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Abstract

Grand-potential based phase-�eld technique is o�en claimed to be an e�cient approach for

modelling phase transformation in multicomponent systems. Since this technique largely em-

ploys mole fraction to treat concentration, it is principally restricted to simulating microstruc-

tural evolutions which are exclusively governed by substitutional di�usion. In this work, an ex-

isting grand-potential model is re-formulated to encompass interstitial di�usion. �e distinction

between interstitial and substitutional di�usion is achieved by adopting molar number-density

(mol/m3) based description of composition. �e ability of the re-formulated approach to model

phase transformation accompanying interstitial and substitutional di�usion is elucidated by sim-

ulating rather straightforward decomposition of austenite into ferrite in the ternary Fe-C-Mn

system. Energy-density approximations that facilitate the incorporation of CALPHAD data in

the present framework are delineated for general, and in particular for Fe-C-X alloy systems.

Furthermore, phase-change under para-equilibrium, which can only be imposed through the

re-formulated variant of grand-potential technique, is modelled and the resulting concentration

pro�le is discussed in comparison to the outcomes of the conventional approach. Partitioning

of carbon in constrained-carbon-equilibrium condition is consistently simulated in-line with its

description.
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1. Introduction

In any given alloy, desired properties are achieved through appropriate processing tech-

niques. A processing technique like heat treatment can only be devised with an adequate un-

derstanding of the microstructural evolution exhibited by the material [1]. Temporal changes in

a microstructure, under a de�nite condition, are rarely straightforward to be exclusively anal-

ysed through experimental techniques. To that end, theoretical treatments are largely adopted

to complement the experimental observation, and enhance the understanding of microstructural

transformations. Particularly, with the mounting availability of a�ordable resources, computa-

tional techniques have increasingly been adopted to delineate complex microstructural evolu-

tion [2]. Phase-�eld modelling is one such numerical approach which is steadily gaining ground

as a go-to technique for analysing microstructural evolutions in wide-range of materials [3].

1.1. Sharp-interface treatment

Any microstructural changes can be theoretically viewed as a free-boundary problem, and

thus, treated analogously to the canonical Stefan’s problem [4, 5]. Accordingly, for a system with

well-posed boundary and initial conditions, a phase transformation is modelled by solving the

temporal evolution of the fundamental variable, under corresponding free-boundary (or Stefan)

and equilibrium (or Dirichlet) condition. In this approach, an interface with ‘zero’ thickness,

characterised by an abrupt change in the fundamental variable, distinguishes the constituent

phase of the microstructure. A phase transformation is thus perceived by tracking the evolution

of the sharp interface. Owing to the unambiguous nature of the underlying formulation, the

sharp-interface treatment is relatively well-established. However, the apparent straightforward

formulation involved in this technique gets increasingly convoluted with the complexity of the

evolving microstructure [6]. �erefore, phase-�eld approach is employed as an elegant alternate

for modelling phase transformations that yield intricate microstructures.
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1.2. Phase-�eld modelling

In phase-�eld formalism, fundamental parameter(s) describing a system and/or its state is

accompanied by an additional scalar variable. �is scalar variable, called phase-�eld (φ), as-

sumes a constant value within a given phase, while monotonously varying across the interface.

In other words, the interface is characterised by the smooth transition of the scalar variable-φ,

and correspondingly, di�use interface with a de�nite width is associated with phase-�eld mod-

elling. By introducing phase-�eld, the microstructural changes are no longer realised by tracking

the interface but rather through the spatio-temporal evolution of the additional scalar-variable,

φ(x, t) [7, 8, 9]. Furthermore, treating phase-�eld as volume fraction of given phase, such that∑
φ(x) = 1 at any given location x ∈ V , where V is the volume of the system, a two phase

microstructural evolution can be e�ectively modelled by a single variable.

�e entire domain, in phase-�eld approach, is distinguished into bulk phase, wherein phase-

�eld is spatially independent, and di�use interface characterised by the transition of φ(x). Ac-

cordingly, the overall energy of a two-phase system is expressed in the form of Ginzburg-Landau

type functional as

F(φ,∇φ,η) =

∫
dV

dV [fintf(φ,∇φ) + fbulk(η, φ)] , (1)

where fintf(φ,∇φ) and fbulk(η, φ) represent the energy-density contribution of the di�use-interface

and bulk region, respectively [10, 11]. Moreover, in Eqn. (1), η((x), t) is the fundamental variable

which is appropriately chosen to describe a given system and its evolution.

Having de�ned the overall energy-density through the functional F(φ,∇φ,η) in Eqn. (1),

the system is allowed to evolve towards its progressive phenomenological decrease. �erefore,

the temporal evolution of phase-�eld, which manifests itself as the perceived microstructural

changes, is invariably expressed as the variational derivative of the energy-density functional,
∂φ(x, t)

∂t
= −M̃ δF(φ,∇φ,η)

δφ
, (2)

where M̃ dictates the mobility of phase-�eld. Depending on the nature of the transformation, the

fundamental variable, η, and its evolution is appropriately delineated. Moreover, for microstruc-

tural transformations wherein the volume-fraction of the phases do not temporally-vary, phase-

�eld is treated as a conserved variable, and Eqn. (2) adopts a substantially di�erent form [12].
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However, since the present work primarily focuses on phase transformation, subsequent discus-

sions adhere to Eqn. (2) describing non-conserved evolution of phase-�eld [13].

1.2.1. Pure-substance approach

Early a�empts to model solidi�cation in alloys, which are characterised by one or more inde-

pendent concentrations, can be viewed as a direct extension of phase-�eld approach adopted for

analysing pure substances [14, 15]. Phase transformation in pure substances is conventionally

modelled by considering the temperature as the dynamic and continuous variable, in addition

to phase-�eld. Adhering to this framework, a phase-�eld treatment for alloy solidi�cation is

formulated by treating concentration as the continuous variable [16, 17]. In a system, wherein

concentration is the continuous variable, the contribution from the bulk phases reads

fbulk(c, φ) = fα(c)h(φ) + fβ(c)[1− h(φ)], (3)

where h(φ) is a smooth and monotonously varying interpolation function. Owing to the multi-

component nature of the system, concentration is expressed as a tuple ofm-components, c(x, t) =

{ci(x, t), cj(x, t), . . . , cm(x, t)}, with m representing total number of alloying elements includ-

ing the solvent. Moreover, α and β are evolving (solid) and parent phase (liquid), respectively.

Despite the apparent thermodynamic consistency, the limitation of this approach gets evident

when considering a system in chemical equilibrium [18].

Chemical equilibrium in a two-phase microstructure is established when the composition

of the phases pertain to the characteristic equilibrium concentration. Correspondingly, an one-

dimensional system in equilibrium can be expressed as

φ+
0 = 1; c = cαeq ≡ {cαieq, c

α
jeq, . . . , c

α
k:eq} (4)

φ−0 = 0; c = cβeq ≡ {c
β
ieq, c

β
jeq, . . . , c

β
k:eq},

wherein the di�use interface is characterised by φ0(x) ∈ (0, 1), and c(φ0) representing a smooth

transition between the equilibrium compositions. Moreover, cΘ
i:eq with Θ ∈ {α, β}, indicates

equilibrium concentration of component-i which is hugely dependent on phases.
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Under chemical equilibrium, with the system devoid of any in�uence of the curvature, the

interface remains static (∂φ
∂t

= 0). �erefore, for an interface contribution of the form

fintf(φ,∇φ) = w1|∇φ|2 + w2fpen(φ), (5)

where fpen(φ) is well- or obstacle-type penalising term with w1 and w2 corresponding to the

representative coe�cients of gradient- and potential-energy densities, Eqns. (3) and (5), through

Eqn. (2) yield a relation

2w1∇2φ0 − w2

dfpen(φ0)

dφ0

=
d∆ch(c(φ0), φ0)

dφ0

. (6)

�e chemical driving-force on the right side of above expression reads

∆ch(c(φ0), φ0) = fα(c(φ0))h(φ0) + fβ(c(φ0))[1− h(φ0)]−
m−1∑
i

µeq
i ci(φ0). (7)

where µeq
i represents the equilibrium di�usion potential of component-i. Here, it is important

to realise that, while the chemical potential of a component-i, with its conventional description,

is represented as µ̃i in the present formalism, its corresponding di�usion potential, which is

de�ned as the di�erence in a chemical potential of a component to its matrix, is denoted by

µi(= µ̃i − µ̃matrix).

Despite the equivalent energy-density established between the phases in a chemical equilib-

rium, it is evident from Eqns. (6) and (7) that a remnant driving-force persists, which augments

to the interface contribution as excess energy. �is limitation of the pure-substance formulation

is discussed as a non-physical coupling of the interface and bulk driving-force, that relates the

associated coe�cients and hinders in recovering material properties [18]. Additionally, the cou-

pling of the interface and bulk contribution poses a serious constraint on interface width, and

size of the simulation domain [19].

