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Abstract
The microstructural origin of strain hardening during plastic deformation in
stage II deformation of face-centered cubic (fcc) metals can be attributed to the
increase in dislocation density resulting in a formation of dislocation networks.
Although this is a well known relation, the complexity of dislocation multipli-
cation processes and details about the formation of dislocation networks have
recently been revealed by discrete dislocation dynamics (DDD) simulations.
It has been observed that dislocations, after being generated by multiplication
mechanisms, show a limited expansion within their slip plane before they get
trapped in the network by dislocation reactions. This mechanism involves mul-
tiple slip systems and results in a heterogeneous dislocation network, which
is not reflected in most dislocation-based continuum models. We approach the
continuum modeling of dislocation networks by using data science methods to
provide a link between discrete dislocations and the continuum level. For this
purpose, we identify relevant correlations that feed into a model for dislocation
networks in a dislocation-based continuum theory of plasticity. As a key fea-
ture, the model combines the dislocation multiplication with the limitation of
the travel distance of dislocations by formation of stable dislocation junctions.
The effective mobility of the network is determined by a range of dislocation
spacings which reproduces the scattering travel distances of generated disloca-
tion as observed in DDD. The model is applied to a high-symmetry fcc loading
case and compared to DDD simulations. The results show a physically mean-
ingful microstructural evolution, where the generation of new dislocations by
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multiplication mechanisms is counteracted by a formation of a stable disloca-
tion network. In conjunction with DDD, we observe a steady state interplay of
the different mechanisms.

Keywords: crystal plasticity, continuum dislocation dynamics, dislocation net-
works, data science, data-driven modeling

(Some figures may appear in colour only in the online journal)

1. Introduction

Dislocation networks interconnecting different slip systems are a key feature of stage II harden-
ing in fcc single crystals which have been observed and described in early experimental works
[1–3]. Recent discrete dislocation dynamics (DDD) investigations allow for a deeper under-
standing of the microstructural features which govern the effective mobility of dislocations in
networks [4]. It has been shown that dislocation multiplication mechanisms lead to cascades
of further reactions and multiplication events, which can span the whole simulation volume
even though the multiplication events are local. In the course of this observation, a dislocation
may trigger several other reactions but its own travel distance is limited by the reaction it trig-
gers. The consequence is the formation of a dense and relatively stable dislocation network.
Within the network, a large scatter in dislocation spacings and travel distances of individual
dislocations is observed [4, 5]. Thus, dislocation networks are characterized by individual and
very heterogeneous dislocation reaction and multiplication events.

Some existing models, e.g. [6, 7], approach the challenge of modeling dislocation-based
plasticity in the stage II hardening regime by phenomenological formulations based on mod-
ifications of the Kocks–Mecking formulation [8] using a ‘Taylor’-like mobility law [9] to
capture strain hardening. Other models account for immobile dislocation density, which either
incorporates forest interaction as presented e.g. in [10–12], or the formation of dislocation
dipoles, e.g. in [13, 14]. However, most existing approaches combine all mechanisms into slip-
system-wise formulations, usually incorporating an internal length scale which is referred to as
‘mean free path’ of dislocations [10, 11]. Therefore, microscopic details such as the dislocation
density increase on inactive slip systems and the explicit coupling of several slip systems by
dislocation reactions are not reflected. Some steps in direction of including more microstruc-
tural features have been achieved by temporal statistics of dislocation ensembles, e.g. by [15]
which is applied to a continuum formulation in [16], and by including aspects of disloca-
tion multiplication, e.g [7, 17]. However, a consistent continuum formulation of dislocation
network formation is still missing. Moreover, despite the usual interpretation of the ‘Taylor’
relation as the critical shear stress to move ‘pinned’ dislocation segments [18, 19], statisti-
cal variation of segment lengths in dislocation networks have not received much attention in
existing continuum models.

In order to reflect the dislocation dynamics in dislocation networks, we aim for a clear sep-
aration of the dislocation line length increase, resulting in plastic slip, from the mechanisms
which govern the rate of the plastic slip. In contrast to the edge-screw approaches based on
[20], the continuum dislocation dynamics (CDD) theory [21–23] formulates the kinematic
properties of curved dislocation lines. This is achieved by incorporating the so-called curva-
ture density additionally to the dislocation density, where the former represents the change in
dislocation curvature along the dislocation line. Since the integral of the curvature density can
be interpreted as the number of dislocations, the CDD theory allows for the explicit considera-
tion of mechanisms which separately address the dislocation line and the dislocation as a closed
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object. This separation provides the basis for the formulation of dislocation multiplication by
glissile reactions and cross-slip in [24], which is a first step towards a physically based formu-
lation of dislocation networks in a dislocation based continuum theory. However, in order to
reflect further details of dislocation network evolution, dislocation-based continuum models
still lack relevant coupling mechanisms between slip systems which lead to stable networks.
With regard to a physically based modeling, the identification of meaningful relationships in
dislocation networks is needed and a concept of how to approach the statistical variance in
dislocation spacings and travel distances has to be developed.

We present a model of dislocation network formation based on physically inspired for-
mulations for the evolution of dislocation reactions while maintaining the kinematic descrip-
tion of dislocation expansion and plastic strain evolution based on single slip systems. Using
data-driven methods for the analysis of DDD networks and systematic feature selection to
identify physically meaningful correlations, further insights into the complexity of disloca-
tion networks are obtained and continuum terms are derived to represent dislocation reactions
during the network evolution. Based on the found relationships between microstructural fea-
tures, we extend the model of dislocation multiplication presented in [24], by formulating
evolution equations for dislocation reactions leading to sessile dislocation junctions (Lomer
reaction) and junctions of zero Burgers vector (collinear reaction). The proposed continuum
model accounts for two competing mechanisms: (i) the generation of new dislocations, which
allows for further plasticity and (ii) the limitation of the dislocation mobility, i.e. the limita-
tion of the plasticity generated by each individual dislocation. The interplay of the different
mechanisms is analyzed in a simple system followed by a comparison of the model to DDD
simulations [4]. As a result, dislocation network formation is achieved by explicit consideration
of the evolution of dislocation reactions—through their formation and dissolution—rather than
generalizing the mean dislocation distance as the dominant dislocation-mobility criterion for
describing the properties of dislocation networks.

2. Voxel-based analysis of dislocation networks

The strain hardening in stage II deformation of face-centered cubic (fcc) crystals is largely
determined by effects originating from the intersection of dislocation lines on different slip
systems, which leads to the formation of dislocation networks. According to DDD observations
in [4, 5], the most important mechanisms which govern the dislocation microstructure in such
networks include cross-slip as well as glissile, Lomer and collinear reactions. Based on the
3d-DDD dislocation structure investigated in [4], we consider a tensile test using a fcc single
crystal with a volume of (5 μm)3. The system is subjected to a constant strain rate of ε̇ =
5000 s−1, the initial dislocation density is ρ ≈ 1.15 × 1013m−2. For a detailed description of
the DDD material data see [4]. With respect to a subsequent continuum consideration, we
transform the DDD data, consisting of discrete dislocation lines, into voxels, which contain
the continuum field variables as used in the CDD formulation according to [23].

2.1. Preparation of the voxel data set

We subdivide the simulation domain into evenly-sized cubic voxels, as visualized by figure 1.
Along each spatial dimension, we use five voxels, thereby getting a voxel size of (1μm)3. We
represent each voxel by characteristics extracted from the DDD data. These characteristics
are continuum field variables, such as the total dislocation density ρtot, or the reaction den-
sities. The term reaction density denotes the dislocation density representing the line length
of the reaction in the specific voxel, i.e., the line length of glissile (ρgliss), Lomer (ρLomer) or
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Figure 1. Subdivision of the simulation volume in voxels per time step t.

collinear reactions (ρcoll) summed over the slip systems. In the DDD framework, dislocation
reactions are realized by a superposition of two segments. The resulting junction remains in
the data structure, which allows to track the evolution of all junction types. We ignore Hirth
reactions, since they are only very rarely observed in the underlying DDD simulations and
show hardly any contribution to strain hardening, as also observed in [5]. Further, we restrict
the present investigation to mechanisms in dislocation networks which are caused by inter-
section of dislocation lines leading to dislocation reactions. Therefore, we do not explicitly
analyze dislocation mechanisms which typically dominate in single slip conditions, such as
dislocation dipole formation. We also do not choose cross-slip as a voxel characteristic in the
present section, since its formation mechanism is largely different from dislocation reactions.
Moreover, we do not investigate the dislocation velocity in the DDD data, since its discrete
characteristic in DDD is not comparable to the homogenization of the velocity in CDD in
which the velocity is a spatial variable originating from averaged stress terms (see e.g. [25]).
Regarding the temporal dimension, we choose sufficiently large time intervals to average local
scattering in the DDD data, resulting in a number of 22 time intervals overall. For each time
interval, we average over 50 DDD time steps, resulting in a difference in time of ≈ 5 × 10−9s
between time intervals. Considering the spatial and temporal dimensions, we get 2750 data
objects. However, the actual number of voxels used in our investigation is lower and depends
on the reaction type, as we exclude voxels with a reaction density of zero, i.e., voxels without
dislocation reactions. Depending on the reaction type, the actual number of data objects thus
reduces to between 91% and 87% of the full data set.

2.2. Exploration of the data set

In this section, we investigate the evolution of the reaction density as obtained from the data
set. Figure 2 shows the evolution of the measured line length of the DDD simulation stored
in dislocation reactions for a discretization of five voxels along each spatial direction. We rep-
resent each voxel and time step individually, but sum over the slip systems. The plot shows a
comparable increase of reaction density with the dislocation density for all reaction types. The
high relative initial scatter decreases with an increasing total density. The overall increase of
reaction density with dislocation density motivates our prediction models in the next section.
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Figure 2. Dislocation line length per voxel volume stored in dislocation reactions
(=reaction density) over total line length per voxel volume (=total dislocation density),
separately for glissile (a) Lomer (b) and collinear (c) reactions. Each data point represent
one voxel at one time interval and is colored according to the number of dislocations in
the respective voxel.

Additionally, the coloring in figure 2 shows the number of dislocations per voxel and time
interval. The value is determined by counting the number of closed dislocations with unique
loop index within each voxel, such that one dislocation can be part of several voxels, but
each loop index is only counted once in each voxel. It can be seen that the number of dis-
locations in each voxel also increases with increasing total dislocation density and reaction
density.

2.3. Prediction of reaction density

Based on the findings obtained in the previous section, we want to find an adequate prediction
model for the reaction densities. Considering a reaction density ρreact, representing glissile,
Lomer or collinear reaction density, we assume the following functional form:

ρreact =
∑
ξ

∑
ζ

(
βξζ

1 ρξ
√
ρζ + βξζ

2 ρζ
√
ρξ
)

for (ξ, ζ) ∈ πreact, (1)

where πreact denotes the set of all pairs of reacting slip systems for the particular reaction type.
ξ and ζ are indices of the slip systems. The function relates the line length of all reactions
present at a given dislocation state to the overall dislocation content and dislocation spacing
on either of the coupled slip systems. Therefore, as a natural assumption for incorporating
intersecting dislocation lines on two slip planes, the dislocation densities on both slip systems
are coupled with the dislocation spacing on the respective forest system, which leads to the

√
ρ-

terms. This relationship can be motivated independent of the reaction type as coupling terms
of the slip system pairings πreact. We assume that this functional form is applicable regardless
of the type of reaction, if no change in loading path is involved. As an objective of this section,
we evaluate the validity of this assumption based on data-driven analyses. The reaction pairs
depend on the reaction type: we have 24 reaction pairs for ρgliss, 12 reaction pairs for ρLomer

and 6 reactions pairs for ρcoll, which directly originate from the fcc crystal structure. The coef-
ficients βξζ

1 and βξζ
2 are unknown yet. These coefficients specify the relationship between the

dislocation density on the reacting slip systems and the line length of resulting dislocation
reactions.

