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a b s t r a c t 

For the first time, a set of Lattice-Boltzmann two-way coupling pointwise Euler-Lagrange models is ap- 

plied to gas mixing of sludge for anaerobic digestion. The set comprises a local model, a “first-neighbour”

(viz., back-coupling occurs to the voxel where a particle sits, plus its first neighbours) and a “smoothing- 

kernel” (forward- and back-coupling occur through a smoothed-kernel averaging procedure). 

Laboratory-scale tests display grid-independence problems due to bubble diameter being larger than 

voxel size, thereby breaking the pointwise Euler-Lagrange assumption of negligible particle size. To tackle 

this problem and thereby have grid-independent results, a novel data-scaling approach to pointwise 

Euler-Lagrange grid independence evaluation, based on an application of the Buckingham π theorem, 

is proposed. 

Evaluation of laboratory-scale flow patterns and comparison to experimental data show only marginal 

differences in between the models, and between numerical modelling and experimental data. Pilot-scale 

simulations show that all the models produce grid-independent, coherent data if the Euler-Lagrange as- 

sumption of negligible (or at least, small) particle size is recovered. In both cases, a second-order conver- 

gence was achieved. 

A discussion follows on the opportunity of applying the proposed data-scaling approach rather than the 

smoothing-kernel model. 

© 2020 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Wastewater process is an energy-intensive operation. EU fig-

res [8] for Member States show that wastewater treatment works

WwTWs)’s energy consumption exceeds 23,800 GWh per annum,

ith further increase of 60% in the next 10–15 years being ex-

ected due to tightened regulation of effluent discharge (Water

ramework Directive, 14 ). [46] forecasted a global need of water

ncrease by 30% and food and energy by 50% in the next decades,

nd hence, it is urgent to address the water-energy link in order to

ackle climate change. 

UK WwTWs product 1.5M tonnes of sludge per annum [43] .

ludge, the principal by-product of wastewater treatment, is usu-

lly treated through mesophilic gas-mixed anaerobic digestion:

naerobic bacteria degrade sludge at 22–41 ◦C into more stable
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ompounds and methane-rich biogas, which in turn is harnessed

s a renewable source of energy through combined heat and power

echnology. 

Mixing is key for stable digestion process. Despite mixing be-

ng responsible for 17–73% of digester’s energy consumption [32] ,

ixing optimization is still far from being optimal: [23] ’s experi-

ental work demonstrated that input mixing energy can be halved

ithout impacting nutrient distribution, and hence, biogas yield. It

s therefore imperative to orient mixing design and operation to-

ards a more modern approach where stress is given to input mix-

ng / output biogas energy balance, rather than merely to digestate

uality. 

Numerical modelling is an economic alternative to lengthy and

xpansive tracer experiments; furthermore, whilst tracer methods

an only provide “black box” representations, numerical modelling

llows analysis of flow patterns in details. A considerable amount

f numerical modelling has been devoted to improve mixing in

naerobic digestion [6,9,10,12,19,20,26,28,29,36,38,41,44,47] . On the
nder the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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Nomenclature 

�K Colour function for the K th Lagrangian pointwise 

particle 

�t inj Time interval between the injection of two bubbles, 

s 

�+ Maximum extremal of I 3 
K ( x ) , m 

�− Minimum extremal of I 3 
K ( x ) , m 

�x Vortex’s x coordinate, m 

� Sourcing term, kg m 

3 

� Collision step, kg m 

3 

αi 
j 

Power exponent expressing the contribution of the 

j th dimensional parameter to the i th dimensionless 

group 

| ̇ γ | shear rate magnitude, s −1 

δδx Discrete delta function of width δx 

δx Lattice cell size, m 

δt Lattice timestep, s 

ε� , K Smoothed volumetric liquid phase fraction at the 

location of the K th Lagrangian pointwise particle 

μ Apparent dynamics viscosity, Pa s 

μmax Apparent dynamics viscosity, maximum range 

value, Pa s 

μmin Apparent dynamics viscosity, minimum range 

value, Pa s 

μPL Apparent dynamics viscosity before turbulence cor- 

rection, Pa s 

ν Kinematic viscosity, m 

2 s −1 

ξ Generic dimensionless variable 

νeff Effective kinematic viscosity after turbulence cor- 

rection, m 

2 s −1 

π i i th independent dimensionless parameter 

(“group”) describing a generic physical process 

πP 
i 

i th “Physically-meaningful” independent dimen- 

sionless group describing a generic physical process 

π1 Forth dimensionless group 

π2 Fifth dimensionless group 

π3 Sixth dimensionless group 

π4 Seventh dimensionless group 

ˆ πi i th arbitrarily-modified independent dimensionless 

parameter group describing a generic physical pro- 

cess 

π̄i i th tuned independent dimensionless parameter 

group describing a generic physical process 

ρ Liquid-phase density, Kg m 

−3 

ρL Physical value of the liquid phase density, Kg m 

−3 

ρp Physical value of the Lagrangian dispersed phase 

density, Kg m 

−3 

σ Liquid-phase shear stress, Pa 

τ Lattice relaxation time, s 

τ eff Effective lattice relaxation time after turbulence 

correction, s 

τ PL Lattice relaxation time before turbulence correc- 

tion, s 

ϕ Map extracting the “physically-meaningful” dimen- 

sionless group from the set of all the independent 

dimensionless groups describing a generic physical 

process 

χ Map mapping a set of arbitrarily-modified to a set 

of tuned dimensionless groups describing a generic 

physical process 

A K Acceleration of the K th Lagrangian pointwise parti- 

cle, m s −2 
B 

�
K 

Bounding cube around the sphere centered at X K of 

radius L K 

C Collision operator, kg m 

3 

C d Drag coefficient 

C K Normalization factor of the K th Lagrangian point- 

wise particle at a given timestep 

C Smago Smagorinsky constant 

D Tank diameter, m 

F K Total force acting on the K th Lagrangian pointwise 

particle, N 

F a K Added-mass force acting on the K th Lagrangian 

pointwise particle, N 

F b K Buoyancy force acting on the K th Lagrangian point- 

wise particle, N 

F d K Drag force acting on the K th Lagrangian pointwise 

particle, N 

D Tank height, m 

I 3 ( x ) Cube of side δx centered at x 

I 3 
K ( x ) Parellelepiped where to evaluate e K 

L Chosen value for the smoothed kernel radius, m 

L K Smoothed kernel radius of the K th Lagrangian 

pointwise particle, m 

K Power-law consistency coefficient, Pa s n 

K (as a subscript) Generic label to a Lagrangian point- 

wise particle 

K K Kernel radius of the K th Lagrangian pointwise par- 

ticle, m 

M i i th unit of measure connected to the description 

of a generic physical process 

M K Mass of the K th Lagrangian pointwise particle, Kg 

Ma Mach number 

N Number of points along a coordinate direction to 

fill I 3 
K ( x ) 

N Number of lattice points along the tank diameter 

N 

0 Reference number of lattice points along the tank 

diameter 

M bubbles Total number of bubbles at a given timestep 

P d Total drag power dissipated at each timestep, W 

P K Tuple representing the K th Lagrangian pointwise 

particle 

PNu First physically-meaningful dimensionless group 

PNuU Second physically-meaningful dimensionless group 

PU Third physically-meaningful dimensionless group 

Q Forth physically-meaningful dimensionless group 

R Ratio between nominal particle diameter and lat- 

tice cell size 

R K Nominal radius of the K th Lagrangian pointwise 

particle, m 

Re Reynolds number (fifth physically-meaningful di- 

mensionless group) 