1.2.2. Two-phase approach

E�ective decoupling of the bulk and interface contributions can be established by ensuring

that the right-hand side of Eqn. (6) vanishes in equilibrium. �is has successfully been achieved

by introducing ‘�ctitious’ phase-dependent concentrations, cΘ = {cΘ
i , c

Θ
j . . . , c

Θ
k }, where Θ ∈
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{α, β} [18, 20]. �e underlying principle for introducing phase-dependent concentration is the

assumption that, across the di�use interface, the phases are distinct and are in local equilibrium,

unlike the pure-substance approach, wherein the phases are mixed with a single continuous con-

centration [21]. By formulating the bulk contribution based on phase-dependent concentrations

as

fα(cαeq)−
k−1∑
i

µeq
i c

α
i:eq = fβ(cβeq)−

k−1∑
i

µeq
i c

β
i:eq (8)

the two-phase treatment ensures that the bulk driving-forces vanish in chemical equilibrium.

Consequently, the interface and bulk contributions decouple, and Eqn. (4) transforms to

2w1∇2φ0 = w2

dfpen(φ0)

dφ0

. (9)

Eventhough this two-phase approach eliminates any non-physical in�uence of bulk contribution

on the interface, it signi�cantly adds to the computational cost of the overall numerical treatment.

In other words, by introducing previously unknown variables, the two-phase technique appends

a supplementary step, wherein these variables are determined. �e unknown phase-dependent

concentrations, for every component, are ascertained from the homogeneous concentration, ex-

pressed as

ci = cαi h(φ) + cβi [1− h(φ)] ∀ i, (10)

through the assumed equilibrium, which introduces the relation µαi = µβi = µeq
i ∀ i. Having

realised the ability of the two-phase treatment in eliminating the non-physical interaction of the

bulk and interface contribution, subsequent advancements focus primarily on identifying the

unknown variables, cΘ, e�ciently.

1.2.3. Grand-potential approach

Motivated by the undergirding principles of the pure-substance treatment of solidi�cation,

and understanding the bulk driving-forces which emerge from the two-phase approach, a seem-

ingly e�cient alternate has been discussed for modelling phase transformation in alloys. �is

approach re-formulates the overall energy functional, in Eqn. (1), by adopting grand-potential
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density to describe the contribution of the bulk phases [21, 22, 23]. In the grand-potential frame-

work, instead of concentration, the di�usion (or chemical) potential of the components is treated

as the fundamental variable. Given the invertibility of the free-energy density of the individual

phases, the unknown phase-dependent concentrations are e�ciently calculated.

1.2.4. Existing phase-�eld models realising substitutional and interstitial di�usion

In all the aforementioned techniques, which are directed towards modelling microstructural

transformation in multicomponent systems, the concentration (cΘ) is largely treated in mole

fractions. �e limitations of representing concentration in mole fraction, in the framework of

phase-�eld models, have previously been discussed in great detail [24]. �ese restriction in-

clude the in-adequacy of the approach to distinguish the la�ice occupancy of the alloying el-

ements. In other words, the interstitial and substitutional di�usion of the components cannot

be su�ciently distinguished when composition is treated in mole fraction. Consequently, such

phase-�eld techniques are con�ned to phase transformation governed by local equilibrium con-

dition and cannot model unique conditions, like para-equilibrium, which is characterised by the

di�usion of few, and speci�c, alloying elements [25]. Having realised this potential limitation,

di�erent representations have been rendered for concentration. Preliminary works adopt molar

number-density, ρΘ, which describes concentration as number of moles per unit volume, in pure-

substance approach to obviate the restriction imposed by mole fraction [24, 26]. �is has subse-

quently been extended to the two-phase treatment [27]. Recently, a multiphase-�eld technique

with the ability to model microstructural evolution in systems with subla�ices is elegantly pre-

sented in Ref. [28]. �is technique adopts site-fraction, instead of number-density, to treat con-

centration. Eventhough these models are thermodynamically consistent, they invariably employ

two-phase treatment, and consequently, incur a computational burden of estimating the previ-

ously unknown phase-dependent concentration. �erefore, in this work, a grand-potential based

phase-�eld approach, which expresses concentration in molar number-density, is presented to

distinguish interstitial and substitutional di�usion.
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2. Model extension

Phase-�eld techniques, which hitherto adopt molar number-density to describe the chemical

composition of a system, begin by comprehensively elucidating the limitations of using mole

fraction, and proceed by re-formulating the approach based on the alternate parameter [24, 26].

Having assumed a prevalent understanding, such description, while convincingly delineating

the need for a di�erent treatment of concentration, seemingly overlooks a proper introduction to

number-density, and its relation to the conventionally used mole fraction. Particularly, given that

molar number-density is primarily described based on volume, a re-formulation involving molar

volume would conceivably be more pertinent, and advantageous, owing its existing critical-role

in converting the free-energy densities, and incorporating quantitative driving-force [29]. �ere-

fore, this section begins with a rather pedagogical introduction to molar number-density, which

facilitates in deriving a relation between the two concentration parameters (mole fraction and

number-density) through molar volume.

2.1. Molar number-density

At any given instant during a transformation, volume of a phase is dictated by the number

of moles of certain, or all, constituent components. Correspondingly, for a phase-α comprising

of m chemical species, its volume can be expressed as

m∑
i=1

vαi N
α
i (t) = V α(t), (11)

where Nα
i is the number of mole of alloying element i. �e description of volume in Eqn. (11)

stems from the assumption that all chemical components associated with phase-α contribute to

V α(t). �e contribution of an individual species to volume, from Eqn. (11), can be quanti�ed as

∂V α

∂Nα
i

= vαi , (12)

where vαi is referred to as partial molar-volume of component-i in phase-α.

When a phase includes more than one sub-la�ice, with the chemical-species assuming a char-

acteristic partial molar-volume in each of these sub-la�ices, Eqn. (11) is extended to describe its
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volume. Accordingly, volume of phase-α, which encompasses q sub-la�ices is wri�en as
q∑
p=1

m∑
i=1

vαp:iN
α
p:i(t) = V α(t), (13)

where vαp:i is the characteristic partial molar-volume of i occupying sub-la�ice p. From Eqn. (13),

volume of phase-α comprising of chemical species which occupy regular or interstitial sites can

be appropriately formulated. However, it should be noted that, while Eqn. (13) permits the pos-

sibility of a component occupying more than one sub-la�ices, analogous expression delineating

volume of phase-αwith active interstitial-sites should ensure that each chemical species is exclu-

sively bound to one sub-la�ice. In other words, the formulation to estimate volume of phase-α

with regular and interstitial sub-la�ice should corroborate the condition that a component occu-

pying a given la�ice is restricted to it, and is not associated with the other site.

Volume of phase-α, which consist of j and l components respectively occupying regular and

interstitial sites, is expressed as

j∑
i=1

vαsub:iN
α
sub:i +

l∑
k=1

vαints:kN
α
ints:k = V α. (14)

In the above formulation, the partial molar-volume of components i and k, which are exclusively

bound to regular and interstitial la�ice, are represented by vαsub:i and vαints:k, respectively, while

Nα
sub:i and Nα

ints:k correspond to the number of moles of these chemical species. Given the na-

ture of the interstitial sites, it is reasonably assumed that the components occupying this la�ice

marginally contribute to the volume. Additionally, it is considered that volume of phase-α is

identically in�uenced by all the chemical species that are con�ned to the regular la�ice. �ese

assumptions, in terms of the partial molar-volumes, read

vαints:1 = vαints:2 = · · · = vαints:l ≡ vαints = 0, and (15)

vαsub:1 = vαsub:2 = · · · = vαsub:j ≡ vαsub.

By imposing the above approximations in Eqn. (14), a summation constraint, wri�en as

j∑
i=1

Nα
sub:i

V α
≡

j∑
i=1

ραsub:i =
1

vαsub
, (16)
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can be exclusively derived for the components occupying regular la�ice. �e individual entities

of the summation series in Eqn. (16) correspond to the number of moles of a regular-la�ice com-

ponent per unit volume of phase-α, N
α
sub:i
V α

, which is referred to as the molar number-density, ραsub:i.

Corollary of Eqns. (15) and (16) is that number-density, when adopted to describe the chemical

composition of a phase, inherently distinguishes components occupying regular and interstitial

la�ice.

Considering the description of the mole fraction of component-i in phase-α, which contains

j and l chemical species respectively bound to regular and interstitial sites, cαsub:i associated with

regular la�ice can be related to the corresponding number-density as

cαsub:i =

[
cαsub:i

V α

] [
V α∑j

i=1 c
α
sub:i +

∑l
k=1 c

α
ints:i

]
= ραsub:iV

α
m , (17)

where V α
m molar of phase-α [28]. Analogous expression can be derived for interstitial compo-

nents, that reads

ραints:k =
cαints:k

V α
m

, (18)

where ραints:k and cints:k correspond to the number-density and mole fraction of component-k oc-

cupying interstitial site.

Despite being occupied by certain alloying elements, generally, interstitial la�ice include con-

siderable amount of vacant sites. Since the vacant sites are not encompassed in the formulation

of mole fraction, the resulting relation in Eqn. (18) primarily considers the interstitial sites that

are occupied. For a given volume of phase-α, the number-density of the overall interstitial sites

including vacant ones are constant, and can be wri�en as

Sαints =
l∑

k=1

ραints:k + ραints:Va, (19)

where ραints:Va is the number-density of vacant interstitial site at a given instant of the transforma-

tion. �e overall number-density of the interstitial site, Sαints, is material-speci�c and is consider-

ably in�uenced by crystal structure. In view of the overall interstitial number-density, Eqn. (18)

can be re-formulated as

ραints:k = cαints:k

[
Sαints +

1

vαsub
− ραints:Va

]
, (20)
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wherein number-density of the vacant interstitial sites are included.

