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Abstract: In this paper, we present a new analytical method to calculate the required amplitudes
and phase angles of the injected harmonic currents, to generate a determined torque ripple for
synchronous machines with surface-mounted permanent magnets. First, we described the machine
equations as a function of the phase current and the back electromotive force. We then introduced a
new asymmetrical power system. After combining the equations, we established a linear system
of equations. The solution of the equation system yielded the amplitudes and phase angles of the
harmonic currents to be injected. Finally, we validated the method with several finite element method
simulations. With this method, a previously defined torque ripple could be generated very accurately
for synchronous machines with surface magnets.

Keywords: harmonic current injection; permanent-magnet synchronous machines; surface magnets;
analytical method

1. Introduction

Permanent-magnet synchronous machines (PMSM) have largely established themselves in recent
years as electric traction machines (ETM), thanks to their high power density and low maintenance
requirements. They meet the requirements for hybrid electric vehicles (HEV) and purely electric
vehicles (EV) better than any other system [1]. Advances in converter technology have made their use
much easier [2].

PMSM, like almost every other system for ETM, do not have a smooth torque curve even in the
stationary state. This torque ripple is one of the main reasons for speed fluctuations and generates
vibrations that can excite the resonance frequencies of other components. This can lead to strong noise
and vibration emissions [3].

In recent years, many publications have dealt with the reduction of the torque ripple of PMSM.
Many good results have been achieved in this area through constructive modifications, like the
distribution of the winding [4], single-layer winding or double-layer winding [5], magnetic pole,
and anchor-slot design [6]. However, these methods are mostly limited to the reduction of the
cogging torque.

Another approach to reduce torque ripple is control intervention. One variant of this is harmonic
current injection (HCI). By injecting current harmonics onto the sinusoidal supply current, it reduces
the fluctuations in torque at the output side of the ETM [7–9].

Current methods try to reduce torque ripple as close as possible to zero. In general, the electric
drive train of a HEV or EV consists of more than just the ETM. Of course, it should be aimed at an
ETM without torque ripple, in order to reduce noise and vibration emissions. Nevertheless, it can also
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be advantageous to generate a certain torque ripple on the output side of the ETM. For example, to
reduce vibrations coming from other sources (such as gearboxes, differentials, or auxiliary units) by
means of counter-phase excitation. Alternatively, to imitate the low-frequency noise spectrum of an
internal combustion engine, which is far more accepted by the population than the narrow-banded,
high-frequency noise spectrum of electric drives.

This is the starting point of this publication, which presents an analytical method for determining
the amplitudes and phase angles of current harmonics for synchronous machines with surface magnets
(SPMSM) in order to obtain a desired torque fluctuation.

2. Fundamentals

2.1. Machine Equations for Synchronous Machines with Surface-Mounted Permanent Magnets

The mathematical models for the stator voltages of a PMSM are described in detail in the
literature [9–12]. The total torque of the machine can be divided into three parts, which are more or
less significant, depending on the machine type [13]:

Tem(t) = Talign(t) + Trel(t) + Tcog(t). (1)

Talign(t) stands for the electromagnetic torque from the Lorentz force, Trel(t) represents the reluctance
torque, and Tcog(t) is the cogging torque.

In the following, we do not examine the cogging torque in detail. Although it contributes to the
torque oscillations, it is only dependent on the stator shape and rotor flux. Those are generally constant
for PMSM and, therefore, cannot be influenced by external control interventions. The reluctance torque
contributes both, to the constant torque and to the torque ripple, and can be calculated by the following
equation [13]:

Trel(t) =
p
2

(
1
2

i2a
dLa

dϑ
+

1
2

i2b
dLb
dϑ

+
1
2

i2c
dLc

dϑ
+ iaib

dMab
dϑ

+ ibic
dMbc

dϑ
+ iaic

dMac

dϑ

)
(2)

where p stands for the number of poles, iabc represents the phase currents, Labc represents the
self-inductance of the phases, Mabc,bca represents the mutual inductance between the phases, and ϑ is
the rotating angle of the rotor.

