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Abstract
We perform experimental quantum polarimetry using a heralded single photon to analyze the
optical activity of linearly polarized light traversing a chiral medium. Three kinds of estimators
are considered to estimate the concentrations of sucrose solutions from measuring the rotation
angle of the linear polarization of the output photons. Through repetition of independent and
identical measurements performed for each individual scheme and different concentration
sucrose solutions, we compare the estimation uncertainty among the three schemes. The  results
are also compared to classical benchmarks for which a coherent state of light is taken into
account. The quantum enhancement in the estimation uncertainty is evaluated and the impact of
experimental and technical imperfections is discussed. In this work, we lay out a route for future
applications relying on quantum polarimetry.

Keywords: optical activity, chirality, single photon, heralded single photon, polarimetry,
quantum polarimetry, estimation

(Some figures may appear in colour only in the online journal)

1. Introduction

Optical activity causes rotation of the linear polarization of
light when it traverses a chiral material, i.e. a material made
from entities that lack mirror symmetry. The measurement of
such optical activity has often been used in pharmacology,
where it is important to study the chirality of drug molecules,
which determines their toxicity and efficacy, originating from
the relative handedness of the enantiomers [1, 2]. Chirality has
also been explored in various other fields, including chemistry,
life science, physics, and material science, where polarimetric
schemes provide rich information about molecular or nano-
photonic chiral structures [3–8].

A variety of detection schemes have been developed for
measuring the optical activity, i.e. analyzing the rotation of
the linear polarization of light upon propagation through a
chiral medium [9–11]. This rotation of the polarization has
its origin in the different propagation constants for the two
counter-rotating circularly polarized plane waves, which are

eigenmodes of the chiral medium and into which the linear
polarization can be decomposed. The estimated direction of
linear polarization will fluctuate due to the discrete nature of
light even when the chirality is fixed and experimental noise
is removed. These fluctuations determine the reliability of the
measurement, often called the precision, which reflects the
data quality. In general, the precision increases with the intens-
ity N (or the average photon number) of the light used. How-
ever, there exist situations in which the intensity of the incident
light impinging on an analyte is required to be limited, when
sample damage or any unwanted side effects occur in the high
intensity regime, e.g. when the non-linear dependenc e is sig-
nificant. Also, light itself can trigger unwanted chemical reac-
tions in the molecular material to be detected [12–15]. The
presence of such constraints has inspired the development of
quantum metrological approaches over the last few decades.
The aim is to improve the data quality while keeping the incid-
ent power in the low intensity regime [16, 17], i.e. improving
the precision for a fixed intensity.
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Probing analytes with quantum states of light promises
detection with much reduced noise, below what is possible
with classical states of light, thus allowing better perform-
ance in optical measurements [18–20]. In particular, the phase-
sensitive N00N states have been adopted to measure the chir-
ality. For example, the Faraday rotation in a rubidium vapor
cell has been measured with polarization N00N states, show-
ing that the standard quantum limit can be beaten [21]. The
dispersion of optical rotation has also been analyzed by inject-
ing polarization-entangled states with different and tunable
wavelengths [22]. Chemical processes that change the chiral-
ity of molecules have been monitored in real-time with polar-
ization N00N states with a protocol in the context of quantum
phase estimation [23, 24]. In addition to schemes measur-
ing the chirality, N00N states have been employed to achieve
a quantum enhancement in other sensing scenarios, such as
in the measurement of the refractive index of blood proteins
[25], quantum lithography [26], and super-sensitive micro-
scopy [27, 28]. The superior optical detection shown with
the N00N states originates from the quantum entanglement of
photons, leading to a higher signal-to-noise ratio (

√
N times

larger) when compared to measurements that rely on clas-
sical sources such as coherent states of light. The quantum
advantage enabled by N00N states is known to be vulnerable to
photon loss or decoherence [29, 30], but one can use optimally
engineered definite photon-number states that always outper-
form the standard quantum limit for a given loss [31–33].

In the context of polarimetry, the chirality of a molecular
solution is measured by measuring the transmittance T of a
linearly polarized incident light passing through an analyte
resolved in its co-or cross-polarized components. For defin-
iteness we speak in the following of horizontal and vertical
polarization. The presence of the chiral medium rotates the
polarization weakly, which can be probed from the change of
the intensity of the incidence polarization or from the differ-
ence between horizontally and vertically polarized light. From
these measured intensities we can  determine the concentration
of molecules if the chirality itself is known. It is known that
the photon number state |N⟩ is the optimal state that minim-
izes the noise in the transmission measurement [34, 35]. This
is because the photon number state has no uncertainty in its
intensity, offering the most precise detection when monitor-
ing a change of the intensity [36, 37]. Unlike N00N states, the
photon number state always offers a quantum gain in noise
reduction at any loss level γ (= 1− η), exhibiting a detec-
tion fluctuation ∆qT=