While separately emphasising the signi�cance of molar- and partial molar-volume in the cur-

rent formulation, Eqns. (16) and (17) indicate that a relation between these parameters can be

derived. Such relation, as will be shown in the subsequent sections, facilitates a rather straight-

forward description of the free-energy densities, considering that the driving force should be

expressed based on the currently adopted concentration variable, i.e, molar number-density.

A condition associating molar and partial molar volume can be derived from any formulation

that delineate the concentration of regular or interstitial components. For instance, exclusively

considering the components bound to regular la�ice, the summation of their concentration, based

on Eqn. (17), is wri�en as
j∑
i=1

ραsub:i =
1

V α
m

j∑
i=1

cαsub:i. (21)

In a phase comprising of chemical species occupying interstitial sites, owing to the de�nition of

mole fraction, summation on the right side of the above Eqn. (21) always follows
∑j

i=1 c
α
sub:i < 1.

Correspondingly, by substituting Eqn. (16), a condition relating molar and partial molar can be

wri�en as

V α
m ≤ vαsub. (22)

�e role of Eqn. (16) in deriving the above relation entails that Eqn. (22) is valid only when the

components occupying regular la�ice render an identical contribution to the volume (Eqn. (15)).

In the absence of any interstitial chemical species, Eqn. (22) indicates that the molar and

partial molar volume are equal. Moreover, for a dilute system with a negligible quantity of com-

ponents occupy interstitial sites, the volume parameters can be approximated as V α
m ≈ vαsub.

2.2. Re-formulated grand-potential model

Adopting molar number-density, a multicomponent grand-potential phase-�eld model is for-

mulated to distinctly realise substitution and interstitial di�usion. As elucidated in the previous

section, expressing the composition of a system in number-density inherently distinguishes com-

ponents occupying regular and interstitial la�ices. �is distinction rendered by molar number-

density is exploited to di�erentiate the varying modes of di�usion.
11



2.2.1. Grand-potential density

A two-phase multicomponent system withm chemical species is considered for re-formulating

the existing grand-potential model. Owing to the constraintφα+φβ = 1, the system is adequately

de�ned by a scalar phase-�eld (φ). Furthermore, m chemical species are distinguished into j and

l components, m 3 {sub:1, sub:2, . . . , sub:j, ints:1, ints:2, . . . , ints:l}, depending on the la�ice

sites occupied by each of these species. While the component ‘sub:i’ is bound to the regular

la�ice, and di�uses substitutionally, interstitially migrating chemical species are represented by

‘ints:l’ .

�e overall chemical composition of a phase-α, for the current consideration, is described by

a tuple comprising of m-entities, which is wri�en as

ρα ≡ {ραsub:1, ρ
α
sub:2, . . . , ρ

α
sub:j︸ ︷︷ ︸

:=ραsub

, ραints:1, ρ
α
ints:2, . . . , ρ

α
ints:k︸ ︷︷ ︸

:=ραints

}, (23)

where ραsub:j and ραints:k correspond to the number-density based concentration of species-j and

-k respectively occupying regular and interstitial sites. �e continuous variable associated with

each of these components are analogously represented by

µ ≡ {µsub:2, µsub:3, . . . , µsub:j︸ ︷︷ ︸
µsub

, µints:1, µints:2, . . . , µints:k︸ ︷︷ ︸
µints

}, (24)

with µsub:j and µints:k indicating di�usion and chemical potential of components-j and −k, re-

spectively. Di�usion and chemical potential are appropriately related to components occupying

regular and interstitial sites through proper formulation of the free-energy densities.

For consistent formulation, molar free-energies (J mol−1) of individual phases, which are

o�en rendered by databases like CALPHAD, are generally converted to energy densities (J m−3)

through

fα(cα) =
1

Vm
Gα(cα), (25)

where cα encompasses concentration of m components in mole fraction [28, 30]. �is conver-

sion from Gibbs, Gα(cα), to Helmholtz energy-density, fα(cα), is achieved by assuming that

molar volume of all constituent phases are equal (V α
m = V β

m = Vm). Using conjugate pairs, and
12



di�erentiating components based on their la�ice positions, Eqn. (25) can be wri�en as

fα(cα) =
1

Vm

(
j∑
i=1

µ̃αsub:ic
α
sub:i +

l∑
k=1

µαints:kc
α
ints:k

)
(26)

where cαsub:i and cαints:i is the mole fraction of species−i and−k [31]. Moreover, chemical potential

of component−i and −k are respectively denoted by µ̃sub:i and µαints:k. By substituting Eqns. (17)

and (18), the free-energy density of phase-α, in terms of molar number-density, is expressed as

fα(ρα) =

j∑
i=1

µ̃αsub:iρ
α
sub:i +

l∑
k=1

µαints:kρ
α
ints:k. (27)

When the conjugate pair of the solvent-matrix are separated from the alloying elements, the

above Eqn. (27) transforms to

fα(ρα) = µ̃αsub:1ρ
α
sub:1 +

j∑
i=2

µ̃αsub:iρ
α
sub:i +

l∑
k=1

µαints:kρ
α
ints:k, (28)

where ραsub:1 and µ̃αsub:1 are the concentration of solvent in number-density, and its correspond-

ing chemical potential. By imposing the summation constraint associated with concentration

of components occupying regular la�ice, Eqn. (16), the number-density of the solvent-matrix is

expanded, and the resulting free-energy formulation is wri�en as

fα(ρα) = µ̃αsub:1

(
1

vαsub
−

j∑
i=2

µ̃αsub:iρ
α
sub:i

)
+

j∑
i=2

µ̃αsub:iρ
α
sub:i +

l∑
k=1

µαints:kρ
α
ints:k (29)

Re-arranging the terms in the above expression yields

fα(ρα) =
µ̃αsub:1

vαsub
+

j∑
i=2

µαsub:iρ
α
sub:i +

l∑
k=1

µαints:kρ
α
ints:k, (30)

where µαsub:i = µ̃αsub:i − µ̃αsub:1 is the di�usion potential of chemical species-i bound to the regular

la�ice site. �is formulation reduces the number of independent variable to m − 1 through the

summation constraint associated regular-la�ice components (Eqn. (16)). It should be noted that

similar operation cannot be extended for the interstitial components, since from the very outset

the expression of the concentration in mole fraction does not include vacant sites. �erefore,

consistent with the thermodynamic description, the free-energy density in Eqn. (30) is formu-

lated based on the di�usion and chemical potential of regular-la�ice and interstitial components,
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respectively [34]. However, the number of independent variables can further be decreased when

the concentration is originally expressed in site fractions, but given that the chemical potential

of vacant site is negligible, in Eqn. (30) the conjugate pair of the interstitial concentration would

continue to be chemical potential, not di�usion potential [32].

Bulk contribution of a given phase in grand-potential based phase-�eld model is described

by the Legendre transform of its free-energy density [33]. �erefore, the grand-potential density

of phase-α, based on Eqn. (30), is expressed as

ψα(ρα(µ)) = fα(ρα)−
j∑
i=2

µsub:iρ
α
sub:i −

l∑
k=1

µints:kρ
α
ints:k. (31)

wherein, owing to the local-equilibrium consideration, the di�usion and chemical potential of

the respective regular and interstitial la�ice components are treated as phase-independent con-

tinuous variables. In other words, as indicated in Eqn. (24), through proper description of the

free-energy density, appropriate potentials are consistently treated as the continuous variable for

components bound to regular and interstitial sites [34]. Furthermore, given the local-equilibrium

condition (µ̃αsub:1 = µ̃βsub:1) and the assumption, vαsub = vβsub ≡ vsub, any contribution from the

solvent-matrix in Eqn. (30), µ̃
α
sub:1
vαsub

, to the driving force is annulled.

�e functional detailing the energy-density of the entire system of volume V is wri�en as

Ω(µ, φ,∇φ) =

∫
V

dV

[
ψ(ρα(µ),ρβ(µ), φ) +

1

ε
fpen(φ) + εγ|∇φ|2

]
, (32)

where ψ(ρα(µ),ρβ(µ), φ) is the overall grand-potential density which is de�ned by interpolat-

ing the bulk contribution of the individual phases in Eqn. (31) [35]. An interpolation function of

the form h(φ) = φ2(3 − 2φ) is adopted in the present work. Moreover, a conventional double-

well type potential, fpen(φ) = 16
π2γφ

2(1 − φ)2, is used as a penalising function in Eqn. (32). �e

length scale-parameter ε and γ respectively dictate the width and energy-density of the interface

separating the phases [36].

