by the CR method.
During optimization, all simulated parameter combinations
and objective function values are stored in a database and
serve as references.
Fig. 5 shows an example where a scenario simulation can

be avoided by taking objective function values of a reference
combination (upper plot) and a contrary example where a
simulation is necessary (lower plot). In this example, 11
calibration parameters (P1-P11) are considered.
Gray areas represent influential regions for the respective

scenarios whereas white areas are non-influential. The solid
line in the upper plot may represent a parameter combi-
nation generated by the optimizer. Combinations described
by dashed and dotted lines have the same value for those
parameters where the new parameter combination (solid line)
lays within influential areas. For parameters with values
inside non-sensitive areas these combinations do not align
with the new combination (solid line) but vary within white

(non-sensitive) areas. Thus, they may serve as valid ref-
erences for the newly created parameter combination by
the optimizer and make its simulation run unnecessary. The
parameter combination in the lower plot does not allow sce-
nario simulation reductions since all parameters lay inside
sensitive areas. It can not be ruled out that small deviations
from this parameter combination have a decisive impact on
optimization progress.
Fig. 6 shows a flowchart for the described approach. It

can be understood as a process description for evaluating
all samples from a population with minimum computational
expenses. Sensitive parameter bounds PBsens and parameters
Psens are herein obtained by applying the complexity reduc-
tion method beforehand. For each scenario (first dimension)
and parameter (second dimension) they store sensitive upper
and lower bounds or parameter influence information (third
dimension). Psens is 1 if the respective parameter is expected
to have an impact and 0 otherwise. The scenario catalogue is
denoted by Scenarios. After the optimizer has created a new
population of individuals PC it is checked for each scenario
s (1) and parameter combination pc (2) whether parame-
ters were assessed non-influential (3). Thus, the variable
Non_influential_parameters is an np-dimensional boolean
vector which is true for parameters without influence. In
the following it will be checked which parameter values
of the current combination are laying inside non-influential
regions (4). The corresponding boolean vector is denoted as
Non_influential_regions. Based on that information about
the current combination pc the database DB is searched
(5) for valid references fulfilling conditions in block (6).
Valid reference combinations are those, whose parameters
have the same value as pc (db == pc) or were assessed
non-influential (Non_influential_parameters) or lay inside
the same non-influential regions as the respective parame-
ters from pc (db(Non_influential_regions) > PBsens[s][:][1]∪
db(Non_influential_regions) < PBsens[s][:][0]). If a database
combination was found that fulfills all conditions (7), it is
chosen as valid reference (10) making simulations obsolete.
If the whole database was screened (8) and no qualified
candidate was found, the respective combination needs to
be simulated (9) but can itself serve as a potential reference
(11) for future evaluations. The scenario database DB is
available after simulating the first parameter combinations
and extends its size after every iteration. Therefore, it is
obvious that chances for a simulation replacement increase
the further the optimization algorithm has proceeded.

IV. APPLICATION OF THE METHOD FOR THE
CALIBRATION OF AN AUTOMATED DRIVING FUNCTION
Having derived the method theoretically, its potential with
respect to computation time and optimization result is eval-
uated with a realistic use case: Simulation based calibration
of an automated driving function. An optimizer for solving
the described problem is selected using a comparative study
of the GA and PSO. The chosen optimizer is integrated into
the optimization scheme and applied to the problem. Finally,
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FIGURE 6. Flowchart for the evaluation of each population including a check for reference datasets that can replace computationally expensive simulation runs.

the best solutions found by the method are examined with
respect to their robustness. The section concludes with a
discussion of the results.

A. PROBLEM DESCRIPTION
The underlying simulation optimization problem was already
sketched in the beginning of this paper (see Figure 1). In
this application example the trajectory planning module of a

level 3 driving function (according to SAE definition [1]) is
parameterized for highway scenarios. The scenario catalog
consists of six scenarios that are defined as follows:

• S1: Change lane on straight road (overtake slower
vehicle on the right)

• S2: Change lane on a curved road (overtake slower
vehicle on the right)

• S3: Keep lane on a straight road
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• S4: Keep lane on a curved road
• S5: Adapt speed to a traffic sign (Acceleration
maneuver)