√
T(1− ηT)/Nη compared to ∆cT=√

T/Nη that is obtainable when using coherent states with an
average photon number of N. Therefore, the photon number
state is not just optimal in reducing the noise or uncertainty,
but also useful against the photon loss in realistic transmis-
sion measurements. As the generation of Fock states with an
arbitrary photon number N is not yet available with current
technology, one can use instead N single photons relying on
the equivalence to the case using an N photon number state in
transmission measurement. Several studies have been carried
out, such as absorption spectroscopy to analyze the organic
dye molecule dibenzanthanthrene [38] or haemoglobin [39],
and surface plasmon resonance sensing to measure the change

of the refractive index of an analyte under investigation with
such Fock states [40].

In this work, we study theoretically and experimentally how
much quantum enhancement can be obtained in measuring
the optical activity of chiral molecular materials with single
photons as an input state. We use a heralding scheme to gen-
erate the single-photon state that is linearly polarized and that
illuminates sucrose solutions with different concentrations. To
estimate the concentration of the sucrose solutions, we con-
sider three typical polarimetric schemes: measurement of (i)
the intensity of the horizontally polarized outgoing photons,
(ii) the intensity difference between horizontally and vertically
polarized outgoing photons, and (iii) the intensity difference-
to-sum ratio (DSR) between the two linearly polarized out-
going photons. We analyse and compare the performances of
these three schemes that use single -photon states to each other,
but also to the optimal precision achievable with a classical
input state. We find that type (iii) leads to the minimal estima-
tion uncertainty compared to the other two types. A quantum
enhancement, i.e. an improvement of the estimation preci-
sion when compared to measurement with a classical state of
light is experimentally observed for both type (i) and type (ii)
measurements. In general, our study proves that the quantum
enhancement is always obtained at any η and T. The effect of
experimental imperfections is also discussed, e.g. the extinc-
tion ratio of the optical components used in the experiment.

2. Experimental scheme

The experimental scheme used in this work is shown in
figure 1(a). A continuous wave diode laser with a wavelength
of 405 nm, filtered out at a later stage by a band pass filter and
a long pass filter, pumps a non-linear crystal (a periodically
poled potassium-titanyl-phosphate) to generate paired photons
at the emission wavelengths of 809.6 nm and 810.4 nm with a
full width at half maximum of 9.4 nm and 7.2 nm, respectively
(see figure 1(b)). The two orthogonally polarized photons are
spatially separated by a polarizing beam-splitter. One of the
two photons, the vertically polarized idler photon, is directly
sent to an avalanche photodiode single-photon detector (APD;
SPCM-AQR-15, PerkinElmer). Quantum correlation between
the photon pairs enables the click events from the idler detector
APDI to herald the horizontally polarized signal photon that is
fed into the polarimetry set-up under investigation. Rotation of
the linear polarization occurs when the signal photon passes
through a sucrose solution. The magnitude of this rotation
depends on the concentration of the sucrose solution, even-
tually determining the extent to which the polarization of the
outgoing photons rotates. To make the scheme operate with
heralded single photons in detection, we adopt a coincident
measurement between APDI and APDH,V, i.e. the results of
detection at APDH,V are recorded only when the single photons
are detected at APDI. Throughout this paper, let NH,V be the
coincidence counts between APDI and APDH,V.

The heralded single-photon scheme is valid in the low
gain parameter regime, where the state generated via spon-
taneous parametric down-conversion (SPDC) can be written
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Figure 1. (a) Experimental scheme. A continuous-wave (CW) diode laser pumps a non-linear crystal (periodically poled
potassium-titanyl-phosphate (PPKTP)) to produce photon pairs. The paired photons are orthogonally polarized and separated by the first
polarizing beam-splitter (PBS1). The pump beam is removed from the optical system using a band pass filter (BPF) and a long pass filter
(LPF). The detection of a vertically (V) polarized photon at an avalanche photodiode in the idler channel (APDI) heralds the generation of
horizontally (H) polarized photons in the signal channel. The incident H-photons are rotated at a defined angle by a half-wave plate (HWP),
and sent to a cuvette containing the sucrose solution under investigation. The polarization of the outgoing photons is analyzed via detection
at APDH,V placed in the output ports of the PBS2. (b) The spectra of the photons generated by the SPDC process in the PPKTP. The central
wavelengths of the signal and the idler photons are located at 809.6 nm and 810.4 nm, respectively.

as |SPDC⟩ ≈ |00⟩+ ϵ|11⟩ with |ϵ| ≪ 1 [39]. The dead time of
the APDs used in our experiment is ∼60 ns and the time win-
dow of the field programmable gate array (FPGA), used for
time-tracking analysis, is 25 ns. Considering these time-scales,
we set the count rate of the idler photons to be about 8× 105

cps by tuning the intensity of the pump laser. The sample size
is set to ν= 105, corresponding to the number of detection
events in the idler port (APDI), which heralds the twin photon
in the signal port. We repeat the independent and identical
measurement µ= 500 times, assumed to be large enough to
extract reliable statistical features of interest. Such sampling is
applied to each polarization angle of incidence and each con-
centration of the sucrose solution.