2.2.2. Evolution equation

Microstructural transformation of the system is modelled by considering a phenomenologi-

cal decrease in its overall energy-density. Accordingly, in the current two-phase grand potential
14



framework, the temporal evolution of phase-�eld that translates into the observed microstruc-

tural changes is formulated as

τε
∂φ

∂t
= −δΩ(µ, φ,∇φ)

δφ
(33)

= 2γε∇2φ− 1

ε

∂fpen(φ)

∂φ
− [ψα(µ)− ψβ(µ)]︸ ︷︷ ︸

∆ψ(µ)

∂h(φ)

∂φ
,

where τ is the relaxation parameter that ensures stability of the di�use interface, and ε denotes

a length-scale parameter dictating the width of the interface. It is evident from the above evolu-

tion equation that, in the grand-potential formalism, the bulk driving-force, which dictates that

the spatio-temporal change in phase-�eld, corresponds to the di�erence in the grand-potential

densities of individual phases (∆ψ(µ)).

�e temporal change in the continuous variable, that in�uences the observed microstruc-

tural transformation through the bulk driving-force, is derived by considering the evolution of

the concentration (ρ) and its associated variables (µ, φ) [37]. As delineated in previous section,

the continuous variables are characteristically di�erent for components occupying regular and

interstitial sites. In other words, while di�usion potential predominantly governs the migration

of regular-la�ice chemical species (µsub), interstitial di�usion of the corresponding alloying ele-

ments is dictated by chemical potential (µints). Despite the fundamental disparity, the temporal

evolution of the continuous variable(s) is expressed in an uni�ed manner as

∂µi
∂t

=

[
χαikh(φ) + χβik(1− h(φ))︸ ︷︷ ︸

:=χ(φ)

]−1[
∇ ·

m−1∑
i=1

Mik(φ)∇µk︸ ︷︷ ︸
:=

∂ρi
∂t

−(ραi − ρ
β
i )
∂h(φ)

∂t

]
, (34)

where i ∈ {sub:1, sub:2, . . . , sub:j, ints:1, ints:2, . . . , ints:l}, and m(= j + l) encompasses all

components irrespective of its la�ice positions.

�e mobility of components in Eqn. (34) is governed byMik(φ), which is wri�en as

Mik(φ) = Dα
ikχ

α
ikh(φ) +Dβ

ikχ
β
ik(1− h(φ)), (35)

with Dα
ik and χβik representing the interdi�usivity and susceptibility matrix. �e formulation of
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interdi�usivity matrix of dimension [m− 1×m− 1] as

Dα
ik =



Dα
sub2sub2

. . . Dα
sub2subj Dα

sub2ints1 . . . Dα
sub2intsl

Dα
sub3sub2

. . . Dα
sub3subj Dα

sub3ints1 . . . Dα
sub3intsl

... . . . ...
... . . . ...

Dα
subjsub2

. . . Dα
subjsubj Dα

subj ints1 . . . Dα
subj intsl

Dα
ints1sub2

. . . Dα
ints1subj Dα

ints1ints1 . . . Dα
ints1intsl

Dα
ints2sub2

. . . Dα
ints2subj Dα

ints2ints1 . . . Dα
ints2intsl

... . . . ...
... . . . ...

Dα
intslsub2

. . . Dα
intslsubj Dα

intslints1 . . . Dα
intslintsl



(36)

=

 Dα
sub Dα

sub:ints

Dα
sub:ints Dα

ints

 ,

and analogous description of susceptibility matrix, lends itself to the uni�ed expression and im-

plementation of continuous variable(s) evolution.

3. Incorporation quantitative driving force

A wide-range of approaches are adopted to incorporate CALPHAD-based quantitative driving-

force in phase-�eld formalism. �ese include extending the numerical framework of the model

by appending datasheet that comprises of essential information [38], coupling locally-linearised

phase diagrams [39], and parallely running the associated so�ware packages [40]. In addition to

the aforementioned techniques, appropriate bulk contribution has been introduced by approx-

imating the Gibbs free energy as a second-order function [41]. Owing to the elagancy of the

formulation, and its ability to render consistent driving-force, CALPHAD data is incorporated

through parabolic approximation of free-energy density in present work.
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3.1. Generalised formulation

Free-energy density of a phase consisting of m chemical species, at a given temperature T ,

can be expanded around its equilibrium composition as

fΘ(c) =
1

Vm

{
GΘ(cΘ

eq) +
m∑
i=1

[
∂GΘ(c)

∂ci

]
cΘi:eq

(ci − cΘ
i:eq) +

1

2

∑
i≤j

[
∂2GΘ(c)

∂ci∂cj

]
cΘ

eq

(ci − cΘ
i:eq)(cj − cΘ

j:eq)

}
,

(37)

where Θ ∈ {α, β}, and GΘ(c) denotes its Gibbs free-energy [42]. While cΘ
eq encompasses of

equilibrium concentration of all chemical species in phase-Θ, cΘ
i:eq and cΘ

j:eq correspond to the

equilibrium composition of component i and j. Moreover, in Eqn. (37), Vm represents identical

molar volume of phase−α and −β (V α
m = V β

m = Vm).

Since Eqn. (37) re�ects the data rendered by CALPHAD, the concentration is treated in mole

fraction. Re-writing the concentration in number density based on Eqn. (17), the resulting ex-

pression for free-energy density reads

fΘ(ρ) = fΘ(ρΘ
eq) +

m∑
i=1

[
∂GΘ(ρ)

∂ρi

]
ρΘ
i:eq

(ρi − ρΘ
i:eq) +

Vm
2

∑
i≤j

[
∂2GΘ(ρ)

∂ρi∂ρj

]
ρΘ

eq

(ρi − ρΘ
i:eq)(ρj − ρΘ

j:eq),

(38)

whereρΘ
eq, which includes ρΘ

i:eq and ρΘ
j:eq, indicates the equilibrium concentration in molar number-

density. As delineated in previous sections, m components constituting phase-Θ can be distin-

guished based on their la�ice positions. Correspondingly, by segregating the contribution of the

chemical species occupying regular la�ice positions from the ones con�ned to the interstitial

17



sites, the free-energy density is wri�en as

fΘ(ρ) = fΘ(ρΘ
eq) +

j∑
i=1

[
∂GΘ(ρ)

∂ρsub:i

]
ρΘ

eq

(ρsub:i − ρΘ
sub:ieq

) +
l∑

k=1

[
∂GΘ(ρ)

∂ρints:k

]
ρΘ

eq

(ρints:k − ρΘ
ints:keq

)

(39)

+
Vm
2

∑
i≤j

[
∂2GΘ(ρ)

∂ρsub:i∂ρsub:j

]
ρΘ

eq

(ρsub:i − ρΘ
sub:ieq

)(ρsub:j − ρΘ
sub:jeq

)

+
Vm
2

∑
k≤l

[
∂2GΘ(ρ)

∂ρints:k∂ρints:l

]
ρΘ

eq

(ρints:k − ρΘ
ints:keq

)(ρints:l − ρΘ
ints:leq

)

+
Vm
2

∑
i 6=k

[
∂2GΘ(ρ)

∂ρsub:i∂ρints:k

]
ρΘ

eq

(ρsub:i − ρΘ
sub:ieq

)(ρints:k − ρΘ
ints:keq

).

�e second derivative of the Gibbs free energy involved in above Eqn. (39) e�ects the mobility

of the continuous variable, and can be extracted from kinetic databases.

Legendre transform of free-energy density of a phase yields its corresponding grand-potential

density [21]. Accordingly, grand-potential density of phase-α, analogous to Eqn. (39), is ex-

pressed as

ψΘ(µ) = ψΘ(µeq) +

j∑
i=1

[
∂ψΘ(µ)

∂µ̃sub:i

]
µeq

(µ̃sub:i − µ̃sub:ieq) +
l∑

k=1

[
∂ψΘ(µ)

∂µints:k

]
µeq

(µints:k − µints:keq)

(40)

− Vm
2

m,m∑
i≤k

χΘ
ik(µ̃sub:i − µ̃sub:ieq)(µints:k − µints:keq),

whereχΘ
ik is the susceptibility matrix adopting the form of interdi�usivity matrixDα

ik in Eqn. (36),

wherein entities of this tensor are reciprocal of second derivative of Gibbs free energy [42, 21].

Moreover, in Eqn. (40), it is important to re-iterate that µ̃sub:i and µints:k denote the chemical

potential of component−i and−k, which respectively occupy regular and interstitial la�ice-sites.