Re p Particle Reynolds number 

S Shear tensor, s −1 

S Source term operator, kg m 

3 

U K Spatial coordinate of the K th Lagrangian pointwise 

particle, m s −1 

W Wendland function 

X K Spatial coordinate of the K th Lagrangian pointwise 

particle, m 

X 

next 
K Spatial coordinate of the K th Lagrangian pointwise 

particle, approximated at the nearest lattice node, 

m 

c i i th discretized lattice velocity, m s −1 

c s Lattice speed velocity, m s −1 
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d Experimental bubble diameter, m 

e K Contribution to ε� , K 

err Error on the vortex’s x coordinate, m 

f One-particle density function, kg m 

−3 

f (eq) Equilibrium one-particle density function, kg m 

−3 

g Acceleration of gravity, m s 2 

g H First dimensionless group 

g K Smoothing-kernel function of the K th Lagrangian 

pointwise particle 

h noz Distance between the tank bottom and the initial 

position of the bubble centre of mass, m 

g noz Second dimensionless group 

k (as a subscript) Number of independent units of 

measure connected to the description of a generic 

physical process 

n Power-law index 

n (as a subscript) Number of physical parameters de- 

scribing a generic physical process 

n Third dimensionless group 

n Vector of indices labelling each of the points filling 

I 3 
K ( x ) 

p Pressure, Pa 

p 

(a) 
K 

Coordinates of the points contributing to e K , exter- 

nal set 

p 

(b) 
K 

Coordinates of the points contributing to e K , inter- 

nal set 

q Gas injection flow rate, m 

3 s −1 

q i i -th dimensional parameter describing a generic 

physical process 

q̄ i i -th Scaled dimensional parameter describing a 

generic physical process 

r Generic length variable, m 

t (as a subscript) Number of “physically-meaningful”

independent dimensionless groups describing a 

generic physical process 

u Liquid-phase velocity, m s −1 

U LB Lattice velocity 

U 

0 
LB 

Reference lattice velocity 

w i Weight of the i th component of the equilibrium 

particle distribution 

x Discretized lattice spatial coordinate, m 

[ · ] (if not used as functional argument) Extraction of 

the units of measure 

EU European Union 

HLBM Homogenized Lattice-Boltzmann Method 

TS Total solid content 

UK United Kingdom 

WWAP World Water Assessment Programme 

WwTW Wastewater treatment work 

op of the above-mentioned difficulties to perform full-scale ex-

eriments, sludge is biologically and chemically hazardous; more-

ver, it is opaque, which makes it difficult to perform imaging ex-

eriments. For these reasons, an approach previously followed in

he literature towards numerical modelling validation is to validate

 model in the laboratory-scale first, and then, to apply the val-

dated model to full-scale scenarios [11,12] . Recently, the Lattice-

oltzmann numerical method has been used for the first time

o reproduce laboratory-scale, gas-mixed anaerobic digestion [13] .

he above-mentioned approach towards validation was followed,

nd in fact the work provided the preliminary step of laboratory-

cale validation. 

The Lattice-Boltzmann algorithm is time-dependent, and solves

he one-particle density function in the phase space. Density and
elocity fields are recovered from the one-particle density func-

ion, and for low Mach numbers (viz., Ma −→ 0 ), they are proved

o obey the incompressible Navier-Stokes equations. This approach

resents important advantages over other CFD methods in terms

f numerical efficiency [37] . First, it is fully explicit—no iterative

oop is required to solve velocity and pressure Navier-Stokes equa-

ions in a segregated way. Then, the non-linear and non-local parts

f the Lattice-Boltzmann equation are decoupled—no differentiat-

ng scheme is required and thus parallel algorithms can be imple-

ented for hundreds of cores with negligible loss of efficiency. Fi-

ally, a straightforward structure allows relatively simple extension

owards a large variety of phenomena. [13] showed that a Lattice-

oltzmann model for laboratory-scale mixing in anaerobic diges-

ion performed around 180 times better than finite-volume ana-

ogues. 

The model proposed by [13] is an implementation of the

omogenized Lattice-Boltzmann Method (HLBM) [39] , which is

 non-pointwise Euler-Lagrangian method where the particle-

uid interface is resolved. This means that the lattice spacing is

ounded to be at least 10 to 20 times smaller than particle diam-

ter [34] : 

 R K > ( 10 —20 ) δx , (1) 

r: 

 := 

2 R K 

δx 
> 10 —20 , (2)

here R K is the radius of a generic (“the K th”) particle (or bubble)

n the system, and δx is the lattice cell size. The number of bio-

as bubbles is expected to be “low” for gas-mixed anaerobic diges-

ion (with “low” meaning ” � 10” for laboratory-scale, Dapelo et al.

10 , 13] , and “ � 10 4 ” for full-scale, Dapelo and Bridgeman [11 , 12] ).

nder these condition, the Euler-Lagrange model is in general pre-

errable over other approach, i.e., the Euler-Euler [1] . In particu-

ar, the laboratory case presented a high ratio of bubble diame-

er over computational domain dimension (viz., ~ 0.1), and there-

ore the close-to-interface fluid phase flow could have exerted a

on-negligible effect; under these circumstance, the HLBM is pre-

errable over non-interface-solving methods for the obvious reason

hat it resolves the particle surface and reproduces the fluid phase

ow around it in greater detail. However, this ratio is bound to fall

onsiderably when the computational domain size grows, with the

onsequence that the level of detail consisting of a precise repro-

uction of the close-to-interface fluid flow is no longer relevant.

n the other hand, the requirement of 10 to 20 lattice sizes per

article diameter poses a burden in terms of computational ex-

ense: for instance, a pilot-scale model of 1 m 

3 size would require

round 8 billion cells in the face of around 10 million required for

 laboratory-scale. This expense is likely to be unnecessary because

f the low ratio of bubble diameter over computational domain in

he pilot and full-scale (viz., � 10 −2 ), and hence, it is important to

evelop more economic models in order to fully take advantage of

attice-Boltzmann’s potentialities. 

In the pointwise Euler-Lagrange model, each particle is treated

s a material point, and particle-fluid interface is not resolved [1] ;

herefore, contrarily to HLBM, the pointwise Euler-Lagrange model

s free from constraints on the minimum number of lattice sizes

er bubble diameter. As such, the Euler-Lagrangian model is poten-

ially a much cheaper alternative to the HLBM. In other words, the

ypothesis that the particle dimension remains negligible means

42] : 

 R K � δx , (3) 

r: 

 := 

2 R K � 1 , (4) 

δx 
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Eqs. (4) and (2) show the existence of a gap in modelling, which

is not covered by either HLBM and the pointwise Euler-Lagrange

model. In fact, the hypothesis of Eq. (4) was found to be violated

in [10] as well as in the laboratory-scale simulations described in

this article. In [10] , this problem was shown to determine a loss of

grid independence in the most refined meshes, but was partially

solved by generating larger cells where bubbles were expected

to pass through, which means throughout the vertical axis above

the nozzle. However, this solution cannot be extended to Lattice-

Boltzmann modelling as only uniform cubic grids are applicable,

and lattice size is bound to be constant throughout the computa-

tional domain. Two alternative solutions are proposed to resolve

this specific problem and, in general, to fill the gap in modelling

evidenced by Eqs. (4) and (2) . The first consists of a smoothed-

kernel Euler-Lagrangian model, similar to the one described in

[15] , which is specifically designed to simulate Lagrangian particles

when the assumption in Eq. (4) does not hold. A further, novel,

approach is described in this paper and consists of applying the

Buckingham π theorem [7,40] . This approach consists of scaling

the relevant dynamics parameters in order to keep R constant

whilst maintaining the same physics. The underlying assumption,

which was tested in the work described within this article, was

that independence loss is imputable to a variable systematic er-

ror depending on R : keeping the latter constant would thus allow

to have the same systematic error in all the runs, and hence, to

retrieve grid independence. An analysis of the grid independence

in the scaled and unscaled cases for laboratory and pilot-scale se-

tups of 1 m 

3 follows. The laboratory-scale runs are performed due

to the necessity of validating the model against experimental data

and comparing it to HLBM in terms of the balance of accuracy over

numerical expense. The pilot-scale runs are executed to test the

behaviour of the model for setups, which are more similar to the

final goal of the full-scale scenarios. A comparison with laboratory-

scale data is traced, and the two approaches of smoothed-kernel

model and dimensional scaling are then compared. All the sim-

ulations reported within this article were performed through the

OpenLB open-source version 1.3-1 code www.openlb.net [22] . 

This article is structured as follows. On Section 2 , the scal-

ing mechanism based on the buckingham- π theorem is explained.