• S6: Adapt speed to a curve (Deceleration maneuver)
In order to measure the performance for each scenario, objec-
tive functions need to be defined. In this work a machine
learning based approach is used for an objective assess-
ment of driving behavior presented by Moser et al. [38].
This approach uses multivariate time series classification
to evaluate driving comfort for lane keeping, lane change
and acceleration/deceleration maneuvers. It provides com-
fort metrics on a discrete scale from 0-7 where 7 represents
maximum driving comfort.
As mentioned above, objective function values from every

scenario are first computed and afterwards summarized to
one objective criterium. In this case, objective function values
of all scenarios are weighted equally using a weighting factor
w. The chosen characteristics lead to a balanced prioritization
of all maneuvers and only serves as an example. However,
in an industrial development process different weighting fac-
tors might be chosen depending on the requirements on
the driving function. The summarized objective function
F(ps) is calculated from the scenario specific results Fj(ps)
following (6):

F(ps) =
6∑

j=1

wj · Fj(ps) with wj = 1

6
, j = 1, . . . , 6 (6)

For subsequent studies 11 parameters are chosen from the
trajectory planning module that are expected to have a high
influence on the planned trajectory. They mainly serve as
weight factors for a cost function evaluating a trajectory’s
suitability. A more detailed description of the parameters and
its influence with respect to lateral and longitudinal planning
is given in Table 3 in the Appendix section. Simulations
are executed on a performance cluster with four parallel
operating machines (CPU 2.6 GHz, RAM 8 GB).

B. OPTIMIZER SELECTION
Due to their successful application for similar problems the
GA and PSO are compared in order to select the most
suitable method.
To keep computation efforts in a reasonable order of mag-

nitude, the experimental study is conducted with a simplified
calibration problem. However, the effect chain shown in
Figure 1 remains unchanged to ensure validity of the results.
Studies are performed using only one driving scenario (S3)
and eight (P1 - P8) out of 11 calibration parameters. The
7-scale comfort evaluator is used as present in the original
problem. As described above, optimizers can be parameter-
ized and their performance influenced in terms of search
strategies (see Section II-B) To ensure a comparability, both
algorithms shall have a similar, balanced parameterization in
terms of breadth-first and depth-first search.
The particle swarm optimization provides two parame-

ters (c1 and c2) that have a direct impact on the search

FIGURE 7. Optimization results for the particle swarm optimization.

strategy (see eqn. (4) and (5)). For an equally weighted
consideration of the orientation towards the global best and
locally best solution, both factors are set to the same value:
c1 = c2 = 0.5 [39].

On the other hand, the GA consists of more parameters
that influence the characteristics of its operations. The selec-
tion probability ps needs to be set so that convergence can
be ensured but getting stuck in local optima is avoided. It is
defined to ps = 0.8 [40]. Recombination operations should
also not be applied too frequently to prevent a too fast con-
vergence. Therefore, pr is set to 0.7 based on applications
for comparative problems [15]. The probability pm is set to
0.2 [41] to avoid turning the optimization into a random
search. Parameter values are summarized in Table 4 in the
Appendix section.
Next to the algorithm parameterization, optimization

performance is mainly influenced by the population size
(number of individuals). More parameter combinations per
iteration increase the search space coverage but decrease
convergence speed. A too low number of individuals causes
higher risks to get stuck in local optima. Since the population
size is used in both optimizers, it is systematically varied
(350, 500, 1000 and 2000 individuals) for the experimental
comparison study. The optimization is performed three times
for each population to take the heuristic part of both opti-
mizers into account. Only the best run is plotted for analysis.
The initialization is not created by a random sampling but
with a deterministic approach (Halton-sequence, [42]) that
provides the same starting population for constant population
sizes.
Optimization results for both optimizers are shown in

Figure 7 and 8.
Both plots expose that the best solution is found using

the highest population size whereas with less individuals
per iteration only local optima are found. This observation
coincides with previous research and can be explained with
the fact that the density of samples in the search space
increases with growing population sizes. Hence, it is more
likely to find good solutions. On the other hand, choosing
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FIGURE 8. Optimization results for the genetic algorithm.

smaller population sizes can be beneficial in terms of com-
putation time. However, stochastic variances are more likely
when running the optimization algorithm repeatedly under
the same conditions (see plots for 350 and 500 individu-
als as well as results provided in Table 5 in the Appendix
section).
For further analyses both optimization algorithms seem

promising. Even though the GA reaches higher objective
function values, it can be assumed that the same performance
is possible using an adapted PSO parameterization with
respect to its breadth-first search operator. However, when
comparing computation times of both optimizers it has to be
taken into account that for the PSO more simulations have to
be run even though the population size and iteration number
are the same. The reason is, that the GA applies its genetic
operators only to a selected subset of individuals whereas
the other samples remain unchanged. Consequently, a new
simulation run for an identical parameter combination in
different iterations can be omitted. On the basis of this com-
putation time advantage and observed superiority in terms
of optimization result for the herein examined calibration
problem the GA is chosen for further analyses.