For SPMSM, it applies approximately that the inductivities of the rotor are independent of the
angle of rotation. For that reason, we can neglect the reluctance part of the torque. The remaining part
of the torque can be calculated, according to [9,14], by:

Talign(t) =
1
ωr
·

(
iaup,a + ibup,b + icup,c

)
. (3)

Here, up,abc is the counter electromotive force, also known as back electromotive force (or back
EMF), generated by the rotation of the permanent magnets of the rotor in the magnetic field of the
stator [15], iabc represents the phase currents, and ωr is the rotational speed of the stator field or rotor.

2.2. Power Supply System

For the operation of a three-phase machine, a supply current system is required that is divided
into phases ia, ib and ic. In the considered case of a star connection without a neutral conductor, the
three phases have to match the condition:

ia + ib + ic = 0. (4)

In practice, the symmetrical current system has been established as the preferred solution. This is
described in detail in literature [10,15,16]. A uniform sine wave with a phase shift of 120 degrees is
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fed into the three phases. This system is subject to the restriction that no harmonic currents with a
frequency corresponding to a multiple of three may be injected into the system, otherwise the condition
of Equation (4) is violated.

If we abandon the requirement of a symmetrical current profile, it is possible to use an asymmetrical
current system. In this case, we still feed the fundamental oscillations symmetrically into the system
with a phase shift of 120 degrees. However, since injected harmonics do not require an identical shape
in all three phases, it is possible to feed harmonic currents with a frequency multiple of three into the
system without violating the condition of Equation (4).

If the set Nasym contains all harmonic components we want to inject into the current system, we
can describe the asymmetric current system by Equation (5).

ia,b,c =
∑

n ∈ Nasym

în· sin
(
nωet−

2
3
πs + δn

)
(5)

where s = 0, 1, 2 define the phases a, b, or c, în and δn define the respective amplitude and phase shift
of the injected harmonic current, and ωe describes the angular frequency of the fundamental oscillation.
Figure 1 shows the examples of a symmetrical and an asymmetrical current system with the values
from Table 1.

Figure 1. Symmetrical and asymmetrical current system in comparison.
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Table 1. Example values for Figure 1.

n În δn

1 10 0
2 2 π

4
4 1 0
5 0.5 0
7 0.25 π

2
8 0.125 π

10 0.0625 0

The advantage of a symmetrical current system is that only a limited spectrum of harmonics can
be generated in torque. For the compensation of torque fluctuations by a classical harmonic current
injection, this spectrum is sufficient.

The advantage of the asymmetrical current system lies in the fact that any harmonic oscillation can
be generated in the torque and, thus, any required torque fluctuation can be generated. It, therefore,
makes sense to combine both systems and thereby use both strengths. The following equation provides
the combined current system in the appropriate form:

ia =
∑

j∈Nsym

Isym, j sin
(
jωet + γsym, j

)
+

∑
k∈Nasym

Iasym,k sin
(
kωet + γasym,k

)
ib =

∑
j∈Nsym

Isym, j sin
(
j
(
ωet− 2

3π
)
+ γsym, j

)
+

∑
k∈Nasym

Iasym,k sin
(
kωet− 2

3π+ γasym,k
)

ic =
∑

j∈Nsym Isym, j sin
(
j
(
ωet− 4

3π
)
+ γsym, j

)
+

∑
k∈Nasym Iasym,k sin

(
kωet− 4

3π+ γasym,k
)
.

(6)

2.3. Back EMF

The rotation of the permanent magnets induces voltages in the stator coils. These voltages can
be measured between the star point and the corresponding phase in a PMSM operating with no
load. Neglecting the saturation effects in the iron, this voltage corresponds exactly to the counter
electromotive force [13].