Then, the Euler-Lagrangian Lattice-Boltzmann model is described

on Section 3 . The specifications the numerical simulations per-

formed in the work described within this article are reported on

Section 4 . The presentation of the results follows on Section 5 , and

then, a discussion is performed on Section 6 . Finally, conclusions

are drawn on Section 7 . 

2. Buckingham- π dimensional scaling 

The Buckingham theorem [7,40] states that it is possible to

completely describe an arbitrary physical process through a set

of opportunely-chosen dimensionless parameters (or “groups”—

examples are the Reynolds number, geometrical ratios,...) in place

of the usual (and generally larger) set of dimensional parameters

(e.g., tank diameter, flow rate,...). As such, any scaling of the phys-

ical parameters will describe the same physical process, provided

that the set of dimensionless groups remains unchanged. 

As an application of this, we introduced a scaling procedure, il-

lustrated as below. A thorough description of the mechanism and

of the justifications behind it is reported in the Supplementary Ma-

terial. 

1. Identify a set of linearly-independent dimensional parameters

( q 1 , . . . , q n ) ; 

2. Build a set of linearly-independent dimensionless groups(
π1 , . . . , πn −k 

)
through Rayleigh’s dimensional analysis ( k be-
ing the number of independent units of measure involved in

the process); 

3. Build another set of “physically-meaningful” (meaning that

their value is important to classify the underlying physics of the

process, e.g., the Reynolds number classifies a flow as laminar

or turbulent) dimensionless groups 
(
πP 

1 
, . . . , πP 

t 

)
independent

from the original set of dimensionless groups 
(
π1 , . . . , πn −k 

)
,

not necessarily linearly-independent and not necessarily de-

scribing the physical process completely; 

4. Alter a first subset of dimensionless groups ( π1 , . . . , πs ) ⊂(
π1 , . . . , πn −k 

)
to the desired values ( ̄π1 , . . . , π̄s ) in such a way

that the numerical simulation of the process becomes easier,

more stable or less computationally-expensive; 

5. Tune a second subset of dimensionless groups

( πs +1 , . . . , πs + t ) ⊂
(
π1 , . . . , πn −k 

)
to 

(
ˆ πs +1 , . . . , ˆ πs + t 

)
in such

a way that the subset of physically-meaningful dimensionless

groups 
(
πP 

1 
, . . . , πP 

t 

)
remains unaltered; 

6. Arbitrarily choose the new desired values of k dimensional

parameters and compute the new values for the whole set

( ̄q 1 , . . . , q̄ n ) from the new set (
π̄1 , . . . , π̄s , ˆ πs +1 , . . . , ˆ πs + t , πs + t+1 , . . . , πn −k 

)
of dimension-

less groups. 

. Euler-Lagrange Lattice-Boltzmann modelling of sludge 

.1. Assumptions for modelling sludge 

Sludge is made of water, organic and inorganic solid frag-

ents and, for gas mixing, biogas bubbles. Solid fragments vary

rom molecular size (organic polymers) to some centimeters (grit

r larger agricultural debris). As such, sludge is characterized

y a variety of multiphase phenomena. Gas-liquid interaction

ives rise to interphase (two-way) momentum transfer; gas-gas

o bubble-bubble (four-way) transfer, bubble breakup and coales-

ence; liquid-solid to sedimentation, flotation and complex non-

ewtonian rheology (e.g., pseudoplasticity, thixotropy, shear band-

ng and yield stress). 

Considering the complexity of the problem, a number of as-

umptions are needed in order to effectively model sludge. ( i )

edimentation and flotation are ignored because their typical

imescales (months if not years) are some orders of magnitude

arger than the mixing timescale (15 minutes every hour), which is

elevant to the problem taken into consideration. ( ii ) As solid phase

s now considered in suspension to liquid phase, both are modelled

ogether as a liquid phase, with the remaining liquid-solid interac-

ion being modelled as non-Newtonian rheology, with thixotropy

eing ignored because typical digestion timescales (15-30 days) are

uch larger than mixing timescales (see Section 3.1.1 below). ( iii )

ubble coalescence, breakup and in general bubble-bubble interac-

ions were not observed experimentally [10] nor found in previous

umerical work [11,12] , whilst liquid-gas interaction is fundamental

s momentum transfer from buoying bubbles to liquid constitute

he foundation of the mixing mechanism itself; as such, gas phase

s modelled as a Lagrangian phase dispersed inside a continuous

ulerian phase (Euler-Lagrange model), and two-way coupling is

efined. 

.1.1. Liquid phase 

A common and effective way to model sludge rheology is to

dopt the pseudoplastic model [45] : apparent viscosity μ and

hear rate magnitude | ̇ γ | obey a power-law relationship: 

= K | ̇ γ | n −1 
, (5)

here n is the power-law coefficient which obeys the constraint

 < 1, and K is the consistency coefficient. Divergence at zero shear

ate and unphysical near-zero apparent viscosity values at high

http://www.openlb.net
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Table 1 

Rheological properties of sludge at T = 35 ◦C. From [25] . 

TS K n | ̇ γ | range μmin μmax Density 

(%) (Pa s n ) (–) ( s −1 ) (Pa s) (Pa s) ( kg m 

−3 ) 

2.5 0.042 0.710 226–702 0.006 0.008 1000.36 

5.4 0.192 0.562 50–702 0.01 0.03 1000.78 

7.5 0.525 0.533 11–399 0.03 0.17 1001.00 

9.1 1.052 0.467 11–156 0.07 0.29 1001.31 

12.1 5.885 0.367 3–149 0.25 2.93 1001.73 
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hear rates are avoided through introduction of μmin and μmax , re-

pectively a minimum and a maximum boundary for the apparent

iscosity. 

The power-law coefficient of Eq. (5) depend on total solid con-

ent (TS) and temperature. [25] measured sludge power-law coeffi-

ients at different TS values, and the results are reported in Table 1 .

Under mesophilic conditions, the temperature is rigorously kept

onstant at 35 ◦C, and hence dependence on temperature can be

gnored. As deviation of sludge density from that of water at 35 ◦C

994 kg m 

−3 ) accounts for less than 1%, the value of 10 0 0 kg m 

−3 

s assumed for the sake of simplicity. 

.2. Lattice-Boltzmann description of the liquid phase 

Whilst other CFD methods directly solve the observable fields

f velocity, pressure and density, the Lattice-Boltzmann solves the

ne-particle density function f ( x , c , t ) in the phase space. f ( x , c , t )

s evaluated at the point of the phase space ( x , c ), and describes

he probability of finding one particle of fluid within the elemen-

al cube ( x , x + d x ) with a velocity comprised within the cubic in-

erval ( c , c + d c ) at a time t . As such, the Lattice-Boltzmann is a

esoscopic model. The observable fields (viz., density, velocity and

hear stress) correspond to the particle density function’s zeroth,

rst and second moments respectively [24] : 

= 

∫ 
f d c ; (6) 

u = 

∫ 
f c d c ; (7) 

u � u − σ = 

∫ 
f c � c d c . (8) 

he Boltzmann equation is solved: 

( ∂ t + c · ∇ ) f = C [ f ] . (9) 

he equation above is nothing else than a continuity equation for f

n the phase space, plus the contribution of inter-particle collisions

s a source-sink term. In the diluted gas hypothesis, the collision

perator C models the effect of binary particle collisions. Despite

eing potentially extremely complicated, C can be drastically sim-

lified following the Bhatnagar-Gross-Krook (BGK) hypothesis [3] ,

hich substitutes the detail of all the possible particle collisions

ith an isotropic average, relaxing towards the equilibrium parti-

le density function f (eq) : 

 [ f ] = − 1 

τ

(
f − f (eq) 

)
, (10) 

here τ is the relaxation time, and f (eq) is the Maxwell equilibrium

istribution [24] : 

f (eq) ( x , t ) := ρ( x , t ) 

(
1 

2 πc 2 s 

)3 / 2 

exp 

{
− [ u ( x , t ) ] 