C. OPTIMIZATION RESULTS AND COMPUTATION TIME
Using the GA, the optimization scheme as shown in Figure 6
is applied to solving the above defined calibration problem.
As a first step prior to the actual optimization, a complexity
reduction is applied to obtain scenario specific influential
regions of the parameter space. Results are provided in
Figure 9 through spider plots following the same notation
as in Figure 5. Parameters without any gray segments are
globally non-sensitive and non-influential along the whole
domain.
The results expose that sensitive areas vary between sce-

narios. Thus, a consistent reduction of parameter bounds
for all maneuvers can not be defined prior to optimization.
Instead, parameter specific influence regions are used tore-
duce the number of simulations following the optimization
scheme in Figure 6. The implemented GA uses the aforemen-
tioned bit representation with discretizations and bit numbers

as defined in Table 6 in the Appendix section. The param-
eterization of genetic operators such as selection, crossover
and mutation is the same as in the comparative study but
with a stronger mutation operator (pm = 0.5 [43]) to enable
a distinct breadth-first search. Initialization is performed
using latin hypercube sampling. The optimization scheme is
repeated with 500, 1000 and 2000 individuals per iteration
for 20 iterations in total. Since a population size of 1000
provides the best performance with respect to optimization
result and computation time, its results are further discussed.
Outcomes of the optimization runs conducted with 500 and
2000 individuals are provided in Table 7 in the Appendix
section.
Fig. 10 shows the composition of each population over

the iterations in the left plot.
Interestingly, at least one solution with an objective func-

tion value equal to the final optimum is already found in the
first iteration (‘maximum’ line). On the other hand, the mean
plot proves that the population in total seems to improve
so that more alternative parameter combinations with high
function values appear over time. The graph to the right
in Figure 10 shows the total number of alternative samples
with F(ps) = 5.67, which is the result for the best solu-
tion. It can be confirmed that with increasing number of
iterations more parameter combinations with equal function
values are found. Since the number of alternative solutions
does not seem to change after the 15th iteration, convergence
can be assumed.
Next to optimization results, computational efficiency is

analyzed. The accumulated number of required and saved
scenario runs is shown in Figure 11. It can be seen that
the total number of simulations per iteration is 6,000
(1,000 individuals and 6 scenarios) in the first iteration
but smaller in the following. That is due to the compu-
tation time advantage of GAs, that only select a subset
of individuals for recombination and mutation while keep-
ing remaining parameter combinations untouched. Thus,
the requested number of simulations by the GA is not
120,000 (6 x 20 x 1,000) but approximately 43,000. With
a duration of 10 s per evaluation in average, an original
computation time of 116 hours would be necessary with-
out usage of the scenario simulation reduction approach.
However, the number of simulations could be reduced to
36,471. Consequently, computationally expensive evalua-
tions of 6,416 parameter combinations could be avoided but
qualified reference sets used instead. That leads to a com-
putational advantage of approximately 17.82 hours which
equals an efficiency increase of 15.36% for this optimization
problem.
It should be noted, that computational benefits of this

method are mainly dependent on the size of insensitive areas
which influences the chance to find valid references during
optimization. However, if further analyses with the same
setup but for example changing weighting factors of the sce-
narios (see (6)) are performed, the same database DB can
be reused and extended. As a result, the number of saved
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FIGURE 9. Result of the complexity reduction method. Gray areas represent influential regions in the parameter space.

FIGURE 10. Overview of the population distribution per iteration (left) and number of parametersets with a function value of 5.67 (right).

scenario runs increases the more often an optimization is
executed. Since requirements for driver assistance systems
frequently change throughout the development process, the
same optimization with changing characteristics is often con-
ducted. Therefore, computational efficiency might not only
increase by 15.36% as for a onetime execution but much

more considering the repeated optimization with the same
setup.