As the equation is linear in the interaction terms, ρξ
√
ρζ and ρζ

√
ρξ , we validate the

equation by training and evaluating a linear regression model [26] separately for each reaction
type. By using multi-linear regression, we estimate the coefficients βξζ

1 and βξζ
2 of equation (1)
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Figure 3. Predicted value over ground truth of the trained model according to
equation (1) on a mesh with 5 × 5 × 5 voxels trained with multi-linear regression for
glissile (a) Lomer (b) and collinear reactions (c).

with a least-squares fit. The reaction density is the prediction target and the corresponding
interaction terms are the features put into the model, respectively. Before training the regres-
sion models, which we obtain from the scikit-learn library for Python, we apply min–max
scaling to get all features to a common range. Furthermore, we remove features which have
an absolute Pearson correlation of at least 0.95 to another feature, as linear models are known
to have problems with features that are linearly related [26]. After training, we evaluate all
models with the proportion of variance predicted, R2. To determine how well our models gen-
eralize, we apply a train–test split along the temporal axis: data from the first 17 time intervals
forms the training set and data from the last 5 time intervals forms the test set.

Figure 3 compares the values predicted by the trained regression models with the ground
truth values. For a discretization of five voxels along each spatial direction, we observe a high
prediction quality for all three reaction types, underpinning the relationship between dislo-
cation density and reaction density. This also shows the validity of the earlier assumption to
apply the same functional form independent of the specific reaction type.

To further investigate the relationship between dislocation density and reaction density, we
also explore four alternatives to equation (1). Since the values of βξζ

1 and βξζ
2 differ even within

the same reaction pair, when using equation (1), we first use identical coefficients for each
two terms in a reaction pair, i.e., ∀ξ ∀ζ βξζ

1 = βξζ
2 , to analyze the impact of that simplifi-

cation. Second, we simplify equation (1) even further by using the same coefficient for all
interaction pairs:

ρreact = β
∑
ξ

∑
ζ

(
ρξ
√

ρζ + ρζ
√
ρξ
)

for (ξ, ζ) ∈ πreact. (2)

Third, we combine equation (1) with a simple feature selection technique to get a model with
only a few coefficients: for all reaction types, we sort the interaction terms according to the
correlation to the prediction target, i.e. reaction density, and only choose one third or one sixth
of the interaction terms with the highest correlation as features. We then train the regression
model with only these features, i.e. with a limited number of interaction terms. Fourth, we
use the raw dislocation densities from the 12 slip systems instead of the interaction terms.
Table 1 shows the results for the predictions with the different feature sets.

We observe that setting βξζ
1 = βξζ

2 does not reduce the prediction quality. In contrast,
merging all interaction terms according to equation (2) results in a drop of prediction qual-
ity. However, as a trade-off, the number of coefficients is reduced significantly, making the
model simpler. The same holds for the feature selection approach, which results in a pre-
diction accuracy between equations (1) and (2). Furthermore, we can also see an accuracy
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Table 1. R2 for predicting the reaction densities with different feature sets. The values
in brackets are the results for a prediction on the training set.

Feature set Predict ρgliss Predict ρLomer Predict ρcoll

Individual interaction terms (equation (1)) 0.954 (0.956) 0.896 (0.881) 0.937 (0.936)
Equation (1) with ∀ξ ∀ζ βξζ

1 = βξζ
2 0.952 (0.951) 0.891 (0.875) 0.937 (0.936)

All interactions terms combined (equation (2)) 0.863 (0.881) 0.759 (0.795) 0.755 (0.774)
Equation (1) with feature selection, k = 1/3 0.949 (0.949) 0.873 (0.863) 0.926 (0.929)
Equation (1) with feature selection, k = 1/6 0.93 (0.931) 0.855 (0.854) 0.883 (0.905)
Dislocation densities, no interaction 0.93 (0.928) 0.879 (0.87) 0.882 (0.882)

decrease when increasing the feature selectivity, i.e., selecting 1/6 of the interaction terms
instead of 1/3. As a simple sanity check, we also tested selecting the same number of features,
but taking the features with the lowest absolute correlation to the target instead of the high-
est. As one could expect, prediction accuracy turned out to be clearly worse. Finally, using
the raw dislocation densities without the pre-defined interactions results in a similar or worse
prediction performance compared to the feature sets using equation (1), with the largest
difference for the collinear reaction density.

Figure 4 displays the correlation of features from different feature sets with the target
variable, i.e. each reaction density. Here, we observe that the raw dislocation densities over-
all show a lower correlation with their prediction target than the interaction terms from
equation (1). However, one needs to be aware that these correlations only analyze the relation-
ship between each feature on its own and the target variable. In contrast, the multiple linear
regression model uses a combination of all features from the corresponding feature set. This
methodological difference can explain the discrepancy between correlation results and pre-
diction results regarding the combined interaction term of equation (2). In this case, there is
only one feature per target variable and therefore only one correlation value. We observe a
high correlation with the target variable, but still obtain no better prediction quality than the
individual interaction terms from equation (1) combined in a model.

3. Dislocation density-based continuum model

3.1. Dislocation networks in a dislocation-based crystal plasticity framework

3.1.1. Elasto-plastic framework. In the continuum, we describe the elasto-plastic deformation
of fcc metals by an additive decomposition of the small-strain distortion tensor into an elastic
and a plastic part

Du = βel + βpl, (3)

using the gradient operator D. The plastic distortion, described by the tensor βpl, is assumed
to originate solely from the evolution of the dislocation state and is determined by evaluating
the sum of the plastic slip γξ (see section 3.1.2) over all slip systems ξ

βpl =

N∑
ξ=1

γξdξ⊗ mξ. (4)

7



Modelling Simul. Mater. Sci. Eng. 28 (2020) 065001 M Sudmanns et al

Figure 4. Correlation of different feature sets with the target variable for each reaction
type, respectively.

Herein, the orientations of the slip systems are defined by the orthonormal basis {dξ , lξ, mξ}
with the slip plane normal mξ and the slip direction dξ = 1

b bξ , where bξ is the Burgers vector
of length b = |bξ| and lξ = mξ × dξ .

Following [21, 22], the evolution of the dislocation microstructure can be described by the
evolution of the total dislocation density ρξ , the vector of the geometrically necessary disloca-
tion density κξ = (κξ

screwd,κξ
edge, 0), and the curvature density qξ. The latter variable describes

the local change in angular orientation of an ensemble of dislocation lines in an averaging vol-
ume. The dislocation flux-based kinematic evolution of the dislocation state—neglecting any
change of dislocation content by dislocation reactions or cross-slip—is therefore described by
the following equations, assuming an isotropic dislocation velocity vξ :

∂tρ
ξ =−∇ · (vξκξ

⊥) + vξqξ with κξ
⊥ = κξ × mξ

∂tκ
ξ =∇× (ρξvξmξ)

∂tq
ξ =−∇ ·

(
qξ

ρξ
κξ
⊥v

ξ + Aξ∇vξ
)
.

(5)

Here, we employ the closure assumptions introduced in [21] using the dislocation alignment
tensor

Aξ =
1

2|κξ |2
((

ρξ + |κξ |
)
κξ ⊗ κξ +

(
ρξ − |κξ |

)
κξ
⊥ ⊗ κξ

⊥

)
. (6)

The relationship between shear stresses on the slip system and the dislocation velocity vξ is
characterized by a velocity law, assuming a linear dependency between velocity and effective
resolved shear stress τ ξ. The effective resolved shear stress originates from a superposition of
an external loading or boundary conditions projected on the slip plane and internal stresses
of the dislocation microstructure: τξ = τξext + τξint. The internal stresses represent the mean
dislocation stress fields using a mean field approach as in [25] according to the numerical
resolution of the system, and short range correction stresses. However, the long-range inter-
nal stress fields vanish in configurations which only consist of statistically stored dislocations
(SSDs). This problem can be solved by introducing formulations for dislocation interaction and
reaction, as in [14, 24] and as explained later in this section.

The elasto-plastic formulation described in this section is incorporated in the finite ele-
ment code M++ based on a parallel multigrid method [27, 28], which further incorporates
the numerical framework for the solution of the dislocation microstructure problem described
by equation (5). The CDD framework is described in detail in [23]. Using a discontinuous
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Figure 5. Schematic visualization of cross-slip (a) and occurring reactions from inter-
section of two dislocations showing glissile (b), Lomer (c) and collinear reactions
(d).

Galerkin scheme, the equations are solved separately on each slip system. The elasto-plastic
problem is solved by a standard finite element solver, where the same mesh is used for the
stress computation and the evaluation of the internal variables of the microstructure.

3.1.2. Dislocation networks in the continuum. Due to the planar nature of the kinematic evo-
lution of the dislocation state in CDD (equation (5)), any mechanism which originates from
the reaction of dislocations on different slip systems has to be included by rate equations,
which modify the dislocation content as well as the curvature density on the respective slip
systems. This is described in [24] for the aspect of dislocation multiplication. As for the voxel-
based analysis of the DDD dislocation network in section 2, we formulate physically based
evolution equations for dislocation reactions, which will be derived in detail in section 3.2 in
the context of the given continuum theory. A schematic visualization of all considered mecha-
nisms is shown in figure 5. Cross-slip and glissile reactions lead to dislocation multiplication by
generation of new dislocations [4, 24]. In contrast, Lomer reactions lead to sessile dislocation
junctions which typically impede the motion of the involved dislocations [29, 30]. The latter
process is further called stabilization of dislocations. Collinear reactions lead to an annihila-
tion of collinear dislocation lines sections. All reactions involve two dislocations on different
slip systems, which intersect and form a dislocation reaction, as long as at least one segment
is mobile.

In DDD simulations [4], it is observed that dislocations mostly do not further contribute to
plastic slip once incorporated into the network e.g. by formation of dislocation reactions. Fur-
ther, the network microstructure is characterized by a large scatter of the velocities and travel
distances of involved dislocations. The resulting length of dislocation lines connecting end-
points of dislocation junctions has been referred to as link lengths, where statistical variations
of this link length have been proposed as an explanation for the emerging microstructure of
dislocation networks [5, 31]. Therefore, the onset of plastic flow can be related to a ‘weakest-
link’ argument [32]. In the context of a dislocation-based continuum theory, we therefore
incorporate a formulation in which the total dislocation density ρξ is separated into a mobile
dislocation density ρξM, which evolves according to equation (5), and into a part which we call
network dislocation density ρξnet, which does not contribute to plastic slip:
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ρξ = ρξM + ρξnet. (7)

For the rate of the plastic shear γξ it thus holds

∂tγ
ξ = ρξMbvξ. (8)

The network dislocation density ρξnet is distributed over a certain range of dislocation link
lengths to capture the statistical variations in travel distances of the dislocations. This aspect
will be derived in detail in section 3.2.2. The density ρξnet in equation (7) is further subdivided
into (i) a density of Lomer junctions ρξLomer, which captures the line length of the junction
between both end-nodes (visualized by the blue line in figure 5(c)) and (ii) a stabilized dis-
location density ρξS. The latter contains the line length of dislocations which are part of the
stable network due to their attachment to Lomer junctions (visualized by the red and green
lines in figure 5(c)). Both densities can be increased by the formation of Lomer junctions. This
results in

ρξnet = 0.5ρξLomer + ρξS. (9)

Here, the density of Lomer junctions ρξLomer is shared with the second involved slip system,
resulting in a prefactor of 0.5. The unzipping of Lomer junctions is reproduced by a trans-
formation of the respective fraction of the network dislocation density (ρξnet) back into mobile
dislocation density, as will be derived in section 3.2.