2 

2 c 2 s 

}
, (11) 

here c s is the sound speed, and density and velocity are evalu-

ted through Eqs. (6) and (7) . 
Space is discretized as a cubic lattice of lattice size δx ,

ime is subdivided into timesteps of duration δt , and the three-

imensional velocity space is discretized as a finite set of vectors

c 0 , . . . , c q −1 

}
pointing to the zeroth, first, second and third neigh-

ours of a generic lattice site, with moduli respectively 
√ 

0 , 
√ 

1 , 
√ 

2

nd 

√ 

3 times δx / δt . A given discretization is conventionally identi-

ed by a tag D d Q q , with d the dimensionality of the problem and q

he dimension of the discrete velocity space. The one-particle dis-

ribution function is now defined over the discretized lattice and

imesteps, and rewritten as a set f i ( x , t ), each f i indicating the prob-

bility of finding a particle with the corresponding discretized ve-

ocity c i . The integrals in Eqs. (6) , (7) and (8) are substituted with

ummations over the velocity set: 

= 

∑ 

i 

f i ; (12) 

u = 

∑ 

i 

f i c i ; (13) 

u � u − σ = 

∑ 

i 

f i c i � c i . (14) 

he error arising from the discretization of the velocity set is can-

elled by writing the Maxwell equilibrium function ( Eq. (11) ) in

erms of orthonormal Hermite polynomials up to the second or-

er: 

f (eq) 
i 

= w i ρ

[
1 + 

u · c i 

c 2 s 

+ 

( u · c i ) 
2 − c 2 s u 

2 

2 c 4 s 

]
, (15) 

here the weights w i and the sound speed are defined in a stan-

ard way for the specific D d Q p lattice, with the latter usually being

efined as: 

 s := 

1 √ 

3 

δx 

δt 
. (16) 

ensity and velocity are evaluated through the discretized version

f Eqs. (6) and (7) [24] . In this way, the adiabatic dynamics with

 compressibility error of Ma 2 with Ma being the Mach number, is

ecovered. The Boltzmann Eq. (9) , considering the BGK assumption

 Eq. (10) ), becomes the Lattice-Boltzmann Equation: 

f i ( x + c i δt, t + δt ) = f i ( x , t ) −
1 

τ

[ 
f i ( x , t ) − f (eq) 

i ( x , t ) 

] 
. (17) 

he updating process for each lattice site at a given timestep com-

rises two steps. First: a local, non-linear collision : 

i ( x , t ) = f i ( x , t ) −
1 

τ

[ 
f i ( x , t ) − f (eq) 

i ( x , t ) 

] 
. (18) 

hen: a linear, non-local streaming : 

f i ( x + c i , t + 1 ) = �i ( x , t ) . (19) 

n the limit Ma � 1, the Lattice-Boltzmann Eq. (17) reproduces

he incompressible Navier-Stokes equations [24] , with pressure and

inematic viscosity defined as: 

p := ρc 2 s , ν := c 2 s 

(
τ − δt 

2 

)
. (20)

.2.1. Non-dimensionalization and stability 

While humans understand measurement units, computers deal

nly with dimensionless quantities. In Lattice-Boltzmann, the non-

imensionalization procedure should be performed accurately in

rder to strike a convenient balance between stability, accuracy

nd computational expense [24] . The standard way to perform

on-dimensionalization in OpenFOAM is through using δx, δt and a

eference value of density as the conversion factors for length, time
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and density respectively. Therefore, viscosity and reference velocity

are converted to: 

νLB = ν
δt 

δx 2 
, U LB = U 

δt 

δx 
. (21)

Combining Eqs. (16) and (21) , we also find the following relation

between Mach number and lattice velocity: 

Ma ≡ U 

c s 
= 

√ 

3 U LB , (22)

which shows that the determination of the Mach number depends

on the choices of δx and δt through Eq. (21) . Finally, Eqs. (20) and

(21) allow the determination of the values of τ and τ LB ≡ τ / δt

from the values of ν and the choices of δx and δt : 

τLB = 

√ 

3 ν
δt 

δx 2 
+ 

1 

2 

. (23)

The value of τ LB consequently decreases if ν decreases, until the

limit case of τLB −→ 1 / 2 for ν −→ 0 . 

Stability depends on the values of U LB (or, equivalently, Ma),

and τ LB . In particular, stability deteriorates when τ LB approaches

the limit value of 1/2, thereby showing that viscosity’s dissipative

effect im proves Lattice-Boltzmann stability. A stability criterion is

not available in Lattice-Boltzmann; however, the following recom-

mendations for τ LB and U LB are given for the case of the BGK col-

lision [24] : 

τLB > 

1 

2 

; (24)

 LB ≤
{

8 ( τLB − 1 / 2 ) , τLB ≤ 0 . 55 ;
0 . 4 , τLB > 0 . 55 . 

(25)

Furthermore, the BGK collision has been found to be unstable in

under-resolved turbulent flow [31] ; therefore, the choice of a too

large value of δx can negatively affect stability. 

Accuracy depends on grid resolution (therefore, δx ) and com-

pressibility error (which is ~ Ma 2 ). Therefore, the desired level of

grid resolution ( δx ) must be tuned together with a choice of δt in

order to prevent the compressibility error (viz., Ma or, equivalently,

U LB ) from increasing, and to maintain stability (viz., preventing τ LB 

from becoming too small, and from U LB from diverging from the

recommendations of Eq. (25) ). Of course, the computational ex-

pense is inversely proportional to both δx and δt . 

Finally, an appropriate scaling of δt should be defined when the

grid is coarsened or refined in order to control stability and the be-

haviour of the compressibility error. A common choice of scaling,

which is followed in this work, is δt ~ δx 2 , or “diffusive scaling”.

This ensures that τ LB remains constant, thereby leaving the stabil-

ity properties of the system unaltered. Furthermore, the spatial dis-

cretization error in Lattice-Boltzmann is ~ δx 2 : the choice of diffu-

sive scaling means that Ma ~ δx , thereby imposing the incompress-

ibility error to be ~ δx 2 , as the spatial discretization error. There-

fore, the Lattice-Boltzmann algorithm is theoretically second-order

accurate in space and first-order accurate in time when choosing

diffusive scaling [24] . 

3.2.2. Lattice-Boltzmann rheology and turbulence modelling 

Following [13] , rheology is modelled as in [5] , and turbulence

through a Smagorinsky closure [18] Each timestep, at each lattice

node, before the collision step: 

1. The rate of shear tensor S αβ ≡ 1 
2 

(
∂ αu β + ∂ βu α

)
is evaluated

through its relationship with the second momentum of the

non-equilibrium term of the particle distribution function f (1) 
i 

[24] : 

S = − 1 

2 τρ c 2 s 

∑ 

i 

f (1) 
i 

c i � c i , (26)
and the dynamic viscosity μPL ( x , t ) is calculated through

Eq. (5) with the substitution: 

| ̇ γ | ≡ √ 

2 S : S ; (27)

2. The relaxation time is locally altered a first time τ −→ τPL 

through inverting the second of Eqs. (20) with νPL ≡ μPL / ρ in

place of ν; 

3. Rate of shear tensor S and shear rate magnitude | ̇ γ | are com-

puted once again through re-applying Eq. (26) with τ PL in place

of τ , and Eq. (27) respectively, and the turbulent kinematic vis-

cosity is computed through the Smagorinsky closure: 

νeff = νPL + C Smago | ̇ γ | , (28)

with the Smagorinsky constant C Smago being set to 0.14; 

4. The relaxation time is locally altered a second time τPL −→ τeff 

through inverting the second of Eqs. (20) with νeff in place of

ν . 

.3. Euler-Lagrange modelling of pointwise particles in 

attice-Boltzmann 

Within the Euler-Lagrange models, the dispersed phase is

reated as an ensemble of pointwise elements, which are con-

entionally called “particles” (in the case of the work reported in

his article, each ”particle” corresponds to a gas bubble) [42] . Each

spherical) particle P K present inside the computational domain

t a given time is formally represented as a tuple composed of co-

rdinate X K , velocity U K , acceleration A K , radius R K and mass M K :

 K ≡ ( X K , U K , A K , R K , M K ) . (29)

urther quantities may be added to the list depending on the com-

lexity of the problem—for instance, moment of inertia, angular

oordinate, velocity and acceleration may be added if rotational ef-

ects (e.g., lift) are important, or aspect ratios if significant devia-

ions from sphericiy are present. However, rotational effects were

ound to be negligible for the application taken into consideration

n the work described here, and deviations from sphericity were

gnored [10,13] . 

