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Abstract We review the current status of the theory predic-
tions for elastic μ-e scattering, describing the recent activ-
ities and future plans of the theory initiative related to the
proposed MUonE experiment.

1 Introduction

There is renewed interest in obtaining precise theoretical pre-
dictions for elastic muon-electron scattering. This is to be
seen in the context of MUonE [1], a recent proposal to per-
form a very precise measurement of μ-e scattering [2]. A
comparison of experimental data with perturbative calcula-
tions can be used to extract the hadronic vacuum polarisation
(HVP) through its contribution to the running of the QED
coupling α. This follows the original idea of using scattering
data to extract the leading hadronic contribution aHLO

μ to the
muon (g−2) from the effective electromagnetic coupling in
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the space-like region [3]. The measurement of the running
of alpha in the space-like region from small-angle Bhabha
scattering was proposed in [4] and done in [5].

For the planned MUonE experiment, the effect of the HVP
changes the differential cross section of μ-e scattering by up
to O(10−3), depending on the scattering angle of the outgo-
ing electron. In order to obtain aHLO

μ with a statistical error
similar to current evaluations, the HVP needs to be extracted
from μ-e data with a precision below one percent. Hence,
the accuracy of the total experimental and theoretical error
should not exceed the 10 ppm level.

The proposal of MUonE is to scatter a 150 GeV muon
beam on a Beryllium fixed target. In order to obtain sufficient
statistics and reduce multiple-scattering effects [6], the target
(about 60 cm in total) is split into many (about 40) thin layers.
The measurements are done in several stand-alone stations
of about 1 m length and 10 × 10 cm2 transverse dimension.
The scattering angles of the electron θe and the muon θμ (in
the lab frame) are measured very precisely, but no further
kinematic information is assumed to be available.

From an idealised point of view we thus consider

μ±(p1) e
−(p2) → μ±(p3) e

−(p4) + X, (1)
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where the initial-state electron is at rest and X stands for any
further radiation. With the energy of the incoming muon set
to E1 = 150 GeV, the centre-of-mass energy is fixed as s =
m2 + M2 + 2mE1 � (400 MeV)2, where m and M denote
the electron and muon mass, respectively. The momentum
transfer t ranges from tmin � −(380 MeV)2 to zero. Hence,
there are two widely different scales entering the process with
m2 � Q2, where Q2 stands for the large scales M2 ∼ s ∼
|t |. The resulting large logarithms ln(m2/Q2) will have to
be properly accounted for in the theoretical treatment of the
process.

The incoming muon beam consists of either positively
or negatively charged muons and is about 80% polarised.
Since the electrons in the target are unpolarised and QED is
parity conserving, the only effect of the polarisation is due
to the electroweak contributions coming from the Z -boson
exchange. At tree level, the latter contributes at the level of
10 ppm and, hence, has to be included.

There are several effects that result in differences from
the idealised process. First, the electrons are bound, and the
impact of bound-state effects should be estimated. Second,
there are nuclear background processes due to μ-N scatter-
ing. From our point of view, however, the most important
aspect of (1) is the selection of elastic scattering. Since pho-
tons are not detected, there is no way of telling how much
radiation is present in X . A contribution including n photons
results in a suppression by αn relative to the leading order
(LO), i.e. a NnLO contribution. Another relevant process is
open lepton-pair production, i.e. X = e+ e− or, albeit with
a very small phase space, X = μ+ μ−. This amounts to a
NNLO QED contribution. Finally, there is also a background
from pion production where the pion subsequently decays
into two photons, i.e. X = π0 → γ γ . As a last option we
mention X = π+ π−, again with a very small phase space.

In the absence of additional emission X in the final state,
i.e. for the elastic 2 → 2 scattering process, we can derive a
simple functional relation between θe and θμ that we call
the elasticity curve. Thus, allowing only events within a
small band around this curve effectively selects nearly elas-
tic events. However, from a theoretical point of view this is
problematic. Making a stringent cut on the phase space is
a further source of large logarithms, beyond the ln(m2/Q2)

mentioned above, that might need to be resummed.
The precision expected at the MUonE experiment also

raises the question whether possible new physics (NP) could
affect its measurements. This issue was addressed in [7],
studying possible NP signals in muon-electron collisions
at MUonE due to heavy or light mediators, depending on
whether their mass is higher or lower thanO(1 GeV). The for-
mer were analysed in a model-independent way via an effec-
tive field theory approach, whereas for the latter the authors
discussed scenarios with light spin-0 and spin-1 bosons.
Using existing experimental bounds, they showed that pos-

sible NP effects in muon-electron collisions are expected
to lie below MUonE’s sensitivity, therefore concluding that
it is very unlikely that NP contributions will contaminate
MUonE’s extraction of the HVP. The authors of [8] addressed
the sensitivity of MUonE to new light scalar or vector medi-
ators able to explain the muon g − 2 discrepancy. They con-
cluded that the measurement of the HVP at MUonE is not
vulnerable to these NP scenarios. Therefore, the analyses of
[7,8] reach similar conclusions where they overlap. These
results confirm and reinforce the physics case of the MUonE
proposal.

In what follows we will discuss all issues related to obtain-
ing a theoretical prediction for μ-e scattering at 10 ppm. We
start in Sect. 2 by briefly revisiting the kinematics of μ-e
scattering. Next, we discuss in Sect. 3 the fixed-order pertur-
bative calculations in QED. This is followed by a discussion
on how to include the HVP in Sect. 4. Possible strategies on
how to deal with and estimate the importance of contribu-
tions beyond those included in the fixed-order calculations
are considered in Sect. 5. Finally, in Sect. 6 we give an out-
look on how the various pieces can be combined into a general
purpose Monte Carlo code that provides a sufficiently accu-
rate theoretical prediction, before we present our summary
in Sect. 7.

2 Kinematics of µ-e scattering

Let us begin by reviewing for the elastic μ-e scattering pro-
cess,

μ±(p1) e
−(p2) → μ±(p3) e

−(p4), (2)

the basic relations between angles, energies and momenta in
the laboratory frame (LAB) and in the centre-of-mass system
(CMS). In a fixed-target experiment, where the electron is
initially at rest, the Mandelstam variables s and t are given
by

s = M2 + m2 + 2mE1,

t = 2m2 − 2mE4,

tmin = −λ(s, M2,m2)

s
≤ t ≤ 0. (3)

Here, E1 is the energy of the incident muon, E4 is the electron
recoil energy and

λ(a, b, c) = a2 + b2 + c2 − 2ab − 2ac − 2bc, (4)

is the Källén function. The third Mandelstam variable u is
related to s and t in the usual way as s+ t+u = 2M2 +2m2.
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It is also convenient to define the variable x that is related
to t as

x(t) =
⎛
⎝1 −

√
1 − 4M2

t

⎞
⎠ t

2M2 or t (x) = x2 M2

x − 1
.

(5)

With tmin � −(380 MeV)2 the range of x is 0 ≤ x � 0.933
and x = 0 corresponds to t = 0.

The parameters for the Lorentz transformation between
the LAB and the CMS are

γ = E1 + m√
s

= s + m2 − M2

2m
√
s

,

β = |p1|
E1 + m

= λ1/2(s, M2,m2)

s + m2 − M2 . (6)

We define the scattering angles θe,μ in the LAB and θ∗
e,μ in

the CMS as the angles between the direction of the incident
muon and the outgoing electron or muon. While in the CMS
we trivially have θ∗

e = π − θ∗
μ, in the LAB frame the two

angles are correlated by the elasticity condition

tan θμ = 2 tan θe

(1 + γ 2 tan2 θe)(1 + g∗
μ) − 2

, (7)

where

g∗
μ = β

β∗
μ

= E1m + M2

E1m + m2 (8)

and β∗
μ is the muon velocity in the CMS. In the θe-θμ plane,

(7) defines the elasticity curve depicted in Fig. 1. This is the
fundamental constraint for MUonE to discriminate elastic
scattering events from the background of radiative events
and inelastic processes. Since g∗

μ > 1, the outgoing muon
is always emitted in the LAB forward direction at an angle
smaller than θmax

μ = 4.8 mrad (for E1 = 150 GeV), where

tan θmax
μ = 1

γ
√
g∗2
μ − 1

, tan θe

∣∣∣
θmax
μ

=
√
g∗2
μ − 1

γ (g∗2
μ + 1)

. (9)

On the contrary, the recoiling electron can be emitted in the
whole LAB forward hemisphere, i.e. 0 ≤ θe ≤ π/2, since
g∗
e = β/β∗

e = 1. Therefore, if both scattering angles are
below 4.8 mrad there is an ambiguity between muon and
electron that must be resolved by μ/e discrimination.