For the evolution of the dislocation network, the network dislocation density ρξnet is defined
as an internal variable, which evolves based on sink and source terms in the evolution equation
of the mobile dislocation density ρξM. The evolution of the averaged dislocation state using
equation (5) and including cross-slip, as well as glissile, Lomer and collinear reactions results
in

∂tρ
ξ
M = −∇ · (vξ κξ

⊥) + vξqξ + ∂tρ̄
ξ
M + ∂tρ̂

ξ
M + ∂tρ̄

ξ
M,Lomer + ∂tρ

ξ
M,react + ∂tρ

ξ
M,cross

∂tκ
ξ = ∇× (ρξMv

ξmξ) + ∂tκ̄
ξ
cross

∂tρ
ξ
net = 0.5∂tρ

ξ
Lomer − ∂tρ̄

ξ
M,Lomer + ∂tρ̂

ξ
net + ∂tρ

ξ
S,react

∂tq
ξ = −∇ ·

(
qξ

ρξM
κξ
⊥v

ξ + Aξ∇vξ

)
+ ∂tq̄

ξ + ∂tq
ξ
react + ∂tq

ξ
cross.

(10)

Here, ()react is an index denoting different dislocation reactions, i.e. ()react = ()gliss, ()Lomer, ()coll.
Further, any density increase, resulting from the formation of a reaction is denoted by ¯( ),
whereas the respective increase resulting from unzipping of Lomer junctions is denoted by
ˆ( ). Dislocation reactions and cross-slip lead to a decrease of dislocation density on the react-

ing slip systems, which is denoted by ∂tρ
ξ
M,react, ∂tρ

ξ
M,cross, ∂tρ

ξ
S,react. Dislocation multiplication

by cross-slip and glissile reactions leads to a generation of new dislocations which increases
the mobile density ∂tρ̄

ξ
M = ∂tρ̄

ξ
M,gliss + ∂tρ̄

ξ
M,cross, the curvature density ∂tq̄ξ = ∂tq̄

ξ
gliss + ∂tq̄

ξ
cross

and the screw-GND density ∂tκ̄
ξ
cross in case of cross-slip (see also [24]). The density of

Lomer junctions is reflected by 0.5∂tρ
ξ
Lomer, where the reaction further transfers dislocation

line length from mobile dislocation density (ρξM) to its network counterpart (ρξnet) by ∂tρ̄
ξ
M,Lomer

due to the stabilization of attached dislocation lines. The reverse process is the unzipping of
Lomer junctions, which increases the mobile density by ∂tρ̂

ξ
M and equally decreases the net-

work density by ∂tρ̂
ξ
net = ∂tρ̂

ξ
Lomer + ∂tρ̂

ξ
S. All dislocation reactions and cross-slip lead to a

decrease of dislocation density on the reacting slip systems ∂tρ
ξ
M,react, ∂tρ

ξ
M,cross, ∂tρ

ξ
S,react due

to the mechanism itself. As derived in [24], we consider a concentration of dislocation curva-
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Table 2. Overview of mechanisms, which can form mobile or network dislocation den-
sity.

Mobile density is increased by Network density is increased by

Expansion of existing See equation (5) Formation of Lomer See equations (14)
dislocations: vξqξ reactions: and (21)

0.5∂tρ
ξ
Lomer,−∂tρ

ξ
M,Lomer

Dislocation multiplication See equation (B.1)
by cross-slip and
glissile reactions:
∂tρ̄

ξ
M = ∂tρ̄

ξ
M,gliss + ∂tρ̄

ξ
M,cross

Unzipping of Lomer See equation (18)
junctions: ∂tρ̂

ξ
M

ture into the end-nodes of dislocation junctions which is reflected by ∂tq
ξ
react and ∂tq

ξ
cross,

see also section appendix C. Table 2 provides an overview of mechanisms, which can
form mobile or network dislocation density. These mechanisms are derived in detail in
section 3.2.

The explicit incorporation of Lomer reactions in the dislocation network (equations (7) and
(9) governs the evolution of mobile dislocation density (ρξM) and thus the plastic slip evolu-
tion defined by the Orowan equation equation (8). Restricting the increase of mobile density
by junction formation therefore acts as a source of hardening. Any increase of the density of
the dislocation network (equations (7) and (9)) inhibits the plastic slip and thus has an effect
similar to a local yield stress. This idea is conceptually comparable to formulations which
introduce dislocation dipoles as a source of hardening, e.g. in [13, 14]. In addition to the
strengthening due to junction formation, existing Lomer junctions (described by

∑
ξρ

ξ
Lomer) can

act as obstacles to moving dislocations due to their intrinsic stress-field. This is considered by

an additional hardening component ∝
√∑

ζ āLomerρ
ζ
Lomer with a Lomer interaction coefficient

aLomer contained in āLomer = 0.5aLomer. Here, the factor 0.5 originates from the assumption that
the Lomer density is shared between two slip systems. For the Lomer coefficient we choose
aLomer = 0.122 for simplicity, which is the same value as the Lomer and self hardening coef-
ficients in [6, 19], but represents a stress interaction with mobile dislocations instead of the
strength due to the junction formation. For glissile and collinear reactions the additional hard-
ening does not exist, since in case of the collinear reaction the lines annihilate and for glissile
reactions the dislocation is mobile and included in the mobile dislocation density. The con-
tribution of glissile, collinear and Hirth reactions as well as self and coplanar interaction to
hardening is considered by an interaction matrix aξζ according to [33]. The values of the hard-
ening components are taken from [6] where the Lomer component is set to zero and replaced
by the explicit incorporation of Lomer reactions (equations (7) and (9)). In combination with
the interaction of mobile dislocations with existing Lomer junctions explained above, we thus
obtain

τξfl, mat = Gb

√∑
ζ

(
aξζ

(
ρζM + ρζS

)
+ āLomerρ

ζ
Lomer

)
, (11)

with the shear modulus G. The stress term τξfl, mat is incorporated into the velocity law, using
the effective resolved shear stress τ ξ, as
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vξ =

⎧⎨
⎩

b
B

(
|τξ | − τξfl, mat

)
sign

(
τξ
)

if |τξ | > τξfl, mat

0 if |τξ | � τξfl, mat

(12)

with a friction coefficient of B = 1 × 10−4 Pa s.

3.2. Dislocation reactions in the continuum

3.2.1. Formation of dislocation reactions. In the course of the voxel-based investigation
of the DDD data in section 2, a function between dislocation density and reaction den-
sity was motivated, which couples the dislocation activity on respective slip systems, see
equation (1). Here, a formulation of dislocation reactions for a continuum theory in conjunction
with the investigation in section 2 is derived. Since equation (1) formulates a relation for the
reaction density present at a given dislocation state, the equation can not be directly trans-
ferred into a continuum framework which relies on a formation rate of dislocation reactions.
However, we follow the argumentation in section 2 regarding the validity of the investigated
function for all reactions shown schematically in figure 5 to formulate reaction equations which
incorporate a slip rate according to [24, 34]. Regarding dislocation multiplication, a cross-
slip rate derived from temporal statistics of discrete dislocation ensembles has been applied
to a continuum framework by [16]. In order to provide a consistent formulation of disloca-
tion networks, we incorporate dislocation multiplication by cross-slip and glissile reaction
according to the model presented in [24].

For the derivation of the dislocation reaction model in the context of the dislocation-based
plasticity framework explained in section 3.1, we now consider the pairing of two reacting
slip systems ξr′ and ξr′′ individually. As a limiting criteria, at least one of the involved dis-
location lines has to be mobile, i.e. ρr′

M, ρr′′
M > 0 and vr′ > 0 or vr′′ > 0. The stabilized dis-

location density ρξS is also a possible partner for dislocation reactions, although it does not
contribute to plastic slip. Further, we assume for simplification that the statistical variation
in dislocation travel distances results in a distribution of the dislocation link lengths around
the mean dislocation spacing, such that the density of all link lengths, i.e. line length times
number of dislocations per volume, is constant. Using those assumptions, the mean distance

of the involved dislocations on the intersecting slip systems ζ is Lζ = 1/
√
ρζM + ρζS. The

increase in reaction density is then described by a term comparable to [24, 34]:

∂tρreact = Creact

(
ρξM|vξ |

√
ρζM + ρζS + ρζM|vζ |

√
ρξM + ρξS

)
with ξ, ζ = r′, r′′ and ξ �= ζ

(13)

with ()react = ()gliss, ()Lomer, ()coll. Here, Creact is a combined coefficient similar to β in
equation (2) which describes the effective length of the dislocation junction and contains the
Burgers vector. The value range of this coefficient has been determined by DDD—simulations
for glissile reactions, i.e. Creact = Cgliss [34, 35]. Since equation (13) is valid for all reactions,
the density ρreact is not tied to a specific slip system and therefore does not include a slip system
index.

The reaction equation (equation (13)) describes the amount of density which is affected by
the intersection of two dislocation lines forming a reaction, but it does not state if the reac-
tion is stable. We therefore describe the stability of any junction, i.e. the irreversibility of the
reaction formation, by introducing a fraction of stable dislocation reactions ηξreact for all reac-
tion types, i.e. ()react = ()gliss, ()Lomer, ()coll. The process of a reaction formation is assumed to
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be irreversible for glissile and collinear reactions. Thus, it holds ηξgliss = ηξcoll = 1. Whereas
the collinear reaction leads to a dislocation annihilation, which is effectively a zero Burgers
vector junction, the glissile reaction leads to the generation of a new mobile dislocation on a
third involved slip system denoted by ξgl. It thus holds ∂tρ

gl
gliss = ηgl

gliss∂tρgliss. Following [24],
the glissile reaction leads to an increase in mobile dislocation density and in curvature density
due to a bow-out of the junction up to half of the mean dislocation spacing (see appendix B for
details).

In contrast to the glissile and the collinear reaction, the Lomer reaction creates a sessile
dislocation junction which can unzip if the effective resolved shear stress τξ exceeds a critical
shear stress τ cr,Lomer. The latter depends on the length of the attached dislocation segments
[36, 37]. We therefore assume the fraction of stable Lomer reactions ηξLomer to scale within the
interval [0, 1]. The increase of the density of Lomer junctions is then described by

∂tρ
ξ
Lomer = ηξLomer∂tρLomer with ξ = r′, r′′ (14)

using ρLomer from equation (13) with the index ()Lomer. Although the Lomer junction crys-
tallographically does not belong to either of the reacting slip systems, we assign the density
of Lomer junctions to both involved slip systems and weight its contribution to the network
dislocation density by a factor of 0.5, see equation (9).