Each particle was set to evolve separately through verlet inte-

ration of Newton’s second law: 

 K = M K A K (30)

no Einstein summation rule here!), where F K is the resultant of

he forces acting on P K ( forward-coupling ). For the problem de-

cribed in this article, we have: 

 K = F b K + F a K + F d K , (31)

here F b K is buoyancy: 

 

b 
K = −

(
4 

3 

πR 

3 
K ρ − M K 

)
g (32)

ith g being the acceleration of gravity, and F a K and F d K are the

dded mass and the drag force respectively. The last two are

odelled according to the specific models described below (see

ections 3.3.1, 3.3.2 and 3.3.3 ). In general, they depend on both P K 

nd the observables from the liquid phase ρ , u and ν . 

The effect of P K on the surrounding liquid phase consists of a

ody force −F K acting on the continuous phase ( back-coupling ). A

ody force can be included in the Lattice-Boltzmann framework in

 standard way [17] through the addition of a source term in the

attice-Boltzmann Eq. (17) : 

f i ( x + c i , t + 1 ) = f i ( x , t ) −
1 

τ

[ 
f i ( x , t ) − f (eq) 

i ( x , t ) 

] 

+ 

(
1 − 1 

2 τ

)
S i ( x , t ) , (33)



D. Dapelo, R. Trunk and M.J. Krause et al. / Computers and Fluids 209 (2020) 104632 7 

w

S

T  

b  

S  

i

ρ  

T  

a  

m  

3

 

F  

i

p  

n  

a

F

a

F

T

C

T

R

w

 

c  

E

�

3

 

t  

−  

o

�

δ  

3

 

a  

t  

p  

N  

m  

u  

a  

m  

l  

r

 

t  

B  

e  

E  

s  

t  

i  

m  

l

 

l  

c  

t

g  

w  

n  

k

W

 

t  

o  

t  

c  

a  

a  

o  

a  

t

ε  

T  

c  

c  

m  

t  

a  

l

(

I

w

t

�

here the source term S i is defined as: 

 i := w i 

[
c i − u 

c 2 s 

+ 

( c i · u ) c i 
c 4 s 

]
· � . (34) 

he forcing term � ≡ �K �K ( �K being the specific contri-

ution from particle P K ) depends on the specific model (see

ections 3.3.1, 3.3.2 and 3.3.3 ). The equilibrium velocity ( Eq. (13) )

s redefined as: 

u = 

∑ 

i 

f i c i + 

1 

2 

∑ 

i 

S i c i . (35)

he forcing model described above presents the advantage of

voiding spurious O 

(
Ma 2 

)
terms in the macroscopic equations of

otion whilst keeping a nominal order of convergence of two [16] .

.3.1. Local model 

Within this model, forward-coupling (viz., the computation of

 K , Eq. (31) ) occurs locally: liquid phase density ρ( X K ) and veloc-

ty u ( X K ) are interpolated linearly across the cells surrounding P K 

osition X K , while kinematic viscosity ν
(
X 

next 
K 

)
is computed at the

earest lattice node coordinate X 

next 
K for the sake of simplicity. The

dded mass in Eq. (31) is modelled as: 

 

a 
K = −1 

2 

ρ( X K ) 
4 

3 

πR 

3 
K 

d 

d t 
[ U K − u ( X K ) ] � −1 

2 

ρ( X K ) 
π

6 

d 3 K A K , 

(36) 

nd the drag force as: 

 

d 
K = −1 

2 

ρ( X K ) C d ( Re p ) πR 

2 
K | U K − u ( X K ) | [ U K − u ( X K ) ] . (37) 

he drag coefficient C d is modelled according to [30] : 

 d ( ξ ) = a + 

b 

ξ
+ 

c 

ξ 2 

( a, b, c ) = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

(0 . 0 , 24 . 0 , 0 . 0) , ξ ≤ 0 . 1 ;
(3 . 69 , 22 . 73 , 0 . 0903) , 0 . 1 < ξ ≤ 1 . 0 ;
(1 . 222 , 29 . 16 6 67 , 3 . 8889) , 1 . 0 < ξ ≤ 10 ;
(0 . 6167 , 46 . 5 , 116 . 67) , 10 < ξ ≤ 100 ;
(0 . 4644 , 98 . 33 , −2778 . 0) , 100 < ξ ≤ 10 0 0 ;
(0 . 357 , 148 . 62 , −4 . 75 e 4) , 10 0 0 < ξ ≤ 50 0 0 ;
(0 . 46 , −490 . 546 , 57 . 87 e 4) , 50 0 0 < ξ ≤ 10 , 0 0 0 ;
(0 . 5191 , −1662 . 5 , 5 . 4167 e 6) , ξ > 10 , 0 0 0 . 

(38) 

he particle Reynolds number Re p is evaluated as: 

e p = 

2 R K | U k − u ( X K ) | 
νPL 

(
X 

next 
K 

) , (39) 

here νPL is computed as per in Section 3.2.2 . 

Back-coupling occurs through applying −F K to the most near

ell from P K . This is done trough defining the forcing �K in

q. (34) as (see Krüger et al. [24] ): 

K ( x ) = 

{
−F K , x = X 

next 
K ;

0 , otherwise. 
(40) 

.3.2. First-neighbour model 

Within this model, forward-coupling occurs exactly as per in

he local ( Section 3.3.1 ). Back-coupling occurs through applying

F K to the most near cell from P K , and the first neighbour cells

f the latter, with weights normalized to 1, as in [27] : 

K ( x ) = −F K δδx ( x − X K ) . (41) 

δx is a discrete delta function of width δx (Peskin [33] , Eq. (6.28)).
.3.3. Smoothing-kernel model 

The presence of Lagrangian particles of non-negligible size was

ccounted for by [15] in a finite-volume CFD model for atomiza-

ion process through a smoothing-kernel procedure, which in turn

roduced: ( i ) the field equations for the continuous phase (viz., the

avier-Stokes) were weighted over volumetric phase fraction; ( ii ) a

odified formula for the drag coefficient, dependent on the vol-

metric phase fraction, was used in place of the one of Eq. (37) ;

nd ( iii ) back-coupling occurred through smooth transfer of mo-

entum from the particle to the cells inside one smoothing-kernel

ength from particle’s centre of mass. Conversely, forward-coupling

emained as per in the local case (see Section 3.3.1 ). 

The approach described within this article is a translation of

he model presented by [15] from the finite-volume to the Lattice-

oltzmann framework, with the following differences: ( i ) the field

quations for the continuous phase (viz., the Lattice-Boltzmann

q. (17) ) is not weighted over volumetric phase fraction because

uch arrangement is not yet available for the Lattice-Boltzmann at

he time the work is carried out; and ( ii ) the discretized smooth-

ng procedure is different because, in [15] , the back-coupling mo-

entum term becomes unphysically negligible and dependent on

attice size for R < 1 after smoothing. 

The smoothing-kernel model used in this work is defined as fol-

ows. A smoothing-kernel function is defined for every P K as a

ompact-support polynomial normalized to 1, as in [15] apart from

he bespoke normalizing factor: 

 K ( r ) = C K W 

(
r 

L K 

)
, (42)

here L K is the kernel radius (in practice, a multiple of R K ), C K the

ormalized factor to be recalculated at every timestep in order to

eep g K normalized to 1, and W ( ξ ) is the Wendland function: 

 ( ξ ) = 

{
(4 ξ + 1)(1 − ξ ) 4 , 0 ≤ ξ ≤ 1 ;
0 , ξ > 1 . 

