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Karlsruhe, 2020





ACKNOWLEDGEMENTS

Completing this dissertation would not have been possible without the inspiring
people that surrounded me in the last four years. First, I am thankful for the
support and guidance of my supervisor Prof. Dr. Christof Weinhardt, who offered
me the opportunity to work in this fantastic environment and always motivated me
with his optimism and energy. Further, I am very thankful to Prof. Dr. Hartmut
Schmeck, Prof. Dr. Clemens van Dinther, and Prof. Dr. Martin Ruckes for their
valuable comments and suggestions and their service on my thesis committee.
During my PhD, I had the pleasure to work with wonderful colleagues at IISM

and FZI. Their support enriched not only my work but also my personal life. I thank
Bent Richter, Nicole Ludwig and NFC for their emotional support during the last
four years. Special gratitude is due to Heike Döhmer and Jan Höffer who’s efforts in
managing IPE and ISE allow so many young researchers to focus on their academic
goals without being distracted from organizational overhead.
While navigating towards the dissertation I could always rely on the advice of

Philipp Staudt, Tim Straub, and Dominik Jung, for which I will always be grateful.
I also want to thank all the inspiring people from other intuitions I got the

chance to work with. In particular, I want to thank Tao Hong, Bidong Liu, Jakub
Nowotarski, and Hannes Schwarz for sparking my passion for scientific research. I
also want to express my gratitude to Nico Lehmann, Kevin Förderer, Nikolai Klempp,
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Introduction





CHAPTER 1

MOTIVATION

Road transportation accounts for 23 % of global carbon dioxide (CO2) emissions
(Santos, 2017). Besides CO2, vehicles with internal combustion engine (ICE) also
emit nitrogen- and sulfur-oxides and contribute to air pollution in cities. Battery-
electric vehicles (BEVs), in contrast, do not emit any air pollutants locally and
can operate CO2 neutral if they are charged with electricity from renewable energy
sources (RES). Governments and industry have set ambitious goals for increasing
diffusion of BEVs to reduce carbon emissions from road transportation. For instance,
the share of newly registered BEVs in the European Union (EU) has risen from
practically zero to above two per cent during the last decade and is expected to
multiply further (European Environment Agency, 2020).
The deployment of BEVs has large impacts on the energy system and the end-

users of mobility systems. On the demand-side, BEVs couple the mobility sector
to the electricity sector as BEVs source their energy from the electricity grid. An
increase in BEVs adds a substantial group of new consumers to the electricity grid,
which requires an increase in generation, transmission, and distribution capacity if
charging is not coordinated (Hedegaard et al., 2012).
At the same time, energy systems’ supply-side shifts towards high shares of RES to

reduce CO2 emissions. This shift presents an additional challenge, as electric power
systems rely on flexibility to bridge outages in the generation, solve congestion of
power lines and transformers, or adjust for forecasting errors to keep generation and
consumption in balance. Flexibility is the capability of generators and consumers
’to follow different paths of action at a given point in time to provide a service
for another entity’ (Lehmann et al., 2019). Traditionally, the primary sources of
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4 Motivation

flexibility are large conventional power plants that can adjust their generation on
short notice. RES generation, in contrast, often depends on weather conditions so
that they cannot adjust their generation patterns in the same way. As more of
the conventional power plants are being replaced by RES, the supply of flexibility
decreases. RES generation depends on wind and sun and is often connected to lower
grid levels. As grid infrastructure has typical lifetimes beyond 40 years (Moghe
et al., 2011), the current grid was not designed considering these decentralized RES.
In result, RES generation can cause congestion in the grid and further increase the
demand for flexibility (Staudt, 2019). Likewise, planners of the existing distribution
grid could not foresee new consumers like BEVs. Their additional demand can cause
of congestion and increased demand for flexibility (Salah et al., 2015).

One solution to these challenges are reinforcements in grid infrastructure. Such
reinforcements, however, are costly, take a long time, and meet increasing resistance
in the population. Another approach to overcome these challenges is the development
of smart grids. Smart grids use information technology to increase efficiency and
flexibility in the energy system (Goebel et al., 2014). Following this notion, smart
charging is the idea to use BEVs’ charging sessions as a source of flexibility on the
demand-side.

However, smart charging interacts with the everyday mobility behaviour of BEV
users as BEVs differ from traditional cars with ICE in driving range and charging
behaviour. While cars with ICE require users to stop at gas stations to refuel, BEVs
can charge at any location that provides an electric outlet or a wall box. As the
average parking duration at some of these locations can be several hours long (e. g.,
at home or work), charging must not always happen immediately but offers some
flexibility in terms of energy demand and charging time. If the parking duration of
a BEV exceeds the time needed for charging, a smart charging system can interrupt,
shift, or reduce the speed of the charging session without affecting service quality.
BEV users can provide time flexibility by allowing the smart charging system to
fulfil the charging demand later than the system would by immediate charging at
full charging power. Likewise, the BEV users can grant energy flexibility if they
reduce their energy requirement accepting a state of charge (SoC) below 100 % at
the end of the charging session. By providing this flexibility, the mobility sector
could provide additional flexibility to the electricity and facilitate the integration of
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more RES.
To this end, researchers from energy informatics, engineering, and operations re-

search develop methods to schedule the flexibility in BEV charging with different
optimization objectives (Garćıa-Villalobos et al., 2014; Adika and Wang, 2014).
However, this technical perspective often ignores the main bottleneck to charging
flexibility, which is the willingness of the BEV users to accept flexibility during
charging (Schmalfuss et al., 2015).
In particular, the potential of smart charging lies in the difference between what

is technically feasible (i. e., energy requirement, parking duration, and maximum
charging power) and to what degree the end-users accept to deviate from this tech-
nical potential (i. e., uninterrupted charging at the highest possible charging power).
Smart charging systems will fall short in providing flexibility to the energy system
if the BEV users do not accept to use smart charging instead of immediate charging
in which case even the most advanced algorithms will have little potential left to
optimize charging.
Smart charging systems have to address the BEV users’ needs and objectives to

unlock their flexibility potential to integrate BEVs as a chance and not a burden
for the electricity system. While financial incentives might look like a promising
incentive to encourage BEV users to use smart charging. At current market con-
ditions, companies offering smart charging have little potential for cost savings and
making revenues from smart charging (Brandt et al., 2017). As a result, the finan-
cial incentives they can set for the BEV users are rather small. Besides, Will and
Schuller (2016) find no significant effect of financial incentives on the acceptance of
smart charging in BEV users. Taking this in consideration, other ideas are needed
to encourage BEV users to apply smart charging. More user-centric smart charging
systems (UCSCS) should consider non-financial aspects and the users’ preferences
to design charging algorithms that act in the BEV users’ interest and change their
behaviour towards more flexible charging. However, designing new algorithms alone
might not succeed, even if they consider the BEV users’ objectives. While BEV
users often intend to act sustainably and/or to save money by using smart charging
(Will and Schuller, 2016; Schmalfuß et al., 2017), they might not always act in this
expected way, as habit and social norms are also crucial drivers of human behaviour
(Thaler and Sunstein, 2009). Such behavioural aspects are one reason that well in-
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tentions towards sustainability do not always translate into actions (Momsen and
Stoerk, 2014). To overcome this gap between intention and action, UCSCS could
not only offer better algorithms but help BEV users to overcome biases and act more
rational through digital nudging. Besides, BEV users often only have a limited un-
derstanding of the energy system and their mobility behaviour (Biresselioglu et al.,
2018). UCSCS could, therefore, use energy analytics to implement forecasts of CO2

emissions to help by providing feedback on the effects of different charging decisions
and forecasts of the users’ mobility behaviour to provide decision support for the
users in finding the right ’amount’ of flexibility in their charging settings.

As prior research pays little attention to the BEV users’ perspective in the design
of smart charging systems, this dissertation strives to develop UCSCS: Such UCSCS
consider the BEV users’ objectives and integrate information in a way to encourage
BEV users to contribute more flexibility to the electricity system.



CHAPTER 2

RESEARCH QUESTIONS

Smart charging systems are information systems designed to charge BEVs while offer-
ing demand-side flexibility for different objectives. Like other information systems,
they collect, process, store, and distribute information from physical flow networks,
e. g., the transmission and distribution system, and digital sensor networks (Piccoli
and Pigni, 2008). Watson et al. (2010) argue that the information systems com-
munity should build information systems to utilize such information on supply and
demand to make energy consumption more sustainable. Figure 2.1 adapts the en-
ergy informatics framework by Watson et al. (2010) for smart charging systems.
From a technical perspective, smart charging systems provide a charging station to
transmit electric power from the transmission and distribution system to the BEV.
Besides, they can offer a graphical user interface and integrate information flows.
Smart charging systems obtain connection and consumption data from the charging
station, e. g., state of charge (SoC) and travelling data from the BEV, price and
other information from energy markets, and BEV users’ preferences entered in the
user interface.
To guide further research, Watson et al. (2010) provide a set of research objectives

regarding information system components and possible stakeholders (i. e., suppliers,
consumers, and governments). For the case of engineering UCSCS, this dissertation
focuses on the perspectives of consumers (i. e., BEV users) and suppliers (i. e., charg-
ing station operators), and the design of the user interface. The original research
objectives in Watson et al. (2010) focus on energy efficiency. While energy efficiency
is crucial in fossil energy systems, systems with high RES often have low marginal
costs and emissions (Rifkin, 2014). Instead, the flexibility in energy demand becomes

7
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Figure 2.1.: Research objectives of this dissertation integrated into the energy informatics
framework of Watson et al. (2010).

more critical to accommodate the fluctuations in RES generation. Smart charging
is a promising source of demand-side flexibility if BEV users accept to charge their
BEVs more flexibly. Adapting the research objectives for smart charging in energy
systems with high shares of RES results in the following objectives which are ad-
dressed in this dissertation: First, information systems should change social norms
to foster more sustainable behaviour by changing user behaviour towards smart
charging. This dissertation utilizes ideas from behavioural-economics to increase the
charging flexibility of BEV users. Second, information systems should provide users
with information allowing them to act in a sustainable manner which is implemented
by providing BEV users with information about expected CO2 emissions during the
charging process. The third objective of information systems is to use data to inte-
grate supply and demand more efficiently. This objective is addressed by generating
forecasts of the charging flexibility to improve coordination. These three research
objectives provide the structure for the research questions in the following sections.
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2.1. Behaviour Change towards Smart Charging

In an ideal world, each BEV is a device that offers an additional battery that could
provide flexibility services to the energy system. As the first priority of BEV users
is to cover their mobility needs, not the full technical potential can be used for
such services as the users’ mobility and charging behaviour determines how much
socio-economical flexibility potential is available for smart charging.
A simple way to ascertain the individual potential of socio-economical flexibility

and to use it as an input for smart charging systems is to ask the BEV users to state
their charging preferences via a user interface (i. e., until which deadline they want
to charge and how much energy they require). At this point, the energy informatics
framework aims the first objective at designing user interfaces, which can change user
behaviour towards more sustainable social norms (Watson et al., 2010). In general,
BEV users would act more sustainable if they use smart charging instead of dumb
charging, i. e., immediate charging (Kiviluoma and Meibom, 2011). While Will and
Schuller (2016) show that acceptance of smart charging relies on different factors like
the objective of the smart charging system, it is still unclear what drives the BEV
users’ decisions to use smart charging in different situations (Schmalfuß et al., 2017).
To enhance the BEV users’ disposition to use smart charging and to apply the

users’ flexibility in a sustainable manner, objectives of smart charging systems should
fit their needs. Most smart charging systems, however, will be supposedly built by
charging station operators, aggregators, and system operators. To consider their
requirements, this dissertation first analyses the objectives of smart charging systems
and compares them to the objectives of the demand-side, i. e., BEV users.
The first research question (RQ) aims to identify common objectives that are likely

to both convince BEV users to use smart charging systems and are practical for the
charging station operators. This notion leads to the first RQ.

RQ 1 Which objectives of smart charging are likely to motivate BEV users and show
high technical potential?

As there are still few regular BEV users and they might not have extensive knowl-
edge about energy systems the first RQ is answered using a literature review and an
expert survey. Cost reduction and RES integration are shared objectives between
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BEV users and charging station operators and the technical potential for reaching
these objectives relies on the flexibility in BEV users’ charging settings. How much
flexibility the BEV users offer might, in turn, depend on the objective of the smart
charging system. UCSCS presenting users the right objective might increase their
willingness to use smart charging. Research in behavioural economics and informa-
tion systems research shows that information systems can be designed in a way that
they actively nudge people towards more sustainable behaviour (Weinmann et al.,
2016). Digital nudging helps to influence people into making more sustainable de-
cisions, as, e. g., to adopt green electricity contracts (Schultz et al., 2007). This
dissertation looks into ways to transfer the concept of digital nudging to the user
interface of smart charging systems (compare Objective I in Figure 2.1). In partic-
ular, the second RQ is used to evaluate how information systems can use framing
messages towards different objectives to nudge BEV users’ behaviour towards more
flexibility in their charging settings.

RQ 2 To what extent can framing messages in user interfaces influence the flexibility
in BEV users’ charging settings?

While not all BEV users are willing to charge flexibly as a default, some BEV
users are highly motivated to charge more flexibly if this allows charging at times
when RES are available in the energy system (Huber et al., 2019a; Will and Schuller,
2016). However, BEV users usually cannot know whether the RES feed-in is low or
high during their charging session. Without this information they cannot follow their
intentions to act in a sustainable way. The next objective of this dissertation is to
integrate data to enable BEV users to charge or provide flexibility to minimize CO2

emissions during charging.

2.2. Emission Information for CO2 Efficient Smart

Charging

Given a non 100 % RES energy system, charging BEVs is not always sustainable. For
instance, charging a high number of BEVs with electricity from conventional energy
resources can even increase a country’s CO2 emissions compared to using cars with
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ICEs (Jochem et al., 2015). However, smart charging has the potential to minimize
carbon emissions if the BEV users are flexible (Hoehne and Chester, 2016), even in
the current energy system without 100 % RES.
UCSCS could help users to manage charging and increase their sustainability

fulfilling the second objective of information systems to increase flexibility (Watson
et al., 2010). To this end, UCSCS should provide the BEV users with feedback
on when to charge their BEVs in the most sustainable fashion to minimize CO2

emissions compared to uncontrolled charging. Such minimization requires a forecast
of the CO2 emissions of the relevant energy system during the charging session.
Based on such an forecast the smart charging system could schedule the charging
session to charge at times with low CO2 emissions. To reach this goal, the smart
charging system has to integrate data from energy markets to provide feedback and
decision support in the user interface (see Objective II in Figure 2.1). In a first step,
this dissertation evaluates the effects of smart charging on CO2 emissions given the
German energy system.

RQ 3 At what times during the day can smart charging achieve the highest CO2

emission savings?

To answer RQ3, data from energy markets is applied to help BEV users making
more sustainable charging decisions. As the CO2 emission factors of the German
energy system show substantial variation, BEVs cause lower CO2 emissions if they
are charged during hours with high PV generation around noon. Shifting charging
loads has an impact towards the energy systems’ CO2 emission as new generators are
dispatched to adjust for the shifted consumption (e. g., if a coal power plant ramps
up to fulfil charging demand). Literature proposes to use marginal CO2 emission
factors to analyse such effects (Olkkonen and Syri, 2016). Marginal emission factors
of an energy system can look different from average emission factors in both in
overall level and timing. As estimating marginal emission factors requires more data
and computation than estimating average emission factors, the fourth RQ evaluates
whether designers of UCSCS can use average CO2 emission factors to approximate
marginal emission factors.

RQ 4 What are the absolute and temporal differences in CO2 emission saving po-
tentials assessed with average and marginal emission factors?
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Analyzing the average and marginal emissions of the German energy system based
on generation data of power plants larger than 100 MW shows that average emis-
sion factors underestimate CO2 saving potentials of smart charging and can recom-
mend shifting loads towards hours with high marginal emissions. Therefore, aver-
age emission factors should not be used to approximate marginal emission factors.
Researchers evaluated the potential CO2 minimization using smart charging based
on marginal emission factors under perfect foresight (Hoehne and Chester, 2016;
Jochem et al., 2015). However, it is still unclear whether this potential could be
realized by a smart charging system that does not have perfect foresight of marginal
emission factors. Implementing smart charging systems requires short-term forecasts
for marginal emission factors. The next research question evaluates the performance
of a forecast-based smart charging system, that predicts the marginal CO2 emission
factors and optimizes the emissions during charging.

RQ 5 To what degree can a forecast-based system realize the CO2 emission saving
potentials of a perfect foresight scenario?

Short-term forecasts of marginal emission factors are sufficiently accurate to ob-
tain substantial savings in CO2 emissions. Using these forecasts, the integration of
external information can make smart charging more sustainable. The forecast-based
UCSCS can provide BEV users with feedback on how much CO2 they could avoid
if increasing the flexibility in their charging session. However, the users still have
to decide how flexible they want to charge and enter the flexibility into their smart
charging system. Here, forecasts of charging flexibility could provide user assistance
in recommending the preferable amount of flexibility in a charging situation or even
automatize the process of entering the charging settings making the process even
more convenient. The next section expands on forecasts that can help to predict the
flexibility in BEV charging, which is the basis for effective integration of supply and
demand of charging energy.
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2.3. Probabilistic Forecasts of Time and Energy

Flexibility

BEV users might know best when and how they want their BEV to charge. Unfor-
tunately, manually entering the preferred charging settings at every time the BEV is
connected to the charger requires effort and is inconvenient. Convenience, however,
is a crucial factor in the acceptance of smart charging systems (Schmalfuss et al.,
2015). Also, Lee et al. (2019) show that BEV users often perform poorly when
asked to provide estimates of desired SoC and planned time of departure. For such
reasons, Flath et al. (2012) propose decision support systems for BEV charging to
obtain a higher degree of automatization, which could help to make smart charging
more appealing and could lead to more flexibility on the demand-side to fulfill the
third research objective (see Objective III in Figure 2.1).
Schuller et al. (2015) find that the flexibility in BEV charging differs for different

user types, while Sadeghianpourhamami et al. (2018) identify specific behavioural
clusters in parking situations that show varying time and energy flexibility. Infor-
mation systems can integrate data from the supply and demand-side to increase the
efficiency of the energy system (Watson et al., 2010). Following this idea, this disser-
tation evaluates the potential of information from travel data and charging history
of BEVs to predict time and energy flexibility in BEV charging.
As mentioned above, time flexibility relies on the parking duration at the charging

station. In contrast, energy flexibility depends on the energy requirement of the
charging session which correlates with the distance of the following trips. Many
parking events of a commuter car are shorter than one day. Still, there are single
events when the parking duration is much longer than a single day, e. g., during
the weekend or when the commuter is on vacation. Distributions of both parking
duration and energy requirements of BEVs are very skewed. As a result of this
skewness, point forecasts of average parking duration and trip distance can be far
off. To mitigate this problem, the next research objective evaluates how probabilistic
forecasts that contain information about the expected distribution can improve
smart charging.
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While prior research (Schuller et al., 2015; Sadeghianpourhamami et al., 2018)
indicates that information on the user and parking situation, e. g., location and
timing, gives insights on the expected flexibility, there is little research on the
benefits of including travel data of BEVs. This data is of particular interest, as for
the moment only some charging station operators (e. g., car manufacturers) have
access to this kind of data and could obtain an advantage in using it for smart
charging.