3.2.2. Stability of Lomer reactions. The fraction of stable Lomer reactions ηξLomer takes into
account that Lomer junctions can dissolve if a large enough shear stress, i.e. a critical stress
τ cr,Lomer, is applied. The strength of the junction depends on the link length, i.e. the length of
the attached dislocation lines [36, 37], which is assumed to scale with the dislocation density
by 1/

√
ρ. It thus holds ηξLomer = f

(
τξ , ρξ

)
. Therefore, an intersection between two disloca-

tion lines on two slip systems does not result in a stable Lomer junction if τ ξ > τ cr,Lomer.
In the continuum model, ηξLomer then acts as a prefactor in the reaction equation equation (14).
The critical stress τ cr,Lomer can be approximated to

τcr,Lomer ≈ 0.5Gb
1

LLomer
(15)

based on line-tension arguments [37, 38], or based on atomistic and DDD-simulations [19,
36, 39, 40]. Here, LLomer denotes the link length, for which we assume LLomer ∝ 1/

√
ρtot =

1/
√∑

ξρ
ξ . As introduced in section 3.2.1, we assume a distribution of link lengths due to scat-

tering travel distances of dislocations. On both reacting slip systems ξr′ and ξr′′ , we thus find a
maximum (Lmax) and minimum length (Lmin) of dislocation lines, which results in a distribu-

tion of the dislocation link lengths in the averaging volume between Lmin < L = 1/
√∑

ξρ
ξ <

Lmax. Figure 6(a) schematically shows a dislocation configuration for Lmin and Lmax. In
the following, we choose Lmin = 0.1L and Lmax = 2L, based on the measured scattering of
the travel distances and the nucleation radii of the dislocations within the DDD dislocation
network [4].

Due to the relation between critical shear stress and dislocation link length (equation (15)),
there exists a longest dislocation line segment which can be stable for a given resolved shear
stress

Lξ
cr,Lomer = 0.5Gb

1
|τξ | with ξ = r′, r′′. (16)
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Figure 6. Schematic visualization of Lomer reactions with a maximal and minimal
length of the dislocation segments attached to the end-nodes of the respective reaction
(Lmin and Lmax) (a) and the stable range of segment lengths on slip systems ξr′ and ξr′′ ,
within which stable Lomer reactions can exist, visualized by the green area (b). τ denotes
the applied shear on either slip system. The overall range is limited by the maximum
(Lmax) and minimum (Lmin) length in conjunction with the minimum (τmin) and max-
imum (τmax) shear stress (see equation (16)). The maximum stable segment length is
limited by Lξ

cr,Lomer = min
{

Lr′
cr,Lomer, Lr′′

cr,Lomer

}
on the coupled slip systems.

This defines the weakest Lomer reaction. Figure 6(b) schematically shows the length dis-
tribution of the dislocation segments for the general case of a different resolved shear
stress on both reacting slip systems. The stress range in which stable Lomer junctions can
exist is limited by Lmin (which defines the strongest junction) and Lξ

cr,Lomer with Lξ
cr,Lomer =

min
{

Lr′
cr,Lomer, Lr′′

cr,Lomer

}
, as visualized by the green area. This means the stability of a Lomer

junction is limited by the slip system with the highest shear stress. The fraction of stable Lomer
reactions is then defined by

ηξLomer =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 if Lξ
cr,Lomer � Lmax

Lξ
cr,Lomer − Lmin

Lmax − Lmin
if Lmin < Lξ

cr,Lomer < Lmax

0 if Lξ
cr,Lomer � Lmin.

(17)

An increase in shear stress on at least one slip system therefore results in ∂tL
ξ
cr,Lomer < 0.

This reproduces the physical observation of unzipping Lomer junctions, which we simplify by
assuming the reverse process of the Lomer reaction formation described by equation (14). This

means a transformation of the fraction
∣∣∣∂tL

ξ
cr,Lomer/

(
Lξ

cr,Lomer − Lmin

)∣∣∣ of the density of Lomer

reactions, denoted by ρ̂ξLomer, and the stabilized dislocation density ρ̂ξS into mobile dislocation
density ρ̂ξM. Thus it holds

∂tρ̂
ξ
Lomer =

∂tL
ξ
cr,Lomer

Lξ
cr,Lomer − Lmin

ρξLomer, ∂tρ̂
ξ
S =

∂tL
ξ
cr,Lomer

Lξ
cr,Lomer − Lmin

ρξS

and

∂tρ̂
ξ
M =−

∂tL
ξ
cr,Lomer

Lξ
cr,Lomer − Lmin

(
ρξLomer + ρξS

)

with ξ = r′, r′′ if ∂tL
ξ
cr,Lomer < 0,

(18)

where ρξLomer and ρξS is the density of Lomer reactions and the stabilized dislocation density in
the given time step.
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3.2.3. Impact of dislocation reactions on the dislocation line length. In conjunction with [4,
24], we assume that dislocation reactions as well as cross-slip lead to a loss of line length
on the reacting slip system. This involves line length which vanishes in the junction, i.e. the
line between both junction end-nodes. The subdivision of the total dislocation density into a
mobile and a network part in equation (7) implies that the respective loss of line length has to
be broken down according to which dislocations are able to react. This can be explained by an
example: the mobile dislocation density on the forest slip system ρζM can only reduce the dislo-

cation densities on the primary slip system ρξM and ρξS by their relative amount ρξM/
(
ρξM + ρξS

)
and ρξS/

(
ρξM + ρξS

)
. The amount of mobile and stabilized dislocation density (denoted by the

index ()M,react and ()S,react) which is lost on reacting slip systems due to the formation of any
dislocation reaction with a specific length is derived as

∂tρ
ξ
M,react =−ηξreact Creact

(
ρξM|vξ |

√
ρζM + ρζS + ρζM|vζ |

√
ρξM + ρξS

ρξM
ρξM + ρξS

)

and

∂tρ
ξ
S,react =−ηξreact Creact

(
ρζM|vζ |

√
ρξM + ρξS

ρξS
ρξM + ρξS

)

with ξ, ζ = r′, r′′ and ξ �= ζ.

(19)

This equation holds for all considered dislocation reactions, i.e. ()react = ()gliss, ()Lomer, ()coll.
The sum of both contributions in equation (19) thus equals the negative production rate of the
density of dislocation reactions ρreact in equation (13) multiplied with the fraction of stable
dislocation reactions ηξreact.

ηξreact∂tρreact = −
(
∂tρ

ξ
M,react + ∂tρ

ξ
S,react

)
with ξ = r′, r′′. (20)

The stabilized dislocation density ρξS describes the line length of dislocations which are
attached to the end-nodes of Lomer junctions, as shown in figure 6(a). The increase of ρξS thus
results from a stabilization of mobile dislocations involved in Lomer dislocation reactions.
This contribution is denoted by ∂tρ̄

ξ
M,Lomer and is assumed to be reversely proportional to the

reduction of mobile dislocation density due to Lomer junction formation (equation (19) with
index ()Lomer), leading to

∂tρ
ξ
S = ∂tρ̄

ξ
M,Lomer = −∂tρ

ξ
M,Lomer with ξ = r′, r′′. (21)

3.3. Considered systems

3.3.1. Simplified system. First, we only consider glissile and Lomer reactions by using a
configuration of three slip systems, as shown schematically in figure 7. We exclude all spa-
tial gradients in the evolution equation equation (10), which results in a system of ordinary
differential equations. The spatial orientation of the slip systems is not related to any real
crystallographic orientation. Thereby, the system is artificial, but comes with the benefit to
reduce the complexity in order to focus on the interplay of dislocation multiplication and
dislocation network formation. The system is therefore fully homogeneous and serves as
a benchmark configuration. Two slip systems ξ = 1 and ξ = 2 are subjected to a constant
shear stress of τ 1,ext = τ 2,ext = 15 MPa. On the third slip system ξ = 3, we set τ 3,ext = 0,
in order to mimic active and inactive slip systems. The initial dislocation density is chosen
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Figure 7. Schematic overview of three considered slip systems ξ = 1, 2, 3 with respec-
tive glissile and Lomer reactions.

as ρξ = ρξM = 1 × 1012 m−2 with qξ = 0 initially on each slip system. Due to the neglected
transport terms it further holds ‖κξ‖ = 0. In order to determine the influence of Lomer
junctions as obstacles for the movement of mobile dislocations, we investigate the impact
of the additional interaction stress given by equation (11) using aLomer = 0.122. For the
simple system, the interaction matrix aξζ is chosen to equal zero to solely focus on the influ-
ence of the Lomer reaction as obstacles. The reaction coefficient Creact = 0.064 in equation (13)
is chosen according to [24] for glissile and Lomer reactions. The elastic material parameters
are given by the elastic modulus E = 71.3 GPa, a Poisson’s ratio of ν = 0.34 and a Burgers
vector of b = 0.256 nm.

3.3.2. Full fcc system with tensile loading. In a second step, we use all 12 fcc systems and
investigate the full model consisting of glissile, Lomer, collinear reactions and cross-slip. We
aim to compare the average dislocation density evolution as well as the spatial density distri-
bution to the DDD-simulations of [4]. We therefore apply the model to a cubic volume with
edge length of (5 × 5 × 5)μm, as in [4, 24]. The system is subjected to a tensile displacement
on two opposite normal surfaces in the direction of the [100] crystal axis using a constant
strain rate of ε̇ = 5000 s−1. This leads to a high symmetry multislip orientation in which eight
slip systems have the same nonzero Schmid-factor (further called active) and four slip sys-
tems have a zero Schmid-factor (further called inactive). We set v = 0 on the inactive slip
systems to avoid dislocation activity triggered by boundary conditions.

The initial dislocation density distribution is chosen to reproduce the spatial features of
the initial dislocation microstructure of the DDD simulations [4]. The latter originates from a
relaxation of a random distribution of dislocation loops, shown in figure 8(a). The ensemble-
average of seven relaxed DDD microstructures is shown in figure 8(b). Here, the dislocation
line length is averaged over 20 × 20 × 1 voxel, averaging over the full system in tensile direc-
tion (here normal to the drawing plane). It can be seen that the dislocation density accumulates
in the center of the system, which results from the use of free surfaces used in the DDD
simulations. For the continuum simulation, we mimic this initial microstructure by distribut-
ing the total dislocation density ρξ on each slip system ξ according to a multivariate normal
distribution using a vector of the mean value equal to 0μm and standard deviations of σx =
σy = σz = 1.2 × 1012 m−2 in the respective coordinate directions x, y and z. This results in
an accumulation of dislocation density in the center of the system, as shown in figure 8(c).
This initial dislocation configuration consists of network dislocation density ρξnet, which does
not generate a long-range stress-field and therefore reproduces the relaxed dislocation net-
work observed in [4]. For the average initial dislocation density per slip system ξ it holds
ρξLomer ≈ 0.35 × 1012 m−2 and ρξS ≈ 0.75 × 1012 m−2, i.e. one third of the line length per slip
system is stored in Lomer junctions, which resembles the configuration in [4]. This results
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Figure 8. Relaxed initial dislocation microstructure of one representative DDD sim-
ulation (a); ensemble-average of seven DDD simulations, averaged over 20 × 20 × 1
voxels (b); initial distribution of the total dislocation density ρtot =

∑
ξρ

ξ in the CDD
simulation averaged over the tensile direction (c). The voxel-plot in (c) serves as a com-
parison to the averaged DDD distribution, but does not show the actual mesh used in the
simulation, which is tetragonal.

in a total dislocation density of ρtot =
∑

ξρ
ξ ≈ 1.13 × 1013m−2, when averaged over all slip

systems. Further, we choose ρξM = 0, ‖κ‖ξ = 0 and qξ = 0 initially. For the analysis, we
use the interaction stress according to equation (11) with a non-zero interaction matrix in
order to reproduce the mutual obstruction of coupled dislocation segments.