(43) 

The choice of adopting two-way coupling was underpinned by

he fact that bubbles were observed to be well-distanced each

ther [10] : the observed space between the bubbles also justifies

he following hypothesis, that bubbles’ centres of mass never come

loser to each other than the sum of the respective kernel lengths

t any time. Under this hypothesis, volumetric phase fraction at

ny lattice point is determined by the presence (or the absence) of

ne particle at most. As such, the (smoothed) liquid phase fraction

t P K ’s location ε� , K is computed as the summation of contribu-

ions e K coming from each node x , weighted by g K : 

 �,K = 

∑ 

x 

e K ( x ) g K ( | x − X K | ) . (44)

he idea behind the computation of each contribution e K is to

onsider a number of points within the cube I 3 ( x ) of side δx

entered at x , and determine the value of e K depending on how

any points fall within one particle radius R K from X K . In order

o do so, we proceed as follows. Let be B 

�
K 

the bounding cube

round the sphere centered at X K of radius L K ; then, let the paral-

elepiped I 3 
K ( x ) be defined as the intersection I 3 

K ( x ) := I 3 ( x ) ∩ B 

�
K 

see Fig. 1 ): 

 

3 
K ( x ) = 

[
�−

x , �
+ 
x 

]
×

[
�−

y , �
+ 
y 

]
×

[
�−

z , �
+ 
z 

]
, (45) 

here �− ≡
(
�−

x , �
−
y , �

−
z 

)
and �+ ≡

(
�+ 

x , �
+ 
y , �

+ 
z 

)
are respec- 

ively defined as: 

− = 

(
max 

(
X K − L K , x − δx 

2 

)
, max 

(
Y K − L K , y − δx 

2 

)
, 

max 

(
Z K − L K , z − δx 

2 

))
; (46) 
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Fig. 1. Construction of I 3 K ( x ) . 

Fig. 2. Distributing N points throughout I 3 K ( x ) . 
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�+ = 

(
min 

(
X K + L K , x + 

δx 

2 

)
, min 

(
Y K + L K , y + 

δx 

2 

)
, 

min 

(
Z K + L K , z + 

δx 

2 

))
. (47)

I 3 
K ( x ) is filled regularly and isotropically with N 

3 points, N per co-

ordinate direction. As shown in Fig. 2 , there are two ways to do so,

which are labelled as “(a)” and “(b)” respectively. As such, let the

integer vector n be defined as n := ( i , j , k ) with i, j, k ∈ 1 , . . . , N.

Then, two sets of points, 

{ 

p 

(a) 
K ( n , x ) 

} 

and 

{ 

p 

(a) 
K ( n , x ) 

} 

, are de-

fined as: 

p 

(a) 
K ( n , x ) := �− + 

1 

N − 1 

( n − ( 1 , 1 , 1 ) ) ·
(
�+ − �−)

, (48)

and: 

p 

(b) 
K ( n , x ) := �− + 

1 

N + 1 

n ·
(
�+ − �−)

. (49)

Then, after defining a colour function �K as: 

�K 

(
ξ
)

:= 

{
1 , 

∣∣ξ − X K 

∣∣ ≤ R K ;
0 , otherwise , 

(50)
 K is defined as: 

 K ( x ) = 

1 

2 

∑ 

{ n } 

{
�K 

[
p 

(a) 
K ( n , x ) 

]
+ �K 

[
p 

(b) 
K ( n , x ) 

]}
. (51)

The drag force is then defined as in [15] : 

 

d 
K = − 1 

2 ε 1 . 65 
�,K 

ρ( X K ) C d ( ε �,K Re p ) πR 

2 
K | U K − u ( X K ) | [ U K − u ( X K ) ] . 

(52)

he added mass force is defined as in the previous models, as in

q. (36) . 

The back-coupling by applying −F K to the cells inside P K ’s ker-

el length: 

K ( x ) = −F K g K ( | x − X K | ) . (53)

. Numerical simulations 

.1. Transparent sludge substitute 

The employment of a transparent sludge substitute has been a

ommon strategy to reproduce sludge’s hydrodynamic behaviour

hile maintaining transparency and thus the ability of performing

ptical measurements [45] . Accordingly, in [10] , sludge was mod-

lled through a 2 g � −1 water solution of Sigma-Aldrich 419,338

odium carboxymetyl cellulose (CMC) with average molar weight

f 70 0,0 0 0. The power-law coefficient and consistency index were

easured through a rheometer within the shear rate interval 100-

00 s −1 , and resulted to be 0.805 and 0.054 Pa s n respectively. As

uch, transparent sludge’s rheological characteristics resulted to be

ntermediate between 2.5 and 5.4% TS sludge (see Table 1 ). 

Following what concluded in Section 3.1.1 , sludge density was

et to ρL = 10 0 0 kg m 

−3 , while bubble density was set to the den-

ity of air at atmospheric pressure ρP = 1 kg m 

−3 . 

.2. Laboratory-scale simulations 

The experimental apparatus used in [10] and reproduced in

he work presented within this article consisted of a 4 l cylindri-

al tank of diameter D = 20 cm, filled with CMC solution up to a

eight of H = 13 cm. Bubbles of diameter d = 7 . 01 mm were cre-

ted one at a time, with the centre of mass being h noz = 1 cm from

he centre of the domain’s bottom face, at time intervals chosen to

atch a gas inlet flow rate of q = 5 . 30 ml s −1 (see Eq. (54) ) 

t inj = 

πd 3 

6 q 
. (54)

he bubbles reaching the top face were removed from the system.

 schematics of the computational domain is reported in Fig. 3 . 

The boundary conditions were defined as follows: zero-velocity

ouzidi [4] at the bottom and the lateral walls; free-slip [2,35] at

he top. The initial conditions were set to zero velocity and

onstant density throughout the computational domain. For the

moothed-kernel runs, the kernel length was set to L = 1 . 5 d. The

imensionless velocity U LB was set according to diffusive scaling:

 LB = U 

0 
LB 

N 

0 

N 

, (55)

ith U 

0 
LB 

= 0 . 3 and N 

0 = 40 . Grids with a number of lattice nodes

 along the diameter spanning between 40 and 200, correspond-

ng to 36,936 and 4,515,701 overall nodes respectively, were gen-

rated. The simulations were run up to a simulated time of 21 s.

he numerical work was performed on the same hardware of [13] ,

iz., 18-core (36-thread) Intel Xeon E5-2695 v4 “Broadwell” (2.20

Hz clock, 8 GT/s QPI bus) processors, but on two instead of eight

rocessors. 
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Fig. 3. Laboratory-scale computational domain [13] . 
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Table 2 

Types of scaling. 

Label ˆ πi π P 
i 

0 — —

1PNu π 1 PNu 

2PNu π 2 PNu 

2PU π 2 PU 

2Re π 2 Re 

12PNu-Q π 1 , π 2 PNu, Q 

12PNu-Re π 1 , π 2 PNu, Re 

12PNuU-Re π 1 , π 2 PNuU, Re 

12PU-Q π 1 , π 2 PU, Q 

12Q-Re π 1 , π 2 Q, Re 
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.3. Pilot-scale simulations 

The setup was the same of the laboratory-scale case

 Section 4.2 and Fig. 3 ), with the following differences: D = 1

, H = 1 m, h noz = 10 cm, U 

0 
LB 

= 0 . 1 , maximum value for N set to

20 corresponding to 976,835 cells, maximum simulated time of

21 s. 