The signal horizontal (H)-photons are rotated through a half
wave plate, controlling the input polarization of θin in a range
from −100◦ to 100◦ in steps of 10◦. The input photons being
linearly polarized at θin pass through sucrose solutions with
concentrations C that vary from 0.1 g ml−1 to 0.6 g ml−1

in steps of 0.1 g ml−1. The mirror asymmetry of the sucrose
molecules induces a rotation of the linear polarization by α
that depends in terms of its magnitude on the concentration
C, resulting in outgoing photons with a linear polarization at
θout = θin +α. The latter is analyzed through decomposition
into the H and vertical (V) polarizations, being realized by the
polarizing beam-splitter. When either NH or NV only is meas-
ured, our scheme is equivalent to the conventional polarimet-
ric scheme, where a linear polarizer is inserted and rotated
before a detector while keeping the incident polarization
the same.

The rotation angleα of the linear incident polarization as an
effect of the optical activity is proportional to the solution con-
centration C and the propagation length l through the material,
so the angle α can be written as

α(λ) = [α(λ)]× l×C, (1)

where [α(λ)] is the specific rotation of the sample material.
The wavelength dependence in the specific rotation can be
modelled by Drude’s expression, written as

[α(λ)] =
∑
j

Aj
λ2 −λ2

j

, (2)

where the summation is over multiple excitation transitions
with λj and Aj being the resonance wavelength and the rotation
amplitude for the jth transition, respectively. For the case of
sucrose, the dispersion of the optical activity can be character-
ized by a single transition (i.e. j= 1), for whichA1 = 2.1648×
107 deg nm2 dm−1 g−1 ml and λ1 = 146 nm [22, 41]. We thus
aim to estimate the concentration C from the measurement of
the angle α(λ) for l= 0.1 dm (the length of the cuvette used
in our experiment) and [α(λ)] given above.

In this work, we implement three kinds of estimators, yield-
ing the associated f values, which are often used in clas-
sical polarimetry [9–11]: (i) the number NH of the horizont-
ally polarized photons transmitted through the sample, but
normalized by ν; (ii) the difference (NH −NV) between the
horizontally and the vertically polarized photons transmitted
through the sample, normalized by ν ; and (iii) the difference
(NH −NV) normalized by the sum (NH +NV), i.e. the DSR ,
which has recently been employed in imaging of non-uniform
refractive profiles [42]. The expectation values of the above
three estimators for ν single photons of incidence can be writ-
ten, respectively, as

(i) ⟨fsingle⟩=
⟨NH⟩
ν

= ηH Tθout , (3)

(ii) ⟨fdiff⟩=
⟨NH −NV⟩

ν
= ηH Tθout − ηV Rθout , (4)

(iii) ⟨fDSR⟩=
〈
NH −NV

NH +NV

〉
≃ ηH Tθout − ηV Rθout

ηH Tθout + ηV Rθout

, (5)

where ⟨..⟩ denotes an average with respect to the output state
being measured and ηH,V denote the efficiencies of trans-
mission from the PPKTP to the detectors APDH,V including
the detection efficiencies. Here, Tθout = cos2θout and Rθout =
sin2θout denote the transmittance and the reflectance for the
outgoing single photon with a polarization of θout = θin +α
to be transmitted through and reflected from the PBS2 in fig-
ure 1, respectively. In  particular, equation (5) asymptotically
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holds for a large sample size ν, according to Jensen’s inequal-
ity [43], which is the case in our experiment. In an ideal case
where ηH = ηV,NH +NV = ν, so that equation (5) becomes
equation (4). The values ηH,V ≈ 0.25 are explicitly measured
by the coincidence count NH,V with scanning over θin when
pure water is in the cuvette, i.e. α= 0 (see the black curves
and circles in figure 2), which exploits the correlated features
of the SPDC photons as used in the Klyshko method [44–46].

In what follows, equations (3)–(5) are used to estimate the
angle of rotation α from the measurement of the output polar-
ization θout = θin +α for a given input polarization θin. The
estimation of α subsequently leads to the estimation of the
concentrationC of sucrose solutions through equation (1). The
impact of a finite concentration of the sucrose solution can be
seen as a shift of the curve (for example, see the red curves and
triangles in figure 2 for the measurement of the sucrose solu-
tion with a concentration of 0.5 g ml−1). Assuming the values
of [α], l, ηH,V, and θin to be accurately known beforehand, one
can determine the estimation uncertainty ∆C directly by the
estimation uncertainty of the output polarization ∆θout extrac-
ted from the measurement of the outcome f.