Following the comparison with the DDD simulations, we investigate the interplay between
dislocation fluxes and dislocation network evolution by first excluding all spatial gradients
(local simulation) and afterwards allowing for dislocation fluxes (nonlocal simulation). In
the latter case, mobile dislocation density can leave the simulation volume through all sur-
faces similar to the DDD simulations. The reaction coefficients in equation (13) are chosen as
Cgliss = CLomer = Ccoll = 0.032 for the local simulation, i.e. all reactions are weighted equally.
For the nonlocal simulation, we choose Cgliss = CLomer = 0.064, Ccoll = 0.032 and Cq = 1 in
equation (C.1), which means that we increase the effect of the dislocation multiplication in
order to compensate for the dislocation flux. The dislocation flux necessarily leads to a loss of
dislocation density through the outer system boundaries and thus a decreasing density by using
the same parameters as for the local simulation. The elastic constants are chosen as before.

4. Results

In order to analyze the behavior of the model derived in section 3 regarding the interplay
between dislocation multiplication and stabilizing mechanisms, we first consider the simpli-
fied system explained in section 3.3.1. Afterwards, we apply the full model to the fcc system
setup explained in section 3.3.2 and compare the results to DDD simulations and investi-
gate the influence of the flux terms in the evolution equation of the dislocation system on the
spacial dislocation density distribution.

4.1. Simplified system of glissile and Lomer reactions

In a first analysis, we reduce the model to only account for glissile and Lomer reactions
in a configuration which consists of three slip systems, as shown in figure 7. The system
is fully homogeneous since spatial derivatives in the evolution equations of the dislocation
densities (equation (10)) are excluded. In a first analysis, we assume a constant dislocation
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Figure 9. Evolution of dislocation densities describing the dislocation network
(equations (7) and (9)) per slip system without an additional flow-stress term showing
the full simulation time (a) and the initial phase of the simulation (b). (c) same as (a),
but with an additional flow-stress term, see equation (11).

velocity which originates from an external shear stress of τξext = 15 MPa on the slip systems
ξ = 1 and ξ = 2, i.e. it holds vξ = b

Bτ
ξ
ext. Slip system 3 is inactive, making these dislocations

passive reaction partners.
The evolution of the dislocation densities representing the line lengths within dislocation

networks (total dislocation density ρξtot, mobile dislocation density ρξM and network dislocation
density ρξnet) is shown in figure 9(a) per slip system over the simulation time. The total dislo-
cation density on both active slip systems increases tenfold before showing a saturation. On
the inactive slip system the dislocation density increases due to glissile reactions and reaches
about half the density on active slip systems at the end of the simulation. At this point, the
total dislocation density almost completely consists of network dislocation density ρξnet, i.e. all
dislocations contribute to configurations stabilized by Lomer junctions. A close-up on the ini-
tial part of the simulation in figure 9(b) shows an initial increase in mobile dislocation density
on both active and inactive slip systems. After a simulation time of about 0.4μs, the mobile
density decreases along with an increase of the network dislocation density ρξnet.

Since in this simplified configuration the system behavior is largely determined by the
Lomer reaction, it is feasible to account for an obstacle-effect of Lomer junctions on remain-
ing mobile dislocations. As explained in section 3.1.2, this is incorporated into the model by a
short-range interaction stress according to equation (11) using a coefficient of aLomer = 0.122.
By choosing aξζ = 0 in equation (11), we solely focus on the influence of Lomer junc-
tions for simplicity. In this case, the dislocation velocity is then a function of the dislocation
density, as described by equation (12). The respective evolution of the dislocation densities
over simulation time is shown in figure 9(c). The system shows a relaxation into a stable
network configuration, which does not qualitatively differ from the system behavior with-
out an additional interaction stress (figure 9(a)). However, the mobile dislocation density
decreases only gradually until the end of the simulation.

The evolution of the curvature density on active slip systems displayed in figure 10(a)
shows an initial increase due to glissile reactions followed by a decrease nearly until disap-
pearance. Similar to the evolution of the mobile dislocation density in figure 9(c), the decrease
of the curvature density is delayed by using the additional interaction stress. Figure 10(b)
shows the evolution of the accumulated plastic slip for the simulations with and without the
interaction stress equation (11). Here, a saturation of the plastic slip on active slip systems is
observed after an initial increase. By using the additional interaction stress, a lower accumu-
lated plastic slip is observed almost for the entire simulation time. However, the initial increase
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Figure 10. Evolution of the curvature density (a) and the plastic slip (b) per slip
systems, comparing the simulations with and without the additional flow-stress term
equation (11).

of the plastic slip on active slip systems is almost the same for both cases, since the initial
configuration consists of mobile dislocations only.

4.2. Full fcc system with tensile loading

In a second analysis, we evaluate the performance of the continuum model including all dis-
location mechanisms as visualized in figure 5 by comparing the evolution of the dislocation
microstructure with DDD results published in [4]. Therefore, we apply the continuum model
to the system configuration explained in section 3.3.2. For a first investigation, we exclude
spatial derivatives in the evolution equation of the dislocation densities.

The evolution of the averaged total dislocation density per slip system compared to the
DDD results is shown in figure 11(a) for active and inactive slip systems. The dislocation den-
sity on active slip systems increases nearly linearly after obtaining a stable plastic flow in both
CDD and DDD. On inactive slip systems, the increase in dislocation density is much less pro-
nounced as on active slip systems which matches the DDD results. Overall, a close accordance
between CDD and DDD can be observed after about 0.1% strain.

The initial phase of the simulation is characterized by a mobilization of the dislocation net-
work in both CDD and DDD. However, in the CDD simulation this leads to a short increase
in density due to the dissolution of Lomer junctions, which is not observed in DDD the same
way. In order to closer investigate the interplay of dislocation multiplication and the stabi-
lizing processes in the continuum model, the breakdown of the total dislocation density into
its contributions (ρM, ρnet and ρS) summed over all slip systems is shown figure 11(b). The
figure shows the evolution of the respective densities as fraction of the total dislocation density
over strain. Here, it is clearly observed that initially no mobile dislocation density is present.
Upon loading, the fraction of network dislocation density decreases rapidly to about 40%
which increases mobile density. During this process, the fraction of Lomer junctions decreases
from about 30% to just below 20% which explains the initial rise in density observed in
figure 11(a). However, after this initial mobilization phase, the distribution between mobile
and network density remains relatively stable with a division of around 60% to 40%. Corre-
sponding results by considering dislocation fluxes in the evolution equations, i.e. the nonlocal
simulation, using model parameters as outlined in section 3.3.2 show a comparable behavior,
as shown in appendix A.

19



Modelling Simul. Mater. Sci. Eng. 28 (2020) 065001 M Sudmanns et al

Figure 11. (a) Evolution of the dislocation density per slip system using all explicitly
modeled dislocation mechanisms, as shown in figure 5, compared to one DDD simula-
tion and an average over 10 DDD simulations from [4]. (b) Total density subdivided into
contributions from the mobile dislocation density and the network dislocation density as
a fraction of the total dislocation density as a function of total strain, summed over all
slip systems. Local simulation containing no dislocation fluxes.

Finally, we compare the evolving dislocation microstructure in the continuum simulation
to the DDD prediction. Figure 12 displays snapshots taken from various stages of the DDD
and CDD simulations, showing the spatial dislocation distributions. For a reasonable com-
parison between CDD and DDD, we transform the discrete dislocation lines of seven DDD
simulations (shown in figure 12(a) for one simulation) into a two-dimensional representation
of a dislocation density field as explained in section 3.3.2. The dislocation density distribution
obtained by this averaging is shown in figure 12(b). It can be observed that dislocations which
initially are already concentrated in the center of the system continue to accumulate during
loading until 0.8% tensile strain. In contrast, the areas close to the boundaries remain rel-
atively dislocation free. This applies especially to the corners and edges of the simulation
volume. A similar accumulation of dislocation density is also observed in the corresponding
representations of the CDD simulations, shown in figure 12(c) for the local simulation and in
figure 12(d) for the nonlocal simulation. However, certain differences occur between the local
and the nonlocal simulation in the later stages of the simulation. The dislocation density in the
local simulation also increases in areas close to the boundaries, which is not observed in this
form in either the DDD or the nonlocal CDD formulation.

5. Discussion

We introduce a dislocation-density-based continuum model for the evolution of disloca-
tion networks, which combines dislocation multiplication with a formation of stable dislo-
cation network structures. In order to find links between DDD and the continuum scale,
we use methods of data science to characterize the discrete dislocation microstructure. This
preliminary investigation serves as a basis for the continuum model of dislocation network
evolution, where the latter is investigated in a simplified system to isolate the mechanisms,
complemented by a tensile test of the full fcc system.

Given the complexity of the DDD network, manageable data sets for the analysis of the
dislocation microstructure by methods of data science have to be provided. Here, the data
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Figure 12. Overview of dislocation microstructures obtained from DDD simulations [4]
and from the continuum model for 0.0%, 0.2%, 0.4%, 0.6% and 0.8% total strain. Top
view of one representative DDD simulation consisting of discrete lines (a); ensemble-
average of seven DDD simulations, averaged over 20 × 20 × 1 voxels (b) and distri-
bution of the total dislocation density summed over all slip systems averaged over the
tensile direction for the local (c) and the nonlocal continuum simulation (d). The voxel-
plots in (c) and (d) serve as a comparison to the averaged DDD distribution (b), but do
not show the actual mesh used in the simulation, which is tetragonal.

set is obtained by generating continuum field variables by averaging the dislocation char-
acteristics such as the line length over the system volume, which is subdivided into voxels.
The increase in the number of dislocations in conjunction with the reaction density on trend,
shown in figure 2, indicates that the increase in reaction density mostly originates from the
formation of new dislocation reactions, instead of an elongation of the junction lines. This
observation motivates the assumption of a function describing the present density of dislo-
cation reactions which is valid for all reaction types (equations (1) and (2)). By applying
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different scaling coefficients, i.e. β, βξζ orβξζ
1 resp.βξζ

2 , we vary the aggregation of the slip
system pairings and thus compare different degrees of homogenization of the dislocation inter-
action for the same reaction type. This is conceptually analogous to the investigation in [41]
which compares the different homogenisation originating from the popular flow-stress term
according to [8, 9] in contrast to proposed interaction matrix by [33]. The results of the pre-
diction with the multiple linear regression model on equation (1) demonstrate not only the
existence of a relation between dislocation density and reaction density, but also confirms the
validity of the assumption to use the same relationship for all reactions, as shown in figure 3.
Further, the temporal split between test and training set implies that the model predicts the
reaction density of future time steps based on a training on earlier stages of the simulation.
The very minimal difference between the prediction on the training set compared to the test
set, as shown in table 1, underlines the solidity of the model and thus the validity of the
approach.

