
Cody: An Interactive Machine Learning System for
Qualitative Coding

Tim Rietz
Karlsruhe Institute of

Technology (KIT)
tim.rietz@kit.edu

Peyman Toreini
Karlsruhe Institute of

Technology (KIT)
peyman.toreini@kit.edu

Alexander Maedche
Karlsruhe Institute of

Technology (KIT)
alexander.maedche@kit.edu

ABSTRACT
Qualitative coding, the process of assigning labels to text as
part of qualitative analysis, is time-consuming and repetitive,
especially for large datasets. While available QDAS some-
times allows the semi-automated extension of annotations to
unseen data, recent user studies revealed critical issues. In par-
ticular, the integration of automated code suggestions into the
coding process is not transparent and interactive. In this work,
we present “Cody”, a system for semi-automated qualitative
coding that suggests codes based on human-defined coding
rules and supervised machine learning (ML). Suggestions and
rules can be revised iteratively by users in a lean interface that
provides explanations for code suggestions. In a preliminary
evaluation, 42% of all documents could be coded automati-
cally based on code rules. Cody is the first coding system to
allow users to define query-style code rules in combination
with supervised ML. Thereby, users can extend manual anno-
tations to unseen data to improve coding speed and quality.

Author Keywords
Qualitative coding; Supervised machine learning

CCS Concepts
•Human-centered computing→ Graphical user interfaces;
Human computer interaction (HCI);

INTRODUCTION
Annotating interview transcripts with descriptive or inferential
labels, commonly known as qualitative coding, is an essential
step in analyzing qualitative data to assist concept or theory
development [3]. Unfortunately, coding natural language cor-
pora is a painstaking process due to being time-intensive and
repetitive [14, 8]. With access to larger datasets due to new
possibilities for scalable data collection [11, 13], coding loses
reliability and becomes intractable [1, 2].

Researchers use various QDAS to simplify qualitative cod-
ing (e.g., MaxQDA) [7]. Some systems incorporate machine
learning (ML) for making code suggestions based on human
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

UIST ’20 Adjunct, October 20–23, 2020, Virtual Event, USA

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-7515-3/20/10.

DOI: 10.1145/3379350.3416195

annotations. However, recent user studies demonstrated two
critical shortcomings that impede their utility for enabling
qualitative coding at a scale [5, 8]: (i) ML is not integrated
into QDAS in the form of an interactional process that involves
refining automated suggestions. Interaction between the user
and the ML model is mostly restricted to accepting and re-
jecting codes without insight into underlying coding rules; (ii)
Therefore, code suggestions lack transparency, causing a reluc-
tancy on the part of qualitative researchers to adopt ML-based
support for qualitative coding.

In this paper, we introduce “Cody”, a system to increase the
speed and quality of qualitative coding through interactive
machine learning (IML). In IML, a user iteratively builds and
improves a ML model in a cycle of teaching and refinement [6].
While users work through transcripts with Cody, the system
supports users in defining and interactively revising code rules.
Cody uses code rules to perform search-style query matching
to automate coding partially. Furthermore, Cody learns over
time by continually re-training a supervised ML model on
available codes, to provide additional code suggestions once
the model passes several quality thresholds. With Cody we
extend previous studies [4, 8] by designing and developing
a user-facing interface for semi-automated qualitative coding
utilizing code rules and ML.

CODY
Cody is a system that emphasizes human-in-the-loop for qual-
itative coding. Users can specify the desired unity-of-analysis,
add annotations and labels, define coding rules, react to sug-
gestions, and access a rudimentary statistics page. Figure 1
shows the interface of Cody during the coding process.

Cody Interface: Cody’s interface is made up of three primary
sections (Figure 1): the annotation text area in the middle, the
label overview on the left, and the codebook on the right. In
the annotation text area, the user can highlight text to add a
new annotation. Text highlights are automatically adjusted
based on the chosen unit-of-analysis. Using the label menu,
users can create new codes, assign them to annotations, or
make changes. More importantly, the user can define a search-
query style code rule for each label. When creating a new label,
Cody suggests a code rule by comparing the chosen label with
the current annotation using natural language processing and
Levenshtein distance. For annotations that Cody suggests to
the user, an explanation is shown. The explanation depends
on the source of the suggestion - code rule or ML model. The
label overview displays the label of each annotation, alongside

10.1145/3379350.3416195

3

1

2

4

5

Figure 1. Screenshot of Cody edit view. (1) Users can add one or multiple labels to new or existing annotations. (2) For each label, users can define a
query-style code rule. (3) Based on code rules and the underlying ML model, Cody suggests annotations. (4) Cody provides explanations for suggestions
based on critical words. (5) Conflicts between multiple code rules or between rule-based and ML-based suggestions are highlighted.

an indicator for automated code suggestions. It also highlights
those instances were multiple codes have been suggested. The
codebook shows every label in use, in an order that can be
defined by the user.

Code Suggestions: Cody uses two strategies to make code
suggestions - code rules and supervised ML. Suggestions
based on code rules can be provided when a rule is defined.
However, a certain amount of labeled data is required to make
ML-based suggestions. Cody utilizes both manual annotations
and rule-based suggestions to kick-start model training. As
supervised ML algorithm, Cody trains a logistic regression
with stochastic gradient descent learning to classify unseen
data based on the available annotations (positive examples).
In the multiclass case, we usually face with a low number of
positives for each label but lack explicit negative examples
(annotations indicating the not-presence of a label). Assuming
that the user makes annotations from top to bottom, Cody
treats unlabeled sections of text above the last manual annota-
tion as negatives to improve model accuracy. Furthermore, we
draw from the S-EM algorithm for PU learning to reduce the
number of inaccurate suggestions [12]. As such, we sample S
spies from the labeled training data, so that |S| = 0.1×|L|. For
every spy (s), we analyze the accuracy of the model’s predic-
tion. Cody will only display label suggestions to the user for
label (l) from all labels (C) that were correctly suggested for
all spies, thereby prioritizing precision over recall, i.e.,

l = { l ε C : ∀s ε S : q(s|l) = s|l }

Explaining suggestions: Cody highlights critical keywords
for a suggestion in the label menu, which is opened by clicking
on a suggestion. For rule-based suggestions, matched words
are highlighted in an excerpt from the current annotation. For

ML-based annotations, Cody displays the indicative words
for a suggestion. If these indicative words were to change,
the ML would make a different suggestion for the annotation
(heuristic approach, c.f. [9]).