3. Results and discussion

∆θout is experimentally obtained by the standard deviation
of the estimated values θout from µ measurements with a
sample size of ν, i.e. ∆θexp

out = [
∑

j θ
2
out/µ− (

∑
j θout/µ)

2]1/2.
The experimentally measured value ∆θexp

out is compared to the
theoretical prediction ∆θout, which can be calculated by con-
sidering the linear error propagation from the variance of the
outcomes ∆f= ⟨(∆f)2⟩1/2 [47], written as

∆θout =
∆f∣∣∣ ∂⟨f⟩∂θout

∣∣∣ . (6)

The variance ⟨(∆f)2⟩ can be calculated as

⟨(∆f)2⟩=
∑

j,k∈{H,V}

∂ ⟨f⟩
∂Nj

∂ ⟨f⟩
∂Nk

Cov(Nj,Nk), (7)

where Cov(Nj,Nk) is the covariance between the photon
counts Nj and Nk. Equation (7) is an exact function for fsingle

and fdiff, but is an approximate function for fDSR since equa-
tion (5) is a non-linear differential function of NH,V [48]. In
our experiment, ν heralded single photons are used, and the
theoretical expression of ∆θout of equation (6) can be written,
respectively, as

∆θ
single(q)
out =

1√
ν

√
1− ηHTθout

4ηH(1−Tθout)
, (8)

∆θ
diff(q)
out =

1√
ν

√
(ηHTθout + ηVRθout)− (ηHTθout − ηVRθout)

2

4(ηH + ηV)2TθoutRθout

,

(9)

Figure 2. Open symbols show the measured ⟨fDSR⟩ of equation (5)
while varying the input polarization angle θin for deionized water
(black circles) and for sucrose solution with C= 0.5 g ml−1 (red
triangles). The inset shows the measured values in a full range of θin
from –100◦ to 100◦ in steps of 10◦. The horizontal displacement
between the two sets of data exhibits the optical activity induced by
the chiral material, enabling estimation of the rotation angle α.
Solid curves are the fitted values using equation (10). The error bars
are the standard deviation in the histogram over µ times of
repetition at each value of θin.

∆θ
DSR(q)
out =

1√
ν

√
ηHTθout + ηVRθout

4ηHηV
. (10)

The uncertainties ∆θexp
out are experimentally measured by

using heralded single photons in the three schemes with vary-
ing θin for the sucrose solution with a concentration of 0.5 g
ml−1 (see the open symbols in figure 3(a)). The experimentally
measured uncertainties are compared with those calculated
using equations (8)–(10)  (see the solid curves in figure 3(a)),
providing the analyses for the observed notable behaviors as a
function of θin.

The two uncertainties ∆θ
single(q)
out and ∆θ

diff(q)
out diverge

as Tθout → 1 (unless ηH = 1) and Tθout → 0 or 1 (unless
ηH = ηV = 1), but decrease as Tθout → 0 and Tθout → ηV(1−
ηV)/[ηV(1− ηV)+

√
ηH(1− ηH)ηV(1− ηV)], respectively.

At the latter limits, they have the minima: min[∆θsingle(q)
out ] =

1/(
√
ν
√

4ηH) and min[∆θdiff(q)
out ] = [ηH(1+ ηV)+ ηV(1+

ηH)+ 2
√
ηH(1− ηH)ηV(1− ηV)]

1/2/(2
√
ν(ηH + ηV)). On

the other hand, the uncertainty ∆θ
DSR(q)
out has the minimum

min[∆θDSR(q)
out ] = 1/(

√
ν
√

4ηH) at Tθout = 0 and the maximum

max[∆θDSR(q)
out ] = 1/(

√
ν
√

4ηV) at Tθout = 1 when ηH > ηV.
The minima and maxima are reversed when ηV > ηH. When
ηH = ηV ≡ η, the uncertainty ∆θ

DSR(q)
out takes a constant value

1/(
√
ν
√

4η) regardless of θin. Also note that

min[∆θDSR(q)
out ] = min[∆θ single(q)

out ]<min[∆θ diff(q)
out ] (11)

when ηH > ηV, whereas

min[∆θDSR(q)
out ]<min[∆θ diff(q)

out ]<min[∆θ single(q)
out ] (12)
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Figure 3. (a) Experimentally measured estimation uncertainties
(open symbols) of the output polarization angle ∆θout with the three
estimation schemes introduced in the main text, i.e. ∆θ