By comparing different feature sets in table 1, basically no influence of coalescing each
slip system pair (equation (1) using βξζ

1 = βξζ
2 ) on the prediction quality is observed. For

the continuum theory, this means that combining the original and reverse order of primary
and forest system into a single reaction equation as done in equation (13) is a valid simpli-
fied approach. Further, the complexity of the model is significantly reduced by combining
all slip system pairings of the specific reaction type into a single feature set (equation (2)).
However, the drop in prediction quality indicates that a common factor independent of the
pairing might oversimplify the individual contribution of each slip system. This argument is
supported by the correlation between the individual dislocation densities and the overall reac-
tion densities, which shows a very high scatter and a lower average correlation compared to
the respective correlations of the coupling terms (equations (1) and (2)), see figure 4. These
results indicate that while the combination of all slip systems might lead to a reasonable pre-
diction on average, the individual contribution of each slip system and slip system pairing on
the overall reaction density can largely differ. Physically this means that the line length of a
forming dislocation junction is not the same for all slip system combinations. It is notewor-
thy that this scatter is already observed in the present high symmetry configuration which is
characterized by a clear separation between active and inactive slip systems with respect to
the Schmid-factors. Since the investigated setup is already the most ideal scenario of mul-
tislip loading, it can be expected that the differing influence of slip systems will increase
in basically any other loading condition and potentially even in the given one for higher
strains.

It can be concluded, that the results from the preliminary investigation of the DDD dis-
location network further supports conclusions made earlier in that the contribution of indi-
vidual slip systems to dislocation multiplication and dislocation network formation are an
important feature to include in slip-system-based continuum models. What is even more
significant, however, is that the in-depth analysis of the DDD data motivate similar func-
tional relations for slip systems coupling to describe the contribution of all relevant dislo-
cation reactions to network formation by continuum field variables. The interplay between
slip systems is thus not limited to the aspect of dislocation multiplication by glissile reac-
tions, as shown in [24, 34], but also for the formation of stable structures and for collinear
annihilation in dislocation networks. Since the examined functions in section 2 only relate
the dislocation state to the present dislocation reaction densities, i.e. the line lengths of the
junctions, the results of the voxel analysis can not be directly transferred into rate equations
for the continuum framework. However, the results confirm the importance of incorporat-
ing the interplay of slip systems to reflect dislocation reactions. Therefore, we use this con-
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clusion as a motivation to formulate dislocation reaction equations in the CDD framework
based on coupling terms similar to [24, 34] which are valid regardless of the specific reaction
type.

The investigation of the continuum model in the simplified system combines the aspect of
dislocation expansion, which follows dislocation multiplication incorporated from [24], fol-
lowing dislocation multiplication with a formation of stable dislocation structures in a minimal
benchmark configuration. Those mechanisms are reproduced in terms of internal variables
by modifying the dislocation density due to dislocation reactions and the curvature density.
For the simple system, the coupling of slip systems by dislocation reactions results in an
increase of dislocation density by dislocation multiplication and a subsequent saturation due
to formation of dislocation networks as shown in figure 9(a). The density increase implies a
reduction in dislocation spacings, respectively link lengths, in the network, see equations (16)
and (17). The saturation of the dislocation density over time is in conjunction with the sat-
uration of the plastic slip (see figure 10(b)) caused by an increase in the fraction of stable
Lomer junctions (equation (17)) at a given stress. Thereby, the Lomer junction formation upon
generation of new dislocations through glissile reactions and a subsequent increase in den-
sity leads to a reduction of the link lengths (see equations (15)–(17)), limiting the plastic slip
generated by each dislocation. This mechanism has been described in [4] in the context of
dislocation networks and is adequately reproduced by the continuum model. Although the
evolution of the total density resembles the characteristics of the similar system investigated
in [24], the observed mechanism in the current study is solely caused by the reduction of the
link lengths due to junction formation and is therefore the main source of hardening in the
model.

The decrease of the curvature density along with the formation of the dislocation net-
work (figure 10(a)) reproduces the observed microstructure consisting of straight lines, which
implies a concentration of the system curvature into the endpoints of dislocation junctions.
This concentrated curvature is relatively stable and does not lead to an expansion of disloca-
tions in the way it is described by the kinematic formulation of the CDD theory (equation (5)).
The anti-proportional behavior of the decrease of curvature density (figure 10(a)) com-
pared to the formation of the dislocation network (figure 9(a)) can then be interpreted as
a mechanism which counteracts the increase of curvature due to generation of new dislo-
cations and thus contributes to the stability of the dislocation network. As conclusion for
the simplified system, an accordance of the proposed continuum model with observations in
DDD simulations can be drawn: (I) expansion of individual dislocations is limited by their
involvement in dislocation reactions. (II) The emerging dislocation network is relatively sta-
ble and consists of straight dislocation lines with varying segment lengths and concentrated
curvature in dislocation junctions.

The formulation of a dislocation density which is distributed into a mobile part (ρM)
and a part which does not directly contribute to plastic slip (ρnet) allows for the formula-
tion of an initial condition which reproduces stable dislocation networks. This is achieved
by prescribing an initial dislocation distribution consisting solely of network dislocation den-
sity (ρnet) in the full fcc system, shown in figure 8. Here, mobile dislocation density is not
present initially and can thus only be generated by mobilization of the initial dislocation
network upon loading. This explains the characteristic of the dislocation density evolution
in the initial simulation phase, shown in figure 11(a). The onset of plasticity is determined
by the activation of the longest dislocation lines attached to the Lomer junctions, denoted
as link length, resulting in an unzipping of the junctions. Therefore, yielding originates
from the mobilization of the weakest junctions, determined by the ’strength distribution’ of
Lomer junctions. Since the mobilization of the Lomer junction as considered here typically
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increases the line length, the initial yield behavior avoids a decrease of the dislocation den-
sity below the initial value in the nonlocal simulation (shown in figure A1(a) in appendix
A). For simplicity, the formation and dissolution of dislocation reactions is concentrated
into a single numerical time step. However, reaction processes can take place over a longer
period of time and are influenced by the surrounding microstructure. This might serve as
an explanation for the short increase of the density right after overcoming the yield point
in CDD (figures 11(a) and A1(a)). It is also likely that a more accurate distribution of link
lengths, as shown in [5], will influence the dislocation behavior in the initial part of the
simulation.

Besides, an increase of the total dislocation density per slip system is observed which is
very close to the DDD prediction on active and inactive slip systems for the vast major-
ity of the simulation time for the local simulation (figure 11(a)). Furthermore, the uniform
fractional distribution of the average mobile and network dislocation densities shown in
figure 11(b) indicates a stable interplay of all considered mechanisms. Thus, the disloca-
tion multiplication is in balance with mechanisms that either annihilate (collinear reaction)
or stabilize line length (Lomer reaction) within the network. The results show that this
interplay of dislocation reactions is able to reproduce observations in DDD simulations [4],
where it is shown that cascades of multiplication events produces further plasticity, which
in turn is limited by other reactions. This conclusion holds also for the nonlocal simula-
tion shown in figure A1(b) in appendix A. However, the average dislocation density increase
is slightly nonlinear, as shown in figure A1(a). The system areas closer to boundaries con-
tain relatively low density (see figure 12(d)), but carry a large percentage of the total vol-
ume. Therefore, even a slight overestimation of the dislocation activity in these areas can
have a large impact on the total density. This overestimation is likely to originate from an
inaccurate reproduction of dislocation mechanisms at very low dislocation densities in the
continuum.

This difference in average density evolution motivates a deeper examination of the spa-
tial dislocation density distribution obtained from the CDD simulations, which is shown in
figure 12. The comparison with averaged DDD results demonstrates that the local and the non-
local CDD simulation is able to resolve the concentration of the dislocation network in the cen-
ter of the system and its continuous densification. However, the local simulation (figure 12(c))
predicts a noticeable density increase at the boundaries of the system, which is not observed
in either the DDD or the nonlocal CDD simulation. In this respect, the distribution obtained
from the nonlocal simulation (figure 12(d)) is closer to DDD due to the outflow of the den-
sity at the boundaries and a transport of dislocations into the center of the system. It might
not be very surprising that the nonlocal simulation as opposed to the local simulation is able
to capture such effects, since they ultimately arise from the mere existence of the nonlocal
terms. However, it should be noted that the examined simulation volume with (5μm)3 is rel-
atively small for a continuum theory. It is naturally to be expected that any boundary effect
will have lower impact in larger simulation volumes. In conjunction with the very promising
per-slip-system results for the local simulation (figure 11) the results raise the question to what
extend the incorporation of dislocation transport terms decisively determine the microstruc-
tural evolution. However, this question can not conclusively be answered in the present
study.

Summarizing, the study presents an approach that combines the dislocation multiplication
with the formation and evolution of dislocation networks in a continuum theory. This approach
mimics the complexity of dislocation microstructures observed in DDD [4, 5] and resembles
similar models of dislocation dipoles in single slip [13, 14]. The investigation of the averaged
DDD data by data science methods shows that even in an ideal system dislocation reactions
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Figure A1. As figure 11, but for the nonlocal simulation containing dislocation fluxes.

which determine the overall system behavior are influenced by individual slip systems. This
opposes approaches for dislocation multiplication based on the Kocks–Mecking theory [8],
as well a slip-system-wise adoption of ’flow-stress’ terms in the velocity law (equation (12))
as the only source of strain hardening. Contrary to the presented model, such terms either
allow for an expansion of all dislocations or stop the plastic slip completely. The main fea-
ture of the presented model is thus the separation of the mechanism that causes the plastic
slip, i.e. the dislocation expansion, from the mechanisms that modify the rate of the plastic
slip either by generating new dislocations or by limiting their expansion on average. Due to
the explicit incorporation of dislocation reactions using their crystallographic slip system pair-
ings, dislocations on all slip systems have a significant impact on the mobility of dislocations on
individual slip systems. Furthermore, the effective mobility of the dislocation network is deter-
mined by a range of critical stresses to unzip dislocation junctions, which weakens the average
dislocation spacing as a descriptive variable to some extend.

However, several open questions remain with respect to the analysis of dislocation networks
as well as for modeling those in the CDD formulation. First, the presented model contains
some assumptions and parameters, which originate from limitations of the purely planar CDD
kinematic. This draws attention to the long-standing challenge of formulating a thermody-
namically consistent multi-slip CDD. Further, it was assumed for simplification purposes that
the reaction parameters are independent of the specific slip system pairing. However, accord-
ing to the results of the DDD data analysis, different reaction parameters for different slip
system pairings might be reasonable, indicating an analogy to the ’interaction matrix’ com-
pared to the ’Taylor’ flow-stress. Finally, the boundary between mobile dislocations and sessile
objects is typically less clear as assumed by the Lomer junctions in the current model. In this
respect, it is to be determined how the character of dislocation networks is reflected in other
system configurations, since real deformation processes rarely occur as homogeneously as
assumed here.

6. Conclusion

We introduce a model for the evolution of dislocation networks in a dislocation-based for-
mulation of crystal plasticity, which provides an approach for a homogenization of the inter-
action between dislocation multiplication and the stabilization of the emerging dislocation
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network. By using data-driven methods, we analyze a DDD dislocation network to iden-
tify microstructural characteristics and derive continuum equations for relevant dislocation
reactions, which are incorporated into the continuum model using their crystallographic slip
system pairings.