Since the voltage is not perfectly sinusoidal, we approximate its shape by a Fourier series in order
to bring the analytical equations into a suitable form. This leads to the following representation for the
back EMF:

up,a =
∑
µ∈Nµ

Up,µ sin(µωet)

up,b =
∑
µ∈Nµ

Up,µ sin
(
µ
(
ωet− 2

3π
))

up,c =
∑
µ∈Nµ

Up,µ sin
(
µ
(
ωet− 4

3π
))

.

(7)

At this point, we note that many real machines are designed for an almost sinusoidal back
EMF. Therefore, for analytical calculations, the first elements of the series are often sufficient to make
well-founded statements.

2.4. Formulation of the Electromagnetic Torque Resulting from the Lorentz Force

If we now insert Equations (6) and (7) into Equation (3), a formulation is obtained for the
electromagnetic torque resulting from the Lorentz force:

Talign(t) = 1
ωr
·

 2∑
s=0

 ∑
j∈Nsym

Isym, j sin
(
j(ωet− 2

3πs) + γsym, j
)

+
∑

k∈Nasym

Iasym,k sin
(
kωet− 2

3πs + γasym,k
)

·
∑
µ∈Nµ

Up,µ sin
(
µ
(
ωet− 2

3πs
))

(8)
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Reorganization of the sums brings:

Talign(t) = 1
ωr
·

 2∑
s=0

 ∑
µ∈Nµ

∑
j∈Nsym

Isym, jUp,µ sin
(
j(ωet− 2

3πs) + γsym, j
)

sin
(
µ
(
ωet− 2

3πs
))

+
∑
µ∈Nµ

∑
k∈Nasym

Iasym,kUp,µ sin
(
k(ωet− 2

3πs) + γasym,k
)

sin
(
µ
(
ωet− 2

3πs
))
))

(9)

The combination of the trigonometric terms and resolution of the outermost sum yields:

Talign(t) = 1
ωr
·

 ∑
µ∈Nµ

∑
j∈Nsym

Isym, jUp,µ
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(
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(
cos

(
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− cos

(
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+ cos

(
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3π
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− cos
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− cos
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3π
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)

(10)

Transformation of Equation (10), using the angle sum and difference identities, yields the following form:

Talign(t) = 3
2ωr

 ∑
µ∈Nµ

∑
j∈Nsym

(
Isym, jUp,µ sin

(
γsym, j

)
sin(( j± µ)ωet)

+Isym, jUp,µ cos
(
γsym, j

)
cos(( j± µ)ωet)

)
+

∑
µ∈Nµ

∑
k∈Nasym

(Iasym,kUp,µ sin
(
γasym,k

)
sin((k± µ)ωet)

+Iasym,kUp,µ cos
(
γasym,k

)
cos((k± µ)ωet)))

(11)

3. Approach

3.1. Formulation of the System of Linear Equations

First, we must bring the nominal torque curve with its fluctuations into the appropriate shape.
Here, the decomposition into a Fourier series is suitable:

Tem(t) = Tnom(t) =
∑

l∈Nnom

T̂nom,l· sin
(
lωet + γnom,l

)
. (12)

A subsequent transformation using the angle sum and difference identities for trigonometric
functions yields the form:

Tnom(t) =
∑

l∈Nnom

T̂nom,l· cos
(
γnom,l

)
· sin(lωet) + T̂nom,l· sin

(
γnom,l

)
· cos(lωet). (13)

We assumed to know the cogging torque and neglect the reluctance torque for SPMSM, so we
convert Equation (1) as follows:

Talign(t) = Tnom(t) − Tcog(t). (14)
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Similar to the nominal torque, we used a Fourier series decomposition, the angle sum, and
difference identities to create the following structure for Tcog(t):

Tcog(t) =
∑

g∈Ncog

T̂cog,g· cos
(
γcog,g

)
· sin(gωet) + T̂cog,g· sin

(
γcog,g

)
· cos(gωet). (15)

Now, we represent Equation (14) by Equations (11), (13), and (15) as a linear combination of the
independent vectors sin(nωet) and cos(nωet)

∣∣∣ n ∈ Nnom ∪Ncog . A coefficient comparison between the
left and the right side yields a system of equations with 2n equations of the form:

U·x = h (16)

with

x =



Isym,1 sin
(
γsym,1

)
Isym,1 cos

(
γsym,1

)
...