DSR(q)
out ,

∆θ
single(q)
out , and ∆θ

diff(q)
out . They are in good agreement with the

theoretical predictions (solid curves) using equations (8)–(10). The
three schemes achieve almost the same minimal uncertainties since
ηH ≈ ηV holds in our experiment, as expected from the theoretical
analysis. (b) Relative quantum enhancement R with respect to the
estimation uncertainties that would be obtained when probing the
optical activity with a coherent state of light. Solid curves represent
theoretical ratios R calculated by using equations (8)–(10) and
equations (13)–(15). Importantly, the shaded regions are excluded,
where the estimation is unphysical or malfunctioning due to a
non-ideal extinction ratio of the polarizing beam splitter used in the
experiment.

when ηV > ηH. For the equal efficiencies ηV = ηH,
min[∆θDSR(q)

out ] = min[∆θsingle(q)
out ] = min[∆θdiff(q)

out ]. All this
implies that the DSR scheme using equation (5) generally
provides the optimal sensing scheme with the minimal uncer-
tainty among the three estimators in any condition. The afore-
mentioned theoretically expected behaviors are manifested in
the experimentally measured values ∆θexp

out and are shown in
figure 3(a).

The classical benchmarks obtained with a coherent state
with an average photon number of ⟨N⟩= 1 for the individual
schemes are given by

∆θ
single(c)
out =

1√
ν

√
1

4ηH(1−Tθout)
, (13)

∆θ
diff(c)
out =

1√
ν

√
ηHTθout + ηVRθout

4(ηH + ηV)2TθoutRθout

, (14)

∆θ
DSR(c)
out =

1√
ν

√
ηHTθout + ηVRθout

4ηHηV
, (15)

respectively. The relative quantum enhancement R can be
quantified by the ratio of ∆θ(c)

out to ∆θ
(q)
out , written as

R=
∆θ

(c)
out

∆θ
(q)
out

. (16)

Therefore, a value of R greater than unity exhibits a
quantum enhancement. For the three schemes considered
above, one can show that Rsingle = (1− ηHTθout)

−1/2, Rdiff =
[1− (ηHTθout − ηVRθout)/(ηHTθout + ηVRθout)]

−1/2, and RDSR =
1. Interestingly R is always equal to or greater than unity for all
schemes considered in our experiment. These behaviors of the
ratio R are presented in figure 3(b), given by the experiment-
ally measured noise ∆θ(q)out and the theoretical value ∆θ(c)out that
would be obtainable via the optimal classical polarimetry.

The estimators of equations (3)–(5) are unbiased under
ideal conditions. One may wonder if the above estimation
uncertainties evaluated using equation (6) reach the lower
bound given by the Cramér–Rao (CR) inequality being sat-
isfied for any unbiased estimator [49, 50]. The CR inequal-
ity can be written as ∆θout ≥ 1/

√
νF(θout) with F(θout) being

the Fisher information (FI) for a parameter θout. It depends
on the measurement setting that is performed [51]. From the
expressions of the FI (see appendix A) for both the classical
and quantum schemes considered in this work, one can clearly
see that the uncertainties evaluated using equation (6) are the
same as the inverse of the squared FI regardless of Tθout , Rθout ,
and ηH,V when estimating the parameter with the single-mode
measurement scheme (i.e. fsingle). However, the uncertainties
of equation (6) with the two-mode measurement schemes (i.e.
fdiff and fDSR) are equal to or larger than the inverse of the
squared FI. This implies that a better estimator than using fdiff

and fDSR exists when the photon-number-counting measure-
ment is performed at the two modes.

When the measurement setting is optimized, the CR
inequality can be further developed to be that called the
quantum CR inequality, where the maximized FI is called
the quantum FI (QFI) [47, 52]. For the output state decom-
posed into ρ̂θout =

∑
j pj|ψj⟩⟨ψj|with ⟨ψj|ψk⟩= δj,k, it is known

that the FI is the same as the QFI if ∂θout |ψj⟩= 0 ∀j. Inter-
estingly, the latter is the case for both the classical and
quantum schemes considered in this work. This indicates
that the photon-number-counting measurement is the optimal
measurement scheme for both the classical and quantum
approaches. This may not be true for other kinds of probe
states, i.e. an individual optimal measurement scheme needs
to be found and performed for maximization of quantum
enhancement when other types of quantum states are illumin-
ated into the sample.

Actual estimation of the concentration of sucrose solutions
can be made via the relation θout = ⟨θin⟩+α and equation (1).
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Figure 4. Experimentally estimated concentrations of sucrose
solutions with six different concentrations are obtained by using the
estimator of equation (5). We exclude the shaded regions as in figure
3, where the estimated concentrations are misleading due to a
non-ideal extinction ratio (see appendix C for verification via a
Monte-Carlo simulation). The error bar at individual points
represents the standard deviation of the histogram obtained over µ
times measurements.