Owing to its continuous nature in the current formulation, chemical potentials are indicated as

phase-independent variables. �e equilibrium chemical potential of species-i and -k, which are

to bound to regular and interstitial la�ice, are respectively denoted by µ̃sub:ieq and µints:keq . By

imposing the relation

∂ψΘ(µ)

∂µi
= −ρΘ

i (41)
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for a generic component-i on Eqn. (40), grand-potential density of phase-Θ can be wri�en as

ψΘ(µ) = ψΘ(µeq)−
j∑
i=1

ρΘ
sub:ieq

(µ̃sub:i − µ̃sub:ieq)−
l∑

k=1

ρΘ
ints:keq

(µints:k − µints:keq) (42)

− Vm
2

m,m∑
i≤k

χΘ
ik(µ̃sub:i − µ̃sub:ieq)(µints:k − µints:keq),

where ρΘ
sub:ieq

and ρΘ
ints:keq

correspond to the number-density based equilibrium concentration of

component-i and -k occupying regular and interstitial la�ice sites in phase-Θ. In order to express

the contribution of the regular-la�ice components in terms of thermodynamically-consistent dif-

fusion potential, the associated summation constraint (Eqn. (16)) is introduced in the formulation

of grand-potential density. Accordingly, the grand-potential density of phase-Θ in Eqn. (42) is

re-formulated as

ψΘ(µ) = ψΘ(µeq)−
1

vΘ
sub

(µ̃sub:1 − µ̃sub:1eq)−
j∑
i=2

ρΘ
sub:ieq

(µsub:i − µsub:ieq) (43)

−
l∑

k=1

ρΘ
ints:keq

(µints:k − µints:keq)−
Vm
2

m,m∑
i≤k

χΘ
ik(µ̃sub:i − µ̃sub:ieq)(µints:k − µints:keq),

whereµsub:i andµsub:ieq are di�usion potential and its equilibrium counterpart of chemical species-

i, respectively. In Eqn. (43), µ̃sub:1 and µ̃sub:1eq represents the chemical potentials of solvent-matrix,

while vΘ
sub is partial molar-volume which is assumed to be equal for all components bound to

regular la�ice.

In grand-potential based phase-�eld model, as indicated in Eqn. (33), the bulk driving-force

is formulated as the di�erence in the potential densities of individual phases. �erefore, the

driving-force governing phase-�eld evolution in present model, wherein the energy densities

are approximated as second-degree polynomials, is expressed as

∆ψαβ(µ) = ψα(µ)− ψβ(µ) (44)

=

j∑
i=2

(ρβsub:ieq
− ραsub:ieq

)(µsub:i − µsub:ieq) +
l∑

k=1

(ρβints:keq
− ραints:keq

)(µints:i − µints:ieq)

+
Vm
2

m,m∑
i≤k

(χβik − χ
α
ik)(µsub:i − µsub:ieq)(µints:i − µints:ieq).
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�e above description of the driving force ensues from the assumption that partial molar-volume

is equal across the phases (vαsub = vβsub ≡ vsub), which eliminates the contribution of solvent-

matrix. Moreover, considering that di�usion potential is the di�erence in the chemical potential

of a component and its solvent matrix, (µ̃sub:i− µ̃sub:ieq) is replaced by (µsub:i−µsub:ieq) in Eqn. (44).

Since grand-potential densities of phase-α and -β are equal at equilibrium, ψα(µeq) = ψβ(µeq),

the driving force is primarily dictated by the deviation from equilibrium chemical and di�usion

potential. �e formulation of driving force in Eqn. (44) ensures that, while chemical potential

of interstitial components contribute to driving force, it is di�usion potential of regular-la�ice

species that renders analogous contribution.

3.2. Ternary Fe - Mn - C system

Ability of the current re-formulated approach to distinguish interstitial and substitutional dif-

fusion, and to model a corresponding phase transformation in system comprising of components

exclusively bound to regular and interstitial la�ice is primarily discussed in view of manganese

steels. Following the generalised approximation delineated in previous section, the CALPHAD-

based free energy-density of a ternary phase consisting of carbon and manganese at temperature

T is expressed as

fΘ(cC , cMn, cFe, T ) ≡ 1

Vm
GΘ(cC , cMn, cFe, T ) (45)

=
1

Vm

[
AΘ
c (T )c2

C +BΘ
c (T )c2

Mn +OΘ
c (T )c2

Fe

+PΘ
c (T )cC +QΘ

c (T )cMn +RΘ
c (T )cFe + SΘ

c (T )
]
,

where the concentration of carbon, manganese and iron are treated in mole fractions, cC , cMn

and cFe, respectively. Moreover, AΘ
c (T ), BΘ

c (T ), OΘ
c (T ), PΘ

c (T ), QΘ
c (T ), RΘ

c (T ) and SΘ
c (T ) are

temperature- and phase-dependent coe�cients which enable the incorporation of appropriate

energy densities, and are ascertained around the equilibrium conditions.

�e number of independent concentrations in the description of the energy density is con-

ventionally reduced by imposing the summation constraint associated with mole fraction. Cor-
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respondingly, the concentration of the solvent-matrix is replaced through the relation

cFe = 1− cC − cMn, (46)

and the energy density is conventionally described based on carbon and manganese content. Al-

though the introduction of the summation constraint in Eqn. (46) appears to be reasonable, it fails

to di�erentiate components based on their la�ice positions. In other words, reducing the number

of independent concentration by imposing Eqn. (46) entails that all components occupy regular

la�ice and migrate substitutionally governed by di�usion potential. However, in ternary systems

like manganese steel, the di�usion of one alloying element (carbon) is bound to interstitial sites

and is dictated by chemical potential, while the other component (manganese) exhibits substitu-

tional di�usion under the in�uence of di�usion potential. In order to di�erentiate the mode of

di�usion, and the respective governing factor, free-energy density of the ternary is wri�en as

GΘ(ρC , ρMn, ρFe, T ) = V 2
m[AΘ(T )ρ2

C +BΘ(T )ρ2
Mn +OΘ(T )ρ2

Fe] (47)

+ Vm[PΘ(T )ρC +QΘ(T )ρMn +RΘ(T )ρFe] + SΘ(T ),

wherein the concentration of the components are treated in molar number-density. A number-

density based formulation of free energy is rendered through Eqn. (17), and the coe�cients as-

sociated with Eqn. (45) correspondingly vary in this description. Since the summation relation

involving molar number-density, unlike Eqn. (46), is distinct for components occupying reg-

ular and interstitial sites, it can be employed to introduce the necessary disparity within the

free-energy formulation. �erefore, based on the constraint relating the molar number-density

of regular-la�ice components, ρFe + ρMn = 1
vΘ

sub
, free energy of an individual phase replacing

solvent-matrix concentration is wri�en as

GΘ(ρC , ρMn, T ) = V 2
m

{
AΘ(T )ρ2

C +BΘ(T )ρ2
Mn +OΘ(T )

[
1

vΘ
sub
− ρMn

]2
}

(48)

+ Vm

{
PΘ(T )ρC +QΘ(T )ρMn +RΘ(T )

[
1

vΘ
sub
− ρMn

]}
+ SΘ(T ),

where 1
vΘ

sub
is identical partial molar-volume of chemical species including solvent-matrix that are

bound to regular la�ice. Moreover, it is vital to realise that Eqn. (48) is analogous to Eqns. (29)
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and (43), wherein by exclusively introducing the summation constraint of regular-la�ice species,

the components are distinguished and their evolution are respectively coupled with di�usion or

chemical potential depending on their la�ice occupancy. In other words, for the Fe-C-Mn system

considered in the present work, disparity between the alloying elements, and the factors govern-

ing their evolution, is established by Eqn. (48). �rough straightforward algebraic operations,

free energy formulation distinguishing components based on their la�ice position can further be

simpli�ed as

GΘ(ρC , ρMn, T ) = ĀΘ(T )ρ2
C + B̄Θ(T )ρ2

Mn + P̄Θ(T )ρC + Q̄Θ(T )ρMn + S̄Θ(T ) (49)

�e phase- and temperature-dependent coe�cients that dictate the free-energy density in above

formulation reads

ĀΘ(T ) = V 2
mA

Θ(T ) (50)

B̄Θ(T ) = V 2
m[BΘ(T ) +OΘ(T )]

P̄Θ(T ) = VmP
Θ(T )

Q̄Θ(T ) = Vm

[
QΘ(T )−RΘ(T )− 2

Vm
vΘ

sub
OΘ(T )

]
S̄Θ(T ) =

Vm
vΘ

sub

[(
Vm
vΘ

sub

)
OΘ(T ) +RΘ(T ) +

(
vΘ

sub

Vm

)
SΘ(T )

]
.

In systems with dilute carbon concentration, since molar and partial molar-volume can be ap-

proximated to be equal (Vm ≈ vΘ
sub), free-energy coe�cients Q̄Θ(T ) and S̄Θ(T ) can be wri�en

as

Q̄Θ(T ) = Vm
[
QΘ(T )−RΘ(T )− 2OΘ(T )

]
(51)

S̄Θ(T ) =
[
OΘ(T ) +RΘ(T ) + SΘ(T )

]
.

For the ternary alloy systems considered in the present analysis, the free-energy coe�cients are

estimated from TCFe8 CALPHAD database. Furthermore, the accuracy of the approximation is

ensured by the ability of the free-energy formulation to recover equilibrium conditions. �er-

modynamic parameters that primarily dictate the evolution of carbon and manganese, based on
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free energy approximation in Eqn. (49), is respectively expressed as

µC(ρC , T ) =
∂fΘ(ρC , ρMn, T )

∂ρC
= 2ĀΘ(T )ρC + PΘ(T ) (52)

µMn(ρMn, T ) =
∂fΘ(ρC , ρMn, T )

∂ρMn

= 2B̄Θ(T )ρC + Q̄Θ(T ),

where µC(ρC , T ) and µMn(ρMn, T ) correspond to the chemical and di�usion potential of carbon

and manganese. Moreover, the predominant entries of the susceptibility matrix for the current

Fe-C-Mn systems are

χΘ
C =

∂ρC
∂µC

=
1

2ĀΘ(T )
(53)

χΘ
Mn =

∂ρMn

∂µMn

=
1

2B̄Θ(T )
,

where χΘ
C and χΘ

Mn are kinetic coe�cients that respectively in�uence mobility of carbon and

manganese during interstitial and substitutional di�usion. �ese entities of the susceptibility

matrix are estimated from kinetics database MOBFe3 via DICTRA so�ware package.