Isym, jmax sin
(
γsym, jmax

)
Isym, jmax cos

(
γsym, jmax

)
Iasym,1 sin

(
γasym,1

)
Iasym,1 cos

(
γasym,1

)
...

Iasym,kmax sin
(
γasym,kmax

)
Iasym,kmax cos

(
γasym,kmax

)



(17)

and

h =



T̂nom,1 cos(γnom,1) − T̂cog,1 cos
(
γcog,1

)
T̂nom,1 sin(γnom,1) − T̂cog,1 sin

(
γcog,1

)
...

T̂nom,lmax cos
(
γnom,lmax

)
− T̂cog,gmax cos

(
γcog,gmax

)
T̂nom,lmax sin

(
γnom,lmax

)
− T̂cog,gmax sin

(
γcog,gmax

)


. (18)

A general representation of the matrix U, without defined sets Nsym, Nasym, and Nµ, is not trivial
and should not be done here.

3.2. Solvability of the Linear System of Equations

To yield a solution for the equation system Equation (16) U must be regular, thus quadratic and
invertible. U is quadratic if the number of coefficient comparisons corresponds to the number of
entries of the vector x. This is the case if the sum of the double cardinality of the sets Nsym and Nasym

corresponds to the cardinality of the union of Nnom and Ncog:

2·
∣∣∣Nsym

∣∣∣+ 2·
∣∣∣Nasym

∣∣∣ = ∣∣∣Nnom ∪Ncog
∣∣∣. (19)

U can be inverted if its determinant does not disappear, which must be checked for each
individual case.
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4. Validation

4.1. Machine Parameters and Validation of the Torque Calculation Method

To check the approach of Section 3 in principle, we simulated two machines with Ansys®

Electromagnetics Suite 19.0.0 - Maxwell 2D and RMxprt and compared the results of the FEM (finite
element method) simulation with the results of the described method.

Table 2 shows some of the setting parameters from the FEM simulation. Table 3 describes the
operating point under investigation and Tables 4 and 5 give the associated values for the cogging
torque and back EMF from the FEM analysis.

Table 2. Excerpt of the machine parameters from the simulation.

Machine A Machine B

Number of Poles 4 4
Number of Stator Slots 24 12

Outer Diameter of Stator 120 mm 100 mm
Inner Diameter of Stator 75 mm 50 mm

Length of Stator Core 65 mm 100 mm
Minimum Air Gap 0.5 mm 0.5 mm

Residual Flux Density 0.96 Tesla 0.96 Tesla

Table 3. Investigated operating point.

excitation frequency ωe 2π·50Hz
phase angle γ1 0.2

current amplitude I1 12 A

Table 4. Amplitudes of the back electromotive force for machine A and B.

Amplitude in V

Machine A Machine B

Up,1 21.93 111.53
Up,5 −5.02 13.39
Up,7 4.80 3.39
Up,11 −8.10 −2.10
Up,13 −1.61 −2.07

Table 5. Amplitudes and phases of the Fourier transformed cogging torque.

Amplitude in Nm Phase in Rad

Machine A Machine B Machine A Machine B

T̂cog,6 0.0021 0.0000 γcog,6 1.22 0.00
T̂cog,12 0.3102 0.2246 γcog,12 1.76 1.76
T̂cog,18 0.0031 0.0374 γcog,18 −1.57 −1.29
T̂cog,24 0.3702 0.1402 γcog,24 −1.19 −1.19
T̂cog,30 0.0011 0.0691 γcog,30 1.88 −1.10
T̂cog,36 0.2470 0.0000 γcog,36 2.15 0.00
T̂cog,42 0.0000 0.0241 γcog,42 0.00 2.23

Figures 2 and 3 show the torque curve for machine A and B, calculated by the FEM model, as well
as the calculation method presented in Section 2 for the operating point from Table 3. Figures 4 and 5
show the corresponding fast Fourier transformation (FFT) analysis of the torque curves from Figures 2
and 3. The constant part of the torque is not shown but given as a numerical value for reasons of
visibility. For machine A, the deviations between analytical calculation and FEM-simulation harmonic
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amplitudes was less than 1.6% of the constant torque. For machine B, they were less than 0.5% of the
constant torque.