.4. Current setting of the scaling mechanism 

As emerged in Sections 4.2 and 4.3 , the relevant dimensional

arameter were ten: 

( g, H, D, h noz , q, d, K, n, ρL , ρP ) , (56) 

hile the units of measure involved were three: 

( [ L ] , [ T ] , [ M ] ) . (57) 

ccordingly, following the Rayleigh’s dimensional analysis (Point 2

n Section 2 , also see Section A.2 in the Supplementary Material),

he following repeating variables were chosen: 

( g, q, d ) , (58) 

nd the following seven dimensionless groups were defined: 

 H := 

H 

D 

; (59) 

 noz := 

h noz 

D 

; (60) 

 := n ; (61) 

1 := 

d 5 g 

q 2 
; (62) 

2 := 

d n +2 

g n −2 K 

2 
; (63) 

3 := 

ρL 

ρP 

; (64) 

4 := 

D 

d 
. (65) 

ccording to Point 3 of Section 2 , the following physically-

eaningful dimensionless groups were defined: 

Nu := 

P d d 

ρL 〈 ν〉 3 ; (66) 

NuU := 

P d 

ρL 〈 ν〉 〈 u 〉 2 d ; (67) 

U := 

P d 

ρL 〈 u 〉 3 d 2 ; (68) 
 := 

q 

〈 ν〉 d ; (69) 

e := 

〈 u 〉 D 

〈 ν〉 . (70) 

< u > is the characteristic velocity—in this case, the approxi-

ated average velocity, which was computed by approximating the

elocity flow patterns as constant rising velocity along a central

olumn of diameter d , and zero elsewhere: 

 

u 〉 = u d 

d 2 

D 

2 
, (71) 

here u d is the approximated asymptotic liquid phase drag veloc-

ty, and was computed by solving numerically Eq. (30) for A K = 0 . 

< ν > is the characteristic kinematic viscosity, which was com-

uted substituting the characteristic shear rate 〈 | ̇ γ | 〉 into Eq. (5) ,

ith the former being defined as: 

 | ̇ γ | 〉 = 

u d − 0 

2 d 
. (72) 

 d is the total drag power being dissipated at a given timestep,

hich was computed as: 

 d = N bubbles 

∣∣F d ∣∣u d , (73)

here N bubbles is the total number of bubbles present within the

omputational domain at a given timestep, and was evaluated as:

 bubbles = 

q 

π d 3 / 6 

H − h noz 

u d 

. (74) 

Point 4 if Section 2 was implemented as follows. In order to

eep R constant throughout the different runs, d was adjusted in

he following way: 

 −→ d̄ = d 
N 

0 

N 

, (75)

hile the other repeating variables ( Eq. (58) ) were kept unaltered.

t the same time, the dimensionless group π4 ( Eq. (65) ) was al-

ered as: 

4 −→ π̄4 = π4 
N 

N 

0 
. (76) 

inally (Points 5 and 6 of Section 2 , the map χ of Eq. (A.7) was

pplied in ten possible ways with the related systems of equations

eing solved numerically, as illustrated on Table 2 . 

.5. Numerical setting 

All the simulations were performed on a D3Q27 lattice.

he value of νLB was computed from < ν > . The non-

imensionalization defined from the choices of U LB and N met the

ecommendation of Eq. (24) , but not the one of Eq. (25) . However,

he introduction of a Smagorinsky term as in Eq. (28) resulted in

n increase of the local values of νLB and therefore exerted a stabil-

sing effect. No stability problems were observed in the numerical

uns. 
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Fig. 4. Flow patterns, pilot-scale, axial plane. Numerical data are displayed at their last timestep, and computational expense is reported. (a) Local model. 3143 CPUs. (b) 

First-neighbour model. 3334 CPUs. (c) Smoothed-kernel model. 2762 CPUs. 
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5. Results 

5.1. Pilot-scale runs 

In Fig. 4 , example results of the unscaled pilot-scale runs are

reported for N = 100 . All the three Lagrangian models described

in Section 3.3 are tested. The flow patterns displayed very scarce

dependence on the Lagrangian model, apart from a very slight

increase in intensity for the smoothed-kernel model. The com-

putational expense was found to undertake scarce variations, be-

ing comprised between 270 0 and 340 0 CPUs. The fact that the

smoothed-kernel required slightly less computational expense than

the other two model was surprising: it would have been expected

the contrary because the smoothed-kernel required an additional

cycle per particle over the cells comprised within the smoothing-

kernel length. However, for R ≤ 1 the number of cells comprised

within the smoothed-kernel length tend to be around the unity,

and hence the additional contribution of such cycles on the com-

putational expense tend to become negligible. A possible untackled

optimization problem in the code is probably responsible for the

increased computational expense on the local and first-neighbour

models. 

Fig. 5 reports the results of the grid independence test under

diffusive scaling for the pilot-scale runs, comprising all the La-
rangian models. The x coordinate of the vortex, which is evident

n all the plots of Fig. 4 , was plotted against N . All the models dis-

layed a similar behaviour, and convergence is evidently achieved

or N ≥ 80. This was expectable, as R < 1 for all the runs. Re-

arkably, no data points are reported from the smoothed-kernel

uns for N < 49: this happened because, for d < δx , configura-

ions can occur where no grid points are comprised between one

moothed-kernel length from a bubble centre, thus raising an ir-

esolvable divide-by-zero error. Variations in the vortex’s x coordi-

ate between contiguous values of N resembled oscillations, and

his is especially true for the first-neighbour and the smoothed-

ernel model. It was not possible to ascertain what caused them. 

.2. Laboratory-scale runs: comparison of different Lagrangian 

odels 

In Fig. 6 , example results of the laboratory-scale runs are re-

orted for N = 120 . All the three Lagrangian models are tested.

n the left, scaled flow patterns following the “0” method are re-

orted, on the right the unscaled. Experimental flow patterns from

10] are reported for comparison. The flow patterns reproduced the

xperimental data well, apart from a mild overall underestimation

f the intensity, which is more pronounced in the scaled runs. A

light inwards horizontal displacement of the vortex position for
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Fig. 5. Mesh independence, diffusive scaling, pilot-scale. (a) Local model. (b) First-neighbour model. (c) Smoothed-kernel model. 
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he unscaled runs, and outwards for the scaled, was also present.

he computational expense was comprised between 850 and 8500

PUs, with the smoothing-kernel model being remarkably more

xpensive (up to ten times) than the other models. This was due to

he fact that the number of cells comprised within the smoothing-

ernel length grows as N 

3 for R > 1 , and the same holds for the

omputational expense related to the smoothing-kernel internal

ycles. 

Fig. 7 reports the results of the grid independence test under

iffusive scaling for the laboratory-scale runs, comprising all the

agrangian models. On the right, scaled flow patterns following

he “0” method are reported, on the left the unscaled. The local

nscaled model clearly does not converge, while the judgement is

ore difficult for the other unscaled models. This was expectable,

s we had R > 1 . On the contrary, convergence was evident in all

he scaled runs, and grid independence could be considered to be

chieved for N = 120 — at the cost, however, of a more pronounced

iscrepancy from experimental data (12-26% against 8-12%). Oscil-

ations are clearly visible. 

.3. Laboratory-scale runs: comparison of different types of scaling 

In Fig. 8 , example results of the laboratory-scale runs for all the

caling types reported in Table 2 are provided for N = 120 . Only

he local Lagrangian was used. Experimental flow patterns from

10] are reported for comparison. As expectable, not all the scaling

ypes resulted to produce flow patterns compatible with the ex-
erimental data. In particular, they did so only the “0”, the “2PNu”

nd the “12PNu-Q”. 

Fig. 9 reports the results of the grid independence test un-

er diffusive scaling for the laboratory-scale runs, comprising all

he scaling types reported in Table 2 , and the local Lagrangian

odel. Convergence was found only under the scaling types “0”and

12PNu-Q’. This despite the presence of some off-trend values in

12PNu-Q” following a quasi-periodical recurrence. This was prob-

bly due to an unidentified error in a floating-point-to-integer

onversion. Performing a large number of runs helped identify-

ng the entries suffering of this problem, and excluding them. A

omparison with Fig. 8 shows that these scaling types produce

rid-independent results which are compatible with experimen-

al data, with the “12PNu-Q”, with the last one being the best

hoice. 

. Discussion 

.1. Convergence and scaling 

A correlation between value and variation of R , and conver-

ent (or non-convergent) behaviour, is evident. In the laboratory-

cale simulations ( Section 5.1 ), we had 0 . 3176 ≤ R ≤ 0 . 9528 <

 and convergent behaviour; in pilot-scale, unscaled simu-

ations ( Section 5.2 ), we had 1 < 1 . 588 ≤ R ≤ 7 . 94 and non-

onvergent behaviour; finally, in laboratory-scale, scaled simula-

ions ( Sections 5.2 and 5.3 ), we had 1 < 1 . 588 ≡ R and convergent



12 D. Dapelo, R. Trunk and M.J. Krause et al. / Computers and Fluids 209 (2020) 104632 

Fig. 6. Flow patterns, lab-scale, PIV plane. Numerical data are displayed at their last timestep, and computational expense is reported. (a) PIV experimental data, averaged. 

