KIT | KIT-Bibliothek | Impressum | Datenschutz

Investigation of the reaction kinetics of photocatalytic pollutant degradation under defined conditions with inkjet-printed TiO$_{2}$ films – from batch to a novel continuous-flow microreactor

Zhan, Xiang; Yan, Chenhui; Zhang, Yilin; Rinke, Günter; Rabsch, Georg; Klumpp, Michael ORCID iD icon; Schäfer, Andrea Iris; Dittmeyer, Roland

Abstract:

Pollutants accumulating in natural and drinking water systems can cause severe effects to the environment and living organisms. Photocatalysis is a promising option to degrade such pollutants. When immobilizing the photocatalyst, additional catalyst separation steps can be avoided. Among various reactor types, the use of microreactors in photocatalysis has proven advantageous regarding process intensification. However, so far the local conditions are not well understood and described in literature and there is little quantitative understanding of the relevant phenomena. In this work, inkjet-printing was used to immobilize TiO$_{2}$ as a thin film with a precisely tuneable thickness and catalyst loading. In a batch reactor, the degradation of rhodamine B (RhB) as a model pollutant was performed for different initial concentrations and catalyst layer thicknesses. By employing the Langmuir–Hinshelwood model and a light irradiation model, the kinetic parameters were determined. The influence of the light intensity at different positions inside the immobilized photocatalyst on the reaction kinetics is quantified. RhB degradation was tested under defined operational conditions using an in-house developed continuous-flow microreactor with advanced fiber optics for precise light introduction. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000122818/pub
Preprint §
DOI: 10.5445/IR/1000122818
Originalveröffentlichung
DOI: 10.1039/d0re00238k
Dimensions
Zitationen: 23
Cover der Publikation
Zugehörige Institution(en) am KIT Institute for Advanced Membrane Technology (IAMT)
Institut für Katalyseforschung und -technologie (IKFT)
Institut für Mikroverfahrenstechnik (IMVT)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2020
Sprache Englisch
Identifikator ISSN: 2058-9883
KITopen-ID: 1000122818
HGF-Programm 34.12.01 (POF III, LK 01) Multiphasen und thermische Prozesse
Weitere HGF-Programme 12.02.03 (POF III, LK 01) Regional Climate-and Water Cycle Variab.
Erschienen in Reaction chemistry & engineering
Verlag Royal Society of Chemistry (RSC)
Band 5
Heft 9
Seiten 1658–1670
Vorab online veröffentlicht am 11.08.2020
Nachgewiesen in Dimensions
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page