D. ROBUSTNESS ANALYSIS
The optimization allowed finding 11 equivalent parameter
combinations that all enable an objective function value of
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FIGURE 11. Accumulated number of saved scenario simulation runs.

F(ps) = 5.67 (see Figure 10 right). To further rank these
solutions, a robustness analysis with respect to vehicle model
parameters is applied.
The vehicle model used for the simulation based

optimization is a so called ‘hybrid vehicle model’ that con-
sists of a single track model and a neural network (details
see [44]). Since a variation of parameters related to the
neural network would require a new training every time, the
robustness analysis is performed based on single track model
parameters. Values used during the optimization as well as
parameter bounds for the following analysis are given in
Table 8 in the Appendix section. The minimum hyperbox
radius δ is defined to 0.01. Robustness is given if none of
the scenario specific objective function values (Fj(ps)) in
a kδ-environment deviates more than 1 from the respective
solution. Therefore, the robustness condition represents the
minimum deviation possible in the discrete comfort scale.
11 different hyperbox radii are examined (k ∈ 0, 1, . . . , 10).

Fig. 12 shows the optimal parameter combinations (left)
and corresponding robustness information (right). The actual
values can be found in Table 9 in the Appendix section. Solid
lines herein represent the highest robustness level whereas
dashed lines stand for a very low level of robustness. It can
be noted that those solutions that lay close to each other in
the left plot seem to be stable (Degree of robustness ≥ 10)
against small parametric changes or vehicle model dynam-
ics, respectively. Those five parameter combinations have
equal values for parameters P5 to P11 but vary slightly for
P1 to P4. On the other hand, the six remaining sets lay
at discrete locations in the parameter search space and are
classified with a lower robustness level. The results expose
a dependency between the location of parameter combina-
tions and its robustness. Combinations laying close to each
other in the calibration parameter space also tend to be more

robust towards changing vehicle dynamics. Consequently,
these parameterizations should be preferred for later usage
on the target hardware. Optimal solutions with lower level
of robustness might also perform well. However, the risk
that a reliable transferability to the real setup is not given is
much higher since their performance is expected to change
rapidly with changing environment conditions.

E. DISCUSSION OF THE RESULTS
When analyzing results of the complexity reduction method
(see Figure 9) it can be noted that influential areas are com-
parably large for scenarios 1-4 and smaller for S5 and S6.
That is due to interdependencies among parameters for S1-S4
which result in larger combined sensitivities srel. Since the
threshold srelmin was conservatively estimated to avoid neglect-
ing influential effects, these interactions are assessed relevant
for almost all parameter domains. Even if there is only one
highly interacting parameter, chances are high that the search
space cannot be much reduced when using a conservative
sensitivity threshold. Consequently, the computational effi-
ciency advantage for the optimization decreases. To avoid
such limitations, it might be beneficial to derive a sensi-
tivity threshold experimentally. Therefore, srelmin might turn
out to be larger and more irrelevant parameter effects with
respect to the objective function can be neglected. Moreover,
the method’s potential can be improved if each SA metric is
evaluated individually using separate thresholds for μ and σ .
Especially if main effects dominate interdependencies such
as for robust models, assessing SA metrics separately might
outperform using combined sensitivities and equal weights
for μ and σ in terms of parameter space reductions. However,
the calculation of valid sensitivity thresholds is computation-
ally expensive and has to be performed for each optimization
problem individually.
The optimization progress as shown in Figure 10 exposes

that optimal solutions can already be found in the first
iteration when samples are distributed randomly. This char-
acteristics is not typical since the goal of optimization
algorithms is to guide individuals towards optimal solutions
so that the best parameter combinations appear after several
iterations. One reason for this characteristics is the discrete
scale of the objective function. Since F(ps) can only take a
limited number of values (from 0 to 7), gradients are very
steep and solutions can only improve in whole numbers.
Thus, chances of randomly hitting a good parameter com-
bination with an equal function value as the final optimal
solution are higher. Moreover, characteristics of the parame-
ter space contribute to finding optimal solutions with random
searches as optima do not necessarily lay close to each other
but can be found at distinct places in the parameter search
space (see Figure 12 left). Most of the optimal solutions
are found between iteration 8 and 15 (see Figure 10). At
these steps, the GA finds many well rated solutions at the
same time. It is likely that this progress was caused by
the mutation operator since the number of good solutions
and population mean rapidly increases, which indicates that
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FIGURE 12. Best solutions found during optimization (left) and robustness information (right) for the parameter combinations. Values can be found in Table 9 in the Appendix
section.