The energy and the scattering angle of the electron in the
LAB can be obtained by solving the boost relation E∗

4 =
γ E4 − βγ p4 cos θe for E4. This yields

E4

m
= 1 + β2 cos2 θe

1 − β2 cos2 θe
. (10)

Fig. 1 The elasticity curve, i.e. the relation between the muon and
electron scattering angles for 150 GeV incident muon beam momentum

Fig. 2 The relative importance of the HVP at NLO in μ-e scattering
as a function of θe

Going beyond the elastic process (2), by allowing for addi-
tional emission in the final state as described by (1), we have
to extend the definitions of the momentum transfer. The vari-
ables

te ≡ (p2 − p4)
2 = 2m2 − 2mE4 (11)

tμ ≡ (p1 − p3)
2 (12)

now have to be distinguished. Sometimes it is useful to
express te in terms of the electron scattering angle as

te = (2m β cos θe)
2

cos2 θe − 1
, (13)

which follows directly from (10) and (11).
Since the contribution of the HVP to μ-e scattering is of

central importance, in Fig. 2 we show its leading effect as a
function of the electron scattering angle θe. More precisely,
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we show the NLO K factor defined as

KNLO
h (θe) = dσNLO

h

dθe
/
dσ (0)

dθe
, (14)

where σ (0) is the Born cross section and σNLO
h the hadronic

contributions at NLO. As can be seen from Fig. 2 and will
be discussed in more detail in Sect. 4, the contribution of
the HVP to μ-e scattering is larger for small θe, whereas
for θe � 20 mrad (corresponding to x � 0.4) it is strongly
suppressed. In Fig. 2 the numerical values of the HVP are
from the Fortran library alphaQEDc19 [9–12].

The determination of the HVP will be obtained by a tem-
plate fit of the shape of the distribution. For a simplified
discussion it is useful to think in terms of a split into a signal
region (small θe) and a normalisation region (large θe). In
the signal region the effect is of the order of 10−3 whereas
in the normalisation region the HVP contribution amounts
to � 10−5 and its error is expected to be below the experi-
mental systematic uncertainty. A more detailed description
of the extraction of the HVP and the interplay with possible
new physics is given at the end of Sect. 4.1.

3 Fixed-order calculations

In order to achieve our goal of a relative accuracy of 10 ppm,
we need to calculate μ-e scattering at least up to NNLO in
the perturbative expansion in the electromagnetic coupling
α ∼ 1/137. In addition, we need a flexible setup that allows
for the computation of arbitrary infrared safe observables,
i.e. a parton level Monte Carlo (MC). The latter aspects will
be discussed in Sect. 6. In this section we discuss the main
features of the analytic fixed-order computations. We stress
that by LO, NLO, and NNLO we imply a strict fixed-order
expansion in the on-shell coupling α, without any resum-
mation whatsoever. Issues related to resummation will be
discussed in Sect. 5.

3.1 Leading order

Starting at LO in QED there is a single diagram with a t-
channel exchange of a photon. It is precisely this feature that
makes this process ideal to extract the HVP. The dominant
contribution of the HVP is simply given by the insertion of the
hadronic bubble Πhad into the photon propagator, as shown
in Fig. 3b. It is precisely the effect of this contribution that is
shown in Fig. 2.

As indicated in Fig. 3 we often (formally) distinguish the
charges of the electron and muon. Denoting them by q and
Q respectively, the LO amplitude can be written as

A (0)(μe → μe) ≡ A (0)
n = qQA (0)

1,1 , (15)

(a)

(b) (c)

Fig. 3 LO contributions from QED, HVP and the Z -boson exchange

where the superscript indicates the number of loops. The two
integer subscripts of the last expression indicate the power
of q and Q. The two-particle final state is indicated by the
subscript n of the first expression, where n = 2 is implicitly
understood. To obtain a (differential) LO cross section dσ (0)

we simply integrate the (squared) matrix element M (0)
n over

the two-particle phase space

dσ (0) =
∫

dΦnM
(0)
n =

∫
dΦn

∣∣A (0)
n

∣∣2
, (16)

where cuts applied by the experiment and the definition of
the observable are understood. The leading-order differential
cross section is given by

dσ (0)

dt
= 4πα2 (M2 + m2)2 − su + t2/2

t2 λ(s, M2,m2)
. (17)

Because M (0)
n ∼ 1/t2 and, hence, dσ (0)/(dt) ∼ 1/t2 the

total cross section is not well-defined. Therefore, we always
have to apply cuts to the integration to avoid the region t ∼ 0.

At LO (and NLO), effects due to the electron mass m are
suppressed by z2 where

z ≡ m

M
. (18)

Hence, they have to be taken into account at – and even
beyond – LO to achieve a 10 ppm prediction.

The contributions due to the exchange of a Z boson are
strongly suppressed because of its large mass MZ . However,
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the interference between the Z -boson and photon-exchange
diagrams is suppressed with respect to the LO QED contri-
bution only by Q2/M2

Z � 10−5. Hence, this effect is relevant
and needs to be taken into account in the calculation.

3.2 Next-to-leading order

Going to NLO, the separately divergent real and virtual con-
tributions have to be combined to obtain a physical result.
Following earlier efforts [13,14], recently a fully differential
NLO code [15] has been used to perform a detailed phe-
nomenological study, taking into account the full m depen-
dence. The NLO contributions can be split into gauge invari-
ant parts by separating the contributions into powers of q
and Q. Thus we decompose the NLO amplitude A (1)

n ≡
A (1)(μe → μe) as

A (1)
n = q3QA (1)

3,1 + qQ3 A (1)
1,3 + q2Q2 A (1)

2,2 . (19)

The leptonic vacuum polarisation contributions are part of
the full NLO calculation. However, we sometimes treat them
separately as they are somewhat closer connected to the sig-
nal extraction.

The virtual corrections are then obtained by integrating
over the n = 2 parton phase space the renormalised squared
matrix element

M (1)
n = 2 Re

[
A (1)

n × (A (0)
n )∗

]
. (20)

Typically, the masses and wave functions are renormalised in
the on-shell scheme, whereas for the coupling, either the on-
shell scheme or the MS-scheme can be used. Similarly, the
real corrections are obtained by integrating over the n+1 = 3
parton phase space the squared matrix element

M (0)
n+1 = ∣∣A (0)

n+1

∣∣2
, (21)

where the amplitude A (0)
n+1 = A (0)(μe → μeγ ) is also

decomposed according to

A (0)
n+1 = q2QA (0)

2,1 + qQ2A (0)
1,2 . (22)

The cross section is obtained as the sum

dσ (1) = dσ (v) + dσ (r)

=
∫

dΦnM
(1)
n +

∫
dΦn+1M

(0)
n+1. (23)

As illustrated in Fig. 4, the terms ∼ q4Q2 (∼ q2Q4) in M (1)
n

and M (0)
n+1 correspond to the corrections due to photon emis-

sion from the electron (muon) and are hence called electronic
(muonic) contribution. There are also mixed terms ∼ q3Q3.
The latter flip the sign if μ− is changed to μ+. As will be

(a)

(b)

Fig. 4 Examples of NLO QED contributions to M
(0)
n+1 (r), and M

(1)
n

(v). Analogous muonic contributions proportional to q2Q4 are implied

discussed in Sect. 6, electronic effects are actually dominant
[15]. Regarding the virtual corrections, the electronic contri-
bution only requires A (1)

3,1 which is simpler to compute than

A (1)
2,2 . Such considerations become more important when dis-

cussing NNLO contributions.
Keeping a finitem complicates the computation of the vir-

tual corrections. On the other hand, it serves as a regulator for
collinear singularities which are replaced by log(m2/Q2) and
only soft singularities are left. In [15] the latter are regularised
using a photon mass. There are two additional independent
parton level Monte Carlo codes [16,17] using dimensional
regularisation for IR singularities. These codes have been
compared to [15] and full agreement has been found.

Electroweak (EW) NLO corrections are not expected to
be required at the 10 ppm level. This was explicitly verified
in [15].

3.3 Next-to-next-to-leading order

A complete result for NNLO QED corrections to μ-e scat-
tering is not yet available. However, there are already several
partial results and a large theoretical effort is under way to
complete the full NNLO calculation.

Following the notation of (15), (19) and (22) and using
An+2 = A (μe → μeγ γ ), the required amplitudes for the
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NNLO corrections are

A (2)
n = q5QA (2)

5,1 + q4Q2 A (2)
4,2 + q3Q3 A (2)

3,3

+ q2Q4 A (2)
2,4 + qQ5 A (2)

1,5 (24)

A (1)
n+1 = q4QA (1)

4,1 + q3Q2A (1)
3,2

+ q2Q3A (1)
2,3 + qQ4A (1)

1,4 (25)

A (0)
n+2 = q3QA (0)

3,1 + q2Q2A (0)
2,2 + qQ2A (0)

1,3 (26)

Similarly, for the matrix elements we need

M (2)
n = 2 Re

[
A (2)

n × (A (0)
n )∗

] + ∣∣A (1)
n

∣∣2 (27)

M (1)
n+1 = 2 Re

[
A (1)

n+1 × (A (0)
n+1)

∗] (28)

M (0)
n+2 = ∣∣A (0)

n+2

∣∣2 (29)

for the double-virtual (vv), real-virtual (rv) and double-real
(rr) corrections. They have to be integrated over the n = 2,
n + 1 = 3 and n + 2 = 4 parton phase space, respectively,

dσ (2) = dσ (vv) + dσ (rv) + dσ (rr)

=
∫

dΦnM
(2)
n +

∫
dΦn+1M

(1)
n+1

+
∫

dΦn+2M
(0)
n+2. (30)

The interplay between these three parts is illustrated in Fig. 5
where different cuts to the same diagram squared represent
contributions to dσ (rr), dσ (rv) and dσ (vv), respectively. From
a theory point of view, there is a choice whether to include
the sub-process μe → μe + ee in M (0)

n+2. Assuming m > 0,
this is a separate IR finite contribution.