To evaluate whether these charging station operators and BEV users can use this
data to forecast the flexibility in smart charging, this dissertation focuses on the
following research question.

RQ 6 To what extent does travel data improve the accuracy of probabilistic forecasts
for parking duration and next trip distance of individual parking events?

For both, parking duration and trip distance, using travel data as an additional
input can improve forecasting accuracy. However, the improvements in forecasting
accuracy obtained by integrating the additional data are rather small, so the ques-
tion arises, whether this improvement has any practical implication. To evaluate
whether the probabilistic forecasts can improve scheduling of BEVs’ charging ses-
sions in practice, the next step is to apply the forecast in a case study. This case
study is to use the probabilistic forecasts in a smart charging coordination scheme
that interrupts charging (e. g., in case of congestion). The scheme aims at minimiz-
ing the interruption of BEVs with low flexibility which could result in an insufficient
charge for the BEV users’ next mobility event and impair their mobility.

RQ 7 What number of mobility impairments can be avoided using a smart charging
strategy based on probabilistic forecasts as compared to point forecasts?

Using probabilistic forecasts based on travel data improve the scheduling of BEVs
compared to point forecasts allowing them to interrupt more charging processes
without affecting the BEV users. In this way, forecasts can increase the flexibility
for charging station operators on the supply-side and also enhance comfort for BEV
users on the demand-side.

By answering the research questions above, this dissertation contributes to the
integration of BEVs into the energy system by increasing the socio-economical flex-
ibility of BEV users based on the design of UCSCS. The results show that UCSCS
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can apply digital nudging to increase the amount of flexibility offered by BEV users.
Besides, UCSCS can use data to provide BEV users with feedback on CO2 emissions
during charging and realize CO2 minimization potentials. Finally, probabilistic fore-
casting of charging flexibility can help to use a higher share of flexibility in BEV
charging without negatively affecting BEV users’ mobility needs. These findings can
help to increase BEV users’ acceptance of smart charging and allow to include a
higher number of BEVs and RES into the electricity system without increasing grid
and generation capacity.





CHAPTER 3

THESIS STRUCTURE

This dissertation comprises 13 chapters which are grouped into five parts. Figure 3.1
outlines this structure. After the first part establishes the motivation and research
agenda, the second part lays the foundations for answering the research questions.
While Chapters 4 and 5 describe the role of flexibility in power systems and the po-
tential of smart charging to provide demand-side flexibility, the remainder of Part II
provides theoretical foundations for the following analyses. Chapter 6 provides the
essential terminology about short-term forecasting used in the following parts. Chap-
ter 7 adds a concise overview of choice architecture and digital nudging. This idea
of guiding users towards better decisions by conscious design of the decision envi-
ronment is the basis of the evaluations in Part III and gave inspiration for the CO2

feedback and the flexibility forecasts in Part IV. Putting these four chapters in a
dedicated Part II allows readers to understand the context and concepts independent
from their application to smart charging in Part III and IV. This structure allows
readers to understand the key ideas behind this dissertation and transferring them
towards new applications.
The third part focuses on how to change BEV users’ behaviour towards the use

of smart charging systems. Chapter 8 identifies the objectives that motivate BEV
users to use smart charging and evaluates them in an expert survey. Based on these
objectives, Chapter 9 describes a scenario-based choice experiment that evaluates
the potential of digital nudging to apply these objectives to make users more flexible
in their charging settings.
Part IV elaborates data-driven solutions to allow users to charge their BEVs using

a higher share of RES and assists them with forecasting the preferable amount of

17
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Figure 3.1.: Structure of this dissertation.

flexibility in their charging settings. Chapter 10 proposes a methodology to forecast
the carbon emissions of individual charging sessions, derived from open-data from
the German power system (i. e., plant commitment, plant efficiency, and weather
data). Smart charging systems can apply such forecasts to use the flexibility in
individual charging sessions to minimize carbon emissions charging during hours
with low carbon emissions. Besides avoiding carbon emission, this methodology
can provide BEV users with feedback on the benefits of their decision to use smart
charging. Such feedback could provide additional motivation for BEV users that are
motivated by the integration of RES.

However, to profit from the benefits of smart charging, BEV users still have to
decide how much flexibility they are ready to provide during their charging session.
For each individual charging session, charging station operators or BEV users have
to determine the temporal deadline and energy requirement of the charging session.
Chapter 11 describes how data from BEVs and charging stations can be used to
provide a probabilistic forecast of the flexibility in BEV charging. The chapter



describes the development of probabilistic forecasts of parking duration and energy
requirement of individual charging events and evaluates the forecasts performance
in a case study for the scheduling of a portfolio of BEVs.
The dissertation ends with Part V. Chapter 12 summarizes the findings and the

contributions of this work, discusses its limitations, and outlines practical implica-
tions of the findings to foster the integration of BEVs and their users into the electric
energy system. Finally, Chapter 13 offers an outlook on new research opportunities.
While this dissertation is individually composed, parts of this work rely on the

contributions of my published or unpublished collaborative papers. As these papers
are joint efforts of several collaborators, I disclaim these parts clearly and refer to
the authors as a group (’we’ ).
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CHAPTER 4

FLEXIBILITY IN ENERGY SYSTEMS

Reliable and economic access to electrical power is the premise for numerous ev-
eryday processes in industrialized societies and drives modern economies. From the
beginnings of electrification during the last two centuries, electricity has been gener-
ated burning fossil fuels and harnessing hydropower. Electricity and heat generation
has become by far the largest source of human CO2 emissions (International Energy
Agency, 2020). As human CO2 emissions contribute to global warming and climate
change (IPCC, 2020), governments aim to generate more electricity from RES using
wind, geothermal, or solar energy. Establishing an environmental friendly supply
of electric energy also allows to decarbonize parts of the heating and mobility sec-
tor (see Chapter 10). This chapter describes the current transition of the German
electricity system.
Integrating new generators and consumers requires modifications to the energy

system. During this transition, the energy system must balance the three conflicting
goals of security of supply, sustainability, and economic efficiency. In today’s energy
systems, security of supply is mostly ensured by redundancies in the infrastructure
and a high share of conventional generators, making the energy systems resistant
against technical failures and independent from intermittent renewable generation.
On the other side, today’s energy systems based mainly on conventional generation
are not considered sustainable as they still require mining for fossil fuels and emit
pollutants and CO2. Increasing the shares of RES would result in less pollution and
lower cost. However, such a system would fall short in terms of security of supply
as the supply in energy depends on wind and sun. Compensating the volatility
of RES with high redundancy would result in high capital cost for generation and
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transmission equipment.
Another way to offset the volatility in the generation in energy systems with

high shares of RES is to use flexibility. Flexibility is the ability to change the
feed-in or feed-out pattern to provide a service to the energy system. To replace
large conventional power plants, the energy systems have to introduce new sources
of flexibility throughout the electric value chain to provide reliable, sustainable,
and inexpensive electricity. The remainder of this chapter provides an overview
of the electricity value chain in the traditional structure from power generation in
Section 4.1 down to the electric devices and appliances of end-users in Section 4.3
discussing the changes and challenges introduced by the energy transition towards a
higher share of RES in the German energy system.

4.1. Power Generation

Electricity in Germany (in 2019) is mainly generated by large (>100 MW) central
power plants. Figure 4.1 shows that lignite, hard coal, and natural gas power plants
generate 39.5 % of the total electricity (514.86 TWh). Such fossil power plants burn
fossil fuels to fire a stream cycle that drives an electric generator. The electrical
generators in these power plants generate alternating current at 50 Hz and feed it
into the power grid on medium and high voltage levels. This frequency runs through
the entire power grid from the generators to the consumers, which either work at
50 Hz alternating current or use a rectifier to convert the electric energy to direct
current (e. g., for charging BEV batteries). Nuclear power plants work with the
same principle as fossil power plants. However, thermal energy originates from a
self-sustained nuclear chain reaction. Nuclear energy provides 13.9 % of generation
but will be discontinued in Germany by the end of 2022. Both fossil and nuclear
power plants can reliably provide electricity and flexibility, but emit pollutants and
nuclear waste.

Emission-free RES provide an increasing share of the generation (46 %). Similar
to fossil power plants, wind farms, and hydroelectric power plants feed electric power
into the high and medium voltage grid. In contrast, individual wind turbines, smaller
biomass, and photovoltaic (PV) plants feed into lower voltage levels. As wind tur-
bines and PV both depend on the weather conditions, a stable energy supply with
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high shares of RES requires flexibility to provide system reserve (Hirth, 2015).
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Figure 4.1.: Electricity Generation in Germany from 2000 to 2019 based on data by bdew
(2019).

On an economic level, there are differences in the cost structure of generation
from fossil and RES generation. In conventional power plants, the marginal costs
of electricity are mainly determined by fuel costs. In contrast, wind and PV have
marginal costs close to zero, as their generation depends only on wind and sun and
does not require additional input.
This difference leads to a fundamental change in many energy markets. In en-

ergy systems with high shares of fossil generation, the generators line up in a merit
order based on their marginal costs. When the demand for electricity is low, only
the cheapest power plants (with the lowest marginal cost) are in operation as the
market price surpasses their marginal costs. With increasing electricity demand and
electricity prices, it becomes attractive for more expensive power plants to generate
and sell electricity. In this way, the generation of electricity follows a rather inelastic
demand. However, RES with marginal costs close to zero have little incentive to
react to changes in the electricity demand as their marginal costs are usually below
the market price. In addition, RES cause a merit order effect by shifting the merit
order to the right and reducing the number of hours in which expensive fossil power
plants can make a positive contribution to their profits. The reduction in profits can
lead to a missing money problem which makes it unattractive for fossil generators
to stay in the market as they struggle to cover their capital costs (Hogan, 2017).
If this effect drives flexible conventional power plants out of the electricity market
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(see Figure 4.1), other sources and mechanism must provide the flexibility for stable
operation (Haas et al., 2013).

4.2. Power Transmission and Distribution

The German distribution and transmission system is divided into four transmission
and 880 distribution systems (European Commission, 2020). While the distribution
systems distribute electricity to the individual end-users, the transmission system
transports large amounts of power over several hundred kilometres.

As a large number of wind turbines is installed in the north of Germany, and
primary consumers are located in the south, electric power in the German trans-
mission grid flows mainly from north to south. Not considering power flow, the
German electricity market assumes the transmission and distribution system to be
a ’copper plate’ so that all market results can be realised. The assumption is that
electric energy can be transferred from between all grid connection points without
losses and bottlenecks. In consequence, all actors on the wholesale electricity mar-
kets see the same electricity price without any locational differences. As a result,
there are no incentives for generators to adapt generation to power-flow restrictions.
In reality, electricity is transmitted and distributed not through a ’copper plate’
but via cables and overhead lines. Regulated transmission system operators (TSO)
manage the transmission network in Germany. The transmission network transmits
high amounts of energy over long distances and is operated with high and very high
voltage (i. e., 120 to 380 kW) to reduce losses. This flow regularly causes horizontal
congestion in the transmission grid, which is resolved by re-dispatch (EnWG §13.1).
Here, TSOs re-dispatch the power generators initially dispatched by the market result
using the flexibility of conventional power plants. For this purpose, the dispatched
generators on one side of the congestion have to reduce generation. These generators
are mostly wind parks and lignite power plants in the north-eastern part of Germany
(Staudt et al., 2018b). On the other side of the congestion, generators increase their
generation to keep the energy balance. In this way, the flexibility of conventional
power plants compensates for limited transmission capacity. These generators are
often fossil power plants in the southern part of Germany which are compensated
based on their generation costs.
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The distribution system delivers electric power to the end-users through the
medium and low voltage grid (i. e., below 120 kW). While the German transmis-
sion grid is 131,000 km in length, the medium and low voltage grid is ten times
longer (BNetzA, 2020). Accordingly, the medium-voltage and distribution networks
are currently still equipped with much less sensor technology than the transmission
grid. As a result, grid failures and congestion in the distribution system are more
challenging to discover and solve.
Like the horizontal congestion (i. e., the congestion of a transmission line) that

occurs almost daily in the transmission network, there are three typical types of
congestion that happen in the distribution system (Huber et al., 2018b).
First, one type of congestion occurs, if RES feed-in leads to a reversal of the load

flows where the electric power flows from the prosumers to the higher load level
and cause horizontal congestion (Agalgaonkar et al., 2013). Second, new types of
consumers, e. g., heat pumps and BEVs, have high power requirements and can be a
further cause of congestion on lower grid voltage. Third, vertical congestion occurs
when the maximum current at transformers is exceeded. Such congestion often
occurs in the distribution grid. Triggers are too much electricity from PV or too
many BEVs charging simultaneously (Salah et al., 2015). Flexibility can mitigate
these congestions by reducing the charging power of the BEVs or by using excess PV
power locally and not feeding it into the grid.
If these solutions are not possible, feed-in management (EnWG §13.2) allows grid

operators to interrupt RES connected to their grid. On the demand-side, grid op-
erators can interrupt some electric consumers, e. g., heat pumps and BEVs (EnWG
§14a). These electric consumers pay a reduced grid fee and can be interrupted by the
DSO if necessary. Last, independent of generation and consumption, grid congestion
can occur if equipment fails or is maintained according to schedule. Such congestion
is rather uncritical, as it is either rare (e. g., failures) or predictable (e. g., scheduled
equipment maintenance).
However, unforeseen outages and miscalculations can result in deviations between

supply and demand. In electricity systems with alternating current, supply and
demand must be in balance at any moment to retain a stable grid frequency at
50 Hz. Actors on the wholesale electricity markets are obliged to have a balancing
group which contains all electricity procured and sold in each 15 minute interval. If
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market participants miscalculate and their balancing group is not even, they can use
flexibility from generators or consumers or have to pay for imbalance energy. The
TSOs, who are responsible for the system’s stability and ensure a safe operation at
a grid frequency of 50 Hz, operate ancillary markets that provide this flexibility to
compensate for short-term imbalances in generation and demand.

Sufficient supply of flexibility is crucial to congestion management and system
stability. As the shift towards RES reduces the supply of flexibility in the energy
systems supply-side, the next section discusses to what degree the demand-side could
supply this flexibility.

4.3. Retail and Consumption

Despite these challenges, end consumers suffer on average, only five to ten minutes
of power outages per year (Bundesministeriums für Wirtschaft und Energie, 2020).
This level of security is crucial as reliable electric power is the basis for modern
living, production, and digital services.

Figure 4.2 shows that industry is the largest consumer at 47 % in 2019. In some
industries, electricity consumption contributes a substantial share to cost. Such
electricity-intensive consumers (e. g., pulp and paper and chemical industry) often
have elaborated energy management systems and business divisions for energy pro-
curement which trade energy on wholesale markets or over-the-counter. Companies
that participate in wholesale electricity markets are obliged to create a balancing
group for accounting reasons. Within a balancing group, the amount of electric-
ity purchased on the wholesale markets or generated must be in balance with the
electricity consumed or supplied to consumers at any given time. Keeping balance
within each group ensures that supply and demand in the electricity system is in
balance at any moment, and the frequency stays at 50 Hz.

Residential consumption and business, sales, and services both account for around
a quarter of German electricity consumption. As most of them are smaller consumers,
they do not participate in wholesale markets but sign long-term electricity supply
contracts with energy supply companies. These contracts usually determine a base-
price, a working-price, and in some cases a peak-price (Huber et al., 2018c). If these
rates do not change over the lifetime of the contracts, the electricity procurement
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Business, Commerce, 
 Services: 26.7% 

Industry: 47.0%

Residential: 25.1%

Mobility: 2.1%

Figure 4.2.: Net electricity consumption in Germany in 2018 based on data by bdew (2019).

costs are only dependent on the energy consumption and load peaks during the billing
period and do not provide an incentive for the consumers to provide flexibility (e. g.,
reducing consumption in peak hours). The energy supply companies aim to predict
this inelastic demand of their customers and try to match it with their generation
and purchases on wholesale markets.
In 2019 the mobility sector only accounted for 2.1 % of electricity consumption.

However, the electricity consumption of the mobility sectors will substantially in-
crease if the forecasts of BEV diffusion in Germany are correct (Gnann et al., 2015).
As BEVs can charge large amounts of electricity in a short period, they can put
more tension on the grid (i. e., cause congestion) and make predictions of consump-
tion more difficult (i. e., result in lager forecasting errors).
As demand-side flexibility allows to change consumption patterns, it could allevi-

ate both problems. Typical sources of demand-side flexibility are industrial processes
that are suitable for demand response measures and can provide several kW of flex-
ibility (Huber et al., 2018a). Such lager consumers are usually connected to the
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medium-voltage grid and are already integrated into the mechanism of the TSOs’
ancillary markets. Smaller consumers in households, however, also have substantial
flexibility but are too small to trade effectively on the central markets (Gottwalt
et al., 2016). In contrast to larger consumers, they can provide flexibility in lower
voltage levels, where congestion caused by PV systems and BEV are expected to
increase the demand for flexibility.

Grid operators, energy supply companies, and aggregators integrate smaller flex-
ibility potentials using various flexibility mechanisms. Lehmann et al. (2019) dis-
tinguish a set of eight valid mechanisms that are suitable for integrating small-scale
flexibility into the energy system. How much of the technically available flexibility
potential of an electric system is usable depends on socio-economic factors (i. e., how
much flexibility the operator wants to offer at what price). Flexibility can be made
available to third parties via various mechanisms. For demand-side flexibility, two
mechanisms are particularly relevant.

Instead of fixed-rate energy contracts, energy supply companies can offer time-
variable rates to consumers. As a result, consumers can then control their generators
and electrical consumers using an energy management system to profit from times
with low electricity prices. In this way, the energy supply company can influence
consumption and generation of the consumers. One advantage of this decentralised
mechanism is that that consumers do not have to communicate the flexibility poten-
tial in advance.

However, this mechanism is not suitable for applications where flexibility must
be known in advance and reliability of the available flexibility is an issue. Other
mechanisms solve this problem by describing the flexibility potential explicitly in
advance using a suitable data model (Mauser et al., 2017). DSOs, aggregators, or
charging station operators can use such data models to derive all valid load profiles,
which fulfil the energy service of the consumer. Next, they can select one of the valid
load profiles using the flexibility potential while fulfilling the consumers demand for
an energy service.

For instance, smart charging systems apply such a mechanism if they control the
charging session of a BEV. The smart charging system obtains the information on
how much energy needs to be charged into the BEV during the parking duration.
Within these constraints, the smart charging system can derive a suitable charging
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schedule while fulfilling different objectives, e. g., to charge at minimal cost, minimize
CO2 emissions, or to prevent grid congestion.
In this way, BEVs could become a source of flexibility that is needed to transition

energy systems towards higher sustainability while ensuring high security of supply
and economic efficiency. The following chapter describes the flexibility potential of
charging electric vehicles in more detail.