Figure 4 shows the results of the scheme using the DSR estim-
ator of equation (5) for sucrose solutions with different con-
centrations. The average estimated values C of the concentra-
tion are shown together with the estimation uncertainties ∆C.
The latter reflects the type A uncertainties caused by probab-
ilistic photon number counting. Further evaluation regarding
uncertainties of other factors can be made, but we leave rigor-
ous investigation of those minor contributions as a future work
while providing the type B uncertainty budget in appendix
B (see table B1). The shaded areas in figure 4 represent fal-
lible regions which would lead to erroneous estimation, so we
exclude those regions from the estimation.

It is worth discussing two experimental imperfections that
led to the exclusion of the fallible regions in figures 3 and
4. First, the polarization control by experimental components
may not be ideal, e.g. an incident H-photon to the polariz-
ing beam splitter can exit through the V-photon output port.
Its rate can be quantified by the polarization extinction (PE)
ratio rPE, which is measured to be about 1000/1 in our exper-
iment. This means that even when θout = 0, a few photons are
found in APDV although no photon is supposed to be detec-
ted there in the ideal case. Such an imperfection becomes
more significant as Tθout → 0 or 1, around which the estima-
tion of the concentration C is likely to be more inaccurate.
The effect of the PE is investigated via Monte-Carlo simula-
tion (see the details in appendix C). We also identify that the
imperfect functioning of experimental components can con-
tribute to type A uncertainty. Second, particularly when the
estimation is made with equation (3) at each incidence angle
θin, the experimentally measured efficiency ηH is inserted into
equation (3). This works reasonably well except for the cases
when more than ηHν photons are detected in the measurement

counting the photon number NH. For example, consider the
extreme yet possible case that all ν photons are detected in NH

even when ηH < 1. Note that photon loss occurs probabilistic-
ally with a probability ηH. In this case, NH/ηHν can be greater
than unity and thus Tθout > 1, leading to unphysical estimation.
This arises because the value NH/ν is divided by ηH, imply-
ing that the probabilistic nature associated with the efficiency
ηH is regarded as a deterministic process that supposes only
a definite number ηHν of photons passes through an analyte,
which is of course wrong and misses the probabilistic nature.
Such an extreme case often take places when Tθout → 1 and
similarly when Tθout → 0. The same concern also applies to the
estimation with equation (4). Therefore, we exclude the range
of θout such that (ηH,Vν−⟨NH,V(θout)⟩< 3⟨∆NH,V(θout)⟩) for
all the estimation schemes considered in this work in order to
avoid inaccurate or unphysical estimation. The corresponding
regimes are represented by shaded areas in figures 3 and 4.

The first issue could be alleviated by using optical compon-
ents with as high a PE ratio rPE as possible or at least a much
better ratio on a logarithmic scale. The second issue, on the
other hand, requires a more sophisticated modification to the
estimation schemes. For example, one could perform simul-
taneous estimation of the concentration C and the efficiencies
ηH,V from the measurement with scanning through the incid-
ence angles. This can typically be done by fitting equations
(3)–(5) to the measured data, which we leave for future study.

4. Conclusion

We have experimentally investigated quantum polarimetric
schemes using single-photon inputs to analyze the concentra-
tion of sucrose solutions. The horizontally and vertically polar-
ized outgoing photons have been counted for each polariza-
tion of incidence and each concentration of sucrose solution
in the experiment, leading to the determination of the optical
activity. It has been shown that the minimal estimation uncer-
tainty is generally achieved when the concentration is analyzed
with a normalized difference between the horizontal and ver-
tical photons, i.e. equation (5). We have discussed the quantum
gain in the detection of the optical activity with respect to the
three typical polarimetric schemes and the effects of the exper-
imental and technical imperfections are identified.

When probing the optical activity with more intense light
than a single-photon state and when it is, in addition, allowed
and preferred for practical purposes, one may exploit bright
squeezed states that can carry high optical powers [53]. In this
case, the unit quantum enhancement per photon is still smal-
ler when compared to single photons, but the overall quantum
enhancement would be much higher due to the use of increased
optical power (i.e. much larger N). Using bright squeezed
states would provide practical quantum polarimetry in the high
intensity regime, which we leave for future study. Quantum
theory for the characterization of an arbitrary polarization in
terms of Stokes parameters has recently been discussed and
would be useful for further development of various quantum
polarimetric schemes [54–56].
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Appendix

Appendix A. Fisher information

Here we provide the calculation of the FI when the photon-
number-counting measurement is performed at single-mode H
or V, or at both modes, respectively. The FI can be written in
terms of the probabilities of the measurement outcomes as