a new promising area was exploited. The ‘minimum’ line
remains almost unchanged which can be reasoned with the
aforementioned characteristics of the search space. Since
high and low objective function values lay close to each
other the minimum value does not change even though the
optimizer identified areas that comprise many good solu-
tions. The GA’s high weighted mutation operator causes a
quasi-random search for new candidates that often ends in
finding parameter combinations with worse assessments and
not always provides an improvement.
Findings presented in this section confirm that an effi-

ciency increase for the simulation based optimization of
automated driving functions can be achieved by applying the
presented scenario simulation reduction approach. The trans-
ferability of virtually found parameter combinations to the
real environment is ensured by analyzing robustness of final
solutions towards changing model parameters. Providing
more than one promising solution enables an increased flex-
ibility for manual calibrations in the vehicle. The method
is scalable so that an arbitrary number of scenarios or driv-
ing functions can be added. Also, solving a multi-objective
optimization problem of this kind could be improved using
this approach.
Whether an application for other optimization problems

is useful depends on the characteristics of the problem. As
mentioned before, this method aims to reduce the number of
computationally expensive simulation runs. For an objective
function evaluation that can be done quickly (e.g., an analytic
function) this approach provides less advantages. Moreover,
benefits only occur if the complexity reduction method
computes a reduced parameter space compared to initially
defined bounds. However, this can be expected for most
vehicle control systems as concluded in previous work [20].
Theoretically, an optimizer can be freely chosen but algo-
rithms using a discrete instead of a continuous scale con-
tribute most to finding scenario/parameter-set-combinations

whose simulations can be avoided. The reason is that there is
only a finite (but arbitrarily high) number of samples avail-
able in the parameter search space. Consequently, chances
for creating an individual that only differentiates along one
or two dimensions but has otherwise identical values as a
reference combination is higher than for optimizers using
continuous parameter domains. For continuous scales it is
recommended to define a maximum allowable deviation of
parameters laying in sensitive areas to qualify parameter
combinations for replacements with database values.
Especially recent aspirations of companies that develop soft-
ware products to use simulation tools for testing and safety
assessments, qualify for usage of this approach. Even though
large computation clusters exist, the amount of simulations
required is still high to enable full test coverage. Next to
calibrating driving functions, the scenario simulation reduc-
tion approach could for example support safety assessments
by minimizing the number of scenario parameter variations
necessary for finding critical scenarios. In general, scenario
based optimization approaches of any kind (such as for cal-
ibrating vehicle control systems, aviation systems, traffic
control, . . . ,) might benefit from the optimization scheme
introduced in this contribution.

V. VALIDATION OF THE METHOD
To validate presented optimization scheme it has to be tested
if an error occurs when applying scenario simulation reduc-
tions according to the introduced method. Therefore, the
validation studies intend to check if by taking objective func-
tion values for an arbitrary parameter combination (qualified
for scenario simulation reductions according to Figure 6)
from a reference set, errors remain in a negligible order of
magnitude. Therefore, it could be tested how optimization
results differ when running the GA with scenario simulation
reductions and without. However, it has to be taken into con-
sideration that the GA comprises random genetic operators
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and is not deterministic. For that reason, a systematic sam-
pling approach is chosen instead to examine isolated effects
of replacing scenario simulations with reference runs.
For the design of a reasonable validation study, underly-

ing methods for the optimization scheme need to be taken
into account. Identifying sensitive parameter regions is based
on the local application of the EEM (see Section II-A).
Sensitivity metrics σ and μ represent averaged main effects
and interdependencies (see (1) and (2)). The risk is given
that through averaging extreme values are neglected. That
happens for example, if all elementary effects that were eval-
uated for a certain interval are zero except one being 0.1 .
Let’s assume 100 elementary effects are evaluated (r = 100),
then srel would be 0.01 (see (3) and (1)). With a sensitiv-
ity threshold of, e.g., srelmin = 0.02, the associated parameter
interval would be assessed non-influential. However, if the
case appears that the one influential parameter combination
is generated during optimization, it would be mistakenly
qualified for a scenario simulation reduction and the objec-
tive function value taken from a reference set. As a result,
optimization progress can be disturbed.
The meaning of main effects and interdependency orders