CHAPTER 5

SMART CHARGING FUNDAMENTALS

This chapter is based on joint work conducted by Julian Huber, Elisabeth
Schaule, Dominik Jung, and Christof Weinhardt, published in World Electric
Vehicle Journal, cited here as: Huber et al. (2019b).

Flexibility within the charging session could be a chance to overcome the challenges
of the energy transition described in the previous chapters and to achieve other
optimization objectives. While a grid operator can control charging to avoid grid
congestion and thus expensive network expansion, an electricity supply company
could use flexibility to shed consumption during price spikes or to lower balancing
costs. Furthermore, charging station operators can shift the charging session towards
times with lower shares of conventional generation within a generation portfolio,
which can result in lower prices and CO2 emissions during charging (Huber and
Weinhardt, 2018).
To reach these objectives, smart charging systems optimize the charging session

towards one or multiple objectives while reaching a desired SoC within a given time
frame. The flexibility potential used by a smart charging system is illustrated in
Figure 5.1. The overall flexibility in the charging session is defined by the technical
boundaries that do not change over time (e. g., maximum charging power and battery
size of BEV). For each charging session, only a part of this technical potential can
be used. This potential can be quantified by an information system integrating
information from the BEV (e. g., the initial SoC) and the user (e. g., planned parking
duration).
Within these boundaries, the users of the smart charging system can decide on

how much flexibility they want to offer to fulfil the objectives of the smart charging
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flexibility
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defined by socio-economic 
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(e.g., user setting their
charging preferences)

defined by realized provision
for application

(e.g., realized charging process)

Figure 5.1.: Description of flexibility potentials from Lehmann et al. (2019) adapted for
smart charging.

system. To define the flexibility offer, users could either decide between flexible and
inflexible charging tariffs (self-selection) or explicitly state their charging preferences
(elicitation), e. g., planned departure time and energy requirements. While a tariff
selection is a discrete choice between several alternatives, an explicit input of prefer-
ences can require several decisions on different scales. This makes the decision much
more complex and uncomfortable. On the other hand, the charging flexibility can
be specified more precisely and less optimisation potential is lost.

How flexible users are in their decision depends on whether they accept or even
foster smart charging and its objectives (Huber et al., 2019a; Will and Schuller, 2016).
The flexibility offer limited by this socio-economic potential is the boundary in which
smart charging systems can use flexibility to realize an optimization objective.

This chapter is structured along with the flexibility potentials in Figure 5.1. We
first describe the technical boundaries for smart charging given by BEV and battery
technology. Second, we analyse how smart charging systems can quantify the flexi-
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bility in individual charging sessions. Third, we discuss how users and their mobility
behaviour affect the flexibility potential in smart charging. The chapter concludes
with a discussion of typical objectives of smart charging systems that make use of
the remaining flexibility potential.

5.1. Technology in Battery Electric Vehicles

BEVs and their battery technology provide the first technical restraints to smart
charging. This section provides a summary of contemporary BEVs and their battery
technology and discusses their suitability for smart charging.

Types of Battery Electric Vehicles Electric cars are automobiles in which
electric motors provide the propulsion energy to the wheels. Subgroups are hybrids
or hybrid electric vehicles that have two storage systems for propulsion energy. First,
hybrids have a gas tank feeding an ICE or a fuel cell. Second, they have an electric
rechargeable battery unit powering the electric motors. While pure hybrids only
recharge during driving, e. g., by recuperating kinetic energy while slowing down,
plug-in hybrids (PHEVs) can also recharge the battery system by connecting it to
the electricity grid and could be used for smart charging. Full-electric vehicles (FEVs)
do not have a secondary storage or conversion unit besides the battery. Table A.1,
in the Appendix, shows the technical specifications of most-selling BEVs in the US
in 2019. Five of them are FEV with an average battery capacity of 68 kWh. The
remaining PHEVs have smaller batteries around 12.12 kWh.
As only PHEVs and FEVs charge from the electricity grid, only they can have an

impact on the electricity system, e. g., by causing load peaks or providing flexibility
by demand-side management measures. In consequence, in this work we focus on
PHEVs and FEVs, which are both summarized by the term BEV in the following.
Because they do not burn fuel, FEVs do not emit any emissions locally (e. g., CO2

or water), except noise and heat. The same applies to hybrid vehicles operated in
full-electric mode. However, as hybrids usually have much smaller battery units,
they often only have an electric range of up to 50 km (see Appendix Table A.1) and
are less relevant for smart charging.
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Battery Technologies The battery units in BEVs are based on different battery
technologies. These technologies differ in several properties. Besides cost, energy
density efficiency is one of the most important properties. Energy density efficiency
quantifies how much electric energy a battery unit can store at a given volumet-
ric size or weight. As a reference, gasohol E10, i. e., gasoline with 10-volume-%
added ethanol, has a specific energy of 12,094.5 Wh/kg and an energy density of
9,216.7 Wh/L. In contrast, a Lithium-ion battery’s energy density ranges around
100.00–243.06 Wh/kg and 250.00–730.56 Wh/L.

As batteries have a low energy density, FEVs require larger and heavier energy
storage systems than cars with an ICE. However, this is partly compensated by
the higher tank-to-wheel efficiency of FEVs. While ICE efficiency is limited by the
temperature difference of the Carnot efficiency and maxes out at 25–35 %, electric
power trains in FEVs can exceed 90 % tank-to-wheel efficiency (Howey et al., 2011).
As cars accelerate and slow down perpetually, lower weight is usually a benefit as
lower weight improves driving dynamics and reduces energy consumption and wear.
In result, energy density efficiency in both weight and volume is a key factor in the
selection of battery technologies.

Smart charging requires the following battery characteristics: The battery should
have little self-discharging so that the battery can be charged to full SoC well before
departure, e. g., when energy is available, and hold this energy until the time of
departure. Next, the battery should have no memory effect, i. e., a reduction in
capacity if the battery does not fully discharge before starting the next charging cycle.
Using a battery with memory effect would imply that (smart) charging should be only
conducted at a low SoC to retain battery life, which would reduce the potential for
smart charging. Especially with vehicles-to-grid concepts (V2G), low cyclic ageing is
an essential factor. With low cyclic ageing, using the BEVs battery as buffer storage
would directly reduce the batteries’ life expectancy.

Manzetti and Mariasiu (2015) describe the characteristics of various battery tech-
nologies in the order of increasing energy density. Lead-acid (Pb-acid) battery sys-
tems are the oldest electric energy storage technology used in cars and are commonly
used as starter batteries in cars with ICE. While being inexpensive, a downside is
the usage of acid substances within the car. Compared to other technologies, Nickel-
Cadmium (NiCd) batteries have the upside of showing low cyclic ageing, which
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is a benefit in smart charging and especially V2G concepts. The characteristics
of Nickel-Metal-Hydride (NiMH) batteries resemble Nickel-Cadmium. However, in
comparison, they show a lower memory effect. A characteristic negative to the use
of smart charging is that such batteries show a high amount of self-discharging.
High self-discharging implies that the battery should be charged right before the
departure of the BEV so that the driver can profit from a full SoC. While Sodium
Nickel Chloride (NaNiCl) batteries can store electricity for more prolonged periods,
they are linked to problems with operational safety. Lithium-ion polymer batteries
show lower cyclic ageing than standard Li-ion batteries. They are well suited for
both FEV and smart charging because of low cyclic ageing and showing no memory
effect. Technical challenges are instability against overloading and deep discharging.

Battery Ageing in Lithium-Ion Batteries Lithium-ion polymer is the most
popular battery technology in BEVs, e. g., all BEVs in Table A.1 are applied with
Lithium-ion battery technology. Given the characteristics of such Lithium-ion bat-
teries, they are well suited for storing propulsion energy in cars due to their high
energy density. Lithium-ion polymer batteries also allow an interrupted charging
and show no memory effect which allows to start charging sessions at different SoC
levels and allows for smart charging. Still, the operation and charging behaviour of
BEVs impacts the expected lifetime of Lithium-ion batteries (see e. g., Vetter et al.
(2005) for a detailed description of the chemical processes leading to battery ageing).
Barré et al. (2013) differentiate between calendar [sic] and cycle [sic] ageing. Cal-

endaric ageing describes the loss in energy capacity that is independent of the cycling
of the battery, i. e., how often the battery charges and discharges. The main factor
of how fast a battery’s energy capacity degrades with lifetime is its temperature. In
general, lower battery temperatures result in slower calendaric ageing. This ageing
process is independent of the way the battery operates during smart charging.
In contrast, cyclic ageing describes all factors concerned with the use of the battery

and is influenced by smart charging. In particular, the upper and lower limits in the
energy capacity used for cycling and the charging current influence the cyclic ageing
of Lithium-ion batteries (Fotouhi et al., 2016). Using a more extensive range of
SoC and higher voltage levels to increase maximum charging power increases the
flexibility in smart charging. As this has adverse effects on cyclic ageing, there
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are trade-offs between the usage of BEVs as demand-side management measures to
provide services to the energy system and the battery lifetime of BEVs.

Battery ageing is relevant, as current discussions involve the ecological life-cycle
assessment of FEVs compared to cars with ICE. Critics claim the resource-intensive
production of FEV batteries and the usage of non-renewable electricity for charging
FEVs have adverse effects on the environment. The results of the life-cycle assess-
ment highly depend on the expected lifetime of the FEV. Hawkins et al. (2012)
calculate that at a lifetime of 150.000 km, the climate impacts of PHEVs and FEVs
are 27 % and 78 % lower compared to cars with ICE.

Charging Technology and Standardization BEVs depend on the electricity
system to meet their energy demands. As the maximum charging power of BEVs is
high compared to other domestic energy consumers, regulators and industry derived
particular plug types (defined in IEC 62196) and communication protocols to ensure
safe handling of high voltage and currents occurring with BEV charging. Conduc-
tive charging systems are the most common charging system in which a cable-plug
connection transmits the electricity. In contrast, inductive or wireless charging uses
electromagnetic induction to transfer energy between induction coils.

IEC 61851-1 defines four different charging modes for conductive charging sys-
tems with different voltage levels, maximum charging power, and communication
capability. While Modes 1–3 operate with alternating current, Mode 4 provides di-
rect current to the BEV. Table 5.1, adapted from Hardman et al. (2018), provides a
review of charging modes defined in IEC 61851-1.

As a default, Mode 1 describes the charging of BEVs on a local household socket-
outlet or a single or three-phase CEE-socket. This mode offers a simple fallback
solution as a BEV with charging Mode 1 can charge at any household socket. On
the downside, this mode charging mode is rather slow and cannot be used for smart
charging as no communication protocol is applied. Mode 2 relies on a dedicated
delivery point (socket outlet), i. e., a wall box, procuring higher maximum charg-
ing power and allowing for communication between delivery point and BEV. While
Mode 2 delivery points are often installed in residential and work areas, the faster
Mode 3 delivery points are mostly found in workplaces and public charging loca-
tions. The reason is that their maximum charging power exceeds the power capacity
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of typical residential house electricity connections. The communication protocol in
Mode 3 is based on IEC 61851-1 or ISO/IEC 15118. Delivery points with Mode 4
charging provide direct current at high voltage levels up to 400 kW and are often
installed along highways.

Table 5.1.: Charging nodes defined in IEC 61851-1 adapted from Hardman et al. (2018).
Charging Mode Power [kW] Smart Charging Typical Location Socket System [Outlet|Inlet]

Mode 1 1–3 No Home Domestic plug | Type 1/2
Mode 2 1–7 Yes Home, Work Domestic plug | Type 1/2
Mode 3 >43.5 Yes Work, Public Type 1/2 | Type 1/2
Mode 4 >400 Yes Highway CCS (CHAdeMO)

Quantification of Flexibility in BEV Charging BEV charging does often not
require a predefined load profile but has some intrinsic flexibility. Daina et al. (2017)
use a figure similar to Figure 5.2 to describe and model the flexibility in BEV charging
based on charging choices of BEVs users. If the BEV users decide for a minimum
SoCd at a given deadline td, the charging session of BEVs is flexible as the energy
demand can be fulfilled using different paths within the dotted area, starting at the
time of arrival ta. A smart charging system can realize different paths by influencing
the charging power or the energy provided to or extracted from the battery.
Using the taxonomy provided by Petersen et al. (2013), the charging session of a

BEV can be modelled as a battery, where a certain state of charge SoCd must be
reached within a time deadline, usually departure time td. The constraints of the
charging session, presented in Figure 5.2, are the maximum charging power Ċ, the
energy demand SoCd − SoCa, and the time available for charging td − ta. Within
these constraints (dotted area), the charging session (black line) can be optimized by
smart charging systems. V2G concepts allow the discharging of the BEVs’ batteries
by allowing for negative charging powers, i. e., a declining black line.
Neupane et al. (2014) and Ludwig et al. (2017) use the terms time and energy

flexibility to describe the flexibility in energy consumption. Energy flexibility is the
potential for change in the energy consumption profile, while time flexibility is the
potential for a shift of the consumption profile.
Similarly, we define time flexibility in BEV charging as the time interval of reaching

the desired SoCd at maximum charging power Ċ compared to the planned time of
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departure td. In Figure 5.2 time flexibility begins where SoCd would be fulfilled
with uninterrupted charging. A simple metric for energy flexibility is the difference
between the total energy needed at time of departure and a full SoC. There is no
energy flexibility if a full battery (SoCf ) is required.
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Figure 5.2.: Schema for time and energy flexibility in smart charging.

Flexibility in BEV Users’ Mobility Requirements Both energy and time
flexibility in BEV charging depend on the BEV users’ mobility requirements. Long
parking durations offer high time flexibility, while short trips rarely require full SoC
and thus have high energy flexibility.

Lunz and Sauer (2015) analyse the driving behaviour of German car users based
on travel logs obtained by Zumkeller et al. (2011). Drivers in this panel drive on
average 36 km per day. Almost all, i. e., 95 %, trips are shorter than 42 km. For
95 % of days, the total daily trip distance is below 150 km. Consequently, Lunz
and Sauer (2015) argue that if BEV users charge their BEVs overnight, a BEV with
150 km range could cover 95 % of trips of German residential car users. Adding fast
recharging opportunities, i. e., >22 kW, after each trip, such a BEV could cover 99 %
of total trips. This analysis shows that even with smaller battery capacities, there is
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flexibility potential in the charging session, as most trips are rather short compared
to the parking duration of BEVs.
Quirós-Tortós et al. (2015) conduct a similar analysis of BEV charging behaviour of

221 residential BEV users in the UK. They report that users charge at full available
charging power most of the time. Using the full capacity implies that no smart
charging is applied yet as load shifting or curtailing would result in lower charging
rates in some hours. On most days, i. e., 70 % of days, BEV users connect their BEV
only once. While the first connection to the charger mostly happens at medium levels
of SoC (between 25 % and 75 %), only 65 % of first connections end with a fully
charged battery. In contrast, second connections result in full SoC more often.
Most residential drivers charge their BEV at home. A position paper of the Ger-

man Association of the Automotive Industry (VDA, 2019) states that currently 85 %
charging sessions are at private locations, i. e., residential and company parking, while
only 15 % happen in publicly accessible locations. However, this share is expected
to rise to 30–40 % within the next years.
Private parking locations have the most extended parking duration. Own eval-

uations of the German mobility panel (Zumkeller et al., 2011) show that parking
locations of cars show a typical pattern through out the day. On the weekday morn-
ings, workplaces are the most likely parking location. At workplaces, cars remain
unmoved for an average of 6.2 hours. Arrivals at home peak in the early evening
hours. Parking durations at home are on average 13.9 hours long. Also, they show
a higher variance than parking durations at work. In contrast, parking durations at
publicly accessible locations are rather short (Schmidt et al., 2020), e. g., 2.5 hours
for parking at shopping locations. The highest time flexibility and potential for
smart charging are found at the homes of BEV users (very long parking duration) or
at workplaces (long parking duration and faster charging). The average trip distance
for car trips in Germany is 36 km. At an efficiency of 20 kWh/100 km (compare
Table A.1), the average residential car usage in Germany would require 7.4 kWh of
electric energy. Most cars in Table A.1 show higher battery capacity letting expect
a high degree of energy flexibility in BEV charging.
In summary, the current technology promises technical potential for smart charg-

ing. A comparison of battery sizes with the mobility behaviour of car users also
indicates considerable potential for time and energy flexibility in BEV charging.
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5.2. Smart Charging Objectives

Smart charging systems can use this flexibility potential described in the previous
chapter to pursue different objectives. Consequently, there is a vast amount of
literature on smart charging. A Google Scholar search for ’smart charging’ yields
823.000 hits as of January 2019. This dissertation aims to develop smart charging
systems that meet the objectives of the BEV users and motivate them to charge
flexibly. Smart charging systems ,however, will only succeed, if they also benefit
their operators, which can be grid operators, power companies, and charging station
operators. To analyse the overlap between the objectives of operators and BEV
users (see Part III), we first identify possible objectives of smart charging systems
and analyse their importance in current research.

For sorting the objectives, we rely on a concept-centric literature review approach,
as proposed in Webster and Watson (2002). We search for ’Vehicle Charging ∧
(Objective ∨ Incentive ∨ Acceptance)’ in ACM Digital Library, IEEE Explore, and
ScienceDirect. The resulting 1.056 papers are counted in Table 5.2. The 422 matches
on smart charging objectives from IEEE Explore resulted in the highest number of
matching papers. Thereupon, we analysed their titles and abstracts to identify key
concepts.

Table 5.2.: Matches for the search term in different literature data bases.

Search Term
Vehicle Charging ∧

Objective Incentive Acceptance

ACM Digital Library 17 6 10
IEEE Explore 422 75 69
ScienceDirect 319 120 98

As expected, most papers describe the design, optimization, and scheduling of the
charging sessions of electric vehicles. However, one main difference is the role and
perspective of the charging system operator, who is responsible for the functionality
of the smart charging system.
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Perspectives on Smart Charging A first group of papers focuses on the grid-
centred perspective of grid or system operators who centrally control the charging
session of many BEVs to provide system services, optimize power flow, dispatch
generation, or avoid congestion in their grid (e. g., in Mojdehi and Ghosh (2016)).
Depending on the regulatory framework assumed in the paper, this can either be an
integrated system operator who manages both energy generation and grid operation
or grid operators solely optimizing grid operation.
The next group focuses onmarket-centred perspective of charging system operators

or aggregators, who coordinate the charging sessions of multiple BEVs to optimize
their outcome at market level (e. g., matching charging with an electricity product
or generation portfolio or using the flexibility of the charging portfolio on reserve
markets (Luo et al., 2018)).
The third group of papers is locally centred and aims at an operator optimizing

the charging of BEVs to match consumption with a local energy resource (e. g., in
Mou et al. (2015)). In this case, the BEV user often is the same entity who operates
the charging station, e. g., in a residential setting where the driver integrates the
BEV into the home energy management system.