(b) Unscaled, smoothed-kernel model. 8526 CPUs. (c) “0”, local model. 847 CPUs. (d) Unscaled, local model. 1516 CPUs. (e) “0”, first-neighbour model. 863 CPUs. (f) Unscaled, 

first-neighbour model. 1329 CPUs. 

 

 

 

 

I

 

s  
behaviour (depending on the choice of scaling type). This allowed

us to conclude that: 

1. For R < 1 , convergence occurs and is unaffected by the value

of R ; 

2. For R < 1 , the value of R does affect conver gence, and in par-

ticular: 
(a) for variable R , non-convergent behaviour occurs; 

(b) for constant R , it is possible to retrieve convergent be-

haviour. 

n synthesis, convergence can occur if R < 1 or R = const . 

The introduction of a scaling mechanism has the effect of con-

training R to a constant value, hence enabling convergence de-
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Fig. 7. Mesh independence, diffusive scaling, lab-scale. ”X” marks: numerical data Continuous line: best fit over 5th order polynomial. Dotted line: experimental data. (a) 

Local model, unscaled. (b) Local model, “0”. (c) First-neighbour model, unscaled. (d) First-neighbour model, “0”. (e) Smoothed-kernel model, unscaled. 
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ending on the choice of the physically-meaningful dimensionless

arameter(s). On the other side, however, introduces a systematic

rror, which may affect the model’s predictive power. 

In both cases, the model was verified (see Fig. 10 ) to be second-

rder accurate, as the Lattice-Boltzmann general framework under

iffusive scaling, and as the HLBM [21] . The error was defined as

rr ( N ) := | �x ( N ) − �x ( N 

� ) | , where �x is the vortex’s x coordinate.

 

� is the superior cutoff value for N , and it was chosen as 120

or the pilot-scale (because it was the highest number for N tested
n the pilot-scale), and 128 for the laboratory-scale (because close

o the value of N = 120 , for which convergence was found to be

chieved in Section 5.3 ). 

.2. Choosing a simulation strategy 

The considerations above allow us to trace a two-step strategy

or Lagrangian modelling in the R > 1 case. 
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Fig. 8. Flow patterns, lab-scale, PIV plane. Numerical data are produced through the local model, and are displayed at their last timestep. Computational expense is reported. 

(a) Unscaled, 1516 CPUs. (b) “0”, 847 CPUs. (c) “1PNu”, 749 CPUs. (d) “2PNu”, 705 CPUs. (e) “2PU”, 1468 CPUs. (f) “2Re”, 1006 CPUs. (g) “12PNu-Q”, 879 CPUs. (h) “12PNu-Re”, 

936 CPUs. (i) “12PNuU-Re”, 1311 CPUs. (j) “12PU-Q”, 903 CPUs. (k) “12Q-Re”, 1161 CPUs. (l) PIV experimental data, averaged. 
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Fig. 9. Mesh independence, diffusive scaling, lab-scale. Numerical data are produced through the local model. ”X” marks: numerical data Continuous line: best fit over 

5th order polynomial. Dotted line: experimental data. (a) Unscaled. (b) “0”. (c) “1PNu”. (d) “2PNu”. (e) “2PU”. (f) “2Re”. (g) “12PNu-Q”. (h) “12PNu-Re”. (i) “12PNuU-Re”. (j) 

“12PU-Q”. (k) “12Q-Re”. 



16 D. Dapelo, R. Trunk and M.J. Krause et al. / Computers and Fluids 209 (2020) 104632 

Fig. 10. Order of convergence. Solid dashed lines: numerical result. Dashed lines: Second-order example. (a) Pilot scale, local model. (b) Laboratory scale, “12PNu-Q”. 
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1. Grid independence should be evaluated through scaling, and

the best compromise between grid independence and com-

putational expense should be determined. Different scaling

types should be tested in order to find the most appro-

priate physically-meaningful dimensionless parameter(s). For

the specific example of the laboratory-scale computational

work reported within this article ( Sections 5.2 and 5.3 ), grid-

independent behaviour was shown, and the best compromise

between grid independence and computational expense was

evaluated to be N = 120 . 

2. The best grid determined in the point above should be used to

run unscaled simulations: as they are free from the systematic

error affecting the scaled runs (see Section 6.1 ), better physical

results will be obtained. 

6.3. Comparison with HLBM [13] 

All the Lagrangian model apart from the smoothed-kernel dis-

play strong similarities as regards computational expense. The lat-

ter is generally several times more expensive because of the cy-

cles over the cells comprised within the smoothing-kernel length,

as explained in Section 5.2 . It was also shown that this additional

amount of computational expense vanishes for R ∼ 1 . 

Compared to the HLBM [13] , the advantage of the Lagrangian

methods is evident. Both the applications reported here and in

[13] presented the same structure and computational expense re-

sulted to depend on the number of cells. The HLBM constraint,

reported in Section 1 , of having 10-20 cells per particle diameter

meant that HLBM laboratory-scale simulations were found to con-

verge only for N ≥ 400: as the Lagrangian laboratory-scale sim-

ulations were found to converge for N ≥ 120 in Section 5.2 , that

means that the Lagrangian model requires around 37 times less

resources than the HLBM to produce the laboratory-scale problem

described in Section 4.2 . The same constraint means that hypo-

thetical pilot-scale HLBM simulations of the pilot-scale problem

( Section 4.3 ) would be expected to converge for N ≥ 20 0 0 (in

Section 5.1 it was found that pilot-scale Lagrangian simulations

converge for N ≥ 100), which would mean around 8000 times the

resources needed for Lagrangian runs. 

Qualitatively, both the Lagrangian and the HLBM models repro-

duced the experimental flow patterns, with the first slightly un-

derpredicting them, and the latter equally overpredicting. Quanti-

tatively, the Lagrangian model overpredicted the vortex’s x posi-

tion by around 19%. This is relevant larger than HLBM’s error on

the same quantity, which fell under 1%. However, the HLBM’s good

performance was obtained thanks to the expedient of introducing

partial-slip boundary conditions for the top liquid surface. Such ex-
edient was not adopted in the Lagrangian model presented within

his paper. HLBM’s error in the case of free-slip boundary condi-

ions peaked to around 30%. 

. Conclusions 

Euler-Lagrange Lattice-Boltzmann models were applied for the

rst time in gas-mixed anaerobic digestion. Laboratory-scale vali-

ation was performed, and pilot-scale scenarios were studied. The

dvantage of these models against previously-adopted solutions

viz., the HLBM) was evaluated as being between 37 and 80 0 0

imes less resources being necessary. 

The convergence behaviour of the Euler-Lagrange models was

ound to be dependent on the ratio R between particle diameter

nd lattice size. In particular, convergence did not naturally occur

or R > 1 , corresponding to the violation of the Euler-Lagrange’s

undamental assumption of negligible particle size. 

A smoothed-kernel Euler-Lagrange model was introduced in or-

er to retrieve convergence for R > 1 , but a definitive answer

ould not be found. As an alternative, a novel scaling system, based

n the Buckingham- pi theorem, was introduced. The scaling sys-

em was proved to be effective. Limitations of the scaling approach

nd best ways to employ it were discussed. 

The work described within this article will have applications in

he modelling of complex flow patterns in laboratory, pilot and full

cale geometries; in particular, it represents a significant step for-

ard in advancing the topic of mixing optimization of gas-mixed

naerobic digesters. 

This work is part of an ambitious project (see “Acknowledge-

ents” below), which aims to fully couple biokinetics and hydro-

ynamics in full-scale anaerobic digesters. Next steps will include

 separated validation of a simplified biokinetic model, the valida-

ion of a coupled model against laboratory experimental data, and

he application to industrial digesters. 
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