in the scenario simulation reduction method is explained by
using a fictive example shown in Figure 13. The plots are
not related to the results described in previous sections but
serve as an example to derive the validation approach. In
this example, the parameter search space could be reduced
for six parameters (P3, P4, P6, P9, P10, P11). Remaining
parameters are influential along the whole domain and need
to have the same value in a potential reference combination
(see Figure 6). Since deviations for these parameters are not
allowed for the scenario simulation reduction method, errors
in their sensitivity information cannot influence optimization
progress in a negative way. However, erroneous sensitivity
values for the other six parameters can have an impact on
the optimization result so that they are extensively examined
during the following validation studies.
Since six parameters are affected by the parameter space

reduction, six main effects for these parameters exist in this
example. Moreover, interdependencies up to the 5th order
can appear. How these effects become effective is shown
in Figure 13. If a sample is only varied for one parame-
ter at a time (first plot top left), main effects come into
place. If more than one parameter value is varied at the
same time, interdependencies are added to the main effects.
For first order interdependencies (second plot), the initial
sample (solid line) is varied along two dimensions (dashed
and dotted lines). Accordingly, for 2nd order effects samples
are varied along three dimensions and so on.
In order to check all relevant main effects and interdepen-

dencies between insensitive regions, an initial latin hypercube
sampling (LHS) is performed inside the whole parameter
space. Samples that qualify for a scenario simulation reduc-
tion (i.e., contain parameters laying in non-sensitive areas)
are then extracted from the initial sample set. If that subset
of samples covers all relevant parameter interdependencies

FIGURE 13. Exemplary visualization of samples for testing main effects and
interdependencies of higher orders.

and main effects for the respective scenario with a suffi-
cient number of parameter combinations they are further
processed. Otherwise, a new LHS with increased sample
size is performed until all relevant effects are covered. It
should be noted that the number of relevant effects nEffects
increases exponentially the more parameters are affected by
the complexity reduction (nEffects = 2nCR − 1 with nCR as
number of parameters affected by the CR). Therefore, the
subset of LHS-samples is larger the more effects (interdepen-
dencies and main effects) exist. Its size is denoted by n∗

LHS.
Based on this subset, reference sets are generated for every
LHS-sample that only vary randomly within non-sensitive
regions compared to the LHS-basis (dashed and dotted lines
in Figure 13). A total of nref reference sets are created
for each LHS-sample so that the total number of validation
samples nValidation per scenario can be calculated with

nValidation = n∗
LHS · nref (7)
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Table 1 provides an overview about sample sizes and
numbers of insensitive regions per scenario.
For validating the scenario simulation reduction approach,

all nref samples around the respective LHS-sample and the
sample itself need to have same objective function values.
To evaluate whether this requirement is fulfilled, objective
function deviations of all samples from its related basis
LHS-sample are computed and plotted for each scenario
in Figure 14. It can be seen that the majority of samples
provides a difference of zero from their related LHS-sample.
To examine the impact of deviations larger than zero a max-
imum allowable deviation of 1 from the basis sample is
defined (similar to the robustness condition in the previous
section). Based on that the number of samples causing devi-
ations larger than 1 denoted by n�F(ps)>1 is divided through
the total number of samples (n�F(ps)>1 +n�F(ps)≤1) defining
the ratio of erroneous samples Rerr:

Rerr = n�F(ps)>1

n�F(ps)>1 + n�F(ps)≤1
(8)

Ratios are calculated for each scenario individually and
results are given in Table 2.
The most critical amount of erroneous samples occurs for

scenario S4 with a result of Rerr = 0.0108 = 1.08 %.
If an optimization is performed with a population size of
1,000 and the unlikely case occurs that all 1000 parameter
combinations qualify for a scenario simulation reduction,
11 sets would be allocated an erroneous objective func-
tion value for S4 in this case. Taking the worst case error
ratios for all scenarios into account the maximum number
of mistakenly evaluated samples would be 22 out of 6,000
(
∑6