Objectives of Smart Charging Systems The smart charging systems pursue
different objective functions according to the charging operator’s perspective. We
adapt the dimensions from Sovacool et al. (2017) for a broader categorization:
Financial objective functions mainly result from a market-centred perspective and

focus on cost advantages realized by optimized energy procurement considering ben-
efits from the provision of ancillary services and the pricing of charging services.
The charging operator can achieve financial advantages by optimizing charging in
line with changing prices on the energy markets (e. g., Limmer and Dietrich 2018; Li
et al. 2018). Additionally, some authors also consider using the flexibility in smart
charging on frequency reserve markets (Brandt et al., 2017). One objective not men-
tioned by the review of Garćıa-Villalobos et al. (2014) but by Sovacool et al. (2017)
is the minimization of battery degradation. As battery degradation depends on the
charging strategy, some authors propose to control charging in a battery protecting
manner (Schoch, 2016). Others recognize battery degradation as a constraint to be
considered in economic optimization (Ortega-Vazquez, 2014). Like Sovacool et al.
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(2017), we consider battery degradation to be part of the financial dimension since
the battery life has a direct financial impact on the BEV owner and, unlike the other
points of the technical dimension, is not related to the grid-centred perspective.
The technical objective functions often arise from a grid-centred perspective. The

technical dimension sometimes affects the financial dimension, if, as in Deilami et al.
(2011), an integrated system operator manages the generation dispatch and the
power grid at the same time. In this case, the charging operator can obtain financial
benefits from integrating BEV charging in grid operations. Smart charging can also
be a tool in congestion management (Mou et al., 2015) and provide system stabil-
ity in the form of different ancillary services such as frequency regulation, voltage
regulation, and minimization of power loss (see Mojdehi and Ghosh (2016), Mathur
et al. (2018), Garćıa-Villalobos et al. (2014), Staudt et al. (2018a)).

Flexibility in smart charging systems can also mitigate the uncertainty in
wind (Huang et al., 2015) or PV (Latimier et al., 2015) generation to integrate
a higher share of RES. In this way, flexibility allows to integrate more RES during
charging and can help to minimize carbon emissions of the energy generation (Hu-
ber and Weinhardt, 2018). Other authors consider fairness (Limmer and Dietrich,
2018) in the scheduling of the charging loads and discuss community-based charg-
ing stations (Koutitas, 2018). Socio-environmental objectives often play a role in
works with locally centred perspective, e. g., when focusing on the integration of
local RES (Schuller et al., 2015).

Figure 5.3 shows the main objectives of smart charging systems from the perspec-
tive of the operator of the smart charging system sorted by technical, financial, and
socio-environmental focus. From the perspective of BEV users, the main objective
is the fulfilment of their mobility needs. For the charging system operator, the sat-
isfaction of the drivers’ mobility needs sets the constraints for the optimization in
smart charging.

Trend Analysis for Smart Charging Objectives To identify smart charging
objectives commonly mentioned in existing literature, we next conduct a keyword
search in the abstracts of the papers found in Table 5.2. We analyse the occurrence
of the keywords in the pre-processed abstracts of the initial 1.056 literature matches,
i. e., removing punctuation, lower casing, and stemming. First, we generate a list of



Smart Charging Objectives 45

Constraints for
optimizing Objectives

Technical Financial Socio-Economic

Charging Settings 
or Tariff Selection

Flexibility Offer

Mobility Needs

Additional Incentives for BEV Users to use Smart Charging

Congestion 
Mangement

Ancillary
Services

Battery
Degregation

Energy Cost
RES

Integration
Social

Aspects

Smart Charging System Operators Objectives

BEV Users’ Primary Objective

Figure 5.3.: Objectives of smart charging system operators and BEV users.

indicator keywords by screening the most common words, i. e., occurring more than
40 times, in the combined abstracts and assigning them, if relevant, to one of the
optimization objectives. Table B.1 in the appendix lists the resulting keywords for
different charging objectives.
We assume that the occurrence of a keyword indicates, whether or not the paper

considers a given objective, e. g., a paper containing the words ’lifetime’, degradation’,
or ’ageing’ is likely to contain a link to battery degradation within the smart charging
system. We conduct an automated search through the titles and abstracts in the
initial 1.056 results. We discard all articles not containing any of the keywords as
irrelevant for the further analysis.
Table B.2 in the apendix shows the resulting data structure after the literature

screening. As an example, it holds the three most cited articles found in the 924
remaining results. The first paper, Deilami et al. (2011), proposes a real-time co-
ordination mechanism to control multiple BEVs charging to minimize generation
costs and grid losses. Besides, ancillary services (i. e., minimization of grid losses),
the keyword indicator also recognizes the objective of cost minimization (i. e., the
generation costs). The second paper (Sortomme et al., 2011) only classifies in the
group considering ancillary services. Indeed, the paper describes the coordination
of electric vehicles to minimize distribution system losses. The third paper (Gan
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et al., 2013) use a decentralized algorithm to coordinate charging between a utility
company and car users. The algorithm shifts the charging loads to fill the valleys to
avoid congestion.

Figure 5.4 plots the frequency for different objectives in relation to the publication
date. Many papers assume the existence of an integrated system operator who is
concerned with both a grid and a market-centred perspective. Consequently, such
articles often consider more than one objective in smart charging (i. e., generation
cost reduction and congestion management). Out of 511 papers with abstracts that
include keywords for energy costs, 423 also contain a keyword from another objec-
tive. In doing so, financial optimization is often the main objective (e. g., if charging
flexibility is used to minimize the costs of generation and line losses). Aligning
consumption with the generation from RES can also reduce costs. In result, a com-
bination of energy costs and RES integration also emerges quite frequently (221
times). Congestion management and other ancillary services are mentioned at a
similar frequency. Fewer papers address keywords describing battery degradation
(<20 %) or social aspects (<7 %) in their abstracts.

As illustrated in Figure 5.4, there is a rising interest in all topics over time. Al-
though the earliest paper mentioning scheduled charging of BEVs within our search
origins from 1980 (Schallenberg, 1980), a broader discussion of smart charging does
not arise before 2008. In these years, the first serial production BEVs with Lithium-
ion battery systems (e. g., Tesla Roadster) came to market and spiked a new interest
in research on BEVs and smart charging. There is no clear trend for different objec-
tives over time.

Given the current BEV, battery, and charger technology, BEVs are a promising
source of flexibility for the electricity system. Time and energy flexibility are useful
concepts to quantify the amount of flexibility in each charging session. In the end,
BEV users are to decide how much flexibility they want to offer in different situa-
tions and for different objectives. Literature focuses on operators of smart charging
systems with technical objective functions that can alleviate the challenges discussed
in Chapter 4 (i. e., congestion management and ancillary services). While these are
essential topics from a grid-centred perspective, it is unclear whether BEV users will
fancy smart charging systems that focus solely on these objectives. Energy cost and
RES integration are other common objectives that seem more likely to offer incen-
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Figure 5.4.: Occurrence of smart charging objectives in the literature from 2008 to 2018.

tives to BEV users to charge flexibly. BEV users might also be motivated by slowing
down battery degradation and social aspects. Such objectives, however, are little
discussed in the literature. Chapter 8 provides an in-depth discussion on how the
objectives of charging system operators fit the objectives of BEV users.





CHAPTER 6

SHORT-TERM FORECASTING

The optimization of BEV charging towards different objectives requires foresight
of the charging flexibility and other variables connected to the charging process.
The next chapter describes how short-term forecasting can use historical insights to
generate predictions on future events. The frameworks and insights from this section
are the foundation for the forecast used to answer RQ 5, 6 and 7. A more detailed
description of the accuracy measures and forecasters used for the specific use cases
is described in Chapter 10 and 11.
Reaching smart charging objectives relies on the knowledge of the charging session’

flexibility and the future developments of external factors that influence reaching
the target objective. As an alternative to BEV users entering the charging settings
into the user interface or using defaults, smart charging systems can use short-
term forecasts to estimate charging flexibility. Smart charging systems often aim to
fulfil objectives that include unknown variables, e. g., when optimizing against future
energy prices. As the realisations of these variables are nor available beforehand,
forecasts are a crucial input to smart charging systems. This chapter provides a
concise overview of the basics of short-term forecasting in the energy domain.
While forecasts are mere statements about future developments, a quantitative

forecast assigns a numerical value to a predicted variable Y at a certain point in
time t. Hyndman and Athanasopoulos (2018) name two requirements to derive
meaningful quantitative forecasts. Statistical information about the past and the
reasonable assumption that the historical patterns will continue in the future. Fore-
casters (also forecasting models) F serve to track these patterns and project them
into the future.

49
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Information about the past is usually stored in time series. Time series assign
numerical values of a variable to specific points in time. The time steps between the
individual observations can be constant or variable (Hyndman and Athanasopoulos,
2018). In time series with constant time steps, the width of a time step t̄ is called
its temporal resolution.

y

t

ŷ

y

forecast origin forecast horizon

t̄

Figure 6.1.: Terminology of time series forecasting.

Figure 6.1 illustrates the forecast of a time series. During the training period (solid
line left to the forecasting origin), the forecaster is calibrated using the existing data
from the past to learn historical patterns of the predicted variable yt for time t. The
actual forecast ŷt begins with the forecasting origin and extends over the forecasting
horizon (dashed line). In this phase, the trained (calibrated) forecaster provides a
forecast for the future values of the time series. In the following, this dissertation
marks predicted values of a random variable Y at time t as ŷt. The forecaster, hereby,
often relies on a set of features τ that have some predictive power on the predicted
variable y. Features can be prior observations of the predicted variable or external
explanatory variables (see Section 6.2):

F : τ → ŷ. (6.1)

In contrast to point forecasting, in probabilistic forecasting a forecaster (model) F
does not aim to predict a single value ŷt, but the distribution of the predicted value
P̂ (Y < yt):
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F : τ → P̂ (Y < yt). (6.2)

While some forecasters are capable of predicting the full probability distribution,
e. g., kernel density estimators (Jeon and Taylor, 2012), other forecasters, e. g., quan-
tile regression (Koenker and Bassett, 1978), do not predict a complete probability
distribution P (Y < y). Instead, they predict a selected set of quantiles Q. A real
number qa is an a-quantile of P if

P ((−∞, qa]) ≥ a and P ([qa,+∞)) ≥ 1− a. (6.3)

Comparing the results of forecasters providing a full probability distribution with
quantile forecast, requires the probability distribution to be discretized into the same
quantiles. Besides, using discrete quantiles of the distribution makes it easier to
visualize and communicate the results resulting in many papers analysing quantile
predictions. In consequence, the terms quantile and probabilistic forecasting are
often used interchangeably.

6.1. Forecasting Process

The forecasting process to derive predictions of a random variable comprises five
consecutive steps (Hyndman and Athanasopoulos, 2018). First, the developer of the
forecaster has to define the purpose of the forecast by understanding the use case of
the forecast and obtaining domain knowledge regarding the problem. This step could
result in technical requirements of the forecast (e. g., predicted variable, forecasting
horizon, forecasting origin, and the temporal resolution of the forecast). Besides,
the first step includes collecting a pool of data that could influence the predicted
variable. To obtain this knowledge, the forecaster could screen literature or consult
with domain experts and the future users of the forecast results. Diligent problem
definition in the first step ensures that the forecast meets all requirements, uses all
available information, and can later be integrated into an information system in a
useful way.
In the second step, the developer of the forecaster gathers all information available

to improve the forecast. The information can be statistical data (i. e., time series of
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the predicted and explanatory variables) and domain knowledge of their correlations.
This step can build on interviews with domain experts or on literature survey.

The third step is a preliminary (exploratory) analysis of the statistical data. This
step allows to identify outliers in the data and cleanse the data if necessary. Next,
the preliminary analysis should identify existing patterns, correlation, trends, sea-
sonalities, and cycles in the statistical data. These patterns provide clues for the
selection and design of forecasters in the next step.

Based on the statistical data collected in Step 2 and the insights of Step 3, the
fourth step is to identify promising forecasters to predict the predicted variable.
Forecasters are models that use the data of a training set (see Chapter 6.4) to learn
relationships between the predicted and explanatory variables. During training, the
parameters or weights of the forecasters are adjusted to minimize the forecasting
error (see Chapter 6.3). Usually, several forecasters are trained and compared at the
same time. The comparison of the different models takes place on unseen data (i. e.,
validation set). This comparison allows selecting the most promising forecaster to
use for future application.

The final step is to test the selected forecaster’s performance under practical con-
ditions using a suitable accuracy measure or a case study. This final step uses
another set of unseen data (i. e., test set). Standard measures for the performance
of a forecaster are forecasting accuracy, computing time, and other metrics such as
the forecaster’s performance in a use case. It is best practice, to compare the per-
formance of the selected forecaster with an existing benchmark model (vom Scheidt
et al., 2020).

6.2. Forecasters

The core of a quantitative forecast is the forecaster. Forecasters are rules, functions,
or models that describe a relationship between data observed in the past and the
future values of the predicted variable. Depending on the data used to model this
relationship, literature differentiates different types of forecasters based on what kind
of features τ are used to derive the forecast.
Time series models use only the information of the predicted variable and no ex-

ternal information. As they infer a regression between past and future observations
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of the predicted variable, they are also called autoregressive models. Such autore-
gressive models explain the future development of the time series based on historical
patterns (i. e., trends, seasonality, cycles). Hence, they integrate prior observations of
the predicted variable (i. e., lagged variables). Examples of such forecasters are linear
autoregressive models, autoregressive-integrated-moving-average models (ARIMA),
or exponential smoothing (Hyndman and Athanasopoulos, 2018). Time series models
have the form of:

ŷt = f(yt−1, yt−2, ...). (6.4)

When predicting values of a forecasting horizon further than one time step, not all
historical values considered in the model might be available at the forecasting origin.
In this case, the forecaster can include prior forecasts of the predicted variable to
replace the missing observations:

ŷt = f(ŷt−1, yt−2, ...). (6.5)

Often, other variables are causally or correlatively related with the predicted vari-
able (e. g., electricity consumption and ambient temperature). If this information is
available at the forecasting origin, this information can be used as an explanatory
variable xt . Like autoregressive variable, external explanatory variables can have a
time lag (e. g., zt−1). Typically, regression models are used for this purpose:

ŷt = f(xt, zt−1, ...). (6.6)

Mixed models take into account both explanatory and lagged variables of the
predicted variable(Hyndman and Athanasopoulos, 2018):

ŷt = f(yt−1, xt, zt−1, ...). (6.7)

A priori it is often unclear which approach (autoregressive, external, or mixed)
will result in the highest forecasting accuracy. Comparing different models with
different input feature sets allows finding the best forecaster. As linear regression
models and artificial neural networks (ANN) can be used for all three approaches,
they are a common choice when testing the effects of autoregressive, external, or
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mixed input features. Comparing the accuracy of different forecasters requires an
accuracy measure to quantify their accuracy. Such accuracy measures are described
in the next section.

6.3. Accuracy Measures

Accuracy measures allow quantifying the accuracy of a forecast. In particular, they
are used to compare different forecasters to select the best-suited for the particular
use case. Besides, accuracy measures can be used as optimization criteria during the
training of a forecaster.

Accuracy measures for point forecasts are usually based on the forecasting error of
the individual points in time yt− ŷt. The most commonly used accuracy measures in
science and practice are the mean absolute percentage error (MAPE) and the root
mean squared error (RMSE) (Armstrong, 2001) which has not changed during the
last twenty years for the energy domain (vom Scheidt et al., 2020).

The RMSE puts higher weights on observations with larger forecasting errors. As
large forecasting errors can have greater negative effects in practice, this behaviour
is desired in many use cases. However, this sensitivity extends not only to poor
forecasts but also to errors in the data (Armstrong, 2001). The RMSE for n points
in time is calculated as:

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2. (6.8)

As the RMSE is affected by the scale of the actual observations it is not possible
to compare forecast accuracy between different data sets with different scales (e. g.,
load forecasts on substation and energy system level). In contrast, scaled accuracy
measures are more comparable between different data sets, as they set the forecasting
error in relation to the height of the observation.

The mean absolute percentage error (MAPE) is a scaled accuracy measure that
builds on the mean absolute error (MAE). The MAPE indicates the average per-
centage deviation of the forecast from the actual observation which makes it easy to
communicate:



Out-of-Sample Validation 55

MAPE =
1

n

n∑
i=1

|yi − ŷi
yi
| × 100%. (6.9)

While the MAPE is independent of the scale of the data set, is not suited for
all data sets, as it inflates with small actual observations (i. e., low magnitude of
the data set) and is undefined if the actual observation is zero. This is particularly
relevant in the energy domain, as generation, consumption, and prices can assume
negative and zero values. Besides, MAPE is biased accuracy measure as it favours
low forecast for positive data sets.
Selecting accuracy measures is a trade-off between the following properties (Arm-

strong, 2001). First, accuracy measures should not be affected by the scale of the
data set to allow for comparisons between different use cases and time series. How-
ever, accuracy measures must also fit the specific use case and provide face validity
to experts who are users of the forecast. In addition, new accuracy measures should
provide similar results to existing ones to ensure construct validity. In some use
cases, having few large forecasting errors is worse than having many small ones. In
this case, an accuracy measure which is sensitive to outliers (e. g., RMSE) would be
more valid than a less sensitive one. However, in most cases, insensitivity towards
outliers is a desired property when evaluating forecasting results. One way to ob-
tain insensitive accuracy measures is by using the median instead of the mean when
averaging individual observations. Last, accuracy should not be biased (see above)
and independent of the difficulty of the forecasting task.
An in-dept discussion on how different accuracy measures manage to trade off

between these properties is described in Hyndman and Koehler (2006) and Granger
and Pesaran (2000). For probabilistic forecasts, the accuracy of the predicted distri-
bution P̂ (Y < yt) has to be evaluated against the actual observation yt. This leads to
additional requirements on accuracy measures. Gneiting and Raftery (2007) discuss
these requirements and propose accuracy measures for probabilistic forecasts.

6.4. Out-of-Sample Validation

Out-of-sample validation allows measuring the forecast accuracy under realistic con-
ditions on unseen data (i. e., on a test set). Out-of-sample validation is not only
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required when testing the final model in Step 5 but also in Step 4 during model
development when multiple forecasters are trained on the training set and compared
with each other. An additional hold-out-sample (i. e., validation set) during training
can be used to avoid over-fitting (Armstrong, 2001). Over-fitting means that a model
is to well adapt to the training data which bears the risk of not generalizing to other
data. Hence, data is usually split into training, validation, and test set.