The main bottleneck for a NNLO calculation keeping the
fullm dependence is the evaluation of the two-loop amplitude
A (2)

n (m). It is not clear if a complete NNLO calculation with
full m dependence is feasible in the next years. Fortunately,
this is also not really required. The electronic contributions
can be computed with full m dependence. For the remaining
contributions, an approximate treatment for the NNLO cor-
rections, i.e. an expansion in z is expected to be sufficient to
obtain 10 ppm precision in the theoretical prediction.

Usually we refrain from listing the dependencies of the
amplitudes on the momenta and the masses, m and M . How-
ever, sometimes we will have to indicate how we treat the
dependence on the electron mass. Either we keep it com-
pletely as in A (2)

n (m), or we set it to zero as in A (2)
n (0).

A third option is to consider an expansion in m, using
m2 � {M2, Q2}. We will indicate this in the notation by
writing A (2)

n (z) having in mind m = zM with z � 1.
Whether or not we keep the electron mass will alter the

form of how the IR singularities of M (2)
n manifest them-

selves. Using dimensional regularisation with d = 4 − 2ε,

(a)

(b)

Fig. 5 Examples of NNLO QED contributions to M
(0)
n+2 (rr), M (1)

n+1

(rv), and M
(2)
n (vv). Analogous contributions with ql Q8−l with l ∈

{4, 3, 2} are understood

the highest pole of M (2)
n (0) is 1/ε4 which corresponds to

double-soft-collinear poles. On the other hand,M (2)
n (m) and

M (2)
n (z) will only have 1/ε2 poles. The double-soft-collinear

poles are now replaced by 1/ε2 log2(z).
A similar change happens in the real-virtual and double-

real contribution. Introducing an electron mass regularises
the collinear singularities in the phase-space integration,
again transforming the corresponding 1/ε poles to log(z)
terms. Of course, for a physical cross section, all final-state
collinear (and soft) singularities cancel. Thus, as for all regu-
larisation procedures, a cross section is independent of which
regularisation is chosen for the collinear singularities. The
difference between dσ (2)(m) and dσ (2)(0) or dσ (2)(z) is in
terms of the form z p logl(z) that are finite (and actually van-
ish) for m → 0. An advantage of the regularisation with
a finite electron mass is that the initial-state collinear loga-
rithms are manifest in the fixed-order contributions.

In what follows we will now consider how to obtain a
sufficiently precise approximation to a complete NNLO cal-
culation, comparing different approaches on how to treat the
electron mass.

Massive electron

We start by noting that also at NNLO the electronic emission
is the dominant contribution. This corresponds to the terms
∼ q6Q2 in dσ (2), with an example shown in Fig. 5a. This
part can actually be computed with full m dependence. It is a
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problem with only one active mass scale, m, in the loops and
the two-loop virtual corrections 2 Re[A (2)

5,1 × (A (0)
n )∗] can

be obtained from the heavy-quark (actually lepton) two-loop
form factor [18,19]. For the moment we do not include the
HVP insertion in the two-loop diagrams. This will be dealt
with in Sect. 4.

In order to combine this with the double-real and real-
virtual contributions using dimensional regularisation, a suit-
able NNLO subtraction scheme has to be implemented. One
example of such a scheme is the FKS2 [20] which extends the
NLO FKS subtraction scheme [21,22] to NNLO in the case
of massive QED where only soft singularities are present.
FKS2 was successfully tested for the muon decay with full
electron mass. Preliminary results for the q6Q2 terms have
recently been presented in [23,24]. Of course, it is trivial to
adapt these computations for the purely muonic emission, i.e.
the terms ∼ q2Q6. But they are expected to be numerically
much less important. A similar calculation has been done
in the context of lepton–proton scattering in [25], where the
electronic terms for e p → e p scattering have been com-
puted using a phase-space slicing method.

Contributions where both emission from the electron and
muon line are involved are technically much more challeng-
ing. An example is shown on Fig. 5b. In fact, an analytic com-
putation of the two-loop amplitude, keeping the fullm depen-
dence, is probably not feasible in the near future. However,
the reduction to master integrals of M (2)

n (m) is currently
under investigation. This could be combined with a numer-
ical evaluation of the master integrals. Another approach
would be a completely numerical evaluation of the ampli-
tude, even avoiding a reduction to master integrals. Even if
a complete result for M (2)

n (m), suitable for a Monte Carlo
code, is not expected to be available within the next few years,
these efforts are extremely useful as cross checks for other
approaches (see below).

Apart from the two-loop amplitude also the full real-
virtual corrections M (1)

n+1(m) need to be computed, i.e. the
interference between one-loop and the Born amplitude of
eμ → eμγ . Even though their integration over the n+1 = 3
phase space entails an IR (soft) singularity, the order ε terms
of M (1)

n+1(m) are not really required, if a suitable subtraction
scheme such as FKS2 is used.

The calculation of these interference terms was considered
in [26], where both cases with massless and massive electrons
were studied. The real-virtual contributions are encompassed
in theA (1)

n+1 term, and comprise 44 Feynman diagrams which
are generated with the Mathematica packages FeynArts
and FeynCalc [27,28]. Four of these diagrams do not actu-
ally contribute since they automatically cancel out at inte-
grand level because of Furry’s theorem, while the remaining
ones can be split into two sets: i) where the real photon emis-
sion occurs from a muonic internal or external line and ii)
where the emission is from an electron line. When both lep-

Fig. 6 Examples of Feynman diagrams ∼ q3Q2 contributing to the
real-virtual corrections to μ-e scattering at NNLO in QED. Related
diagrams ∼ q2Q3, where the real photon is radiated from a muonic
line, can be obtained from these by means of symmetries

tons are massive the contributions from the two sets can be
related via symmetries, namely exchanging the electron and
muon masses and charges as well as the respective external
momenta. This fact was exploited to halve the number of
diagrams to be evaluated to just 20. Representative diagrams
are depicted in Fig. 6.

These unrenormalised amplitudes are then inserted in the
real-virtual interference term (29), which is computed with
massive electrons to assess the impact of the massless elec-
tron approximation enforced for the calculation of other con-
tributions. The first steps towards a fully-analytic evaluation
of this contribution were undertaken, using the same auto-
matic framework employed for the calculation of M (2)

n . The
integrands depend on the two mass parameters plus five kine-
matic variables, which were parametrised using the Momen-
tum Twistor parametrisation [29–31] in preparation for the
adaptive integrand decomposition in Aida. Subsequently the
amplitudes were simplified via integration-by-parts identities
[32–34] generated with the package Kira [35], identifying
45 master integrals.

The interferences were then matched with counterterm
amplitudes generated in FeynCalc, employing the on-shell
renormalisation scheme. The cancellation of the leading
ultraviolet (UV) poles in dimensional regularisation in the
renormalised amplitudes was verified numerically.

Massless electron

Neglecting the electron mass reduces the difficulty of the
problem from extreme to very high. Fortunately, there has
been an impressive effort devoted to this computation, such
that the evaluation of the two-loop amplitude for massless
electrons, A (2)

n (0), is close to completion.
The amplitude A (2)

n (0) receives contributions from 69
Feynman diagrams, which are generated with the help of
the packages FeynArts/FeynCalc [27,28] and its evalua-
tion requires the calculation of O(104) integrals. Owing to
the use of adaptive integrand decomposition [36,37], imple-
mented in the in-house package Aida [38], and integration-
by-parts identities [32–34], implemented in the public rou-
tines Reduze [39,40] and Kira [35], the amplitude – to be
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Fig. 7 Representative examples of two-loop diagrams contributing to
μ-e scattering at NNLO in QED

precise, the interference term 2 Re
[
A (2)

n × (A (0)
n )∗

]
– has

been simplified, and written as a linear combination of an
integral basis formed by about 120 elements [41,42], dubbed
master integrals. The latter have been successfully evalu-
ated by means of the differential equation technique [43–
47] in combination with the Magnus exponential method
[48,49]. Originally evaluated in a non-physical region, where
the mathematical complexity was found to be more limited,
the analytic evaluation of the master integrals to the physical
scattering region was recently obtained [50]. The analytic
expressions of the master integrals, numerically evaluated
with the help of GiNaC [51], were successfully validated
against the numerical values provided either by SecDec [52]
or, for the most complicated integrals, coming from the 7-
propagator graphs, by an in-house algorithm. Representative
diagrams are depicted in Fig. 7.

The non-trivial evaluation of the (unrenormalised) two-
loop amplitude for the μ-e scattering required the develop-
ment of a high-level automated tool, exploiting the synergy
of different packages embedded in a Mathematica frame-
work, whose flowchart is depicted in Fig. 8. UV divergences
arising from divergent loop integrals are regularised within
the dimensional regularisation scheme, to be later removed
by means of a diagrammatic approach to the renormalisation.
In particular, the counterterm Lagrangian provides additional
Feynman rules, which can be adopted in our automatic frame-
work for generating the additional diagrams, yielding a UV
finite amplitude. Given the masslessness of the electron, we
adopted an hybrid renormalisation scheme choice:

– MS scheme for the coupling;
– on-shell scheme for the muon mass.

For a recent review on the state of the calculation, see also
[53].

In principle, the full computation can be done with mass-
less electrons. In the phase-space integration, this results in
collinear singularities. Hence the subtraction (or any other)
scheme used will need to be adapted to this case. Unfortu-
nately this will destroy the simple divergence structure of
massive QED that was exploited in FKS2.