Figure 2. Torque curve of machine A.

Figure 3. Torque curve of machine B.
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Figure 4. Frequency spectrum of the torque curve of machine A.

Figure 5. Frequency spectrum of the torque curve of machine B.
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4.2. Validation of Generative Harmonic Current Injection

We tested 12 scenarios for machine A in the following, in which we wanted to receive a very
specific ripple in the torque. Table 6 lists the scenarios together with the sets Nsym and Nasym, which
were injected into the current as additional harmonic waves. All amplitudes of harmonics in torque
that are not listed in the table should automatically be set to zero for the respective scenario.

Table 6. List of the 12 scenarios examined for machine A.

Scenario Required Torque Ripple Injected Harmonics

1 First reference scenario: simple
sinusoidal current, without HCI

Nsym = ∅
Nsym = ∅

2 Second reference scenario:pure
compensation of all harmonics in torque

Nsym = {5, 11, 29, 35}

Nasym =

{
5, 7, 13, 19,

25, 29, 31, 37

}
3 T̂nom,1 = 3 Nm,

γnom,1 = 1 rad

Nsym = {5, 11, 29, 35}

Nasym =

{
2, 5, 6, 7, 8, 12, 13, 14,

18, 19, 23, 25, 27, 29, 31, 37

}
4 T̂nom,2 = 3 Nm,

γnom,2 = 0 rad

Nsym = {5, 11, 29, 35}

Nasym =

{
3, 5, 7, 9, 11, 13, 15, 17, 19
20, 22, 23, 25, 26, 28, 31, 37

}
5 T̂nom,3 = 3 Nm,

γnom,3 = 0 rad

Nsym = {4, 5, 11, 29, 35}

Nasym =

{
2, 4, 5, 7, 8, 10, 13, 14,

16, 19, 25, 29, 31, 37

}
6 T̂nom,4 = 3 Nm,

γnom,4 = 0 rad

Nsym = {5, 11, 29, 35}

Nasym =

{
5, 7, 13, 19,

25, 29, 31, 37

}
7 T̂nom,5 = 3 Nm,

γnom,5 = 0 rad

Nsym = {5, 11, 29, 35}

Nasym =

{
5, 7, 13, 19,

25, 29, 31, 37

}
8 T̂nom,6 = 3 Nm,

γnom,6 = 0 rad

Nsym = {5, 11, 29, 35}

Nasym =

{
5, 7, 13, 19,

25, 29, 31, 37

}
9 T̂nom,34 = 3 Nm,

γnom,34 = 0 rad

Nsym = {5, 11, 29, 35}

Nasym =

{
4, 5, 7, 10, 13, 17, 19, 23, 25, 29,

31, 35, 37, 41, 47, 53, 58, 64

}
10 T̂nom,50 = 3 Nm,

γnom,50 = 0 rad

Nsym = {5, 11, 29, 35}

Nasym =

{
7, 13, 19, 20, 25, 26, 31, 33, 37,

39, 45, 51, 57, 63, 69, 74, 80

}

11

T̂nom,2 = 2 Nm,
γnom,2 = 0 rad

T̂nom,13 = 1 Nm,
γnom,13 = 0 rad

Nsym = {5, 11, 29, 35}

Nasym =


2, 3, 5, 7, 8, 9, 11, 12, 13,
14, 15, 17, 19, 20, 22, 23,
25, 26, 28, 31, 32, 37, 43