The analysis of the DDD network by data science methods shows that despite the ideal
high-symmetry crystal orientation, the overall evolution of dislocation networks and thus the
system behavior can be determined by individual slip systems and slip system pairings. This
observation challenges existing models which base dislocation multiplication and strain hard-
ening due to formation of dislocation networks on slip-system-wise approaches in which
other slip systems only contribute to a single dislocation spacing. In contrast, the proposed
model is based on the coupling of slip systems by dislocation reactions, resulting in an inter-
play between dislocation multiplication and limitation of dislocation expansion. This leads
to an average density evolution as well as a local density distribution which is very close to
DDD simulations. Here, mobile dislocations are generated due to cross-slip or glissile reac-
tions, which leads to an increase in line length and thus decreases the dislocation spacings
in the network. The consequence is a formation of a dislocation network consisting of stable
dislocation structures with a range of critical stresses to unzip sessile junctions.
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Appendix A. Extended results for the nonlocal simulation

In this appendix, we investigate the evolution of the averaged dislocation density in the nonlo-
cal CDD simulation using the system setup and parameters explained in section 3.3.2. The total
dislocation density per slip system over strain is shown in figure A1(a). The dislocation density
increases on active and inactive slip systems in accordance with the DDD results. However,
the increase is slightly nonlinear on active and inactive slip systems after about 0.5% strain
and a small rise in dislocation density after overcoming the yield stress is observed. Nonethe-
less, the fractional distribution of the involved dislocation densities (mobile ρM, Lomer ρLomer

and stabilized dislocation density ρS) summed over all slip systems shows a relatively uni-
form profile throughout the simulation after an initial mobilization phase of the dislocation
network, shown in figure A1(b). The decrease of the fraction of Lomer junctions from around
30% to below 20% during the initial phase of the simulation explains the initial rise in dis-
location density observed in figure A1(a). This behavior could likely be improved by a more
accurate distribution of link lengths, e.g. corresponding to [5].

In order to investigate the cause of the nonlinearity in the evolution of the averaged dis-
location density after 0.5%, we examine the influence of an averaging over different system
areas. Unlike the averaging over the full system, as in figures A1 or 11(a), we now consider an
averaging of the dislocation density over a central cubic volume with half of the edge length
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Figure A2. Comparison of the dislocation density per slip system relative to the initial
density averaged over the full system (solid lines from figure 1(a) normalized with the
initial density) and over a central cubic volume with half of the edge length of the full
system (dotted lines).

of the full system. This inner volume cuts off the system areas adjacent to open borders and
captures about 40% of the Gaussian initial dislocation distribution despite having a signifi-
cantly smaller volume fraction. Figure A2 shows the average density evolution in this inner
system area compared to the CDD results in figure A1(a) relative to the respective initial den-
sities. Compared to the average over the full system, the relative density increase in the system
center is almost linear. This confirms that the observed nonlinearity is caused by density in
system areas outside the center, i.e. in areas which contain relatively low dislocation density,
but still contribute significantly to the total density due to the high volume fraction. In the
underlying DDD simulations, those areas are typically characterized by single, or very few
dislocation lines which are likely to behave differently from dislocations in the dense center.
However, the continuum model assumes that even at very low dislocation densities a fraction of
the density is always involved in reactions, which probably does not sufficiency reproduce the
statistical effects at the boundaries.

Appendix B. Glissile reactions in dislocation networks

The dislocation generated on the new slip system by the glissile reaction (see equation (13)) is
can bow out under stress increasing both dislocation density and curvature density. This pro-
cess is called ’dislocation multiplication’, since it generates a new mobile dislocation instead
of just increasing the line length of an existing dislocation. Following [24], the increase in
mobile dislocation density and curvature density is described by:

∂tρ̄
gl
M,gliss =

⎧⎨
⎩

π

2
∂tρ

gl
gliss if |vgl| > 0

∂tρ
gl
gliss if |vgl| = 0

(B.1)

and

∂tq̄
gl
gliss = sign(vgl)π∂tρ

gl
M,gliss

√
ρ using ∂tq̄

gl
gliss =

∂tρ̄
gl
gliss
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with Lbow =
0.5√∑

ξρ
ξ
=

0.5
√
ρ
.

(B.2)
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Here, we assume that the glissile reaction is followed by a bow-out of the junction up to half
of the mean dislocation spacing, denoted by Lbow, leading to the prefactor π/2 in equation
(B.1).

Appendix C. Impact of dislocation reactions on the curvature density

In conjunction with the subdivision of the total dislocation density (equation (7)), we also
assume that a related part of the curvature density does not contribute to the expansion of
existing dislocations. This reproduces the observation made in DDD simulations that disloca-
tion networks mainly consist of straight lines, where the dislocation curvature is concentrated
in end-nodes of dislocation junctions [4]. Following the argumentation in [24], we reproduce
this behavior by reducing the curvature density qξ based on the argument of a reduction of
’potential’ of line length increase by dislocation expansion due to the dislocation reaction.
Therefore, the reduction of line length (equation (19)) necessarily leads to a proportional
reduction in curvature density. We obtain the final formulation for the reduction of curvature
density on the reacting slip systems ξr′ and ξr′′ by a modification of the underlying equation
in [24]:

∂tq
ξ
react = ηξreactCq

∂tρreact

ρξreact

qξ
M

with ξ = r′, r′′ and ()react = ()gliss, ()Lomer, ()coll, (C.1)

where we choose Cq = 2 according to [24] unless defined otherwise.

ORCID iDs

Markus Sudmanns https://orcid.org/0000-0002-7963-9557
Daniel Weygand https://orcid.org/0000-0002-8681-3904
Katrin Schulz https://orcid.org/0000-0001-6427-0948

References

[1] Livingston J D 1962 The density and distribution of dislocations in deformed copper crystals Acta
Metall. 10 229–39

[2] Basinski Z S and Basinski S J 1964 Dislocation distributions in deformed copper single crystals
Phil. Mag. 9 51–80

[3] Pande C S and Hazzledine P M 1971 Dislocation arrays in Cu–Al alloys. I Phil. Mag. 24 1039–57
[4] Stricker M, Sudmanns M, Schulz K, Hochrainer T and Weygand D 2018 Dislocation multiplication

in stage II deformation of fcc multi-slip single crystals J. Mech. Phys. Solids 119 319–33
[5] Sills R B, Bertin N, Aghaei A and Cai W 2018 Dislocation networks and the microstructural origin

of strain hardening Phys. Rev. Lett. 121 085501
[6] Kubin L, Devincre B and Hoc T 2008 Modeling dislocation storage rates and mean free paths in

face-centered cubic crystals Acta Mater. 56 6040–9
[7] Alankar A, Field D P and Zbib H M 2012 Explicit incorporation of cross-slip in a dislocation density-

based crystal plasticity model Phil. Mag. 92 3084–100
[8] Kocks U F and Mecking H 2003 Physics and phenomenology of strain hardening: the fcc case Prog.

Mater. Sci. 48 171–273
[9] Taylor G I 1934 The mechanism of plastic deformation of crystals. Part II. Comparison with

observations Proc. R. Soc. Lond. - Ser. A Contain. Pap. a Math. Phys. Character 145 388–404
[10] Ma A and Roters F 2004 A constitutive model for fcc single crystals based on dislocation densities

and its application to uniaxial compression of aluminium single crystals Acta Mater. 52 3603–12

28

https://orcid.org/0000-0002-7963-9557
https://orcid.org/0000-0002-7963-9557
https://orcid.org/0000-0002-7963-9557
https://orcid.org/0000-0002-8681-3904
https://orcid.org/0000-0002-8681-3904
https://orcid.org/0000-0002-8681-3904
https://orcid.org/0000-0001-6427-0948
https://orcid.org/0000-0001-6427-0948
https://orcid.org/0000-0001-6427-0948
https://doi.org/10.1016/0001-6160(62)90120-7
https://doi.org/10.1016/0001-6160(62)90120-7
https://doi.org/10.1016/0001-6160(62)90120-7
https://doi.org/10.1016/0001-6160(62)90120-7
https://doi.org/10.1080/14786436408217474
https://doi.org/10.1080/14786436408217474
https://doi.org/10.1080/14786436408217474
https://doi.org/10.1080/14786436408217474
https://doi.org/10.1080/14786437108217068
https://doi.org/10.1080/14786437108217068
https://doi.org/10.1080/14786437108217068
https://doi.org/10.1080/14786437108217068
https://doi.org/10.1016/j.jmps.2018.07.003
https://doi.org/10.1016/j.jmps.2018.07.003
https://doi.org/10.1016/j.jmps.2018.07.003
https://doi.org/10.1016/j.jmps.2018.07.003
https://doi.org/10.1103/physrevlett.121.085501
https://doi.org/10.1103/physrevlett.121.085501
https://doi.org/10.1016/j.actamat.2008.08.012
https://doi.org/10.1016/j.actamat.2008.08.012
https://doi.org/10.1016/j.actamat.2008.08.012
https://doi.org/10.1016/j.actamat.2008.08.012
https://doi.org/10.1080/14786435.2012.685964
https://doi.org/10.1080/14786435.2012.685964
https://doi.org/10.1080/14786435.2012.685964
https://doi.org/10.1080/14786435.2012.685964
https://doi.org/10.1016/s0079-6425(02)00003-8
https://doi.org/10.1016/s0079-6425(02)00003-8
https://doi.org/10.1016/s0079-6425(02)00003-8
https://doi.org/10.1016/s0079-6425(02)00003-8
https://doi.org/10.1098/rspa.1934.0107
https://doi.org/10.1098/rspa.1934.0107
https://doi.org/10.1098/rspa.1934.0107
https://doi.org/10.1098/rspa.1934.0107
https://doi.org/10.1016/j.actamat.2004.04.012
https://doi.org/10.1016/j.actamat.2004.04.012
https://doi.org/10.1016/j.actamat.2004.04.012
https://doi.org/10.1016/j.actamat.2004.04.012


Modelling Simul. Mater. Sci. Eng. 28 (2020) 065001 M Sudmanns et al

[11] Li D, Zbib H, Sun X and Khaleel M 2014 Predicting plastic flow and irradiation hardening of iron
single crystal with mechanism-based continuum dislocation dynamics Int. J. Plast. 52 3–17

[12] Leung H, Leung P, Cheng B and Ngan A 2015 A new dislocation-density-function dynamics scheme
for computational crystal plasticity by explicit consideration of dislocation elastic interactions Int.
J. Plast. 67 1–25

[13] Reuber C, Eisenlohr P, Roters F and Raabe D 2014 Dislocation density distribution around an indent
in single-crystalline nickel: comparing nonlocal crystal plasticity finite-element predictions with
experiments Acta Mater. 71 333–48

[14] Schulz K, Sudmanns M and Gumbsch P 2017 Dislocation-density based description of the defor-
mation of a composite material Modelling Simul. Mater. Sci. Eng. 25 064003

[15] Deng J and El-Azab A 2010 Temporal statistics and coarse graining of dislocation ensembles Phil.
Mag. 90 3651–78

[16] Xia S and El-Azab A 2015 Computational modelling of mesoscale dislocation patterning and plastic
deformation of single crystals Modelling Simul. Mater. Sci. Eng. 23 055009

[17] Monavari M and Zaiser M 2018 Annihilation and sources in continuum dislocation dynamics
Materials Theory 2 3

[18] Madec R, Devincre B, Kubin L, Hoc T and Rodney D 2003 The role of collinear interaction in
dislocation-induced hardening Science 301 1879–82

[19] Devincre B, Kubin L and Hoc T 2006 Physical analyses of crystal plasticity by {DD} simulations
Scr. Mater. 54 741–6