The splitting ratio of these three data sets depends on the data available and
further considerations. For instance, machine learning models often require a large
minimum amount of training data to achieve acceptable results. This need for data
would require a relatively large share of data for training if the total data is lim-
ited. To overcome such problems, there exist different approaches to out-of-sample
validation which are described in the following. The following paragraph describes
out-of-sample validation with only two data sets (training and test) to ensure clar-
ity. The simplest form of out-of-sample validation is splitting the data arbitrarily
into training and test data. However, splitting only once can, by chance, result in
splits where the characteristics of training and test set are non-representative. This
problem can be mitigated through cross-validation. Cross-validation is the idea to
perform multiple splits and evaluations on the available data to average out such
situations and make use of all data available and thus increase validity of results.

Exhaustive cross-validation splits the data set into all possible combinations of
training and test set. This exploits the full potential of existing training data and
ensures a forecaster that could generalize on data that is similar to the data set.
Exhaustive cross-validation is often used when analysing non-time series data. Leave-
one-out cross-validation uses a single point of the data of size ofN as a test set (Webb,
2003). Subsequently, N models are trained on a training set of length N−1 and their
performance is evaluated on a test set of length one. In time series, this only works
for a forecasting-horizon of one. For forecasts with a forecasting horizon greater than
one time step, the length of these segments is not one but must correspond to the
forecasting horizon. The leave-p-out approach includes p segments in the test and
N − p in the training set. This results in an even higher number of combinations of
training and test sets.

Depending on the initial amount of data the high number of combinations can be
computationally expensive. Non-exhaustive cross-validation restrains from using all
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possible combinations as a more economical alternative. The k-fold approach splits
the data into k areas of equal size. In time series forecasting, the length of these
areas corresponds to the forecasting horizon. Each range is used once as a validation
set and k − 1 times as part of the training set. This reduces the calculation effort
compared to a complete cross-validation. For the special case k = N the k-fold
approach corresponds to the leave-one-out approach.
Another approach to incomplete cross-validation is bootstrapping. Here individual

observations are randomly assigned to the training or test set over multiple cross-
validation runs (Efron and Tibshirani, 1994). In contrast to k-fold, the data of the
test set are scattered over the entire data set, which can allow to capture all features
of a time series with each run (fold). On the downside, the assignment is naturally
random and not controllable (Kohavi, 1995).
It is generally accepted that cross-validation is preferable to the use of a single
hold-out (Blum et al., 1999). Full cross-validation can quickly become very com-
putationally intensive and can have practical limitations. In this case, incomplete
cross-validation can be used.
Figure 6.2 describes a prototypical data split for model fitting, model selection,

and out-of-sample testing. The first step is to remove a test set from the initial data.
This test is used as a hold-out sample for testing the forecasters’ performance under
realistic conditions and is not used during model development in Steps 1 to 4. Next,
the remaining data is used for model selection and split into training and validation
set. In Figure 6.2 this is performed in an outer cross-validation loop using a five-fold
cross-validation. The forecasters are trained and compared on five different data
splits. During training, some forecasters might require an inner cross-validation loop
to find model parameters or prevent over-fitting. In the example, this is implemented
as incomplete cross-validation with two folds.
This example shows, that most forecasting task require multiple data splits and

can apply different approaches to split the data. In the case of a time series forecast,
many cross-validation methods have a decisive weakness. Sampling from the initial
data set can break the temporal integrity of training, validation, and test set (Arlot
et al., 2010). If the patterns are constant throughout the time series, putting the
training set before the validation before the test set mimics the practical application
of the forecast as only past data is used to forecast the future. However, this might
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TestTraining and Validation
out-of-sample evaluation

(one hold out sample)

outer cross-validation loop
for model selection (five folds)

inner cross-validation loop
for model training (two hold out samples)

Figure 6.2.: Out-of-Sample validation for model fitting, model selection, and out-of-sample
testing.

not work when only limited (e. g., one year of) data is available. For instance, with
a split which keeps the temporal integrity, the training would take place in the first
half of the year, the models would be selected over the late summer and tested in
autumn and winter. Such a forecasting process would not lead to satisfactory results
as the forecaster could not learn the seasonal patterns. In contrast, breaking the
temporal integrity would allow ensuring that each of the three data sets contains a
representative selection of the data available in the time series.

To keep temporal integrity, forecasting often either splits the data into three simple
hold-out samples (training, validation, test) or uses a rolling window approach of
cross-validation. In both cases, often two steps are applied (Hong, 2010). First, the
first 50 % of data is used for training and the following 25 % is used as a validation
set for model selection. Second, the selected model is retrained on the joint training
and validation set and testes on the remaining 25 % of data. With this approach only
the last 25 % of data are used for testing. To include a lager part of data into the
test set, the rolling window approach starts with a smaller training and validation
set and moves forward in time.

Figure 6.3 shows how the rolling windows approach would split the initial data
set compared to five-fold cross-validation. It is evident, that the rolling windows
approach does not include data from all over the time series into the test set. An-
other drawback from splitting data this way is that many standard implementations
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rolling windows approach

time
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Figure 6.3.: Comparison of of five-fold cross-validation and rolling window approach for
out-of-sample testing in time series.

for machine learning do provide frameworks for standard cross-validation, but not
for rolling window cross-validation with time series. Hence, many researchers use
other cross-validation approaches for time series forecasting. While this breaks the
temporal integrity of the data, it usually has no adverse effects in practice. Bergmeir
and Beńıtez (2012) investigate the effect of using conventional cross-validation meth-
ods compared to the rolling window approach in an empirical study. Although the
cross-validation breaks the temporal integrity (i. e., using data behind the test set
for training) they could not find any practical disadvantages of model selection using
cross-validation. On the contrary, the rolling window approach even achieved less
robust accuracy measures. Subsequently, it is recommended to use a blocked form
of cross-validation (i. e., k-fold) in forecasting tasks.





CHAPTER 7

DIGITAL NUDGING

With advances in behavioural economics, predictions of human behaviour in certain
decision situations become more accurate. In particular, behavioural economics finds
that human behaviour is not only driven by financial incentives and rational deci-
sion making (Tversky and Kahneman, 1974). Choice architecture is the idea that
thoughtful design of decision enviroments can use this knowledge to nudge decision-
makers towards desirable outcomes without adding substantial financial incentives
(Thaler and Sunstein, 2009). Choice architecture could allow information systems
to change social norms towards more sustainable behaviour (Watson et al., 2010).
A point of vantage is the interaction of consumers (e. g., BEV users) with the in-
formation system (e. g., user interface of a smart charging system). Here, the users’
interaction with the energy system (e. g., their charging settings) depends on the
design of the information system. The following chapter lays the groundwork for the
application of choice architecture in smart charging by introducing digital nudging
and its analogous roots in Section 7.2 and 7.1. Finally, it provides an overview of de-
sign aspects for digital nudges and a methodology for developing and testing digital
nudges in Section 7.4 that is applied in Part III of this dissertation.

7.1. Choice Architecture

In contrast to homo oeconomicus, regular people tend to make irrational decisions.
They smoke, eat unhealthy food, or save too little for retirement. They do not
always maximize their overall utility since their rationality is limited by cognitive
limitations and influenced by heuristics (Simon, 1955).
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For instance, Tversky and Kahneman (1979) find that individuals consistently
prefer guaranteed payouts to lotteries with the same expected payout as they are
risk-averse. This effect goes so far that the experiment participants do not maximize
expected economic outcome but show a concave utility function for gains. Tversky
and Kahneman (1979) explain this deviation from the rational choice with a set of
heuristics in human decision making that bias the rational choice.

In this way, biases can lead to decisions that do not yield the best result for
the decision-maker. The decision environment strongly influences the outcome of
the decision-making process. For instance, the positioning of dishes on display in a
canteen affects the choice of customers. Customers are more likely to pick fruits if
presented at eye level (Thaler and Sunstein, 2009). Choice Architecture is the con-
scious design of decision environments. Since heuristics and biases influence human
decisions (Tversky and Kahneman, 1974) choice architects can use this knowledge
to nudge people towards better decisions. A nudge is a way of directing people’s
behaviour in a particular direction without limiting freedom of choice or fundamen-
tally changing economic incentives, e. g., by adding monetary incentives. Thaler and
Sunstein (2009) propose using nudges as a policy tool and call the concept libertarian
paternalism: This assumes that private and public institutions may influence people
through nudges if their freedom of choice is respected. Thaler and Sunstein (2009)
describe a series of nudges and give vivid examples.

Setting defaults takes advantage of people’s inertia in the decision making process.
People tend not to change decisions once taken, which could be due to laziness or
fear of change (Jung and Weinhardt, 2018). In result, countries which have an opt-in
for organ donation receive a rate of organ donors that is below the general consent
rate in surveys. Countries implementing consent as default and an opt-out option
have a significantly higher quota of organ donors (Whyte et al., 2012).

Choice architecture should also expect human error and take precautions to pre-
vent it. For example, diesel nozzles are too large to fit into gas tanks to avoid filling
gas tanks with diesel (Thaler and Sunstein, 2009).

Pronounced feedback helps people to understand their decisions better and adapt
their actions accordingly. People consume less energy when they receive real-time
feedback on their consumption (Tiefenbeck et al., 2019). Feedback can involve gam-
ification aspects. For instance, the user interface of the latest model of the BEV
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Nissan Leaf presents a growing tree as long the driver stays in the energy-saving
eco-mode (Yoshizawa et al., 2011).
In giving feedback, choice architects must understand mappings that users make

when considering decisions. Staying in the energy domain, most users will not have
a mental representation of CO2 saving equivalents expressed in a unit of mass. How-
ever, translating the mass of CO2 into the distance travelled by car, emitting the
same amount of CO2 will give them a more vivid image (Thaler and Sunstein, 2009).
Structuring complex choices can make choices more accessible.
Last, prices or vouchers can also be considered a nudge as long as they do not sub-

stantially change the economic incentives (Thaler and Sunstein, 2009), e. g., setting
a price tag at 99 instead of 100 e .
While every decision is a possibility for choice architects’ intervention, digital

(choice) environments increasingly affect real-world behaviour. Weinmann et al.
(2016) transfer the concept of nudging in the domain of human-computer interac-
tion: digital nudging uses insights from behavioural economics to design information
systems in a way that nudges users’ decisions. The next section describes how nudges
are used for environmental protection and in information systems.

7.2. Digital Nudging

Nudging finds a wide application in the design of digital settings. Weinmann et al.
(2016) define digital nudging as ’the use of user interface design elements to guide
people’s choices or influence users’ inputs in online decision environments’. Meske
and Potthoff (2017) list the following set of nudges applicable in user interfaces. We
expanded this list by providing a description with examples for applications:

• Anchoring - Tversky and Kahneman (1974) show that decision-makers are
influenced by initial pieces of information, even if they are unrelated to the
task at hand or stay with pre-selected anchors. For instance, a high initial
slider position can nudge people to select higher values when offsetting CO2

compensations for air travel (Székely et al., 2016).

• Customized information - Individual differences in users might cause them to
react differently to elements in the user interface. An adaptable system could
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offer information tailored for the users’ to nudge them towards intended goals,
e. g., by offering adaptive nudges that consider user characteristics (Hummel
et al., 2017).

• Decision staging – A choice architect can break down complex decision into
multiple steps, e. g., by spreading the decisions in multiple frames of a web page.
Breaking-down the decision can facilitate the decision for users who would
otherwise be overwhelmed with the complexity of the decision, e. g., when
selecting privacy setting (Kroll and Stieglitz, 2019). More, decision station can
set anchors and provide framing that affect the decision making directly.

• Informing - Information is another way of providing context to a decision sit-
uation, e. g., by providing feedback on the (expected) outcome of the decision.
(Tiefenbeck et al., 2019) find that providing feedback on energy consumption
can influence consumption behaviour.

• Simplification of feedback – Simplification can address the decision environ-
ment (see decision staging) but also the provision of feedback. Simplified feed-
back allows users to map decision outcomes towards ideas that are meaningful
to them. For instance, while avoided emission communicated as tons of CO2

are less intuitive, converting this information into km driven by an ICE car
might be more accessible to the users (Thaler and Sunstein, 2009).

• Default setting - Initial slider positions and pre-checked checkboxes can utilize
decision inertia so that the users are more likely to stay with the pre-selected
option. This nudge is so powerful that the Court of Justice of the European
Union (2020) issued a ruling that pre-checked checkboxes are not valid to obtain
consent in some settings.

• Time limitations - In some cases, users procrastinate decisions and interactions
with the information system. In such cases, a time constraint (e. g., countdown)
can incentive the users to take action. This is mostly known from online shops,
where special discounts are only provided for a limited time frame (Djurica
and Figl, 2017). Roth and Ockenfels (2002) find that time limits alter users’
behaviour on eBay and Amazon.
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• Precommitment - Holding people up to their targets is a powerful tool to
overcome other biases, that might lead them astray from fulfilling their goal.
Already in the 1970s energy crisi, Becker (1978) shows how goal setting can
help users to reduce energy consumption in their homes. This step can be
aided by information systems (Loock et al., 2013b).

• Social influence - As the behaviour of their peers influences humans, infor-
mation about normative behaviour or scoreboards can nudge them into the
direction of the socially promoted behaviour, e. g., when feedback on energy
conservation is shared with peers (McCalley and Midden, 2002).

• Reminders and Warnings – Reminders and warnings are simple user interface
elements, that request users to take action and direct their decision making.

• Framing - Framing uses the words for descriptions or texts to change the con-
text of a decision situation. A typical example is loss framing, resulting in
survey participants being more likely to give up self-harming behaviour (e. g.,
smoking) when they are informed about the adverse effects of continuing smok-
ing than the benefits of giving up (Schneider et al., 2001).

As this list is not comprehensive, it provides an overview on how digital nudging
can foster more sustainable behaviour. Further taxonomies for nudging interventions
are discussed in Section 7.4. Which of these digital nudges can effectively alter users
behaviour depends on the context of the decision situation. Many everyday decisions
affect our environment. The next section describes how nudges can help to foster
sustainable behaviour in such situations.

7.3. Digital Nudging and Environmental Protection

Research shows that digital and analogue nudges successfully get people to behave
better in their interest or for the benefit of society and the environment. In particular,
nudges are successful in promoting sustainable behaviour. This section summarizes
findings on the successful use of nudges towards sustainable behaviour and discusses
(digital) nudges in the field of information systems research.



66 Digital Nudging

Nayar (2017) identify a gap between public awareness of water scarcity and actual
action on the problem. The authors use choice architecture to close this gap. As
nudges, they use a personal approach, information cards (with a social nudge –
reporting positive acts of peers – and action points to save water) and reminder
stickers. In a field test with 615 households in rural India, they found water savings
of 10.3 % compared to the control group of 150 families. This result shows that
even inexpensive measures can lead to significant effects on behaviour, if they are
designed carefully.

Schultz et al. (2007) show that normative messages (i. e., a social nudge) can also
affect energy consumption. In a field study, they investigate the electricity con-
sumption of 290 households in the US. Based on the consumption data, households
receive feedback on their electricity consumption. The letter includes information
on whether their average household consumption was below or above that of the
peer group. Besides, the information for half of the households included an injunc-
tive message (i. e., a positive or negative emoticon). On average, households with
consumption above the average consequently reduced their electricity consumption.
Households with below-average consumption and without an injunctive message ex-
perienced a boomerang effect: they significantly increased their electricity consump-
tion. This effect did not occur for peers that received an injunctive message (i. e.,
a happy smile). This result shows the constructive and destructive power of social
nudges and normative framing. However, prudent design can counteract unwanted
adverse effects.

In a field trial with 118 households, over 100 days Asensio and Delmas (2016)
found that framing energy conservation, as a health issue in the community is more
effective and sustainable than a monetary reward. They sent treatment messages to
households, comparing their consumption of the last two weeks with the neighbour-
hood average. The message also stated the amount of air pollutants saved or emitted
compared to the average. Besides, the message noted that air pollutants ’contribute
to known health impacts such as childhood asthma and cancer’. The control group re-
ceived a similar message, which also included a comparison of consumption with the
neighbourhood and the money saved or spent compared to the average household.
The results show that the health framework reduces energy consumption by 8-10 %
compared to the control group. This result indicates that framing can be a success-
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ful nudge that can complement social nudges and promote long-term behavioural
changes towards sustainability.
Another field of application are contracts for electricity from RES where Momsen

and Stoerk (2014) tested the effectiveness of several digital nudges with deviating
success. Similar to Nayar (2017), they find a gap between intention and action for
the signing of such energy contracts: 50-90 % of Europeans prefer energy from RES
and are willing to pay a small premium for it (similar numbers are found in Germany
by Mengelkamp et al. (2019)). Nevertheless, less than 3 % had such a contract in
2014. An online experiment examines whether digital nudges can close this gap.
The authors emulate the website of an electricity provider and simulate the closing
of a contract. The different mock-ups of the website implement the following digital
nudges based on priming, mental accounting, framing, decoy, social norms, and a
default, where the renewable contract is pre-selected. Only the default nudge shows
a significant influence on the choice. It increases the proportion of test subjects
voting for the renewable contract by 44.6 %. Here nudges are implemented within
a digital decision environment and tested in an experimental setting. The authors
admit that the observed effect strengths are not necessarily transferable to the field.
However, it should be possible to conclude the direction of the effect.
In another example for the digital nudges in information systems, Loock et al.

(2013a) provide an overview of information-system-based feedback interventions to
save electricity, gas, or fuel. The authors also test how target setting (i. e., stating
how much energy one wants to consume) influences the future power consumption
and analyse the effect of default goals within this process. The evaluation takes place
on a web portal with 1,791 users. The results show that pre-selected default targets
significantly influence self-defined targets. However, if the defaults are too high or
too low, they lose their effect.
Choice architect must further consider the target group of the intervention. Costa

and Kahn (2013) show that nudges work differently with different target groups. As
described in several studies above, households receive information about their energy
consumption and that of their peers. The authors find that this nudge is four times
more effective with political liberals than with conservatives. This result shows that
nudges should not only use the basic human behaviour patterns (e. g., biases) but
should be tailored to the user group and their goals.
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These examples from literature show that nudges (especially defaults, framing,
and social nudges) are a powerful tool to foster environmental friendly behaviour.
However, nudges must fit the context and the targeted user group, as otherwise, they
can backfire and even have adverse effects.

7.4. Digital Nudge Development

While the previous chapter shows that nudges are a promising tool to foster envi-
ronmentally friendly behaviour, not all nudges work successfully for each user group
and decision situation. To develop fitting digital nudges to a specific decision situ-
ation Mirsch et al. (2017) describe a five-step nudge development process based on
Weinmann et al. (2016). Schneider et al. (2018) integrate two of these steps to create
a four-step process. These digital nudge development processes rely on analogous
processes for the development of nudges and behaviour change interventions in off-
line settings (Datta and Mullainathan, 2014; Ly et al., 2013). In the following, we
describe the digital nudge development process based on Schneider et al. (2018) and
indicate the respective steps from Mirsch et al. (2017) in parentheses.