FNH,NV(θout) =
∑
NH,NV

1
p(NH,NV|θout)

(
∂p(NH,NV|θout)

∂θout

)2

(A1)

when θout is estimated from measurement at the two modes.
Similarly, when measurement is performed at either mode H
or mode V, the FI can be written as

FNs(θout) =
∑
Ns

1
p(Ns|θout)

(
∂p(Ns|θout)

∂θout

)2

, (A2)

where s ∈ {H,V}. It can be easily shown that the associated
probabilities are written as

p(q)(NH,NV) =

(
N
NH

)(
N−NH

NV

)
(ηHTθout)

NH(ηVRθout)
NV

× (1− ηHTθout − ηVRθout)
N−NH−NV , (A3)

p(q)(NH) =

(
N
NH

)
(ηHTθout)

NH(1− ηHTθout)
N−NH , (A4)

p(q)(NV) =

(
N
NV

)
(ηVRθout)

NV(1− ηVRθout)
N−NV (A5)

for an N-photon number state of light, and

p(c)(NH,NV)

= e−ηHTθoutN
(ηHTθoutN)

NH

NH!
e−ηVRθoutN

(ηVRθoutN)
NV

NV!
, (A6)

p(c)(NH) = e−ηHTθoutN
(ηHTθoutN)

NH

NH!
, (A7)

p(c)(NV) = e−ηVRθoutN
(ηVRθoutN)

NV

NV!
(A8)

for a coherent state of light with an average photon number N.
Substituting these probabilities into equations (A1) and (A2),
one can write the FI for the quantum scheme as

F(q)
NH,NV

(θout) = N

(
ηH

Tθout

+
ηV

Rθout

)(
∂Tθout

∂θout

)2

+
N(ηH − ηV)

2

1− ηHTθout − ηVRθout

(
∂Tθout

∂θout

)2

, (A9)

F(q)
NH

(θout) =
NηH

Tθout(1− ηHTθout)

(
∂Tθout

∂θout

)2

, (A10)

F(q)
NV

(θout) =
NηV

Rθout(1− ηVRθout)

(
∂Tθout

∂θout

)2

, (A11)

and for the classical scheme as

F(c)
NH,NV

(θout) = N

(
ηH

Tθout

+
ηV

Rθout

)(
∂Tθout

∂θout

)2

, (A12)

F(c)
NH
(θout) =

NηH

Tθout

(
∂Tθout

∂θout

)2

, (A13)

F(c)
NV
(θout) =

NηV

Rθout

(
∂Tθout

∂θout

)2

, (A14)

where (∂θoutTθout)
2 = 4TθoutRθout and F(θout) = F(Tθout)×

(∂θoutTθout)
2 is used with F(Tθout) being the FI for the para-

meter Tθout for mathematical convenience. It is clear that the
FI for the quantum scheme with a single-mode measurement
is always greater than that for the classical scheme regardless
of the values of Tθout , Rθout , and ηH,V. The quantum scheme
with two-mode measurement, on the other hand, is beneficial
compared to the classical scheme only when ηH ̸= ηV. Note
again that the FI is the same as the QFI for both the classical
and quantum schemes considered in this work, so the lower
bounds to the uncertainty associated with equations (A9)–
(A14) are ultimately optimal within the framework of the CR
inequality.

Appendix B. Uncertainty budget

Here we provide the uncertainty budget for type A and B
uncertainties [57], which have the potential to influence the
estimation of concentration C. The relevant quantities in
this work are the wavelength-dependent specific rotation, the
length of the cuvette, and the angles such as θin and θout.
For the specific rotation, we have used a fixed value of the
wavelength in equation (2), but in reality no light is entirely
monochromatic (i.e. see figure 1(b)), so that modulation of the
wavelength in the reference calculation of the specific rotation
needs to be considered in the estimation. Also, any realistic
measurement of the length of the cuvette is far from ideal, so

7
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Table B1. The uncertainty budgets of type A and B in our study. N and R represent the normal and rectangular distributions, respectively.
This table is considered at θin = 40◦ and C = 0.5 g ml−1.

Source of uncertainty Value Unit Divisor (distribution) Sensitivity Standard uncertainty (g ml−1)

(type A)
θout obtained by f single 0.2708 degree (◦) 1 (N) 0.293 0.079 3
θout obtained by f diff 0.1841 degree (◦) 1 (N) 0.293 0.053 9
θout obtained by fDSR 0.1763 degree (◦) 1 (N) 0.293 0.051 7

(type B)
Specific rotation [α(λ)] 0.41 ◦dm−1g−1ml 1 (N) 0.05 0.0205
Length of cuvette l 0.0005 dm 1.732 (R) 17.07 0.004 9
Input polarization θin 0.03 degree (◦) 1 (N) 0.586 0.017 6