There is one further subtlety when performing the calcu-
lation with massless electrons everywhere. While final-state
singularities will cancel for m = 0 in any sufficiently inclu-

Fig. 8 Flowchart of the algorithm to evaluate the two-loop amplitude

sive observable [54], the same cannot be said about initial-
state collinear singularities1. The corresponding ε poles will
remain unless properly treated. There are multiple somewhat
related ways to make these expressions well defined such as
the Weizsacker–Williams approach, the structure function
approach [55,56] or the QED parton distribution function
approach [57]. These techniques where honed in the LEP era
and will work at the required accuracy.

A final problem with a purely massless calculation is
the restrictions imposed by the phrase ‘sufficiently inclu-
sive observable’ of the KLN theorem [54]. This will make a
quantity such as θe inaccessible without breaking IR safety
or defining a jet-like observable.

Massified electron

Given that the electron mass is a natural cutoff for collinear
emission, it seems to be natural to usem as a collinear regula-
tor. Apart from reducing the complexity of the IR subtraction
for the real integration, this will also facilitate the combina-
tion of a fixed-order result with parton-shower Monte Carlo
codes and automatically produce the log(m) terms that are
present in distributions.

1 Such poles exist even though the initial-state electron is at rest as the
total cross section is Lorentz invariant.
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In order to do this, we will have to massify M (2)
n (0), i.e.

transform it into M (2)
n (z) that contains the leading logarith-

mic terms log(m). Initially, this problem has been addressed
for Bhabha scattering [58,59] and then been generalised
[60,61] using a factorisation approach. A further generali-
sation is needed if two different non-vanishing masses exist,
as in our case M and m. This has been studied in the context
of the muon decay [62] and will allow to obtain M (2)

n (z)
from M (2)

n (0).
To achieve this, an approach based on soft collinear effec-

tive theory (for an introduction to SCET see [63]) and the
method of regions [64] is used. Loop integrals contribut-
ing to M (2)

n (m) are expanded in z by taking into account
all relevant scalings of the loop momenta ki (regions) and
expand the integrand in all these regions. After expansion of
the integrand, the integrations are simplified and adding up
all contributions reproduce the expansion of the full integral.
In our case, the relevant regions are hard ki ∼ (1, 1, 1), soft
ki ∼ (z, z, z) and, ultrasoft ki ∼ (z2, z2, z2). Further, we
need collinear ki ∼ (z2, 1, z) for the in-coming and anti-
collinear scaling ki ∼ (1, z2, z) for the out-going electron.
Here we have used light-cone coordinates ki = (k+, k−, k⊥).
Each external electron defines a collinear direction (either the
one of k− or of k+) that has to be taken into account.

In principle, this can be done to any power in z. However,
restricting ourselves to the leading power, the matrix element
factorises as

M (2)
n (z) =

∏
i=1,2

√
Zi (m) × S × M (2)

n (0). (31)

The hard contributions correspond to the massless matrix
element M (2)

n (0) the computation of which was discussed
above. The soft part, S , is also process dependent and will
have to be computed for μ-e scattering. However, the compu-
tation of the soft part is much simpler than the full amplitude.
It obtains contributions from fermion-loop diagrams and can
be tested against a fully massive computation of the fermion
loops [65]. The collinear contributions are contained in the
factor

√
Zi (m) that is process independent and known [62]

and has to be added for each external electron. Finally, ultra-
soft contributions exist for individual integrals and diagrams,
but they cancel for the amplitude in agreement with the SCET
expectations.

This result can now be combined with a fully massive
evaluation of dσ (rv)(m) and dσ (rr)(m). However, the fully
massive real corrections contain poles that will not naively
match the poles obtained through massification, instead caus-
ing a mismatch at O(z). This mismatch can be avoided by
either expanding the analytic poles of the real corrections or
calculating the fully massive poles of the two-loop amplitude
from first principles [66,67]. For the phase-space integration
only soft singularities have to be regularised with dimen-

sional regularisation. Putting everything together results in
a Monte Carlo code that provides results complete at NLO
and includes all leading in z terms at NNLO. However, it
does not systematically include non-leading terms at NNLO,
i.e. terms that vanish in the limit z → 0, such as α2z log(z).
It should also be mentioned that in the region t → −0 the
counting used in this expansion breaks down. Of course the
cross section is divergent in this region anyhow such that this
problem can be avoided with an appropriate cut.

3.4 Beyond next-to-next-to-leading order

A complete calculation at N3LO is a daunting task. How-
ever, keeping in mind that the dominant contribution to any
loop order stem from emission of the electron, i.e. terms
O(q2+2nQ2), at least a partial N3LO result might be achiev-
able. Once more it is the remarkable simplicity of QED that
allows us to extend the subtraction scheme proposed for
NNLO, FKS2, to even higher loop orders [20]. The N3LO
extension, aptly named FKS3, has already been worked out
and shown to retain the simplicity of FKS.

The necessary ingredients for this endeavour are the A (3)
7,1

part of the three-loop A (3)
n , the A (2)

6,1 part of the two-loop

A (2)
n+1, the A (1)

5,1 part of the one-loop A (1)
n+2, and the A (1)

4,1 part

of the tree-levelA (0)
n+3. The latter two are, at least in principle,

easy to obtain thanks to the advances made in the automation
of one-loop calculations. The former two are more challeng-
ing. However, impressive progress has been made in calcu-
lating the heavy-quark form factors at three-loop [68,69] and
an efficient tool to numerically evaluate generalised polylog-
arithms [70] is available. A big remaining problem is the
two-loop real-double-virtual contribution. However, at least
in principle, it should be possible to adapt and massify the
calculations performed for γ ∗ → qqg which are part of the
NNLO calculations to three-jet production.

4 Hadronic vacuum polarisation contributions

4.1 Next-to-leading order

The NLO and NNLO corrections to the muon-electron
differential cross section involve non-perturbative QCD con-
tributions given by diagrams with an HVP insertion in the
photon propagator (see Figs. 3b and 9). Let us define the SM
vacuum polarisation tensor with four-momentum q as

iΠμν(q) = iΠ(q2)(gμνq2 − qμqν)

=
∫

d4x eiqx 〈0|T { jμem(x) jνem(0)}|0〉, (32)
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(a) (b) (c)

(d) (e)

Fig. 9 aDiagram contributing to the hadronic correction toμ-e scatter-
ing at NLO. b–e Examples of diagrams contributing to the four classes
of hadronic corrections at NNLO. Electrons, muons and photons are
depicted with thin, thick and wavy lines, respectively. The grey blobs
indicate hadronic vacuum polarisation insertions

where jμem(x) = ∑
f Q f ψ̄(x)γ μψ(x) is the electromag-

netic current and the sum runs over fermions with charges
Q f . The function Π(q2) is the renormalised vacuum polar-
isation satisfying Π(0) = 0. It is commonly subdivided into
the leptonic part Πlep, which receives contributions only from
charged leptons, the hadronic part Πh, from hadrons con-
taining the five light quarks u, d, s, c, b, and the contribu-
tion from the top quark Πtop. The weak interaction will be
ignored.

In perturbation theory Πlep and Πtop can be computed
order by order in α and the strong coupling αs [71–74]. On
the contrary, the HVP cannot be calculated in perturbation
theory for any value of q2 because of the non-perturbative
nature of strong interactions. Nevertheless, we can express
Πh in terms of the measured cross section of the reaction
e+e− → hadrons [75] thanks to the subtracted dispersion
relation and the optical theorem

Πh(q2)

q2 = − α

3π

∫ ∞

4m2
π

dz

z

R(z + iε)

q2 − z + iε
, (33)

where

R(s) = σ(e+e− → hadrons)

4π |α(s)|2/(3s) (34)

and

α(s) = α

1 − Δα(s)
(35)

is the effective fine-structure constant. The numerical value
for the HVP can be obtained by using the Fortran libraries
alphaQEDc19 [9–12],KNT18VP [12,76–80], andVPLITE
[80,81] based on hadronic e+e− annihilation (timelike) data.

Fig. 10 The relative importance of the HVP at NLO in μ-e scattering
as a function of te

The hadronic contribution to the μ-e cross section at NLO,
due to the diagram in Fig. 3b, is

dσNLO
h

dt
= −2 Πh(t)

dσ (0)

dt
= 2 Δαh(t)

dσ (0)

dt
, (36)

where Δαh(t) = −Πh(t) is the leading hadronic contribu-
tion to the running of α(t). The goal of the MUonE exper-
iment is the extraction of Δαh(t) from μ-e scattering data.
Note that the NLO hadronic corrections incorporate also the
contribution from the diagram in Fig. 9a where a virtual pho-
ton is emitted and reabsorbed by the hadronic insertion. This
irreducible part of the second-order hadronic contribution to
the running of α(t) is not considered as part of the NNLO
corrections because its effect is commonly included in the
ratio R(s) as final-state radiation [82,83].

The impact of the hadronic contribution at NLO is shown
in Fig. 2 as a function of θe. For later reference, in Fig. 10
we show the same contribution as a function of te. The factor
KNLO

h (te) depicted in Fig. 10 is defined in analogy to (14).
In accordance with Fig. 2, the effect is larger for large values
of |te|.