Entire approach of realising free-energy coe�cients begins with the estimation of entries

associated with susceptibility matrix, ĀΘ(T ) and B̄Θ(T ), from kinetic database. Subsequently,

assuming that phase−α and−β are in equilibrium, from Eqn. (52), the related parameters PΘ(T )

and QΘ(T ) are determined. �e constants S̄Θ(T ) for Θ ∈ {α, β} are �nally ascertained from

pre-determined coe�cients. �e approximation technique, delineated in this section, for incor-

porating CALPHAD data of manganese steel can directly be extended to any ternary system of

the form Fe-C-X, wherein alloying element (X) replaces solvent-matrix atoms in regular la�ice

with carbon occupying interstitial sites.

4. Simulation set-up

4.1. Domain con�guration

In the present work, austenite to ferrite transformation in ternary Fe-C-Mn system is mod-

elled by distinguishing the respective interstitial and substitutional di�usion of carbon and man-

ganese through the re-formulated grand-potential based phase-�eld model. A quasi-one-dimensional

set-up, wherein a noticeable width is rendered to otherwise one-dimensional domain, is adopted
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Figure 1: A section of isotherm pertaining to manganese steel at temperatures 6500 C and 6050 C, wherein concen-

trations are expressed in U-fractions. �e position of the alloy of composition 2.5at.% carbon and 5.4at.%manganese

is shown in red solid dots.

for all simulations pertaining to austenite decomposition. �is quasi-1D domain is of length

84µm, while its width is 10µm. �e width of the quasi-1D domain ensures that the interface

contribution including the e�ect of curvature is adequately encompassed, unlike conventional

one-dimensional setup.

�e simulation domain adopted in the current investigation is discretised through �nite-

di�erence scheme into identical grids with access to six adjacent cells in the principal directions.

�e equi-sized grids are of dimension ∆X = ∆ Y = 0.04µm. Equations pertaining to the tempo-

ral evolution of phase-�eld, chemical and di�usion potentials, Eqns. (33) and (34), are explicitly

solved, in �nite-di�erence framework, under forward marching Euler’s scheme. No-�ux Neu-

mann boundary condition is imposed at the longitudinal ends of the quasi-1D domain, while

laterally, along the width, periodic condition is assigned.

4.2. Material parameters

Isothermal evolution of ferrite in austenite-matrix of ternary manganese steel of composi-

tion 2.5at.% carbon and 5.4at.% manganese is modelled at temperatures 6500 C and 6050 C by
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Table 1: Coe�cients describing free energies of ferrite and austenite at 6500 C and 6050 C.

6050 C ĀΘ (Jmol−1) B̄Θ (Jmol−1) P̄Θ (Jmol−1) Q̄Θ (Jmol−1) S̄Θ (Jmol−1)

Ferrite 23.8×10−4 6.1×10−5 -0.15275 -0.44934 -33704.43

Austenite 1.2×10−4 1.6×10−5 -0.16156 -0.46188 -29317.08

6500 C

Ferrite 9.1×10−4 0.93×10−5 -0.14526 -0.50723 -36662.02

Austenite 1.05×10−4 0.26×10−5 -0.15688 -0.51595 -33179.99

Table 2: Interdi�usivity matrix governing the evolution rate of chemical and di�usion potential.

6050 C 6500 C

Dγ
ik C Mn C Mn

C 1.31 ×10−13 -1.47 ×10−14 3.13×10−11 -5.74 ×10−14

Mn 1.56 ×10−21 7.71 ×10−21 -9.05×10−19 1.34×10−18

Dα
ik C Mn C Mn

C 2.56 ×10−11 -4.63 ×10−12 4.81×10−11 -1.04 ×10−16

Mn -4.34 ×10−19 1.17 ×10−18 -1.71×10−18 1.54×10−17

employing the present re-formulated technique. �e position of this composition in isotherms

associated with the appropriate temperature is shown in Fig. 1. As illustrated in Fig. 1, the

ternary manganese steel considered for the current analysis pertains to the three-phase regime,

at both temperatures. Consequently, the phase transformation ultimately yields a combination

of ferrite and austenite in de�nite phase-fraction. Since the equilibrium volume fraction of the

phases, at a given temperature, for an alloy of de�nite composition is quantitatively predicted

by CALPHAD database, the outcomes of the re-formulated approach are veri�ed by comparing

the phase-fractions. Moreover, as shown in Fig. 1, the ternary manganese steel, at temperatures

6500 C and 6050 C, lies above the ‘partitioning- and negligible-partitioning local-equilibrium’ (P-

LE and NP-LE) transition line, thus implying that the phase transformation is accompanied by

the di�usion of both carbon and manganese.

�antitative driving-force for the growth of ferrite, as delineated in previous section, is incor-
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Figure 2: Temporal evolution of ferrite in austenite matrix at temperatures 6500 C and 6050 C in a quasi one-

dimensional simulation domain, wherein t denotes the non-dimensionalised time.

porated through the polynomial approximation of energy densities rendered by TCFe8 database.

�e phase- and temperature-dependent coe�cients which enable the introduction of appropri-

ate bulk contribution is listed in Table. 1. Furthermore, the entries of the interdi�usivity matrix

obtained from MOBFe3 database is presented in Table. 2. Kinetics parameters associated with

the second-derivative of free-energy can be ascertained from ĀΘ and B̄Θ, and incorporated in

susceptibility matrix. Given the concentration of carbon in the manganese steel, the alloy is rea-

sonably treated as dilute. Correspondingly, molar and partial molar-volume are considered to

be identical, and of value Vm = vsub = 7.17 × 10−6m−3mol−1. Furthermore, an interfacial en-

ergy density of γ = 0.49µm−2 is assigned [43, 44, 45]. �e width of the di�use interface is �xed

through length-scale parameter ε = 3×∆X. Properties of the interface pertaining to the present

formalism, including the width and corresponding phase-�eld pro�le in the di�use region, is

brie�y discussed in Appendix. �e stability of the interface during the temporal evolution of

phase-�eld is ensured by the relaxation parameter, which is set at τ = 1.72× 109Jsm−4.
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5. Result and discussion

5.1. Phase transformation in quasi-1D domain

�e ternary manganese steel is allowed to evolve towards the phenomenological minimi-

sation of its energy-densities, a�er introducing the appropriate bulk contribution and material

parameters. �e isothermal growth of ferrite in quasi-1D domain at temperatures 6500 C and

6050 C, under the current formulation, is illustrated in Fig. 2 by considering the spatio-temporal

change in phase-�eld (φ). �e time t included in this, and all subsequent, illustration is non-

dimensionalised by VmκT
DγL3 , where L is the di�usion length of carbon which is assumed to be

0.02m [46].

At both temperatures, 6500 C and 6050 C, ferrite progressively grows in austenite as shown in

Fig. 2. However, it is evident from the illustration the transformation rate is noticeably faster at

6050 C, when compared to 6500 C. For instance, when viewed in relation to 6500 C, at t = 25, the

volume (area) fraction of ferrite is noticeably higher for large undercooling (6050 C). Furthermore,

while there is small degree of phase transformation between t = 75 to t = 125 at 6500 C, the

representative microstructure at 6050 C seemingly reaches equilibrium phase-fraction at t = 75,

and remains unchanged subsequently.

In order to quantitatively evaluate the phase transformations rendered by the re-formulated

approach, the increase in the volume fraction of ferrite with time is monitored and plo�ed in

Fig. 3. Moreover, the equilibrium phase-fraction predicted by CALPHAD database is included

in the illustration. In corroboration with the quasi-1D microstructural evolution in Fig. 2, the

change in the volume-fraction of ferrite presented in Fig. 3 indicates that the transformation is

rather sluggish at high temperature when compared 6050 C. However, despite the considerable

disparity in the transformation rate, the progressive evolution of ferrite at both temperatures es-

tablish equilibrium phase-fraction as predicted by the TCFe8 database. �is agreement between

the equilibrium volume-fraction of the phases rendered by the simulations and the CALPHAD-

informed prediction indicates that re-formulated grand-potential model, through the incorpora-

tion of appropriate driving forces, is capable of yielding quantitative results. Since the primarily

motive of the present analysis is to explicate the competence of the extended approach to distin-
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Figure 3: Progressive change in the volume fraction of ferrite which accompanies austenite decomposition at temper-

atures 6500 C and 6050 C. �e equilibrium phase-fraction for di�erent undercoolings is estimated from CALPHAD

database, and included.
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Figure 4: Concentration distribution of alloying elements, carbon and manganese, at t = 15 of larger undercooling

phase transformation (6050 C) resulting from conventional (‘Substitutional’ ) and current re-formulated technique

(‘Interstitial’ ). �e matrix-distribution (Fe) from the mole-fraction based approach is converted to number-density

for comparison with the corresponding outcome of the present model.

guish interstitial and substitutional di�usion, investigations asserting its consistency is restricted

to this section (Fig. 3).