Figure C1. The results of the Monte-Carlo simulation to estimate
the concentration C using equation (5) for two cases: rPE = 1000/1
(open symbols) and rPE →∞ (closed symbols). Solid lines
represents the analytical values obtained using equations (C3), (C6),
and (C7), whereas the dashed lines are the true values of the
concentration (C= 0.1, 0.3, and 0.5 g ml−1) used in the simulation.
Here, ηH,V = 0.25, ν= 105, and µ= 500 are used.

the length might be slightly different from the assumed value
of 0.1 dm. A similar behavior would be observed in the cal-
ibration of θin. These effects are treated as type B uncertainty,
whereas the measurement of θout is actually repeated, leading
to type A uncertainty evaluation. Such relevant uncertainties
are listed in table B1 for further information.

Appendix C. Monte-Carlo simulation

To understand the effects of the experimental imperfections
involved in the results shown in figures 3 and 4, we perform
a Monte-Carlo simulation by varying the relevant paramet-
ers, in an arbitrary range, which are typically constrained in
a real experiment. The concentration is estimated from the
data obtained through the numerical simulation by varying the
input polarization θin from 0◦ to 10◦ in steps of 1◦, providing
a detailed study in the shaded area in figures 3 and 4. In order
to see the effect of the PE in the estimation, we compare the
case of an ideal extinction ratio (rPE →∞) with the case of a
realistic extinction ratio (rPE = 1000/1) for C = 0.1, 0.3, and
0.5 g ml−1, shown in figure C1. It is shown that the estimated
concentration is equal to the true value up to the numerical

precision of sampling in the ideal case, whereas it drops down
at θout = θin +α≈ 0◦—the effect of PE is maximal, indicat-
ing an erroneous estimation in the realistic case. The effect of
PE becomes less significant as Tθout approaches 1/2 since the
PE of H- and V-photons takes place almost symmetrically and
thus compensates each other. Furthermore, note that a little
deviation from the true value occurs at θout ≈ 0◦ even in the
ideal case. Such an error can be shown to be independent of
ν and µ, and rather is a technical problem related to using the
inverse function of equation (5) to estimate θout. It has been
overwhelmed by the effect of PE (rPE ∼1000/1) in the meas-
ured data shown in figures 3 and 4.

The observed behaviors shown in figure C1 can be
explained via an appropriate modification to the theoretical
development made in the main text. The effect of PE, i.e.
the erroneous exchange between the H-photon and the V-
photon with a rate rPE, can be included in the theory by repla-
cing Tθout by Tθout + rPE × δTθout , where δTθout = 1− 2Tθout .
Equations (3)–(5) can thus be written up to the first order of
rPE ≪ 1 as

(i)
⟨NH⟩
ν

≈ ⟨fsingle⟩+ rPE × δfsingle, (C1)

(ii)
⟨NH −NV⟩

ν
≈ ⟨fdiff⟩+ rPE × δfdiff, (C2)

(iii)

〈
NH −NV

NH +NV

〉
≈ ⟨fDSR⟩+ rPE × δfDSR, (C3)

where

δfsingle = (1− 2Tθout)ηH, (C4)

δfdiff = (1− 2Tθout)(ηH + ηV), (C5)

δfDSR = (1− 2Tθout)
2ηHηV

[TθoutηH +(1−Tθout)ηV]2
. (C6)

8
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It is clear to see that the effect of the PE for the three estimat-
ors is maximal when Tθout = 0 or 1, whereas it vanishes when
Tθout = 1/2.

All the errors δf in equations (C4)–(C6) lead to an equal
amount of error in the estimation of θout, i.e. θout → θout +
rPEδθout, where the error

δθout =
cos2θout

|sin2θout|
=

2Tθout − 1

2
√
Tθout(1−Tθout)

. (C7)

The error δθout caused by the PE diverges as Tθout → 0 or 1,
while it decreases as Tθout approaches 1/2.

The PE consequently causes an error in the uncer-
tainty ∆θout of equations (8)–(10), i.e. ∆θout →∆θout + rPE ×
δ∆θout, where δ∆θout can be found as

δ∆θ
single(q)
out

=
1√
ν

1− 2Tθout

8

(
1
ηH

− 1

)
1

(1−Tθout)
2

1

∆θ
single(q)
out

, (C8)

δ∆θ
diff(q)
out =

1√
ν

1− 2Tθout

8
1

(ηH + ηV)2

×

(
ηH(1− ηH)

(1−Tθout)
2
− ηV(1− ηV)

T2
θout

)
1

∆θ
diff(q)
out

,

(C9)

δ∆θ
DSR(q)
out =

1√
ν

1− 2Tθout

8

(
1
ηV

− 1
ηH

)
1

∆θ
DSR(q)
out

. (C10)
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