Step 1: Define the goal (define) The first step in nudge development is to
define the goal of the behaviour change intervention. This goal has to be aligned
with the users’ goals, the organisation providing the information system, and society.
For instance, charging station operators might want users to charge more flexible to
optimise energy procurement. In contrast, BEV users want to charge fast and the
reliably with green electricity. At the same time, society aims for high shares of RES,
which requires a flexible demand-side, to obtain overall sustainability goals. These
goals influence the choices available, which affect the design of the choice menu. For
instance, a smart charging station could let users decide on how flexible they what
to charge their BEV. The characteristics of choice determine what ways the choice
architect can go in Step 3. The smart charging system could either offer a binary
decision between a flexible and inflexible charging tariff or ask the users to explicitly
set planned departure time and energy requirement on two (continuous) scales. The
resulting choice menu affects what types of digital nudges can be used to change the
users’ behaviour.
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Step 2: Understand the users (diagnose) Most nudges exploit or correct
peoples’ biases. What biases occur in peoples’ decision making depends on the
decision situation, what choices are offered in the choice menu, and what goals the
users intend to reach. The second step aims for understanding the users of the
information system, which provides essential insights on how to design a digital
nudge in the third step.

Step 3: Design the nudge (select and implement) After defining the goals of
the intervention and establishing an understanding of the decision situation, choice
architects can select from different possible digital nudges. Besides the array of
digital nudges described above, nudging frameworks like Behavior Change Technique
Taxonomy (Michie et al., 2013), NUDGE (Thaler and Sunstein, 2009), MINDSPACE
(Dolan et al., 2012), and Tools of a Choice Architecture (Johnson et al., 2012)
provide a set of possible interventions to nudge users towards the desired behaviour,
as described in Section 7.2. In contrast to interventions in the physical world, digital
nudges are often easy and fast to implement by making adaptions in the front-end
of the user interface. Acting in digital environments makes it affordable to test and
evaluate the effectiveness of digital nudges in the final step.

Step 4: Test the nudge (measure) The effect of digital nudges depends on both
the context and goal of the decision environment and the users. As it is difficult to
foresee all factors and implications during the first three steps, it is crucial to test the
effects of the intervention on the desired behaviour in realistic situations. Nudges
can be tested in online experiments and the field by providing different treatments
(i. e., digital nudges) to different users by using A/B testing and split testing based
on experimental economics (Friedman et al., 1994). If the nudge does not provide
the desired effect, choice architects can move back to previous steps. Then, they can
utilise the insights from testing to redesign the nudge (Step 3), use the test results
to develop a clearer picture of the users and decision situation, or even adapt the
goals of the intervention. A guideline for conducting and analysing such empirical
experiments based the social science research is provided in Döring and Bortz (2016).
The nudge development and testing in Part III builds on the methods given by Döring
and Bortz (2016) and the nudge development process in Mirsch et al. (2017).
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The previous chapters in this part show that flexibility from BEVs is valuable
for the energy system moving towards more sustainability. However, BEVs users
decision on how to charge their BEVs is a bottleneck to the flexibility potential
from BEV charging. As financial incentives to charge flexible are low, and BEV
users might be frightened to use flexible charging, other measures besides financial
incentives might be required to unlock BEVs’ flexibility potential (Schmalfuß et al.,
2017). Digital nudging provides a powerful tool to establish smart charging without
limiting BEV users’ freedom or adding costly financial incentives schemes.



Part III.

Behaviour Change towards Smart

Charging





CHAPTER 8

BEV USERS‘ OBJECTIVES

This chapter is based on joint work conducted by Julian Huber, Elisabeth
Schaule, Dominik Jung, and Christof Weinhardt, published in World Electric
Vehicle Journal, cited here as: Huber et al. (2019b).

Changing behaviour towards smart charging using digital nudges requires an
understanding of the BEV users decision process. An integral part of this decision
process is the objective BEV users have in mind when deciding how to charge their
BEV. Chapter 5 shows that the objectives prevalent in smart changing systems
(i. e., congestion management, ancillary services, etc.) are not naturally in the
sphere of interest of BEV users. This chapter analyses what other objectives
might motivate BEV users to use smart charging systems. To this end, Section 8.1
summarizes related work on factors that might motivate BEV users to act more
sustainable. However, considering only the objectives of BEV users might not result
in efficient smart charging systems, as they might not be relevant to the operators
and designers of the systems (compare Chapter 5) or might not be feasible from a
technical perspective. To integrate the requirements of demand (BEV users) and
supply-side (charging station operators), the remainder of the chapter answers the
following research question:

RQ 1 Which objectives of smart charging are likely to motivate BEV users and
show high technical potential?

Section 8.2 describes the methodology of an expert survey that we conduct to
validate the findings from the first sections. Based on eight incentive factors for
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smart charging found in the literature review, we derive statements on the benefits
of smart charging. We asked 16 domain experts to evaluate these statements on their
technical correctness and their persuasiveness for end users. Last, Section 8.3 and 8.4
present and discuss the results. The chapter ends with a conclusion in Section 8.5

8.1. Related Work

The slow rise of papers considering fairness and social aspects in Figure 5.4 in Chap-
ter 5 indicates that the BEV users’ perspective on smart charging has not been
considered to the same amount and with the same rigour as the technical aspects.
As the flexibility used in smart charging depends on the BEV users’ decisions, it is
essential to convince them to use such systems. While financial reward might not
be sufficient to convince BEV users to use smart charging (Will and Schuller, 2016),
they usually have limited knowledge about the energy system and the benefits of
smart charging (Biresselioglu et al., 2018). It remains an open challenge to identify
the objectives that can convince BEV users to utilize smart charging. This section
discusses related work to identify how the users’ motivation to use smart charging
matches the technical objectives described in Chapter 5.

Reviews and Surveys on BEV users and Smart Charging Will and Schuller
(2016) provide a review of twelve studies that research acceptance factors of smart
charging. Most of the studies consider the financial (i. e., monetary incentives) and
socio-environmental (i. e., RES integration) dimension as positive factors that in-
crease acceptance of smart charging. Three out of twelve studies postulate technical
aspects (e. g., contribution to grid stability) as a motivating factor.

In the same paper Will and Schuller (2016) present a survey with 237 BEV users
and find a positive influence of RES integration and grid stability on the acceptance of
smart charging systems. Interestingly, survey results do not show a positive influence
of monetary incentives.

In contrast, in an interview survey with BEV users that used smart charging
systems in a field trial, Schmalfuss et al. (2015) find that financial benefits are
an essential motivational driver for the usage of such systems. The participants
further name RES integration, contribution to grid stability, awareness of energy
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consumption, and satisfaction from gamification. To gain more recent insights, we
perform a forward search for papers citing these two sources (Schmalfuss et al., 2015;
Will and Schuller, 2016) and provide the results in the following.
A review provided by Franke et al. (2018) analyses the BEVs users’ interaction

with BEVs and their charging behaviour in particular. They find that BEV users
have individual time-stable differences in the way the drivers charge their cars. They
further analyse that interaction with smart charging systems is costly for the user
(with reduced mobility flexibility and increased planning effort) and suggest a user-
centric design of smart charging systems. The authors stress two points of a user-
centric design: Smart charging systems must provide user guidance and assistance
in minimizing effort for the user and need to consider the users’ objectives in the
charging session. These requirements can be addressed by data-driven information
systems that could recommend charging settings (see Chapter 6) or provide feedback
on avoided CO2 emissions (see Chapter 10).
Sovacool et al. (2017) provide a review that presents a socio-technical approach

for vehicle-to-grid charging. The authors distinguish three types of user intervention
in smart charging. Time-of-use pricing, where the users receive price signals and
actively decides when to charge their BEV. Revenue sharing, whereby users enter
their flexibility for the charging session and receive financial compensation in return.
Last, a voluntary shift in charging based on education and non-financial motives. The
authors describe BEV users’ perception of all the above factors as the behavioural
dimension of smart charging and conclude that environmental benefits alone will not
succeed in convincing BEV users to use smart charging.
One of the few surveys on the end users’ perspective is a discreet-choice experiment

by Geske and Schumann (2018) among 611 (conventional) vehicle users, including
14 BEV users. The acceptance of uncontrolled and smart charging is higher than
for vehicle-to-grid concepts. Financial and socio-environmental aspects are the main
motivating factors for drivers to use smart charging. As drivers lack understanding
and interest in the technical details of the electricity system (Biresselioglu et al.,
2018) they are little motivated by technical aspects (e. g., avoidance of grid congestion
and reserve power plants).
Moreover, the Geske and Schumann (2018) find systematic differences in accep-

tance for smart charging schemes between drivers with different mobility charac-
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teristics, e. g., drivers with high mileage show lower levels of acceptance for smart
charging than other drivers. UCSCS should consider such differences and adapt to
the particular user and their mobility behaviour. One solution could be personalized
charging settings based in individual charging behaviour (see Chapter 6).

Tamis et al. (2017) describe insights from eleven smart charging projects focusing
on smart charging in households in the Netherlands. The objectives of these projects
are mainly financial and socio-environmental. Five out of them focus on two objec-
tives at the same time (e. g., lowering energy cost while using more local RES). Two
of the projects explicitly focus on the community aspect in the socio-environmental
dimension, and almost all of the projects try to benefit more than one stakeholder
(e. g., end-user, DSO, municipality, or aggregator) at the same time.

Considering the objectives of BEV fleet operators Ensslen et al. (2018) propose a
new tariff design for smart charging based on a survey with fleet operators and BEV
users. Both BEV users and fleet operators focus on the importance of mobility needs
for BEV users, preferring a minimum SoC of 100 km for emergencies. In an earlier
study (Ensslen et al., 2016), the same authors focus on fleet owners’ willingness to
pay for smart charging services. Both the guarantee of a minimum SoC and the use
of higher shares of RES to minimize CO2 emissions have a positive effect on their
willingness to pay for smart charging services.

Based on the literature, the design of smart charging systems should focus on
fulfilling mobility needs with high convenience and security (e. g., by ensuring a
minimum SoC). Besides, financial discounts and the integration of RES are the
primary motivators for BEV users to use such systems.

Fit between Operator and User Objectives The literature indicates that fi-
nancial benefits and integration of RES are the main drivers of acceptance of smart
charging systems. However, focusing solely on these two objectives omits an eval-
uation of the motivational power of other smart charging objectives (e. g., battery
degradation, social aspects, congestion management, and ancillary services).

Next, we connect the operators’ objectives from Chapter 5 to the perspective of
the BEV users to find whether they could also increase acceptance of smart charging
if communicated understandably and attractively. Table 8.1 maps the identified
objective functions from Chapter 5 with arguments that could convince users to use
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smart charging systems from the literature.
The arguments are based on the results of the studies collected in the previous

section, the literature discusses in Chapter 5 (mainly the search string ’vehicle ∧
charging ∧ incentives’ ), and from related research on nudging towards environmental
protection (to be discussed in Chapter 7). We discuss the objectives in the order of
Table 8.1.

Table 8.1.: Mapping of smart charging objectives with possible incentives.
Objective Incentive Source

Battery degradation Battery degradation Schoch (2016), Schmalfuss et al. (2015)
Cost advantage Cost advantage Schmalfuss et al. (2015), Ensslen et al. (2018)
Social aspects Social aspects De Groot et al. (2013)

Integration of RES

Integration of RES Will and Schuller (2016)
Environmental protection De Groot et al. (2013)
Health impact Asensio and Delmas (2016)
Climate impact Barr et al. (2011), Huber and Weinhardt (2018)

Congestion management
and ancillary services

Grid impact Will and Schuller (2016)

Battery degradation is a big concern to many BEV users (Schmalfuss et al., 2015).
Using smart charging to slow down battery degradation, as proposed in Schoch
(2016), could incentivize drivers to use smart charging.
A large number of studies (US Energy Department, 2015; Schmalfuss et al., 2015;

Ensslen et al., 2018; Huber et al., 2019a) find that cost benefits motivate users to
use smart charging. To align the operators’ financial interests with those of the
BEV users, Sovacool et al. (2017) propose revenue sharing concepts to make the
user more flexible in charging. This means that users offer their flexibility in their
charging settings and are compensated in return, e. g., (Salah and Flath, 2016).
So far, most papers omit aspects of fairness and community building in the design

of smart charging systems. Research on energy consumption in households has shown
that normative information and feedback on neighbours’ electricity consumption can
reduce electricity consumption by households (Asensio and Delmas, 2016). Similarly,
aspects and the idea of sharing the power grid within a community could also provide
an incentive to charge more flexibly (Huber et al., 2018d).
The integration of a higher percentage of RES is an essential driver for users to

accept smart charging. Integration more RES has several positive aspects and can
be framed towards the user from different angles. First, transparent information
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about the share of RES in the energy supply mix can motivate and influence users.
Following this notion, Germany specifies electricity suppliers to print its generation
mix on the customers’ electricity bill. Second, the displacement of conventional
power plants minimizes emissions of air pollutants. Studies on energy savings show
that households consume less energy if they receive information that this behaviour
minimizes air pollutant emissions, thereby preventing respiratory diseases (Asensio
and Delmas, 2016). Third, besides air pollutants, carbon dioxide emissions can be
avoided by load shifting, which could motivate users to use less energy or be more
flexible in consumption, i. e., accepting a longer deadline for the charging session.

While the integration of RES has many advantages that are easily understood
by BEV users, it seems much harder to communicate the benefits of congestion
management and grid operation. Will and Schuller (2016) group concerns about
congestion and grid stability and find a positive influence on the acceptance of smart
charging. Likewise, we assume that the end-users do not differentiate between voltage
quality, frequency, thermal overload, and other grid stability problems (Verbong
et al., 2013). Subsequently, we summarize congestion management and provision of
auxiliary services with the term grid impact.

In summary, the objectives of smart charging studied in the literature overlap well
with the incentives that could convince BEV users to use smart charging systems.
We illustrate this in Table 8.1, which presents the mapping of promising incentives
for the use of smart charging system and smart charging objectives. In the next
section, we conduct an expert survey to analyse which objectives that might work
as incentives can also work from a technical perspective.

8.2. Methodology

The literature review in Chapter 5 shows that for charging system operators, energy
costs, integration of RES, and auxiliary services are the main objectives of smart
charging. At the same time, there are only a few studies that research which factors
will convince BEV users to use smart charging systems. Although the incentive
factors for the BEV users seem to agree with the objective functions of the operators,
there is no clear picture of what the most convincing motivational factors are. Studies
even contradict each other, for example, Schmalfuss et al. (2015) find a positive
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effect of financial incentives while Will and Schuller (2016) do not. As it is unclear
whether all motivational factors for using smart charging will work from a technical
perspective, we survey domain experts to examine their assessment of the potentials
of incentive factors.

Research Design

To identify the most promising incentive factors and objectives, we first grouped
the different arguments for smart charging into eight groups based on the results
of the literature review (see Table 8.1). For each group, we derive three to five
one-sentence statements proclaiming the benefits of smart charging. After a revision
round discussing the statements in a round of three scientists convened with infor-
mation systems and electric mobility, we resulted in 31 statements (see an excerpt
in Table 8.2).
We then design an online survey for the evaluation of each statement. In the

survey, the domain experts rate each statement regarding its technical accuracy and
expected persuasiveness towards end-users. Getting the agreement of the experts
to assess statements is a standardized procedure, which is also used in the Delphi
method to reach consensus between expert opinions (Linstone et al., 1975).
We distributed the survey within a German state-funded research project1 and

other channels to professionals in the domain of electric mobility. The survey was
online from 30.07.2018 to 6.8.2018. The 16 completed surveys included researchers
in electric mobility (10), car manufacturers (1), grid operators (3), and consultants
for electric mobility providers and the energy sector (2). As an incentive for each
completed survey, we donated 5 e to a non-governmental organization2.
In the following, we report the English translations of the responses. The eval-

uation of the statements are rated on a five-level Likert scale from disagreement
strongly disagree’ (stimmt nicht) to ’strongly agree’ (stimmt völlig) to this state-
ment being technically correct or persuasive (compare Döring and Bortz (2016)).
We operationalize perceived technical accuracy by agreement on ’In my opinion,
this statement is technically correct.’ (Diese Aussage scheint mir fachlich korrekt).
The perceived persuasiveness towards end-users by agreement on ’In my opinion,

1www.csells.net/
2www.akcjamiasto.org concerned with sustainable mobility in Wroc law, Poland
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this statement can convince users’ (Diese Aussage scheint mir Nutzer überzeugen zu
können).

Example statements for the distinct incentive factors are provided in Table 8.2.
The full set of statements is noted in the appendix Table C. At the end of the survey,
participants rated their ability to evaluate the statements correctly and stated their
domain background.

Table 8.2.: Translation of examples for incentive statements used in the survey.

Incentive Example Statement

Battery degradation Flexible charging can help protect the battery.
Cost advantage Flexible charging allows the user to benefit from

lower electricity prices.
Social aspects The power grid is shared with other users and ben-

efits from the fact that they are flexible when charg-
ing BEVs.

Integration of RES If users provide charging flexibility, the BEV can
be charged with more solar and wind power.

Environmental protection Flexible charging allows more electricity from RES
to be used, thus protecting the environment.

Health impact Charging flexibility can avoid conventional gener-
ation and thus save harmful emissions.

Climate impact Additional temporal flexibility can make a positive
contribution towards mitigating climate change.

Grid impact Flexible charging contributes positively to grid sta-
bility.

8.3. Results

Table 8.3 lists the incentive factors based on the highest ranking in the two categories.
It becomes evident that the two categories are ranked similarly, i. e., what is viewed
as correct is also viewed as persuasive, with only minor differences. The incentive
factors integration of RES, cost advantage, and environmental protection rate with
the highest persuasiveness (i. e., from 4.4 to 3.9 out of the maximum of five points).
These groups, along with grid impact are also the top-rated in their accuracy (from
4.4 to 4.2).
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Table 8.3.: Ranking of groups based on accuracy and persuasiveness rating.
Group Ranking Mean Accuracy Group Ranking Mean Persuasiveness

Grid impact 4.4 Cost advantage 4.4
Integration of RES 4.4 Integration of RES 4.1
Cost advantage 4.3 Environmental protection 3.9
Environmental protection 4.2 Climate impact 3.6
Climate impact 3.8 Grid impact 3.5
Health impact 3.6 Social aspects 3.3
Social aspects 3.4 Health impact 3.1
Battery conservation 2.9 Battery conservation 2.9

The domain experts were very confident in their evaluation: 13 out of 16 agreed
or agreed strongly to the statement that they could correctly assess the technical
accuracy of the statements, only three out of 16 said they partly agreed.