5.2. Di�erence in concentration distribution

During a phase transformation, concentration distribution of components, particularly, solvent-

matrix (Fe), re�ects the mechanism of di�usion. In other words, depending on the mode of

mass transfer adopted by the alloying elements, substitutional or interstitial, the distribution of

the solvent-matrix varies. While an exclusive interstitial di�usion leaves the matrix atoms un-

perturbed, a characteristic coupling between solvent and migrating element is observed during

substitutional di�usion. In ternary Fe-C-Mn system, owing to the strictly interstitial di�usion

of carbon, the concentration distribution of iron is apparently not disturbed by its migration.

On the contrary, in a rather inaccurate framework, wherein carbon is treated as substitution-

ally migrating species, its di�usion is inherently coupled with the distribution of solvent-matrix.

�erefore, the ability of an approach to distinguish interstitial and substitutional di�usion can

be perceived from the concentration distribution it yields. Correspondingly, the concentration
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distribution rendered by the conventional, and the re-formulated phase-�eld technique for the

transformation pertaining to 6050 C at t = 15 is shown in Fig. 4.

In Fig. 4, the concentration distribution of the alloying elements are appropriately represented

in based on the formalism. While number-density is adopted to represented the outcomes of the

re-formulated approach, the carbon and manganese distributions of conventional technique are

illustrated based on mole-fraction. However, the distribution of matrix (Fe) rendered by the

regular treatment is converted to number-density, through Eqn. (17), for comparison with the

results of the present formulation.

Owing to the equivalent bulk-contributions, and other kinetic parameters, both conventional

and re-formulated grand-potential treatments visibly similar distribution of alloying elements,

manganese and carbon. On the other hand, the regular and present approaches yield di�erent

spatial distribution of solvent-matrix concentration. �e noticeable disparity in the distribu-

tion of iron is primarily due to the coupling of its spatial concentration with carbon di�usion.

In other words, the conventional technique by treating the chemical composition in mole frac-

tion, through its summation constraint, couples the evolution of all alloying elements with the

solvent-matrix atoms. Accordingly, the migration of the chemical species re�ect substitutional

di�usion. By expressing the concentration in molar number-density, and distinguishing them

through appropriate relation, in contrast, the present approach decouples the di�usion of car-

bon and iron in the Fe-C-Mn system as shown in Fig. 4. Despite the decoupling of carbon and

iron di�usion, the migration of manganese is consistently related to solvent-matrix atoms by

ρFe+ρMn = 1
vΘ

sub
. �is concept of treating the concentration in molar number-density ultimately

renders a phase transformation governed by respective interstitial and substitutional di�usion

of carbon and manganese.

An one-dimensional pro�le of the concentration of iron, carbon and manganese across the

di�use interface is shown in Fig. 5. For comparative analysis, all concentration pro�les of the

mole-fraction based model is converted to number density and included in the illustration. Owing

to the equivalence of the driving-force, and identical supersaturation, the pro�le of the alloying

elements emerging from the di�erent treatments coincide with each other. �erefore, in Fig. 5

single concentration pro�le is adopted for each alloying element, despite the di�erence in the
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Figure 5: A one-dimensional concentration pro�le of alloying elements, and solvent-matrix across the di�use inter-

face of the conventional and re-formulated grand-potential model.

approaches.

As opposed to the alloying elements, Fig. 5 unravels that the pro�le of iron concentration

resulting from the current technique is signi�cantly di�erent from the ones rendered by the con-

ventional model. �is disparity is the re�ection of the dissimilarity in the distribution of solvent-

matrix concentration illustrated in Fig. 4. In other words, the di�erence in the 1D-concentration

pro�le is due to the inaccurate coupling of carbon and solvent-matrix composition in regular

grand-potential model. �is ambiguity can be recti�ed, and a pro�le akin to one rendered by

present approach can be recovered by decoupling iron and carbon concentration. Furthermore,

Fig. 5 indicates that there exists a signi�cant gradient in the distribution of manganese in austen-

ite, when compared to carbon. �is di�erence in the concentration pro�le amongst the alloying

elements is principally due to the overall composition of the system. As shown in Fig. 1, the

alloy composition pertains to the partition regime of the ternary isotherm, thereby the phase

transformation is primarily governed by the di�usion of manganese. And moreover, the kinetic

coe�cients dictating the migration of carbon is noticeably higher than that of manganese as in-

dicated in Table. 2. �erefore, while the spatial concentration of carbon in austenite is seemingly

31



Table 3: Free energy coe�cients pertaining to ferrite and austenite of 4.8 at.% carbon and 0.5 at.% manganese alloy

at 6050 C.

6050 C ĀΘ (Jmol−1) B̄Θ (Jmol−1) P̄Θ (Jmol−1) Q̄Θ (Jmol−1) S̄Θ (Jmol−1)

Ferrite 12.5×10−4 2.4×10−5 -0.64192 -0.23080 -38614.47

Austenite 3.4×10−4 2.4×10−5 -0.65928 -0.23080 -22577.31

uniform, a gradient is observed in the distribution of manganese.

5.3. Phase transformation under para-equilibrium

Generally, during a reconstructive transformation, all the associated components di�use to

render characteristic composition of the phases. Moreover, the concentrations are considered

to re�ect equilibrium composition of the corresponding phases at the interface. Such trans-

formations which are characterised by di�usion of all alloying elements and local-equilibrium

(LE) at the interface separating the evolving and parent phase are said to occur under ‘ortho-

equilibrium’ . However, in some alloys including manganese steels, phase-changes under de�-

nite conditions are exclusively governed by di�usion of one (or few) alloying element(s). Con-

centration of remaining alloying elements, in addition to solvent-matrix, remains undisturbed

despite migration of speci�c component(s). In Fe-C-X system, these ‘para-equilibrium’ governed

phase-transformations o�en involve interstitial di�usion of carbon alone. Owing to the in-

herent coupling of the composition of alloying elements with the solvent-matrix, the conven-

tional grand-potential approach cannot be adopted to model phase-changes related to para-

equilibrium. By su�ciently distinguishing interstitial di�usion from the substitutional migra-

tion of atoms, the re-formulated technique facilitates the modelling of para-equilibrium governed

phase-transformation.

�e ability of the current formulation to model austenite to ferrite transformation under

para-equilibrium is elucidated by considering an alloy of composition 4.8 at.% carbon and 0.5

at.% manganese. Even though this composition pertains to the negligible-partitioning local-

equilibrium (NP-LE) section of the 6050C isotherm, para-equilibrium is reasonably assumed,

considering that both conditions exclusively involve carbon di�usion, and disparity is related
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Figure 6: One-dimensional representation of concentration evolution, including carbon, manganese and iron, during

the growth of ferrite under para-equilibrium. �e corresponding distribution of carbon and solvent-matrix in quasi-

1D setup resulting from the re-formulated approach is appended.

to the accumulation of manganese at the interface of NP-LE governed transformation. �e free-

energy coe�cients which enable the incorporation of appropriate driving-force is listed in Ta-

ble. 3. Moreover, by assigning identical coe�cients, which dictate chemical potential of man-

ganese, to both phases, it is ensured that Mn remains unperturbed all through the evolution.

Instead of illustrating the progressive growth of ferrite through spatio-temporal change in

phase-�eld, the corresponding evolution of concentration pertaining to the alloying elements

and solvent-matrix is considered. For this depiction, a section of quasi-1D domain which encom-

passes the di�use interface is appropriated. �e one-dimensional concentration pro�le of car-

bon, manganese and iron, and their temporal change accompanying the phase transformation, as

rendered by the re-formulated model is shown in Fig. 6. Consistent with the description of para-

equilibrium, the present technique yields a transformation wherein distribution of manganese

and iron content remain unaltered all through evolution, while the phases evolve exclusively

governed by carbon di�usion. �e change in the equilibrium pro�le of carbon with time re�ects
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Figure 7: Concentration distribution and its evolution rendered by conventional grand-potential based model under

identical conditions associated with Fig. 6.

the non-steady state equilibrium condition that exists at the interface, which is extensively dis-

cussed elsewhere [47, 48]. Moreover, such apparent increase in the carbon-concentration peak

corroborates with previous numerical simulations wherein molar number-density is adopted to

distinguish interstitial and substitutional di�usion in Fe-C-Mn system [26].

Analogous evolution of phases is simulated by adopting conventional model, and incorpo-

rating equivalent driving-force. �e corresponding temporal change in concentration pro�les

of alloying elements, and solvent-matrix iron is shown in Fig. 7. Although the conventional

technique seemingly yields identical pro�le for carbon, its coupling with the solvent-matrix cor-

respondingly alters its concentration pro�le, thereby introducing a rather non-physical spatial

disparity in the composition of iron. Furthermore, the inadequacy of the existing technique to

simulate phase transformation under para-equilibrium is unraveled by the apparent non-uniform

distribution of iron, as illustrated in the quasi-1D representation of Fig. 7.
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Table 4: Free energy coe�cients which facilitate almost complete expulsion of carbon from martensite of 4.8 at.%

carbon and 0.5 at.% manganese alloy at 6050 C.