[20] Arsenlis A and Parks D M 2002 Modeling the evolution of crystallographic dislocation density in
crystal plasticity J. Mech. Phys. Solids 50 1979–2009

[21] Hochrainer T, Sandfeld S, Zaiser M and Gumbsch P 2014 Continuum dislocation dynamics: towards
a physical theory of crystal plasticity J. Mech. Phys. Solids 63 167–78

[22] Hochrainer T 2015 Multipole expansion of continuum dislocations dynamics in terms of alignment
tensors Phil. Mag. 95 1321–67

[23] Schulz K, Wagner L and Wieners C 2019 A mesoscale continuum approach of dislocation dynam-
ics and the approximation by a Runge–Kutta discontinuous Galerkin method Int. J. Plast. 120
248–61

[24] Sudmanns M, Stricker M, Weygand D, Hochrainer T and Schulz K 2019 Dislocation multiplica-
tion by cross-slip and glissile reaction in a dislocation based continuum formulation of crystal
plasticity J. Mech. Phys. Solids 132 103695

[25] Schmitt S, Gumbsch P and Schulz K 2015 Internal stresses in a homogenized representation of
dislocation microstructures J. Mech. Phys. Solids 84 528–44

[26] James G, Witten D, Hastie T and Tibshirani R 2013 Linear regression An Introduction to Statistical
Learning: With Applications in R (New York: Springer) ch 3 pp 59–126

[27] Wieners C 2010 A geometric data structure for parallel finite elements and the application to
multigrid methods with block smoothing Comput. Visual Sci. 13 161–75

[28] Wieners C 2005 Distributed point objects. A new concept for parallel finite elements Domain
Decomposition Methods in Science and Engineering vol 40 ed T J Barth et al (Berlin: Springer)
pp 175–82

[29] Kubin L 2013 Dislocations, Mesoscale Simulations and Plastic Flow vol 5 (Oxford: Oxford
University Press)

[30] Madec R, Devincre B and Kubin L 2002 From dislocation junctions to forest hardening Phys. Rev.
Lett. 89 255508

[31] Lagneborg R and Forsen B-H 1973 A model based on dislocation distributions for work-hardening
and the density of mobile and immobile dislocations during plastic flow Acta Metall. 21 781
–90

[32] El-Awady J A, Wen M and Ghoniem N M 2009 The role of the weakest-link mechanism in
controlling the plasticity of micropillars J. Mech. Phys. Solids 57 32–50

[33] Franciosi P, Berveiller M and Zaoui A 1980 Latent hardening in copper and aluminium single
crystals Acta Metall. 28 273–83

[34] Stricker M and Weygand D 2015 Dislocation multiplication mechanisms–Glissile junctions and
their role on the plastic deformation at the microscale Acta Mater. 99 130–9

[35] Roters F et al 2018 DAMASK-The Duesseldorf advanced material simulation Kit for modelling
multi-physics crystal plasticity, damage, and thermal phenomena from the single crystal up to the
component scale Comput. Mater. Sci. 158 420–78

29

https://doi.org/10.1016/j.ijplas.2013.01.015
https://doi.org/10.1016/j.ijplas.2013.01.015
https://doi.org/10.1016/j.ijplas.2013.01.015
https://doi.org/10.1016/j.ijplas.2013.01.015
https://doi.org/10.1016/j.ijplas.2014.09.009
https://doi.org/10.1016/j.ijplas.2014.09.009
https://doi.org/10.1016/j.ijplas.2014.09.009
https://doi.org/10.1016/j.ijplas.2014.09.009
https://doi.org/10.1016/j.actamat.2014.03.012
https://doi.org/10.1016/j.actamat.2014.03.012
https://doi.org/10.1016/j.actamat.2014.03.012
https://doi.org/10.1016/j.actamat.2014.03.012
https://doi.org/10.1088/1361-651x/aa7a88
https://doi.org/10.1088/1361-651x/aa7a88
https://doi.org/10.1080/14786435.2010.497472
https://doi.org/10.1080/14786435.2010.497472
https://doi.org/10.1080/14786435.2010.497472
https://doi.org/10.1080/14786435.2010.497472
https://doi.org/10.1088/0965-0393/23/5/055009
https://doi.org/10.1088/0965-0393/23/5/055009
https://doi.org/10.1186/s41313-018-0010-z
https://doi.org/10.1186/s41313-018-0010-z
https://doi.org/10.1126/science.1085477
https://doi.org/10.1126/science.1085477
https://doi.org/10.1126/science.1085477
https://doi.org/10.1126/science.1085477
https://doi.org/10.1016/j.scriptamat.2005.10.066
https://doi.org/10.1016/j.scriptamat.2005.10.066
https://doi.org/10.1016/j.scriptamat.2005.10.066
https://doi.org/10.1016/j.scriptamat.2005.10.066
https://doi.org/10.1016/s0022-5096(01)00134-x
https://doi.org/10.1016/s0022-5096(01)00134-x
https://doi.org/10.1016/s0022-5096(01)00134-x
https://doi.org/10.1016/s0022-5096(01)00134-x
https://doi.org/10.1016/j.jmps.2013.09.012
https://doi.org/10.1016/j.jmps.2013.09.012
https://doi.org/10.1016/j.jmps.2013.09.012
https://doi.org/10.1016/j.jmps.2013.09.012
https://doi.org/10.1080/14786435.2015.1026297
https://doi.org/10.1080/14786435.2015.1026297
https://doi.org/10.1080/14786435.2015.1026297
https://doi.org/10.1080/14786435.2015.1026297
https://doi.org/10.1016/j.ijplas.2019.05.003
https://doi.org/10.1016/j.ijplas.2019.05.003
https://doi.org/10.1016/j.ijplas.2019.05.003
https://doi.org/10.1016/j.ijplas.2019.05.003
https://doi.org/10.1016/j.jmps.2019.103695
https://doi.org/10.1016/j.jmps.2019.103695
https://doi.org/10.1016/j.jmps.2015.08.012
https://doi.org/10.1016/j.jmps.2015.08.012
https://doi.org/10.1016/j.jmps.2015.08.012
https://doi.org/10.1016/j.jmps.2015.08.012
https://doi.org/10.1007/s00791-010-0135-3
https://doi.org/10.1007/s00791-010-0135-3
https://doi.org/10.1007/s00791-010-0135-3
https://doi.org/10.1007/s00791-010-0135-3
https://doi.org/10.1103/physrevlett.89.255508
https://doi.org/10.1103/physrevlett.89.255508
https://doi.org/10.1016/0001-6160(73)90042-4
https://doi.org/10.1016/0001-6160(73)90042-4
https://doi.org/10.1016/0001-6160(73)90042-4
https://doi.org/10.1016/0001-6160(73)90042-4
https://doi.org/10.1016/j.jmps.2008.10.004
https://doi.org/10.1016/j.jmps.2008.10.004
https://doi.org/10.1016/j.jmps.2008.10.004
https://doi.org/10.1016/j.jmps.2008.10.004
https://doi.org/10.1016/0001-6160(80)90162-5
https://doi.org/10.1016/0001-6160(80)90162-5
https://doi.org/10.1016/0001-6160(80)90162-5
https://doi.org/10.1016/0001-6160(80)90162-5
https://doi.org/10.1016/j.actamat.2015.07.073
https://doi.org/10.1016/j.actamat.2015.07.073
https://doi.org/10.1016/j.actamat.2015.07.073
https://doi.org/10.1016/j.actamat.2015.07.073
https://doi.org/10.1016/j.commatsci.2018.04.030
https://doi.org/10.1016/j.commatsci.2018.04.030
https://doi.org/10.1016/j.commatsci.2018.04.030
https://doi.org/10.1016/j.commatsci.2018.04.030


Modelling Simul. Mater. Sci. Eng. 28 (2020) 065001 M Sudmanns et al

[36] Rodney D and Phillips R 1999 Structure and strength of dislocation junctions: an atomic level
analysis Phys. Rev. Lett. 82 1704–7

[37] Shin C S, Fivel M C, Rodney D, Phillips R, Shenoy V B and Dupuy L 2001 Formation and strength
of dislocation junctions in fcc metals : a study by dislocation dynamics and atomistic simulations
J. Physique IV 11 Pr5-19–26

[38] Schoeck G and Frydman R 1972 The contribution of the dislocation forest to the flow stress Phys.
Status Solidi b 53 661–73

[39] Shenoy V B, Kukta R V and Phillips R 2000 Mesoscopic analysis of structure and strength of
dislocation junctions in fcc metals Phys. Rev. Lett. 84 1491–4

[40] Alankar A, Mastorakos I N, Field D P and Zbib H M 2012 Determination of dislocation interaction
strengths using discrete dislocation dynamics of curved dislocations J. Eng. Mater. Technol. 134
021018

[41] Sudmanns M, Gumbsch P and Schulz K 2018 Plastic flow and dislocation strengthening in a
dislocation density based formulation of plasticity Comput. Mater. Sci. 151 317–27

30

https://doi.org/10.1103/physrevlett.82.1704
https://doi.org/10.1103/physrevlett.82.1704
https://doi.org/10.1103/physrevlett.82.1704
https://doi.org/10.1103/physrevlett.82.1704
https://doi.org/10.1051/jp4:2001503
https://doi.org/10.1051/jp4:2001503
https://doi.org/10.1051/jp4:2001503
https://doi.org/10.1051/jp4:2001503
https://doi.org/10.1002/pssb.2220530227
https://doi.org/10.1002/pssb.2220530227
https://doi.org/10.1002/pssb.2220530227
https://doi.org/10.1002/pssb.2220530227
https://doi.org/10.1103/physrevlett.84.1491
https://doi.org/10.1103/physrevlett.84.1491
https://doi.org/10.1103/physrevlett.84.1491
https://doi.org/10.1103/physrevlett.84.1491
https://doi.org/10.1115/1.4005917
https://doi.org/10.1115/1.4005917
https://doi.org/10.1016/j.commatsci.2018.04.065
https://doi.org/10.1016/j.commatsci.2018.04.065
https://doi.org/10.1016/j.commatsci.2018.04.065
https://doi.org/10.1016/j.commatsci.2018.04.065

	Data-driven exploration and continuum modeling of dislocation networks
	1.  Introduction
	2.  Voxel-based analysis of dislocation networks
	2.1.  Preparation of the voxel data set
	2.2.  Exploration of the data set
	2.3.  Prediction of reaction density

	3.  Dislocation density-based continuum model
	3.1.  Dislocation networks in a dislocation-based crystal plasticity framework
	3.1.1.  Elasto-plastic framework.
	3.1.2.  Dislocation networks in the continuum.

	3.2.  Dislocation reactions in the continuum
	3.2.1.  Formation of dislocation reactions.
	3.2.2.  Stability of Lomer reactions.
	3.2.3.  Impact of dislocation reactions on the dislocation line length.

	3.3.  Considered systems
	3.3.1.  Simplified system.
	3.3.2.  Full fcc system with tensile loading.


	4.  Results
	4.1.  Simplified system of glissile and Lomer reactions
	4.2.  Full fcc system with tensile loading

	5.  Discussion
	6.  Conclusion
	Acknowledgments
	Appendix A.  Extended results for the nonlocal simulation
	Appendix B.  Glissile reactions in dislocation networks
	Appendix C.  Impact of dislocation reactions on the curvature density
	ORCID iDs
	References