i=1 R
i
err · 1000 for i = 1, . . . , 6). Since the GA is a

population-based optimizer, those few mistakenly calculated
samples compared to the total number of individuals are
not expected to disturb optimization progress. Moreover, it
is unrealistic that the scenario simulation reduction can be
applied to 100% of the parameter combinations. The ratio
of qualified samples for scenario simulation reductions was
much smaller in studies described in this work (approx. 16%
throughout all iterations, see Figure 11). 6,416 samples could
be avoided in total. Assuming a worst case error ratio of
Rerr = 0.0108 (which actually only occurred for S4) for all
scenarios a maximum of 65 samples were allocated an erro-
neous objective function value throughout the whole process.
This number seems negligibly small against the background
that 6,000 samples were processed per iteration which equals
6, 000·20 = 120, 000 individuals for the whole optimization.
As a conclusion, validation studies confirm that a replace-
ment of scenario simulations using the scheme in Figure 6
causes negligible errors that are not expected to have an
influence on optimization progress.

VI. CONCLUSION
The goal of this contribution was to develop an efficient
optimization scheme for a simulation based calibration of
automated driving functions taking into account the trans-
ferability of solutions to the target vehicle. As the examined

FIGURE 14. Objective function deviations per scenario to the respective basis LHS
sample plotted in a stacked step histogram.

problem can be classified as a simulation optimization
problem, objective function evaluations are computationally
expensive. In this case they were represented by simulations
of a representative scenario catalog. To minimize computa-
tional expenses, a scenario simulation reduction method was
introduced that enables a replacement of costly simulations
if the respective parameterization is expected to cause the
same result as a previously evaluated parameter combination
during optimization.
To evaluate efficiency of this approach, the method was

applied for optimizing calibration parameters of a level 3
automated driving function. In order to find a suitable opti-
mizer, a genetic algorithm and particle swarm optimization
algorithm were experimentally compared with respect to
optimization result and computation time. Since the GA
outperformed the PSO in this case, it was used in com-
bination with the scenario simulation reduction method to
optimize the level 3 driving function. For this application
example 11 parameters and a scenario catalog consisting of
six representative maneuvers were considered. Parameters
were optimized towards driving comfort.
The optimization provided a set of alternative calibration
parameter combinations with equivalent function values. To
further classify final solutions based on their stability towards
changing environment conditions under real circumstances, a
robustness analysis with respect to vehicle model parameters
was applied. The results exposed a high degree of robust-
ness for five out of 11 solutions laying close to each other
and small robustness for the remaining six solutions that
seem to be laying at steeper peaks in the parameter search
space. For manual calibrations on the target hardware based
on virtually obtained optimal parameter combinations, those
solutions with larger robustness should be preferred whereas
parameter combinations with smaller robustness degrees can
rather be neglected.
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TABLE 1. Sampling parameters for the validation.

TABLE 2. Ratio of erroneous samples as exposed through validation studies.

TABLE 3. Description of the calibration parameters.

TABLE 4. Parameterization of the GA and PSO for the comparative study of both
optimizers.

TABLE 5. Optimization results for the comparative study of GA and PSO.
Convergence is assumed if the best solution remains unchanged for at least 10
iterations.

The herein described scenario simulation reduction
approach allowed saving 6,416 scenario runs by replacing

TABLE 6. Initial parameter ranges and discretizations for optimization.

TABLE 7. Optimization results for the GA applied to the calibration problem.
Convergence is achieved if the number of alternative parameterizations remains
unchanged for more than five iterations.

TABLE 8. Parameter values of the single track model and parameter bounds for the
robustness analysis.

their function value with valid references. With approxi-
mately 42,000 required simulations in total an efficiency
increase of around 15% could be achieved. A final large-scale
validation study confirmed that negligible errors with respect
to optimization progress occur when applying scenario sim-
ulation reductions according to the presented scheme.
The method derived in this work provides an efficient
approach for solving scenario based optimization problems
by suggesting a novel way of using sensitivity information to
save simulation runs during each iteration. On the contrary to
other contributions in the field of simulation optimization, the
discrepancy between virtual and real environments is taken
into account by assessing robustness of optimal solutions
towards simulation model parameters. Comparable applica-
tions such as the calibration of other vehicle control systems
might benefit from the approach presented in this work.
In further investigations other use cases could be exam-

ined. Especially the large number of scenario variations
necessary to virtually perform safety risk assessments for
automated driving functions offers potentials for this method
to improve computational efficiency.
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TABLE 9. Normalized values of optimal parameter combinations and corresponding robustness.

APPENDIX
See Tables I–IX.
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