8.4. Discussion

Figure 8.1 shows a scatter plot of all statements in the two dimensions (persua-
siveness and technical accuracy). The plot shows that the statements belonging to
one incentive always cluster tightly. The closeness indicates that the pre-selection
generated similar statements that belong to the same incentive.
However, there is one exception evident in Figure 8.1: One statement regarding the

social aspects of smart charging rates much higher than the other two. The statement
rated higher reads: ’The power grid is shared with other users and benefits from the
fact that they are flexible when charging BEVs.’. It combines social aspects (i. e.,
use of a common good) with a positive impact on the grid. On the contrary, the
other statements in this group are normative messages without any mentioning of
other objectives (’BEV users agree that charging should be flexible.’ and ’Others of
the charging station usually allow smart charging.’ ). While the experts rate these
normative statements low in persuasiveness, studies by Schultz et al. (2007) show
that normative framings can persuade users to behave more environmentally friendly.
In summary, the results show that experts consider those smart charging schemes

as most persuasive, which they consider technically correct. Moreover, cost savings
and integration of RES are rated highest on both scales. This result corresponds
to the high number of papers with these objectives found in the literature. The
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Figure 8.1.: Statements on benefits of smart charging evaluated on their technical accuracy
(x -axis) and persuasiveness towards end-users (y-axis).

integration of RES has indirect benefits (e. g., on climate, health, and air pollution)
that score lower than statements regarding the integration of RES itself.

A positive impact of smart charging on battery degradation is rated as rather
low and not very convincing. In one expert’s opinion, the OEMs already optimized
charging to ensure long battery life and no further improvements could be achieved
by smart charging.

As the sample of experts is rather small and biased towards research, this might
explain why the experts’ opinion is in line with the objectives found in the literature.
However, the industry experts do no deviate in their responses. As there was a little
deviation in the experts’ opinions, a method for generating consensus (e. g., Delphi
Method) is not needed.
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8.5. Conclusion

In this chapter, we identify the objectives for charging station operators and in-
centives for BEV users to use smart charging systems. Different charging system
operators intend to use the flexibility potential from smart charging (Chapter 5)
for different objectives. Out of these objectives, literature names the cost advan-
tage and integration of RES as the most significant incentives for BEV users to use
smart charging systems. This ranking fits the domain experts’ assessment that smart
charging can contribute primarily to cost reduction and the integration of RES. At
the same time, the experts assess cost reduction and the integration of RES as most
convincing towards end-users. However, this assessment contradicts the findings of
Will and Schuller (2016), where BEV users stated that financial incentives were not
relevant for early adopters of BEVs. Although the avoidance of grid congestion is a
relevant area of application, experts doubt that this objective can convince users to
use smart charging.
As cost reduction and integration of RES are shared objectives of BEV users and

charging system operators, these objectives could directly incentivize BEV users to
use smart charging. However, there are different ways to communicate the benefits
of the objectives towards the BEV user. For instance, the integration of RES can be
framed as having health or climate benefits (see Chapter 5). Experiments and surveys
with BEV users could help to understand which framing is the best to inform and
convince the BEV users to act more sustainably (Staudt et al., 2019). Finally, the
design of the UCSCS should not only consider the operator’s optimization objectives
but also how these targets are communicated to the BEV users. In the next chapter,
we analyse how framing smart charging towards different objectives influences the
behaviour of the BEV users.





CHAPTER 9

GOAL FRAMING IN SMART CHARGING

This chapter is based on joint work conducted by Julian Huber, Elisabeth
Schaule, Dominik Jung, and Christof Weinhardt, published in Proceedings of
the 27th European Conference on Information Systems (ECIS), cited here as:
Huber et al. (2019a).

The previous chapter shows that smart charging has many promising fields of ap-
plication. While smart charging systems may look promising, academic literature
does not yet show evidence of their economic success in the field (Hossain et al.,
2016). A reason for this might be, that smart charging has to be tackled on multi-
ple levels: while most of the recent studies focus on technical solutions or economic
incentives from a provider-perspective, Schmalfuss et al. (2015) note that little atten-
tion has been paid to the charging session from the users’ perspective. This chapter
expands on the expert-survey of the previous chapter and evaluates the identified
objectives on BEV users. As the provision of charging flexibility may conflict with
the mobility needs of the user, smart charging systems usually require the users to
type in their charging preferences into the user interface explicitly, e. g., entering
planned departure time and desired SoC. Thereby, the BEV users might not offer
enough flexibility to fulfil the objectives they aim for with smart charging.
vom Brocke et al. (2013) and Watson et al. (2010) raise the question of how in-

formation systems can be designed to reduce the effects of climate change and other
environmental problems. One solution might be that information systems facilitate
sustainable actions in end-users. In particular, Melville (2010) presents a believe-
action-outcome framework that describes how sustainable actions in information
system users emerge from their beliefs, desires, and opportunities. The author fills

85
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the framework with ten research questions for a research agenda to increase sus-
tainability with information systems. For instance, to strengthen the path between
belief and action the author asks information system researchers to tackle the re-
search question: ’What design approaches are effective for developing information
systems that influence human actions about the natural environment?’.

As mentioned in Chapter 7, digital nudging is very recent pathway in information
systems research to strengthen this path and to align these provider- and user-specific
objectives for a better outcome. Choice architecture and nudging is a behavioural
economics tool to push people towards optimal decision-making without restrictions
or economic incentives (Thaler and Sunstein, 2009). Recent work identified this
approach as a promising pathway to support decision-making in information systems
like e. g., to reduce range anxiety (Huber et al., 2018e; Franke et al., 2012; Eisel et al.,
2016; Huber et al., 2018d), increase acceptance of BEVs (Stryja et al., 2017b,a), or
to overcome inertia or biased decision-making (Jung and Weinhardt, 2018; Stryja
et al., 2017a).

In this chapter, we adept the research question from Melville (2010) to the
context of smart charging and evaluate whether digital nudging is a promising
approach to increase sustainable behaviour. We provide a cross-context theory
replication digital nudging into the domain of smart charging systems (Hong
et al., 2013). In particular, we analyse to what degree the motivational factors
from the previous chapter can be applied to increase charging flexibility of BEV users:

RQ 2 To what extent can framing messages in user interfaces influence the
flexibility in BEV users’ charging settings?

The remainder of the chapter is structured as follows. We start by describing
the related work in Section 9.1. Building on this, we derive our hypotheses in Sec-
tion 9.2. Section 9.3 describes the research design for hypothesis testing, the nudge
development process, the procedure and operational of the online experiment, and
the statistical analysis of the results in Section 9.4. The chapter concludes with a
discussion of the results in Section 9.5 and 9.6.
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9.1. Related Work

This chapter starts with giving a brief behavioural-economic background on choice
architecture and nudging and how this concept influences information systems re-
search. Next, we discuss the results of a structured literature review (Webster and
Watson, 2002) on the effects of (digital) nudging on sustainable behaviour in the
energy context. The literature review is based on a forward-backwards search start-
ing from papers on dual-processing theory, nudging and choice architecture, digital
nudging, energy conservation, smart charging, and integration of RES. Afterwards,
we discuss the most important results of the literature review on the motivational
factors for using smart charging of BEVs.
Recent findings from behavioural economics and psychology suggest that humans

often use simplified decision-rules and heuristics instead of deliberative thinking in
everyday decision-making (Thaler and Sunstein, 2009). Following this rationale,
the dual-processing theory suggests that human judgment and decision-making is
driven by two distinct types of cognitive processes: Automatic-intuitive processes
and controlled-deliberate processes (Evans, 2008). The latter requires more time
and conscious effort to complete. Automatic processes, on the other hand, are fast,
intuitive, and based on reflexes. They make up a large number of our decisions and
come into play in everyday situations or are used as a rule of thumb or heuristically
to support a fast decision process (Mirsch et al., 2017). As a consequence, the
need to consider both human styles of decision-making in system design have been
raised (Mirsch et al., 2017; Thaler and Sunstein, 2009). Thaler and Sunstein (2009)
propose to design and organize the decision environment methodically to improve
human decision making. This approach is also called choice architecture or nudging
and can be applied in a digital decision environment as digital nudging (Weinmann
et al., 2016). Chapter 7 provides background knowledge on choice architecture and
the development of digital nudges.

Framing A common nudge introduced in Chapter 7 is framing. Framing is the
conscious formulation and description of the decision situation to encourage people
to behave in a certain way. Thaler and Sunstein (2009) argue that framing can be a
successful nudge, as the preferences of humans can change with the question that is
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raised in the decision situation (Tversky and Kahneman, 1981). In particular, goal
framing focuses on the goals that can be reached or outcomes that can be avoided
depending on the decision at hand.

On a psychological level Lindenberg and Steg (2007) explain the effectiveness of
goal framing towards environmental-friendly behaviour by three overarching goals
acting as primary motivators in human behaviour. Hedonistic goals are the pleasure
or absence of adverse experiences felt directly during the activity without considering
the overarching goals. Hedonistic goals can explain a good part of non-sustainable
behaviour. For instance, taking a car is more convenient than waiting for a cramped
bus. Normative goals are set by other peoples behaviour and social values. Schultz
et al. (2007) leverage the urge to apply to normative goals as a nudge. The authors
provide households with feedback on their energy consumption compared to their
peers. In the field experiment, the participants followed this normative framing and
adapted their energy consumption towards the norm (i. e., lavish households reduced,
and fugal households increased their consumption). Last, gain goals are the desired
outcomes of the action. Goal framing can shift the relative weight between these
goals towards normative or gain goals, e. g., by highlighting the benefits of objectives,
to induce environmental-friendly behaviour. In this way, framing influences the belief
formation described by the belief-action-outcome framework (Melville, 2010).

According to Mirsch et al. (2017) framing is the digital nudge that is most fre-
quently studied in information systems research. In particular, framing has been
successfully applied to encourage environmental-friendly behaviour. As an example
of the use of choice architecture, Asensio and Delmas (2016) use framing to promote
energy conservation in households. They test negative framings on health-focused
goals (health damages associated with emissions) and positive cost-savings (empha-
sizing the monetary benefits of saving energy) included in a physical feedback letter
on the households’ energy consumption. The authors find the health-based framing
led to 8-10 % more energy conservation over a period of one hundred days. A fram-
ing on cost savings, however, had only a short-term effect. After two weeks, energy
savings increased by a significant amount after fifty days, there was no difference in
energy savings compared to the neutral control group. The finding that monetary
framings are not effective long-term is supported by a meta-analysis where different
framings and informational messages on household energy consumption were inves-
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tigated by Delmas et al. (2013). The authors conclude that monetary framings are
not effective over a extended periods.
Another example of successful framing is the adoption of biofuel. Moon et al.

(2016) find that negatively framed messages, i. e., focusing on negative impacts of
gasoline compared to the benefits of biofuel, were more effective in enhancing social
desirability of biofuel adoption. This result shows that the direction of the framing
can have a substantial influence on the effectiveness of framing. Another important
finding of the authors is that framing does not work the same way for all partic-
ipants. Attributes found to be associated with biofuel adoption were the level of
environmental concern, pro-social behaviour, and openness to new experiences of
the participants.
These findings are in line with other studies, that find that goal framing focused

on losses are more effective in a decision situation, where one option is considered
harmful or risky. In contrast, framings focusing on gains (i. e., positive goal framings)
seem to be more effective for behaviour that is considered non-risky or is for preven-
tion reasons, e. g., breast examinations for early cancer identification (Meyerowitz
and Chaiken, 1987).
Another moderating effect on the success of message framing towards sustainable

consumption is the environmental concern of the decision-maker. Newman et al.
(2012) find that consumers with low and high concern react similarly towards neg-
ative framing messages. However, a positive framing increases the likelihood of
sustainable behaviour in the high-concern group while it lowers the likelihood in the
low concern group.
De Dominicis et al. (2017) investigate how another character trait influences how

well framing works for different individuals. The authors analyse the impact self-
interest and altruism had on incentivizing pro-environmental behaviour. The results
show that different types of framing the intended pro-environmental behaviour work
for increasing pro-environmental for altruists and self-interested individuals.
These results show that nudging, especially framing, can be successfully used to

encourage environmentally-friendly behaviour. However, it cannot be generalized
which arguments, e. g., health, environmental protection, and which direction of
framing, e. g., negative or positive, is most promising in the context of BEV charging
as it also depends on the individual decision-maker.
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Decision Frames of BEV Users To account for the differences in decision situ-
ations, the digital nudge development process by Weinmann et al. (2016) illustrates
the need for an understanding of the individual decision situation before promising
nudges can be identified (see Chapter 7). Hence, the following literature presents
insights into the motivation of BEV users to use smart charging systems. An in-
depth discussion on the BEV users’ objectives when using smart charging systems
is provided in Chapter 8.

Due to its limited range of BEV compared to conventional cars, many BEV users
suffer from range anxiety (Franke et al., 2012). The primary goal of users who
connect their BEV to a charging station might be to fill the battery with enough
energy to meet their mobility needs. This idea is emphasized by the findings of Will
and Schuller (2016), who surveyed early BEV adopters on the acceptance factors
for smart charging. Only four out of 13 factors show a significant influence on the
acceptance of smart charging systems. The impairment of flexible mobility needs
was the only significant adverse effect.

Motivation factors with a positive effect are a contribution to grid stability, fol-
lowed by integration of RES. Monetary incentives in the form of discounts to the
electricity price per kWh or discounts on the electricity base price were not significant.
These results are supported by the qualitative interviews conducted by Schmalfuss
et al. (2015). Subjects named a contribution to network stability, financial benefits,
environmental benefits by the integration of RES, awareness of energy consumption,
satisfaction from gamification, and financial benefits for energy suppliers as positive
factors. On the downside, they stated losses in the flexibility in mobility needs and
comfort and data privacy concerns.

The fact that Will and Schuller (2016) find no effect for monetary incentives is an
essential insight as many papers and field studies implement financial incentives to
encourage smart charging behaviour. For instance, Jian et al. (2018) conduct a case
study and show that charging tariffs with significant price gaps between on- and off-
peak prices are an essential incentive to encourage smart charging. The US Energy
Department (2015) conducted a case study with different prices charging during on-
peak, off-peak, and super off-peak hours. These price signals had an impact on BEV
users’ charging behaviour. Note that the last case study does not use smart charging
systems; in contrast, BEV users must actively plug-in their BEV during the right
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time slots. Jochem et al. (2012) used monetary incentives (i. e., dynamic tariffs)
successfully to shift users’ charging to off-peak hours. The authors also report that
if the optimized charging session were automated and ensured a higher integration
of RES, the users would show more acceptance for this process. Following these
findings, a combination of financial and non-financial incentives, e. g., nudging, could
be the key to implementing high acceptance of smart charging schemes.

9.2. Hypothesis Development

To the best of our knowledge, the influence of digital nudges on the use of smart
charging systems has not been studied so far. The impact of different nudges on
energy conservation, however, has been successfully demonstrated repeatedly. In
particular, framing has been used in many areas of environmental sustainability to
encourage environmental-friendly behaviour. In some cases, framing was even more
successful than monetary incentives (Asensio and Delmas, 2016; Delmas et al., 2013).
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Figure 9.1.: Theoretical context and research framework of this study, adopted from Jung
and Weinhardt (2018) and Loock et al. (2013a)

.

Following the diagnose step of Weinmann et al. (2016), we hypothesize that the
users’ acceptance of smart charging system depends on the objectives of the smart
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charging systems. Making these objectives more salient, i. e., by framing messages in
the user interface, should influence the BEV users’ belief formation and nudge them
towards higher flexibility in their charging settings (Tversky and Kahneman, 1981;
Lindenberg and Steg, 2007).

Other digital nudges, such as default or feedback, might as well increase charging
flexibility. However, there is not much insight into the real-world charging behaviour
of BEV users yet. In contrast, the literature outlined in Chapter 8 provides a good
understanding of the objectives BEV users fancy in smart charging systems. In this
first study on the effect of digital nudges on the use of smart charging systems, we
look into goal framing as a promising digital nudge to increase charging flexibility of
BEV users.

Based on the conclusions discussed in this section, Figure 9.1 shows the theoret-
ical context for this study. A smart charging system is an information system that
controls the charging session within the optimization constraints given by the user.
It can target various optimization objectives, such as cost and CO2 emission mini-
mization, or the avoidance of grid congestion. The higher the flexibility in the users
charging settings, the better the optimization objectives can be met. Usually, multi-
ple of these objectives can be achieved simultaneously, e. g., when shifting charging
towards cheap and emission-free RES generation (Huber and Weinhardt, 2018). In
this way, the decision situation remains identical, but it can be framed in different
ways (i. e., towards different objectives). At the same time, the interface of the smart
charging system provides the decision environment for the BEV user and can thus
influence the users’ decision process.

Within the decision process and belief formation, the preferences on how to use
smart charging are driven by the expected performance of the smart charging system.
Primarily, users expect that the smart charging system will charge their vehicles in
a way that meets their mobility needs (Will and Schuller, 2016; Schmalfuss et al.,
2015). BEV users might even consider smart charging as a risky situation if they
suffer from range anxiety (Huber et al., 2018e), which would be an argument to
provide no charging flexibility.

Secondarily, that further goals, such as financial savings, integration of RES, and
grid stability can influence the acceptance and motivation to use smart charging.
Goal framing points the focus on specific goals during the user’s decision-making
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process and should increase the motivation to use smart charging. This charging
preferences (i. e., beliefs) determine what the user enters as her charging settings
(i. e., actions) into the system. In this way, digital nudging could influence believe
formation and lead to more sustainable actions (e. g., higher time flexibility in the
charging settings).
Other factors influencing the charging behaviour, such as effort expectancy, social

influence, or facilitating conditions as described by Venkatesh et al. (2003) are not
considered in this study. Based on these considerations, we hypothesize that the
insertion of framing messages towards secondary objectives in smart charging systems
increases flexibility in BEV users’ charging settings.

9.3. Methodology

To test the effect of the framing messages on the flexibility of the BEV users, we
design a scenario-based choice online experiment (comparable to Momsen and Stoerk
(2014); Codagnone et al. (2016); Székely et al. (2016)). Momsen and Stoerk (2014)
emulate the electricity tariff selection on a website to test the effectiveness of differ-
ent digital nudges, while Codagnone et al. (2016) research the effect of eco-friendly
framing on the choice of conventional vehicles. Such experiments cannot provide full
external validity. However, they are useful to tool for understanding the potential of
nudging and offer more in-depth insights into the decision process.
Similar to the tariff selection in Momsen and Stoerk (2014), our experiment ex-

plains the decision situation as an onboarding process at the first setup of the smart
charging system in which the participants can set the standard preference for each
scenario, which the participants can override for each particular charging event. The
idea behind this scenario is that participants are less influenced by their specific daily
schedule, as they know they could overrule the decision at any time. In practice,
such a precommitment could help BEV users to stay with their good intentions to
provide flexibility (compare Becker 1978).
In the following section, we describe the research design and procedure of this

experiment. We then explain the nudge development based on the literature review
and an expert survey from Chapter 8. In Section 9.3.3, we provide the sample and
the scenarios and finally explain the choice of control variables and their operational-
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ization.

9.3.1. Research Design

In the experiment, participants are asked to use a mock-up of a smart charging
application to set their default charging settings for three different scenarios (see
Figure 9.2). We use a between-subject design to measure the effect of the three
selected framing messages compared to a control treatment.