6050 C ĀΘ (Jmol−1) B̄Θ (Jmol−1) P̄Θ (Jmol−1) Q̄Θ (Jmol−1) S̄Θ (Jmol−1)

Martensite 31.3×10−4 2.4×10−5 -0.36324 -0.23080 -25667.2

Austenite 1.65×10−4 2.4×10−5 -0.43819 -0.23080 -22577.31

5.4. Carbon partitioning under constrained-carbon-equilibrium

Combination of desired properties like strength and toughness is achieved in steels by an

unique heat treatment process called quenching and partitioning [49]. �is technique involves

quenching an austenised steel at a particular temperature to establish a pre-determined phase-

fraction of martensite and austenite. Subsequently, the stability of austenite at low temperatures

is enhanced by facilitating the di�usion of carbon from the martensite to the surrounding matrix-

phase. Microstructure emerging from this heat treatment process comprises of martensite and

austenite, which o�ers an excellent combination of mechanical properties.

�e di�usion of carbon from martensite to austenite during partitioning is characterised by a

negligible shi� in the interface position, and generally unchanging concentration of other alloy-

ing elements, particularly one(s) occupying the regular la�ice [50]. �erefore, this carbon parti-

tioning is ascribed to a unique equilibrium condition called constrained-carbon-equilibrium. �e

characteristic di�usion of carbon which accompanies quenching and partitioning heat treatment

is modelled using the present re-formulated approach. Conventional models that treat concentra-

tion in mole fractions have hitherto been employed to model the carbon partitioning [51, 52, 53].

Although such simulations apparently yield a distribution of carbon consistent with the imposed

di�erence in the chemical potential, the ensuing change in the distribution of solvent-matrix iron

is largely overlooked. �e inaccuracy associated with conventional treatments is recti�ed by the

outcomes of current model.

Volume fraction of phases during carbon di�usion associated with quenching and parti-

tioning is signi�cantly di�erent from its equilibrium phase-fraction. �erefore, the endpoints

of partitioning are considered to be di�erent from equilibrium composition, and are speci�-
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Figure 8: Partitioning of carbon from a quadrant of the martensite sheave. Corresponding change in the distribution

of iron rendered by conventional and re-formulated grand-potential approach is included in sub-plots.

cally ascertained based on phase-fraction. Considerable amount of carbon is generally expelled

out of martensite during partitioning. Accordingly, free-energy coe�cients that ensure almost

complete expulsion of carbon from martensite is involved in present simulation. �ese coef-

�cients are listed in Table. 4, and an overall alloy composition identical to previous section is

adopted for modelling partitioning under constrained-carbon-equilibrium. Furthermore, akin to

para-equilibrium, the di�usion of manganese is averted by establishing a corresponding partial-

equilibrium between the phases.

A simulation domain comprising of a martensite sheave, as shown in Fig. 8, is devised for

present analysis. �e phases are di�erentiated by assigning appropriate values to the phase-

�elds. Adhering to the description of constrained-carbon-equilibrium, the spatio-temporal changes

in the phase-�elds are not considered for the current simulation. However, change in concentra-

tion distribution with time is exclusively modelled by solving the evolution of the corresponding

chemical potential. �e simulation domain is initialised by a uniform composition pertaining

to 4.8 at.% carbon and 0.5 at.% manganese, and the carbon is allowed to di�use governed by

the di�erence in the chemical potential. Owing to the symmetry of the domain, the progressive

change in the distribution of carbon concentration is illustrated by considering a quadrant.

�e competence of the re-formulated approach to distinguish interstitial and substitutional

di�usion is noticeably unraveled in Fig. 8. Present technique ensures that the distribution of iron

remains homogeneous and unperturbed, despite the partitioning of carbon. However, on the

other hand, a spatial inhomogeneity in solvent-matrix concentration complementing the carbon

36



distribution is inherently introduced by the conventional model, as shown in the subplots of

Fig. 8. Eventhough, both techniques convincingly capture the principal aspect of partitioning,

which is the temporal change in carbon distribution, only the current approach is consistent with

the thermodynamic description, and thus, can be adopted further analysis wherein the role of

elasticity and other in�uencing factors are considered.

6. Conclusion

�eoretical techniques, particularly phase-�eld models, are o�en formulated in multicom-

ponent framework to encompass highly applicable materials that generally comprise of several

alloying elements. However, owing to the rather conventional treatment of concentration, these

techniques are restricted to materials wherein atoms of the alloying elements replace the solvent-

matrix in regular la�ice-sites. �erefore, microstructural evolutions in wide range of alloys, for

instance steels, cannot be principally modelled through the regular phase-�eld techniques, con-

sidering that one or more alloying elements exclusively occupy interstitial la�ice, and their mi-

gration is rigidly con�ned to their sites. Additionally, adopting mole fraction to describe com-

position of a multicomponent system is inherently inadequate for imposing de�nite equilibrium

conditions including para-equilibrium. In the present work, the aforementioned limitations of ex-

isting phase-�eld models are addressed by re-formulating grand-potential based technique which

is generally posed as an e�cient approach for handling multicomponent systems.

�e ability of the re-formulated technique to accurately grasp phase transformation in mul-

ticomponent systems with interstitial alloying-elements is explicated by modelling austenite de-

composition in manganese steel (Fe-C-Mn). �e framework of the current which lends itself

to impose unique equilibrium condition is demonstrated by simulating growth of ferrite under

para-equilibrium. Moreover, the exclusive migration of carbon, which associated with quenching

and partitioning heat treatment technique, governed by constrained-para-equilibrium is convinc-

ingly modelled through the reformulated grand-potential model. In addition to the phase-�eld

approach, the approximation technique delineated in this work facilitates the incorporation of

CALPHAD data of multicomponent systems with regular and interstitial alloying elements.
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Present approach distinguishes interstitial and substitutional di�usion of components based

on Eqn. (15), wherein identical partial molar-volume is assumed for species occupying regular

la�ice, while in�uence of interstitial elements on volume is deemed negligible. Despite its crit-

icality, this assumption negates the elastic contribution primarily rendered by the interstitial

and also regular-la�ice components in phase transformations. Realising this limitation of the

re-formulated technique, subsequent works would adopt existing chemo-elastic framework to

encompass the elastic contribution of the alloying elements [53, 33].

Additionally, given that this work is a preliminary a�empt to extend the applicability of

grand-potential based models to wide range of materials with interstitial components, the for-

mulation is restricted to two-phase systems. �erefore, in the subsequent investigations, the

re-formulated technique would be delineated in multiphase-�eld framework. Moreover, since

the current analysis is primarily focused on exhibiting the ability of the phase-�eld approach

to distinguish interstitial and substitutional di�usion, rather straightforward representative mi-

crostructural evolutions are considered. In the upcoming works, the re-formulated grand-potential

model will be adopted to investigate convoluted phase transformation like growth of divergent

pearlite, and austenite decomposition under Negligible-Partitioning Local-Equilibrium condition

(NPLE). �e existing framework of the present technique will be extended in near future to en-

compass elastic and plastic driving forces.

Appendix: Interface properties

�e properties of the di�use interface emerging from the present formalism is discussed by

considering a one-dimensional system.

�e overall grand-potential based energy-density of the 1D system, is expressed as

Ω(µ, φ,∇xφ) =

∫
V

dV

[
ψ(ρα(µ),ρβ(µ), φ) +

1

ε
fpen(φ) + εγ|∇xφ|2

]
. (Appendix .1)

In order to realise the interface properties, an equilibrium is established in the system through

appropriate composition, ραeq and ρβeq. �is equilibrium through the absolute negation of the bulk

driving-force, ∆ψ(µ) ≡ ψα(µ)−ψβ(µ) = 0, creates a static system that is devoid any interface
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migration, and characterised by

τε
∂φ(x, t)

∂t
= −δΩ(µ, φ,∇xφ)

δφ
= 0. (Appendix .2)

�e time-independent scalar variable typifying the one-dimensional static system is represented

by φ0(x).

Owing to the lack of bulk contribution, the evolution Eqn. (Appendix .2) yields the relation

2γε
d2φ0(x)

dx2
=
γ

ε

16

π2

(
d

dφ0

[
φ2

0(1− φ0)2
])

. (Appendix .3)

Following Refs. [19, 20], the equilibrium pro�le of the static phase-�eld is ascertained by inte-

grating the above expression. For the penalising potential of the form fpen(φ) = 16
π2φ

2(1 − φ)2,

the spatial pro�le of the phase-�eld at the di�use interface is expressed as

φ0(x) =
1

2

[
1− tan−1

(
2

π
√
ε
x

)]
. (Appendix .4)

From the interface pro�le delineated in the above Eqn. (Appendix .4), the width of the di�use

region can be determined by
∫ Λ

0
dx, and expressed as

Λ = ã0
πε

2
, (Appendix .5)

where ã0 is a constant which varies with the limits of the phase-�eld employed for calculating

interface width. In other words, the current form of the penalising double-well potential does

not permit the limits φ = 0 and φ = 1 for the calculation of the interface width. �erefore, limits

like 0.1 and 0.9 or 0.05 and 0.95 are generally chosen, and the corresponding constant ã0 = 2.2

or 2.94 is involved [19, 20].
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