Before we move on to the hadronic corrections at NNLO,
following the analysis of [7] we will briefly discuss the impact
of the SM corrections – and possibly NP – on the extraction
of Δαh(t) at MUonE. This experiment will extract Δαh(t)
from the shape of the differential μ-e scattering cross section
by a template fit method [2]. The basic idea is that Δαh(t) can
be obtained measuring, bin by bin, the ratio Ni/Nn, where Ni

is the number of scattering events in a specific t-bin, labelled
by the index i , and Nn is the number of events in the nor-
malization t-bin corresponding to x(t) ∼ 0.3 (for this value
of x , Δαh(t) is comparable to the experimental sensitivity
expected at MUonE and its error is negligible). Therefore,
this measurement will not rely on the absolute knowledge of
the luminosity. To extract the leading hadronic corrections to
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the μ-e scattering cross section in the t-bin i , one can split
the theoretical prediction into

σth,i = σ
(0)
i

[
1 + 2Δαh,i + δi + δNP,i

]
, (37)

where σ
(0)
i = ∫

i (dσ (0)/dt)dt is the LO QED prediction inte-
grated in the t-bin i , 2Δαh,i is the leading hadronic correction
obtained from (36), δi is the remainder of the SM corrections,
and δNP,i is a possible NP contribution. The experimentally
measured ratio Ni/Nn can then be equated with the ratio of
the theoretical predictions,

Ni

Nn
= σth,i

σth,n
� σ

(0)
i

σ
(0)
n

[
1 + 2

(
Δαhad,i − Δαhad,n

)

+ (δi − δn) + (
δNP,i − δNP,n

) ]
. (38)

As Δαhad,n is known with negligible error, if (δi − δn) is
computed with sufficient precision, one can extract

2Δαh,i + (
δNP,i − δNP,n

)
,

bin by bin, from Ni/Nn. Equation (38) shows that the
impact of the SM corrections on this extraction can only be
established after subtracting their value in the normalization
region, and that the MUonE experiment will not be sensitive
to a NP signal constant in t relative to the LO QED one, i.e.
such that δNP,i = δNP,n [7].

4.2 Next-to-next-to leading order

At NNLO, we split the hadron-induced corrections to μ-e
scattering, of order α4, into four classes of diagrams. The first
three classes contain factorisable contributions, i.e. ampli-
tudes that can be written as the product of a QED amplitude
times the function Πh(q2) evaluated at some q2 fixed by the
external kinematics. They are:

Class I: tree-level diagrams in combination with one or
two vacuum-polarisation insertions (Fig. 9b). Their con-
tribution to the differential cross section is proportional
to Πh(t)[Πh(t) + 2Πlep(t)], the reducible part of the se-
cond-order hadronic contribution to the running of α(t).
Class II: QED one-loop diagrams in combination with
one HVP insertion in the t-channel photon (Fig. 9c).
Their contribution to the differential cross section is pro-
portional to Πh(t) and a combination of one-loop QED
corrections to μ-e scattering.
Class III: real photon emission diagrams with a vacuum-
polarisation insertion in the t-channel photon (Fig. 9d).
They contain terms proportional either to Πh(te) or to
Πh(tμ).

Moreover a fourth class of non-factorisable diagrams must
be considered:

Class IV: one-loop QED amplitudes with a hadronic vac-
uum polarisation insertion in the loop. They can be further
subdivided into vertex and box corrections (Fig. 9e).

There are no light-by-light contributions to the μe cross
section at NNLO (order α4) – they appear at N3LO (order α5).
In addition, the analysis of future μ-e scattering data will also
require the study of μ-e scattering processes with final states
containing hadrons, as for instance e−μ± → e−μ±π+π−
and e−μ± → e−μ±π0. However, as

√
s � 400 MeV, the

available phase space is quite small:
√
s−M −m−2mπ0 �

20 MeV for the former and
√
s−M −m−mπ0 � 160 MeV

for the latter process.
As the HVP per se is of non-perturbative nature, the

hadronic NNLO corrections rely inevitably on some external
data for their numerical evaluation. These inputs can be of
two kinds: we can either use the R ratio and the traditional
dispersive method, or we can dismiss the e+e− → hadron
data — after all, MUonE aims at measuring aHLO

μ indepen-
dently on R — and employ the very same space-like data
measured by MUonE. The two approaches are the follow-
ing.

To R: The traditional approach to calculate the ampli-
tudes in class IV uses the dispersion relation to replace
the dressed photon propagator inside the loop — where
q now stands for the loop momentum — with the r.h.s.
of (33), where the momentum q appears only in the
term 1/(q2 − z). Therefore, the dispersion relation effec-
tively replaces the dressed propagator with a massive one,
where z plays the role of a fictitious squared photon mass.
This allows to interchange the integration order and eval-
uate, as a first step, the one-loop amplitudes with a “mas-
sive” photon. The results obtained for the z-dependent
scattering amplitudes are then convoluted with the R
ratio. Also for the amplitudes in classes I–III we rely
on the dispersion relation (33) to compute the HVP in
the space-like region. This method was employed, for
example, to compute the hadronic corrections to muon
decay [84,85] and Bhabha scattering [86–88].
The hadronic NNLO corrections to μ-e scattering based
on the R ratio were presented in [65]. Two indepen-
dent codes were developed. The first is a standard Monte
Carlo which uses Collier [89] for the evaluation of
the one-loop tensor integrals and employs the FKS sub-
traction scheme [21,22]. The second code is developed
in Mathematica and takes advantage of the analytic
expressions of the one-loop integrals from Package-X
[90] and Mathematica’s arbitrary-precision numbers
to check for numerical instabilities during the disper-
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sive and phase-space integrations. Perfect agreement was
found between the two implementations. The results are
presented below.
Not to R:
This alternative approach was presented in [91]. The
factorisable diagrams in classes I, II and III depend on
Πh(t), which is the quantity extracted by MUonE from
the diagram in Fig. 3b. As discussed in [91], also the
non-factorisable corrections in class IV, where the vac-
uum polarisation appears inside a loop, can be calcu-
lated employing the HVP in the space-like region, with-
out making use of the R ratio.
Indeed, the loop integrals containing Πh can be com-
puted via the hyperspherical integration method. After
introducing spherical coordinates for the loop momen-
tum and continuing internal and external momenta to
the Euclidean region, one can write the loop propagators
as an expansion in Gegenbauer polynomials. Then, the
integration over the angular variables is performed ana-
lytically thanks to the orthogonality properties of these
polynomials, so that each diagram is eventually cast in
the form of a residual radial integration,

∫ ∞

0
dQ2 Q2 Πh(−Q2) f (Q2, s, t), (39)

which is computed numerically once provided with the
HVP in the space-like region. The expressions of the
kernels f (Q2, s, t) were presented in [91]. Their imple-
mentation into a numerically stable code is necessary for
future use in the Monte Carlo.
The fact that the hadronic NNLO corrections can be
obtained from Πh(q2), with just q2 < 0, suggests the
possibility for MUonE to determine the HVP in an iter-
ative way without making use of the R ratio. As a first
step the hadronic NNLO corrections can be switched off
in the Monte Carlo and a first approximation for Πh(q2)

extracted. Afterwards, the Monte Carlo can be supplied
with such first approximation to compute the hadronic
NNLO corrections, then a second approximation extrac-
ted and the process further iterated.
Alternatively, if a functional form for Πh(q2) is chosen
to fit the HVP [92] the same ansatz can be employed at
NNLO, under the assumption that it satisfies the correct
asymptotic behaviour at infinity.

The dispersive and the hyperspherical methods are of
course identical from the mathematical point of view; how-
ever the to R and the not to R approaches differ for the under-
lying theoretical assumptions. If we use the R ratio, we make
a distinction between the HVP entering at NLO and at NNLO.
On the one hand, at NLO we leave the HVP in a free form to
be fitted from data. On the other hand, at NNLO we choose

Fig. 11 KNNLO
h (te) factor for a positive (upper panel) and negative

(lower panel) muon beam of energy E1 = 150 GeV. The total hadronic
NNLO correction are depicted in black, while the contributions of class
I (II–IV) are shown separately in red (blue)

a different Πh(q2) whose values are given by the R ratio via
the dispersion relation.

On the contrary, by employing the hyperspherical method
in the not to R approach we treat the HVP in a consistent
way to all orders without making any a priori assumptions.
Moreover, only in latter case, the MUonE determination of
aHLO
μ becomes truly independent and completely uncorre-

lated from time-like measurements.
Let us now discuss the size of these hadronic corrections.

The ratio of the NNLO hadronic contribution to the μe differ-
ential cross section, with respect to the squared momentum
transfer te, and the LO prediction,

KNNLO
h (te) = dσNNLO

h

dte
/
dσ (0)

dte
, (40)

is shown in Fig. 11 for the processes μ+e− → μ+e− (upper
panel) and μ−e− → μ−e− (lower panel), where we use
E1 = 150 GeV. The corrections shown in Fig. 11 were com-
puted in [65] using the dispersive approach and employing
alphaQEDc17 for the numerical evaluation of the HVP.
The black lines indicate the total hadronic contribution aris-
ing from classes I–IV, while the blue ones show the sum of
the contributions of classes II, III, and IV, but not I. Fig-
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ure 11 shows that for a muon beam with energy 150 GeV,
most of the kinematic region scanned by the momentum
transfer te results in a factor KNNLO

h (te) which is of order
10−4–10−5. These corrections are therefore larger than the
O(10−5) precision expected at the MUonE experiment. The
ratio KNNLO

h (te) contains a term that diverges logarithmically
at the end of the electron spectrum. This feature, clearly vis-
ible in Fig. 11 for te → tmin, is related to the infrared diver-
gence, indicating a breakdown of the perturbative expansion
and the need for resummation.