12

T̂nom,6 = 1 Nm,
γnom,6 = 0 rad

T̂nom,22 = 1 Nm,
γnom,22 = 0 rad
T̂nom,35 = 1 Nm,
γnom,35 = 0 rad

Nsym = {5, 11, 29, 35}

Nasym =


2, 5, 7, 8, 11, 13, 17, 18, 19, 23,

24, 25, 29, 30, 31, 35, 36, 37,
41, 42, 46, 48, 52, 54, 59, 65


The torque curves from the FEM simulations were analyzed by an FFT, as in Section 4.1. This was

used to check whether the torque fluctuations required in the respective scenarios could be generated.
Figure 6 shows the results of the FFT analysis for each individual scenario. S1 and S2 operate as
reference cases and show the results of the FFT when nothing is injected or harmonics are injected to
suppress torque fluctuation. The figure also shows that in addition to the required torque fluctuations,
further harmonics with non-negligible amplitude were generated.
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Figure 6. Results of the Fourier transformed torque ripple of the 12 generative harmonic current
injection (gHCI) scenarios of machine A.

5. Conclusions

The results of the validation in Section 4.1 showed that the calculation of the torque via Equation (3)
corresponded well with the results from the far more complex and computationally more elaborate FEM
simulation. For the constant torque, the deviations were less than 2% for both machines. Individual
harmonics, such as the sixth harmonic of machine A, may have had deviations of 20% from the
corresponding harmonic of the FEM simulation, but in absolute terms this corresponded to a deviation
of only 1.5% from the constant torque. As Figures 4 and 5 show, the amplitudes of the harmonics can
vary both upwards and downwards. A general trend was not recognizable. However, it can be said
that, except for one outlier, the deviations became smaller the higher the order of the corresponding
harmonic became. The reluctance torque may well have caused deviations between the analytical
calculation and the FEM simulation, since this was calculated in the FEM simulation but neglected in
the analytical calculation. The assumption in Section 2.1 that the reluctance torque could be neglected
for synchronous machines with surface magnets was confirmed by the small deviations. The results
from the validation suggest that the analytical calculation of the electromagnetic torque from the
Lorentz force is justified by Equation (11).

The results of Figure 6 show that we can generate the harmonics in torque demanded in advance
with a sufficiently large amplitude. In addition to the desired ones, we can compensate the undesired
fluctuations that occur in the machine without current injection as far as possible to zero (see scenario
1 and scenario 2). However, the results also show that, in addition to the desired harmonic waves,
parasitic harmonics of low amplitude were also generated which had not previously appeared in the
torque spectrum. These occurred from the interaction of the injected harmonics in the current with
the fundamental wave of the back EMF. Therefore, as few harmonics as possible should be injected
into the current, so as few oscillations as possible can interact with each other to generate additional
harmonics. In general, it has to be considered whether the benefit generated by the desired harmonic
waves justifies these additional fluctuations for every single machine.
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6. Summary

In this paper, we presented an analytical method that allowed the generation of a very specific
torque ripple by HCI for SPMSM. First, we described the machine equations as a function of the phase
current and the back EMF. Then we introduced a new asymmetrical power system, which enabled
higher harmonics to be injected into the torque, which was a multiple of three. After combining the
equations, we established a linear system of equations. For this purpose, we converted the different
components in such a way that a coefficient comparison between the different sine and cosine terms
was possible.

The solution of the linear equation system yielded the amplitudes and phase angle of the respective
harmonics, which must be injected into the phase current. Next, we discussed the requirements under
which the linear system of equations could be solved.

This was followed by the validation of the analytical method by comparison with a FEM simulation.
First, we compared the torque of the FEM simulation with the analytical calculation without harmonic
currents being injected. Although we observed slight deviations, they were within an acceptable range.
The next step was to inject higher harmonic currents in order to obtain the required torque ripple
on the output side of the machine. Here we showed that the FEM simulation came very close to the
required torque curves and, thus, validated the presented analytical method.
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