PRELIMINARY EVALUATION
During the preparation for an upcoming in-depth evaluation,
we used Cody for the qualitative coding of a dataset of ladder-
ing interviews. Two coders coded the same 807 paragraphs,
one using Cody and the other MAXQDA. While the coder
with MAXQDA made every annotation manually, the coder
with Cody used rule-based annotation suggestions. ML-based
suggestions were not used in this initial pretest.

Overall, with Cody, only 58% of the dataset had to be coded
manually, with the remaining 42% being automated sugges-
tions. Two independent researchers created a gold-standard
for the dataset with standard procedure [10]. Compared to the
gold-standard codes, the manual annotations were correct in
77% of all cases. In comparison, automated suggestions were
correct in 68% of all cases. Intercoder agreement between the
MAXQDA coder and the Cody-coder was 72%.

CONCLUSION & FUTURE WORK
In this paper, we introduce Cody, an interactive ML system
for qualitative coding that provides code suggestions via code
rules and supervised ML. We outlined the components of Cody,
which include a lean coding interface for users to make anno-
tations and iterate code rules, while receiving explainable code
suggestions. In a preliminary evaluation, we demonstrated that
42% of all codes could be automatically generated using only
code rules, with 68% of the suggested codes being correct.
Our next step is to evaluate Cody with qualitative researchers
who experiment with the tool on their own data.

REFERENCES
[1] Ahmed Abbasi, Suprateek Sarker, and Roger HL

Chiang. 2016. Big data research in information systems:
Toward an inclusive research agenda. Journal of the
Association for Information Systems 17, 2 (2016), 3.

[2] Nan-Chen Chen, Margaret Drouhard, Rafal Kocielnik,
Jina Suh, and Cecilia R Aragon. 2018. Using machine
learning to support qualitative coding in social science:
Shifting the focus to ambiguity. ACM Transactions on
Interactive Intelligent Systems (TiiS) 8, 2 (2018), 1–20.

[3] Nan-chen Chen, Rafal Kocielnik, Margaret Drouhard,
Vanessa Peña-Araya, Jina Suh, Keting Cen, Xiangyi
Zheng, and Cecilia R Aragon. 2016. Challenges of
applying machine learning to qualitative coding. In ACM
SIGCHI Workshop on Human-Centered Machine
Learning. http://hcml2016. goldsmithsdigital.
com/program.

[4] Kevin Crowston, Eileen E Allen, and Robert Heckman.
2012. Using natural language processing technology for
qualitative data analysis. International Journal of Social
Research Methodology 15, 6 (2012), 523–543.

[5] Margaret Drouhard, Nan-Chen Chen, Jina Suh, Rafal
Kocielnik, Vanessa Pena-Araya, Keting Cen, Xiangyi
Zheng, and Cecilia R Aragon. 2017. Aeonium: Visual
analytics to support collaborative qualitative coding. In
2017 IEEE Pacific Visualization Symposium (PacificVis).
IEEE, 220–229.

[6] John J Dudley and Per Ola Kristensson. 2018. A review
of user interface design for interactive machine learning.
ACM Transactions on Interactive Intelligent Systems
(TiiS) 8, 2 (2018), 1–37.

[7] Fábio Freitas, Jaime Ribeiro, Catarina Brandão,
Francislê Neri de Souza, António Pedro Costa, and

Luís Paulo Reis. 2017. In case of doubt see the manual:
a comparative analysis of (self) learning packages
qualitative research software. In International
Symposium on Qualitative Research. Springer, 176–192.

[8] Megh Marathe and Kentaro Toyama. 2018.
Semi-automated coding for qualitative research: A
user-centered inquiry and initial prototypes. In
Proceedings of the 2018 CHI Conference on Human
Factors in Computing Systems. 1–12.

[9] David Martens and Foster Provost. 2014. Explaining
data-driven document classifications. Mis Quarterly 38,
1 (2014), 73–100.

[10] Michael Quinn Patton. 2014. Qualitative research &
evaluation methods: Integrating theory and practice.
Sage publications.

[11] Tim Rietz and Alexander Maedche. 2019. LadderBot: A
requirements self-elicitation system. In 2019 IEEE 27th
International Requirements Engineering Conference
(RE). IEEE, 357–362.

[12] Stefan Schrunner, Bernhard C Geiger, Anja Zernig, and
Roman Kern. 2020. A generative semi-supervised
classifier for datasets with unknown classes. In
Proceedings of the 35th Annual ACM Symposium on
Applied Computing. 1066–1074.

[13] Ella Tallyn, Hector Fried, Rory Gianni, Amy Isard, and
Chris Speed. 2018. The Ethnobot: Gathering
Ethnographies in the Age of IoT. In Proceedings of the
2018 CHI conference on human factors in computing
systems. 1–13.

[14] Jasy Liew Suet Yan, Nancy McCracken, and Kevin
Crowston. 2014. Semi-automatic content analysis of
qualitative data. iConference 2014 Proceedings (2014).

	Introduction
	CODY
	Preliminary Evaluation
	Conclusion & Future Work
	References