The uncertainty on KNNLO
h due to the error on R was esti-

mated by comparing the values obtained with the libraries
alphaQEDc17 and KNT18VP. For each value of te, we
found that the relative difference between the two calcula-
tions of dσNNLO

h /dte is about 1% or less. Therefore a relative
uncertainty of 1% was assigned on dσNNLO

h /dte, which cor-
responds to an error in KNNLO

h (te) of O(10−6) or less, well
below the precision expected at the MUonE experiment.

5 Beyond fixed order

In Sect. 3 we have discussed the computation of the cross
section in a strict expansion in the coupling α. At NnLO the
cross section contains large logarithms of the form

α2 × (αLm)n ≡ α2 × αn logn
m2

Q2 (41)

that potentially invalidate the perturbative expansion since
αLm is not necessarily a good expansion parameter. The
prefactor α2 is from the Born cross section. In the total cross
section the only logarithms that survive are due to initial-state
collinear emission from the electron, as discussed in Sect. 3.
However, for differential cross sections final-state collinear
logarithms Lm can be present.

Going beyond the total cross section, as is required for
MUonE, can result in additional large logarithms. In order to
select elastic scattering, the emission of real radiation has to
be restricted. Naively, this is done by vetoing photon emis-
sion with energy larger than a cutoff Δ. For the moment we
ignore the fact that in practice another observable has to be
chosen since photons are not detected. Restricting the emis-
sion of real radiation will result in additional logarithms of
the form LΔ = log(Δ2/Q2) which again can be large if the
cut is severe, i.e. Δ is small. Thus for each order in α we
obtain up to two powers of large logarithms. Of course, this
is closely related to the 1/ε2 (or the 1/ε log(m)) singularities
for each perturbative order, discussed in Sect. 3. Therefore,
the nth order correction to a differential cross section has the
structure

dσ (n) = α2 ×
(α

π

)n ∑
n1,n2

c(n)
n1,n2

(
Lm

)n1
(
LΔ

)n2 , (42)

where the sum runs over 0 ≤ n1, n2 ≤ n. Again, the prefactor
α2 is due to the Born term. In what follows we will omit this
factor when discussing powers of couplings and logarithms.

Another potential source of large logarithms is related to
the so-called factorisation (or collinear) anomaly [93–95].
This is related to the breaking of a scaling symmetry between
collinear and soft modes in SCET and occurs due to the pres-
ence of two non-vanishing masses [62]. In practice it means
that the separate factors of (31) might contain singularities
that are not regularised through the usual dimensional regu-
larisation. While these singularities cancel between the vari-
ous factors on the r.h.s. of (31) the left-over of these cancel-
lations corresponds to a logarithm of the form log(mM/Q2).

5.1 Leading logarithm

The terms of (42) with n1 = n2 = n are the leading loga-
rithms (LL). They can be resummed using a parton shower
(PS). A PS has the advantage that the kinematics of the emit-
ted photons is retained so that exclusive events can be gen-
erated. This makes sure that the resulting program remains
fully-differential in all resolved particles which cannot be
guaranteed in analytic calculations.

Roughly speaking, there are two avenues to numerically
resum the LL contributions. The starting point is either soft
emission or collinear emission. In the first case, the well-
known Yennie Frautschi Suura (YFS) exponentiation [66] of
soft emission is used. This allows for a numerical implemen-
tation taking into account soft emission to all orders [96–
99]. Such a resummation is well suited to be combined with
fixed-order calculations performed with FKS2, the subtrac-
tion scheme suggested earlier. In fact, FKS2 exploits the YFS
structure of the matrix elements

∞∑
�=0

M (�)
n = e−αÊ

∞∑
�=0

M
f (�)
n , (43)

where M
f (�)
n is free of IR singularities. The latter are all

absorbed by the exponential of the integrated eikonal Ê that
governs soft emission. For a precise definition of all quanti-
ties in (43) and more details see [20]. A recent example where
a NNLO QED calculation is merged with a YFS resumma-
tion can be found e.g. in [100].

Taking collinear emission as a starting point, a QED par-
ton shower can be constructed through subsequent collinear
emission of photons governed by the e → e γ splitting kernel
P(z) = (1 + z2)/(1 − z), where z is the momentum fraction
of the electron after the split. This procedure has been used by
the BabaYaga [101–105] event generator. It can be combined
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with fixed-order calculations and extended to next-to-leading
collinear logarithms.

As both, YFS Monte Carlo and QED parton shower
include the leading soft-collinear emissions, they agree at
LL. Going beyond LL, the QED PS also includes hard (non
soft) collinear radiation, i.e. it includes all leading collinear
logs αnLn

m . It can be further adapted to also include soft
wide-angle emission [106]. As we will discuss below and in
Sect. 6, this difference beyond various implementations at LL
can reveal useful information to assess the theoretical error.
To exploit this, work is ongoing to implement μ-e scattering
in both frameworks and compare.

5.2 Next-to-leading logarithm

The terms of (42) with n1 + n2 = 2n − 1 are the next-to-
leading logarithms (NLL). Whether or not their resummation
is required and possible depends on the precise definition of
the quantity that selects elastic scattering and on the value of
the cut parameter Δ. A partial resummation of NLL terms
can be done with improved Monte Carlo generators.

A complete resummation beyond LL requires a precise
definition of the physical quantity for which the resummation
is carried out. Given that for μ-e scattering we are not pri-
marily interested in particular distributions of certain observ-
ables, but rather in a precise description of the fiducial cross
section measured by MUonE, it is not possible to precisely
match the observable to the measured quantity.

The most important cut that has to be made for the extrac-
tion of the HVP is to choose elastic events. In theory this
can be achieved in several ways, all of which restrict the
phase space for emission of photons. As a first example we
mention a cut on the invariant mass meγ of the electron-jet,
i.e. the cluster of the outgoing electron plus all potentially
emitted photons. This quantity is sensitive to large-angle soft
emission and, contrary to e.g. m2

μγ , also to small-angle hard
emission. We thus define

m2
eγ = (p4 + pX )2 = (p1 + p2 − p3)

2, (44)

where according to (1) pX = ∑
i=1,n piγ is the sum over

(up to n) photon momenta. The elastic events can be chosen
by making a cut meγ −m ≤ Δ. Another well-studied option
is to use the transverse momentum. In our case we have to
take the transverse momentum p4⊥ of the electron w.r.t. its
tree-level direction, which can be determined from the muon
scattering angle θμ. In case of no photon emission, p4⊥ → 0
and we can impose a cut |p4⊥|2 < Δ2 to select elastic events.

While these quantities are useful from a theoretical point
of view and likely enable a resummation beyond LL, they
are unfortunately not very useful from an experimental point
of view. None of these quantities can actually be measured
since neither are photons detected nor are the momenta or

energies of the electron and muon measured. In practice, the
experimental procedure to select elastic events has to rely
solely on the scattering angles. Such a quantity is likely to be
rather involved and not amenable to direct resummation. In
Sect. 6 we will consider an acoplanarity cut as one example
of a cut that can realistically be applied by MUonE to restrict
radiative events.

A possible way forward is to use the analytic resummation
of several different variables to construct approximations for
perturbative coefficients beyond those included in the fixed-
order approach. These results can then be implemented as
approximate matrix elements in a fully differential parton-
level Monte Carlo. Through comparisons of results obtained
by using different versions of resummation it is possible to
obtain a realistic error estimate of the approximations. This
procedure has been used for example for top-quark pair pro-
duction [107] and provided an improved prediction with a
robust estimate of missing terms. A quantity that offers itself
for resummation in the context of μ-e scattering is dσ/dte
where in the region te → tmin large logarithmic corrections
are present.

5.3 Estimate of the theory error

As discussed earlier in the present section, higher-order con-
tributions can be included according to different methods,
such as a QED PS algorithm, YFS MC exponentiation or
analytic resummation. Regardless of the approach used to
account for the corrections beyond NNLO, the accuracy of
the theoretical predictions due to missing perturbative con-
tributions must be carefully estimated, as it represents a com-
ponent of the total systematic error.

For this purpose, it seems advisable to evaluate the the-
oretical uncertainty step-by-step, as the different theoretical
ingredients become available. In the following, a possible
strategy for the theoretical uncertainty estimate is illustrated,
at the level of differential distributions. It is assumed that,
in addition to the fixed-order NLO QED calculation, also
the NNLO QED matrix elements are implemented in a fully
fledged Monte Carlo simulation tool. The technical accuracy,
related to the details of the implementation of the fixed-order
radiative corrections, can be controlled by means of two com-
pletely independent codes, which are assumed to exist.

In the relatively short term, a first assessment of the theo-
retical accuracy could be given as follows:

– by comparing the predictions for the photonic correc-
tions at NLO and NNLO accuracy. This comparison can
be performed for the full set of corrections but also sep-
arately for the gauge-invariant subsets of contributions
due to electron radiation, muon radiation and electron-
muon interference. The importance of this procedure is
twofold as a) it would allow to settle the hierarchy of the
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different classes, which is a crucial prerequisite to iden-
tify the sources of corrections that need to be resummed
at all orders and b) it would provide information about the
convergence of the perturbative series (in particular, for
those kinematical regions where the NLO corrections are
particularly large). A first naive estimate of the missing
third order can be given by

dσN3LO − dσNNLO

dσNNLO − dσNLO � dσNNLO − dσNLO

dσNLO − dσLO . (45)

– by computing the NNLO leptonic and hadronic correc-
tions due to the combination of the two-loop vacuum
polarisation contribution and real pair emission. It is
known that these corrections give rise to large collinear
logarithms but also that they are typically smaller than
purely photonic corrections. In particular, the contribu-
tion due to electron loop and real e+e− radiation pro-
duce collinear logarithms Lm . Taken separately, the LO
cross section of the process eμ → eμ(e+e−) results in
contributions α2L3

m . However, if combined with the vir-
tual electron-loop contributions the α2L3

m cancel and we
are left with collinear logarithms α2L2

m and α2Lm . The
computation of this class of corrections therefore would
allow to probe the size of those NNLO logarithmically-
enhanced corrections that are of non-photonic nature;

– by comparing the finite-order expansion of a given resum-
mation approach with the exact perturbative calculation
at NNLO accuracy. Again, this comparison could be per-
formed for the complete set or the gauge-invariant subsets
of photonic corrections and would allow to quantify the
size of the NNLO remainder beyond the LL approxima-
tion at O(α2).

Over the longer term, assuming that different methods
to account for the contribution of multiple photon radiation
will be available and matched to the NNLO calculation, the
theoretical uncertainty could be more reliably estimated as
follows

– through a comparison of the exact NNLO calculation and
the O(α3) expansion of a given resummation procedure.
From this comparison, one would get an evaluation of the
whole set of higher-order contributions beyond NNLO;

– by comparing the all-order predictions of the different
methods developed for the description of multiple pho-
ton radiation. As remarked earlier, approaches such the
QED PS and YFS MC exponentiation provide the same
LL structure but may differ in the partial resummation
of NLL contributions. Moreover, this comparison could
be extended, wherever possible, to include the results
of analytic resummations possibly featuring a complete
resummation beyond the LL approximation. As a whole,

this procedure would provide a robust estimate of missing
higher-order terms at NLL accuracy;

– under the assumption that two independent implemen-
tations of a MC code based on the matching of NNLO
corrections with resummation will be available and dif-
ferent techniques for exponentiation will be used, a com-
parison between the predictions of the two codes could
provide further important information about the theoret-
ical accuracy. Actually, because of the reasons already
emphasised, the two calculations are expected to dif-
fer for contributions dominated by terms of the order
of α3L2

m . Hence, this comparison would allow to probe
the size of the most important NLL O(α3) contributions,
similarly to the previous point above but at the level of
completely matched formulations.

Besides the contributions due to purely photonic correc-
tions, the extreme accuracy of MUonE will presumably also
demand for the inclusion of the dominant effects beyond
NNLO from fermionic corrections. Among those, contri-
butions due to electron pairs are the most important. The
evaluation of NLO photonic corrections to the cross sec-
tion eμ → eμ(e+e−) combined with the corresponding vir-
tual electron-loop contributions will exhibit α3L3

m terms. The
determination of these terms could be achieved, for example,
by convoluting the NNLO cross section with a standard QED
PS simulation or by means of an appropriate generalization of
the basic ingredients of the PS algorithm. The resummation
of pair production contributions can be also shown to take
place to all orders of the perturbative expansion [108–110].

If necessary, many of the above estimates could be put on
firmer ground by computing the full set of virtual and real
photon corrections due to the radiation from a single leg at
N3LO accuracy, as discussed in Sect. 3.4.

To summarize, the accuracy of NNLO calculations com-
bined with the contributions due to multiple photon radiation
will be limited by the approximate inclusion of NLL contri-
butions at O(α3). A careful estimate of their impact on the
observables measured by MUonE will set the scale of the
overall theoretical uncertainty.

6 Monte Carlo

In the MUonE experiment, the extraction of the HVP con-
tribution to the effective electromagnetic coupling will be
based on a template fitting method. In this procedure, dif-
ferential cross sections are calculated according to a given
theoretical input and compared to the data, as a function of
the parameters entering the Δαhad(q2) modelling. Inevitably,
this requires the implementation of the theoretical predic-
tions into a fully flexible MC code. The latter is also needed
for a high-precision calculation of the normalisation cross
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section, as well as the evaluation of the detector efficiencies
and the assessment of a number of experimental systemat-
ics. Thus, the MC is the experimentally-oriented completion
of any theory calculation as it goes to the heart of the data
analysis.

We describe here what is presently available in the sector
of MC tools for simulations of the μ-e scattering process
and the most important phenomenological results. We are
also interested in providing a recipe on how to convert future
theoretical achievements or theory MC into useful tools for
the experimentalists and phenomenologists. A sketch of the
ongoing efforts towards the realisation of MC codes with
increased accuracy or the simulation of relevant contributions
to μ-e scattering is also given.

Until now, feasibility studies and preliminary simulations
by the MUonE collaboration have been performed using a
MC event generator that includes NLO electroweak correc-
tions. The theoretical content of the NLO MC is described
in detail in [15] and will not be repeated here. Suffice it to
say that the MC developed in [15] is based on a calcula-
tion of the full set of NLO electroweak corrections to μ-e
scattering without any approximation, including finite mass
contributions. More interesting facts are the main computa-
tional features of the NLO MC. They can be summarised as
follows:

– the generated events are fully exclusive, i.e. all the
momenta of the event particles can be stored in such a
way that any observable can be studied and any further
effect can be applied (experimental cuts, detector simu-
lation, etc);

– both weighted and unweighted (constant weight) events
can be generated. The use of weighted events speeds up
event generation and, generally, reduces the statistical
error due to MC integration;

– the incoming muon energy (beam momentum) can be
spread by a Gaussian distribution around its nominal
value, to match realistic beam preparation;

– the HVP contribution can be switched on and off, all
the rest of the input parameters remaining unchanged.
This gives the possibility of studying the contribution of
Δαhad(q2) to any observable at NLO accuracy, including
experimental effects2;

– the generated events can be stored into Root n-tuples for
further analysis. The storage format includes all the rele-
vant information for each run input and for each generated
event. The flexible nature of the adopted format makes
it suitable to facilitate the implementation of future the-

2 In the present version of the NLO MC, the HVP contribution is taken
into account in terms of Fred Jegerlehner’s routine hadr5n12 [111].
Of course, any other available parametrisation can be easily interfaced
and used.

oretical developments, such as the inclusion of multiple
photon emission;

– the code is equipped with a Root interface for reading,
analysing and manipulating the generated samples.

In the following, we show a sample of particularly inter-
esting predictions obtained by means of the above NLO MC.
Within the set of numerical results described in [15], we select
those that are particularly relevant in the light of the efforts
in the sector of NNLO corrections and resummation. To that
purpose, we are interested to address the following ques-
tions3:

– how the θe-θμ correlation of the elastic signal is affected
by QED radiation at NLO and how the signal sensitivity
can be recovered by applying suitable cuts;

– how the full NLO QED correction is shared among the
different gauge-invariant subsets described in Sect. 3;

– how large finite electron-mass contributions are.

To answer the above questions, we provide numerical results
for both the μ−e− → μ−e− and μ+e− → μ+e− process,
since both options are relevant for the MUonE experiment
and the mixed QED corrections ∼ q3Q3 differ in the two
cases.

We use the following input parameters:

α(0) = 1/137.03599907430637

m = 0.510998928 MeV M = 105.6583715 MeV

(46)

where α(0) is the value used for the lepton–photon coupling.
For the energy of the incoming muons, we assume E1 =
150 GeV, which is the energy of the M2 beam line of the
CERN SPS. Note that, under the fixed-target configuration
of the MUonE experiment, the CMS energy corresponding
to this muon energy is given by

√
s � 0.405541 GeV and

that the Lorentz γ factor boosting from CMS to LAB is γ �
370. Due to (11), a lower limit on E4 implies an upper limit
on te. In this kinematical condition, the collinear logarithms
Le = ln(|tmax|/m2) and Lμ = ln(|tmax|/M2) amount to
Le � 13.4 and Lμ � 2.7, respectively.

To study the dependence of the radiative corrections on
the applied cuts, we consider two different event selections
defined by the following criteria:

1. θe, θμ < 100 mrad and E4 > 0.2 GeV (i.e. te �
−2.04 · 10−4 GeV2). The angular cuts model the typical
acceptance conditions of MUonE and the electron energy

3 We focus on photonic corrections, as the contribution of purely weak
NLO corrections is well below the 10 ppm level, as shown in [15].
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Fig. 12 The correlation between the electron scattering angle θe and
muon scattering angle θμ for the μ+e− → μ+e− process at LO (elastic
curve) and NLO QED, for the selection criteria 1 and 2 defined in the
text

threshold is imposed to guarantee the presence of two
charged tracks in the detector;

2. the same criteria as in Setup 1, with an additional acopla-
narity cut, applied to partially remove radiative events and
thus enhancing the fraction of elastic events. We require
acoplanarity

∣∣π −|φe −φμ|∣∣ lower than 3.5 mrad, for the
sake of illustration.

The answer to the first question about the impact of NLO
QED radiation on the θe-θμ elastic correlation is given by
Fig. 12. In that figure, we compare the correlation in the
laboratory frame between the scattering angles of the outgo-
ing electron and muon at LO and NLO, for the Setup 1 and
Setup 2 defined above. It can be noticed that, in the absence
of an acoplanarity cut (Setup 1), the correlation present at
LO (elastic curve) is largely modified by the presence of
events at relatively small muon angles, which originate from
the bremsstrahlung process μ+e− → μ+e−γ . However, the
tight acoplanarity cut (Setup 2) turns out to be effective in
getting rid of most of these radiative events, thus isolating the
elastic correlation curve. As shown in [15], in the presence
of acceptance cuts only (Setup 1), the corrections to the elec-
tron scattering angle turn out to be quite sizeable at small
angles, due to the emission of a hard photon in the radia-
tive process μe → μeγ . However, this effect gets largely
reduced when an elasticity cut is applied (Setup 2), yielding
a correction in the 10–40% range for all the relevant distri-
butions. In the presence of an elasticity cut that vetoes hard
photon emission, the contribution of soft photons becomes
enhanced and gives rise to large IR logarithms, as remarked
in Sect. 5. Not to invalidate the perturbative expansion, those
logarithms need to be resummed together with the contri-
butions due to collinear emission. This can be achieved by
means of exclusive MC techniques, such as YFS exponen-

(a)

(b)

Fig. 13 The contribution of the QED gauge-invariant subsets to the
cross section of the process μ+e− → μ+e− (upper panel) and of the
process μ−e− → μ−e− (lower panel), as a function of the squared
momentum transfer te and tμ. The results refer to Setup 1 (solid lines)
and Setup 2 (dotted lines) described in the text

tiation or QED Parton Shower, or analytic resummation. As
emphasised in Sect. 5, the latter method requires the identifi-
cation of a kinematical quantity able to select elastic scatter-
ing. This poses the question how the elasticity band isolated
by the cuts of Setup 2 can be approximated by a reasonably
simple ‘observable’ suitable for resummation.

To understand how the gauge-invariant subsets contribute
to the overall NLO QED correction, we show in Fig. 13 the
impact of the different classes described Sect. 3 on thedσ/dte
(top plot) and dσ/dtμ (bottom plot) distributions. The upper
(lower) panels refer to the μ+e− → μ+e−(μ−e− → μ−e−)
process. The squared momentum transfers te and tμ are
defined in (11) and (12), respectively. The main message
that can be drawn from Fig. 13 is that the NLO QED correc-
tion over the full range is, in general, the result of a subtle
interplay between the various sources of radiation. A further
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general remark is that the mixed corrections due to electron-
muon interference are of opposite sign for the two processes
and particularly relevant for large |tμ,e| values. The latter
behaviour has to be ascribed to the presence in the up-down
interference of logarithmic (and squared logarithmic) angular
contributions of the type ln(u/t), which become potentially
enhanced when either t or u are small. More in detail, one can
see from Fig. 13 that, in the presence of acceptance cuts only,
the NLO correction is dominated by the contribution of elec-
tron radiation, the other effects being almost flat and much
smaller over the full range. However, if an acoplanarity cut is
applied, the contributions due to muon radiation and up-down
interference corrections become visible for large |t | values,
where they amount to some percent. Interestingly, the above
contributions have the same sign in the μ+e− → μ+e− pro-
cess (upper panel of the left plot) and sum up to contribute
to the overall QED correction, whereas they tend to cancel
in the μ−e− → μ−e− process (lower panel of the left plot).
Therefore, also in view of ongoing calculations at NNLO,
these results indicate that all the gauge-invariant subsets have
to be taken into account.

The size of finite electron-mass contributions at NLO is
illustrated in Fig. 14, where the results are shown in per-cent
of the fully massive LO differential cross sections. The pre-
dictions refer to both incoming μ+ and μ− and are shown
for the electron scattering angle and the squared momentum
transfer te, for the sake of illustration. Similar results hold
for other distributions. A sensible assessment of mass contri-
butions beyond logarithmic accuracy is in general a delicate
issue for any fixed-order calculation and particularly tricky
for μ-e scattering under MUonE conditions, where the limit
of massless electron implies that its rest frame (i.e. the lab
frame) can not be defined. To bypass this difficulty, we follow
the procedure detailed in [15], that allows to get an estimate
of finite electron-mass contributions for the sum of one-loop
virtual and real soft-photon corrections. The one-loop virtual
amplitude is split into a contribution that is proportional to
logarithms of the (artificial photon mass) IR parameter and
the remainder, M (1)

n = M (1)
n,IR +M (1)

n,non IR. A similar split is
done for the amplitude related to soft real emission. Accord-
ing to the notation of Sect. 3, the m → 0 limit of the NLO
correction is then evaluated according to the chain formula

[
M (1)

n,IR(m) + M (1)
n,non IR(zM)|z=0

+ M
(0)/soft
n+1,IR (m) + M

(0)/soft
n+1,non IR(zM)|z=0

]
× dΦn(m)

+ M
(0)/hard
n+1 (m) × dΦn+1(m) (47)

that provides an IR-safe estimate of electron mass contribu-
tions, while keeping exact kinematics and phase space.

(a)

(b)

Fig. 14 The relative contribution of finite electron-mass corrections to
the cross section of the processes μ±e− → μ±e−, as a function of the
electron scattering angle and the momentum transfer. The predictions
refer to Setup 1 defined in the text

As can be seen from Fig. 14, the contribution of m-
dependent terms to the LO cross section is almost flat and
below the 10 ppm level. The electron-mass corrections at
NLO contribute to dσ/dθe and dσ/dte in the range from a
few to some 10−5. We notice that the largest part of the finite
m corrections is due to radiation from the electron line only,
the full correction lying around it. The extra corrections w.r.t.
electron line only are dominated by up-down interference and
box diagrams. These results suggest that electron mass con-
tributions beyond logarithmic accuracy can be neglected in
a NNLO computation or, eventually, included at the level
of electron line corrections only. Actually, a rescaling of the
first-order contribution shown in Fig. 14, which is at most of
the order of 10−5, by a factor (α/π) ln(−t/m2) provides an
estimate of the electron mass effects at NNLO and yields a
correction much smaller than 10 ppm.

The presently available MC at NLO accuracy represents
just the first step towards the realisation of a high-precision
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theoretical tool necessary for the data analysis of μ-e scat-
tering by MUonE. The ultimate goal is the realisation of a
MC code including NNLO corrections and resummation of
QED contributions due to multiple photon radiation. How-
ever, over a relatively short term, a number of intermediate
results could be obtained about some important contributions
beyond NLO.

A first example is given by the matching of NLO cor-
rections to a QED parton shower, following the formulation
already applied to Bhabha scattering and e+e− annihilation
processes in QED [101,102], Drell–Yan processes [103,104]
and Higgs decay into four leptons [105]. This would allow
to estimate the most relevant QED corrections beyond NLO
under realistic event selection criteria.

A further prospect under consideration is the calculation
of lepton pair corrections to μ-e scattering. These corrections
appear at NNLO and are a combination of two-loop virtual
lepton-loop corrections with the same-order contribution of
real pair emission, i.e. μe → μe + (�+�−), with � = e, μ.
One and two-loop diagrams with vacuum polarisation inser-
tions in the photon propagator were considered some time
ago for the case of the Bhabha scattering in the massless
limit with the 0.1% accuracy [88,112–116].

Such a calculation can be extended to the treatment of
hadronic pair corrections, by combining the already available
virtual hadronic contributions [65] with the process of pion
pair production μe → μe + (π0π0, π+π−). A further step
that can be taken is the evaluation of the background process
μe → μe+ (π0 → γ γ ), that could benefit, as for two-pion
production, from the experience in the development of MC
generators for the simulation of hadronic final states at flavor
factories [80]. Finally, one should not forget that electrons are
bound inside the target and the impact of bound-state effects
should be evaluated. This will require considering the pos-
sibility of scattering of the incident muons off core valence
electrons, for which off-shell effects due to the finite binding
energy and momentum distribution must be considered.

All the above developments are under consideration and
preliminary results are also available for most of them.

7 Summary

With this report we want to document that within the theory
community there is sufficient interest, manpower, and exper-
tise to provide the necessary theory support for the MUonE
experiment.

The minimal goal that will be achieved in a first step is a
fully differential parton-level Monte Carlo program contain-
ing the following contributions: (1) the fully massive NLO
QED (and electroweak) contributions; (2) the fully massive
(dominant) electronic contributions at NNLO; (3) the fully
massive NNLO hadronic contributions; (4) the remaining

contributions at NNLO in a massified approach, i.e. neglect-
ing finite electron mass terms. In addition, this fixed-order
calculation will be matched to a parton shower taking into
account multiple photon emission at leading logarithmic
accuracy.

Given the current status described in this report, there are
no further conceptual challenges that need to be overcome
to achieve this. Needless to say that nevertheless there will
still be numerous difficult issues to be sorted. Hence, ideally
there will be at least two different implementations of such a
code to facilitate debugging. To that end, the theory groups
of Pavia and PSI are both committed to each produce an
implementation.

In a second step, a detailed, realistic phenomenological
analysis is required to investigate if this theory description is
sufficient. A careful error estimate of the missing terms will
be crucial. This analysis will be done in close collaboration
with the experimental collaboration.

It is quite likely that a third step will be required, i.e.
further improvements to the theory. Most probably, the next-
to-leading logarithms will have to be addressed. A careful
study of the logarithms related to the factorisation anomaly
is also important. In connection to fixed-order calculations,
it is not at all unrealistic to expect a fully differential N3LO
computation of the dominant electronic contributions in time
for the MUonE experiment. Also, a complete fully-massive
NNLO calculation, possibly using numerical techniques, is
a serious target for theory in the longer term.

In fact, all the theory questions that are to be addressed in
connection with μ-e scattering are also of interest to a much
wider community. The developments that are made in this –
from a theory point of view – simple framework will undoubt-
edly lead to progress in related fields. Thus, apart from pro-
viding an alternative determination of the HVP, MUonE can
also act as an icebreaker to free a path for further theory
progress.
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