The charging settings are entered via two sliders, with anchors at the SoC at arrival
and the maximum SoC expressed in km. With the first slider the participants can
set the buffer SoC SoCb to be reached at the highest possible charging power. Note
that this is a common feature in user interfaces for smart charging (Dronia and
Gallet, 2016). Second, participants enter the final SoC SoCd for the planned time of
departure td (see Figure 5.2). The planned time of departure is given by the scenario.
A field over the slider position indicates the selected SoC in km.
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Figure 9.2.: Set-up of charging scenarios and framing messages in the online experiment
(translated from German).

The control group enters their charging flexibility in a charging application (Fig-
ure 9.2) with a neutral message (The green text stated: ’Please enter your charging
preference’ ). This is replaced for the three treatment groups by the treatment fram-
ing messages, i. e., environmental, social, and cost framings. The experiment is
conducted as an online survey where the participants were randomly assigned to
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either one of the framing treatment groups or a control treatment group. The tem-
poral procedure is structured as follows. First, the introduction and description of
basic setup. Second, the scenario-based choice experiment (see Figure 9.2). Third,
the questionnaire to capture demographic data and controls.

9.3.2. Nudge Development

Our goal is to design a user interface for a smart charging system that encourages
users to be more flexible and thus more sustainable in their charging session. BEV
users how use smart charging systems are usually in favour of using smart charging
to reach environmental friendly goals (Will and Schuller, 2016; Schmalfuss et al.,
2015). Choice architecture and (digital) nudging provide designers a tool to steer
users toward more environmental friendly decisions.
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Figure 9.3.: Nudge development process adopted from Mirsch et al. (2017) and Weinmann
et al. (2016).

We adopt the five-step nudge development process from Mirsch et al. (2017);
Weinmann et al. (2016) described in Chapter 7. The resulting research framework
is presented in Figure 9.3. The first two steps include the definition of context and
goals and the understanding of the decision process. We outline the challenges in
smart charging in Part II of the dissertation and provide insights into the BEV users
decision process based on a literature review in Section 8. The considerations from
Section 9.2 lead us to framing messages as promising nudges to enhance charging
flexibility. Following the framework, in this section, we select possible nudges. For
that purpose, we conduct a survey with 16 domain experts evaluating the potential
of different framing messages, derived from a systematic literature review.
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The procedure and results of the expert survey are discussed in Chapter 8. The
arguments to provide charging flexibility found in the literature review are grouped
into eighth motivational factors or goals of smart charging. Table 9.1 extends Ta-
ble 8.1 by presenting goals of charging flexibility identified in the literature review.

The results from the literature analysis and the expert survey form the founda-
tion of the next step in the nudge development process. For that purpose, we select
framing messages for the online experiment based on the results. For the treatment
message, we choose the strongest framing messages from the three most convincing
and most accurate clusters (compare Table 8.3). The selected messages for environ-
mental (4.3, 4.6), social (3.9, 4.3), and cost (4.6, 4.3) framing are shown in Figure 9.1.
Consequently, we evaluate the effect of goal (i. e., cost and environmental) and nor-
mative (i. e., social) framing on the BEV users’ charging flexibility.

9.3.3. Participants and User Scenario

To capture the BEV users’ behaviour in various settings, participants have to enter
their charging settings for three different scenarios (see Table 9.2 and Figure 9.2). To
control for the participants personal risk preference and differences in individual mo-
bility patterns, the scenario was explained as an onboarding process. An onboarding
process is the first setup of the smart charging system in which the participants can
set the standard preference for each scenario. The participants were informed that
they could deviate from this setting during each following charging session.

The scenarios are constructed to mimic typical situations of full-time employees
commuting to work and having the opportunity to charge at both locations, at work,
and at home (Sadeghianpourhamami et al., 2018). Each scenario has a different SoC
at the time of the arrival at the charging station so that it was more or less urgently
necessary to charge to have sufficient range for the next planned trip, e. g., work
scenario. In the case of the home scenario, the user has enough range to get to
work but not to commute back. In this case, the user has to rely on the charging
opportunity at work. In the shopping centre scenario, the user has plenty of range
to get back home and even to work and back the next day if necessary.

These scenarios are designed deliberately this way to capture more reliable and
realistic data on users’ overall charging behaviour. The car in the scenario is set
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Table 9.1.: Goals and incentives for provision of charging flexibility.

Goals Description Source

Battery Life Smart charging can prolong battery
lifetime because non-flexible charging
strains the battery

Schoch (2016)

Cost Advantage BEV users can benefit from reduced
energy costs when using smart charg-
ing, for example, when charging dur-
ing off-peak hours that include lower
energy prices. Cost has been shown to
be an effective incentive for BEV user
to use smart charging

US Energy De-
partment (2015);
Will and Schuller
(2016); US En-
ergy Department
(2015); Jian et al.
(2018); Jochem
et al. (2012)

Social Aspects As in energy conservation BEV users
might be influenced by their peers’ be-
haviour or may be influenced when
their actions can help others or are ex-
posed to a normative standard

De Groot et al.
(2013); De Domini-
cis et al. (2017)

Environmental
Protection

Smart charging can be used to help
protect the environment by reducing
the usage of polluting fossil energy
sources

De Groot et al.
(2013); Gottwalt
et al. (2013)

Integration of RES The use of flexible charging can allow
the integration of more RES such as
solar and wind power to charge the
BEV

Will and Schuller
(2016); Nienhueser
and Qiu (2016);
Gottwalt et al.
(2013)

Grid Stability With the flexibility of smart charging
the grid can be used more efficiently
and help avoid grid congestion

Will and Schuller
(2016); Clement-
Nyns et al. (2010)

Climate Change Smart charging can support the inte-
gration of RES which can minimize
CO2 emission that can impact climate
change

Barr et al. (2011);
Spence and Pid-
geon (2010); Hu-
ber and Weinhardt
(2018)

Health Impact Integration of a greater portion of
RES minimize pollution from fossil
power generation, thus reducing re-
lated health risks, e. g., asthma

Asensio and Del-
mas (2016)
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to have a maximum range of 350 km based on the current state of the art Tesla
Model 31 which is similar to other BEVs in Table A in the appendix.

Table 9.2.: Charging scenario details in the online experiment.

Home Work Shopping center

Arrival time 6:00 pm 8:30 am 2:00 pm
SoC 30% 9% 50%
Range left 105 km 30 km 175 km
Next time to drive 7:30 am 5:30 pm 5:00 pm
Next trip distance 75 km to work 75 km back home 10 km back home

9.3.4. Operationalization and Control Variables

The smart charging interface offers the user the possibility to enter the range that
the charging system should reach as soon as possible at time tb and the range to be
reached at the planned time of departure td (see Figure 5.2). The time of depar-
ture and the range available when connecting to the charging station SoCa and the
maximum range of the BEV SoCf were given by the scenario.
As the room for optimization of the charging session depends on both SoCb and

SoCd, we introduce a metric for charging flexibility based on their difference. The
flexibility of the BEV user for a given charging scenario s depends on the SoCa

and SoCb. Further, to allow a comparison between the three charging scenarios S,
we introduce a common metric to evaluate BEV user’s u charging flexibility ζu by
normalizing the flexibility with the maximum of the possible flexibility SoCf−SoCa.
Note that the time of departure is not considered in this metric as it is preset by the
scenario description and not selected by the participant. We calculate the charging
flexibility as

ζu =
∑
S

1

|S|
SoCf

s − SoCb
s + SoCf

s − SoCd
s

2(SoCf
s − SoCa

s )
. (9.1)

With this metric, the flexibility can be summarized in a single number between
zero and one. Zero indicates no flexibility (i. e., the BEV is fully charged as fast as
possible). One is the maximum flexibility (i. e., the BEV does require charging at all
but can be used to catch a surplus of power supply of the grid).

1www.tesla.com/de\_DE/model3
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The survey ends with questions on the participants’ socio-demographic factors
such as age, gender, net monthly income, and occupation. We further ask an open
question on the benefits of charging flexibly to capture prior knowledge. As a filter
question, we required the ownership of a valid driver’s license. To control for the
influence of the persons driving pattern, we ask for the weekly frequency of car trips
and the average weekly distance travelled in the car. We expect that users with
more and longer trips have less leeway to charge flexibly. Last, we capture the prior
experience with the technology by asking about possession of a hybrid or electric
vehicle, and e-bikes. As the framing messages address the environmental and social
behaviour and Kranz and Picot (2011) find that environmental concern drives the
adoption of information systems, we also control for the environmental concern. The
effect of environmental concern is also stressed by Moon et al. (2016) and Newman
et al. (2012) who also found an influence of pro-social behaviour on the effectiveness
of framings. We control for the agreeableness of the participants to address such
effects. Since the decision to charge flexibly involves the risk of not being able to
use the BEV spontaneously because it is not yet sufficiently loaded, the willingness
to take risks is also assessed.
Environmental concern and the agreeableness is evaluated on a five-level Likert

scale used in (Grunenberg and Kuckartz, 2013; Rammstedt et al., 2013). The will-
ingness to take risks is implemented as one item scale from Dohmen et al. (2011).
We further add a ten-item short-version for the big five personality traits to capture
the agreeableness of the participants (Gosling et al., 2003). For socio-demographic
factors as well as the driving and car usage (i. e., frequency of car use, ownership of
a BEV, or an e-bike) the participants are asked to state their information based on
grouped clusters, e. g., levels of income or yes/no questions.

9.4. Results

In the following, we describe data collection process and the resulting data set.
Subsequently we present the survey results.
To collect a representative sample with actual BEVs users, the study was dis-

tributed online in German forums and social media groups focused on electric mo-
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bility2. As an incentive, full answers could participate in a lottery with Amazon
vouchers. Out of 171 completed responses, we removed underage participants (one)
and samples with invalid entries (six). The evaluated 164 measures (40 female, av-
erage age 38.8, median age 40.0, age group between 18 and 70) corresponds to the
expectations at a proportion of 78 BEV owners. Table 9.3 presents a descriptive
analysis of the sample. The sample corresponds to the typical German buyers of
electric vehicles who are typically around forty years old, male, and well-educated
(Frenzel et al., 2015).

Table 9.3.: Descriptive analysis of the sample in the online experiment.

Unit Mean Standard Deviation

Age Years 38.8 14.3
Gender % 75.6 43.1
Willingness to take risk {1, 10} 5.4 2.1
Number of weekly Trips 1 4.7 1.8
Weekly trip distance km 114.0 178.2
Environmentalism {1, 5} 3.9 0.6
BEV ownership % 47.6 50.0
Flexibility % 59.2 19.0

The mean charging flexibility metric over all charging scenarios presented in Fig-
ure 9.4 is 0.586 (Standard Deviation (SD)=0.185) in the control treatment. The
subjects in the cost treatment (0.673, SD=0.182) and the environmental treatment
(0.597, SD=0.197) entered a higher flexibility. The subjects exposed to the social
framing message show a lower flexibility (0.495, SD=0.158). This pattern is consis-
tent throughout all charging scenarios. The flexibility in the cost treatment is the
highest, while the social framing message results in the lowest charging flexibility.

To answer the research question to what extent different framing messages can
influence the charging flexibility of BEV users, we compare the flexibility entered
for the three treatments with the flexibility entered by the control group. As we are
interested in the effect of different treatment groups, an ordinary least square regres-
sion in Table 9.4 regresses the different treatments (coded as dummy variables) on

2elektroauto-forum.de, tff-forum.de, goingelectric.de; Facebook groups: TESLA Enthusiasten D-
A-CH, Elektroauto D-A-CH-FL
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Figure 9.4.: Box plots of flexibility over all charging scenarios grouped by treatment groups.

the mean charging flexibility over all charging scenarios. After testing the regression
assumptions, this allows a comparison of effect sizes to other studies in the field,
e. g., Jung and Weinhardt (2018). Compared to the control treatment, the charging
flexibility in the group with the cost framing shows a significant increase of 8.73 per-
centage points. In the group with the social framing message, the flexibility is 9.04
percentage points lower compared to the control group. Although the differences
between the mean values of the control group and the environmental framing are
not significant, Figure 9.4 shows that some participants in the environmental group
provide the highest flexibility.
As a robustness check, we also fit a model, including all control variables (Ap-

pendix Table E.1). This model increases the declared variance (R2 = 0.172). The
coefficients and significance of the cost and the social framing remain in the same
range (9.24%, p=0.026 and -10.71%, p=0.013). The impact of environmental fram-
ing is even smaller (0.71%, p=0.847) and still not significant. There are only two
significant effects in the control variables: Participants with very high incomes (more
than 3,500 Euros per month) are significantly less flexible (-13.07%, p=0,008). Par-
ticipants who consider themselves more willing to take risks are slightly more flexible
(1.44%, p=0.046). The results remain stable even if we remove two outlier partici-
pants who never allowed flexible charging.
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Table 9.4.: Regression table on the influence of framing messages on entered charging flex-
ibility.

Variable Coefficient Std. Error t-Statistic P>|t|

Intercept [Control] 0.5856 0.026 22.573 0.000
Framing [Cost] 0.0876 0.040 2.184 0.030
Framing [Environmental] 0.0109 0.037 0.295 0.768
Framing [Social] −0.0904 0.042 −2.134 0.034

Dep. Variable: Charging Flexibility R-squared: 0.088
Model: OLS Adj. R-squared: 0.071
Method: Least Squares F-statistic: 5.164
No. Observations: 164 AIC: −86.86

9.5. Discussion

In this chapter, we identify framing messages as possible digital nudges to increase
the charging flexibility of BEV users. Following the digital nudging development
process of Mirsch et al. (2017); Weinmann et al. (2016), we conduct two studies to
select and evaluate promising digital nudges. The results indicate that including
framing messages in smart charging interfaces is a promising design approach to
influence BEV users to charge flexibility.

Based on the theory outlined in Section 9.2 we interpret that the presentation of
goal framing messages can influence the belief formation in terms of shifting in the
users goals and which leads them towards more environmental-friendly actions, i. e.,
providing more charging flexibility. Therefore, goal framing seems to be a valuable
design approach to influence human actions (compare Melville (2010)). This finding
enables designers of smart charging systems to nudge users towards environmentally
friendly charging behaviour and thus facilitates the successful integration of BEV
into the energy system.

However, not all framing nudges show a positive influence in the experimental
setting. If the cost framing is displayed to the participants, they show a higher
charging flexibility. On the contrary, framings on the social aspects of the com-
mon use of shared resource, e. g., the electricity grid, reduced the entered flexibility.
References to the integration of RES showed no influence compared to the neutral
control treatment.
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Interestingly, the effectiveness of the cost treatment contradicts the results in
recent literature, e. g., Will and Schuller (2016), which does not find an influence
of financial benefits. We assume that there are two possible explanations. First,
because the survey stems from 2016, early adopters may have been more ecologically
motivated than current BEV users in 2018. In particular, Will and Schuller (2016)
do not control for environmental concern, which is a relevant driver of sustainable
behaviour. A further explanation for the deviating results may lie in the difference in
research design. Will and Schuller (2016) examine the arguments for smart charging
in a within-subject design. On the contrary, in our experiment, different groups
are presented with only one argument for smart charging. We assume that our
participants are less influenced by effects such as social desirability compared to the
study of Will and Schuller (2016).
The findings of Newman et al. (2012) could offer insights, why we could not observe

a positive effect with an environmental goal framing. In their study, the authors show
that the environmental concern mediates the influence of goal framing on sustain-
ability behaviour, subjects with deep environmental concern should show a positive
impact of the environmental framing massage. In contrast, participants with a low
environmental concern should offer lower flexibility. In our sample, only six partici-
pants of the environmental framing group stated a low environmental concern, i. e.,
scoring lower than three on the scale from one to five. Moreover, the subjects offering
the highest flexibility are more likely to show a medium-high than a very high envi-
ronmental concern. Because of the limited data, it is difficult to interpret the slight
positive correlation between environmental concern and offered flexibility. However,
the mediating effect of environmental concern could provide some explanation for
why environmental framing is very effective for some of the participants.
Many studies show the positive influence of social framing messages on energy

conservation (Delmas et al., 2013). Remarkably, we find a negative effect of the
social framing message on the charging flexibility. This effect could be because the
cited studies were carried out within close neighbourhoods. In the online experi-
ment, however, the perceived social presence was probably low. Low social presence
could explain why we could not replicate the effect of normative framings in this
experiment. Future experiment could examine the influence of social presence on
the effectiveness of normative framings.
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We further suspect that the social framing message did not only contain a nor-
mative message but was confounded with more information. The framing message
read ’The power grid is shared with other users and benefits from the fact that they
are flexible when charging their electric cars’. The idea of a common and shared
resource could have created the idea that the network is a scarce commodity and
that the BEV would not be charged if the other users charged their BEV first which
could trigger loss aversion (Schneider et al., 2017).

If this fear exists, the immediate reach entered by the participants in the social
treatment should be higher than in the other groups while the final range is somewhat
comparable. However, we find this effect only in the shopping scenario. This result
contradicts this theory, as in the shopping scenario, the BEV does not need charging
to make the next trip, and the need for setting high immediate range should be even
lower than in the other scenarios. Also, in case of fear of a scarce resource, more
risk-seeking participants should show greater flexibility in social framing treatment.
However, we find no positive interaction between the social treatment and willingness
to take risk.

In the experiment, only a few subjects remained with the default setting, which is
often used as a powerful digital nudge (Momsen and Stoerk, 2014). This result raises
the question, how well other digital nudges perform in the context of smart charging.
As almost all participants were flexible in hypothetical settings, it is unclear how this
transfers into the real world. In particular, because Delmas et al. (2013) conclude
that monetary framings are not effective over a long period. If this applies to the
context of smart charging, new ways are needed to make people stick with smart
charging.

A main limitation of the study is that the result where not found in the field
yet, but in an online experiment and thus, the external validity of the results may
be impaired. However, since we designed the scenario setting as an onboarding
situation, we are confident that the case in the online experiment is comparable
to the real-world environment. Such an approach can be found in the literature
mentioned above. However, we acknowledge that the results in the daily interaction
with the smart charging system may be different, i. e., changing the charging setting
immediately after connecting the BEV to the charging station. In this context,
the decision situation may be different, and other nudges described above (such as
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defaults) may work even better. Field experiment could prove further insights in
how to increase charging flexibility with digital nudges.

9.6. Conclusion

Beyond the context of smart charging, the results of the experiment raise two ques-
tions relevant to information systems, especially when it comes to developing infor-
mation systems that influence human action towards more environmentally friendly
behaviour (Melville, 2010).
First, since environmental framing works very well for a subgroup of participants,

the question arises whether digital nudges should be designed to be adaptive and
adaptable to the target group. Such adaptive nudges would require an understanding
of which what objectives can motivate which users and easy to collect metrics to
cluster the users into the right framing.
Secondly, we find a negative effect of social framing treatment. Further research

could separate the normative and the goal framing messages to evaluate under what
conditions BEV users react to normative framing and whether they are motivated by
solving congestion in the grid. If the result confirmed the negative effect of normative
framings, it would be interesting to analyse the differences between BEV charging
and energy conservation, where the social nudges are effective. We suspect that the
effect is mediated by spatial proximity or perceived proximity to peers.
Because the framings affect flexibility in different directions, designers and choice

architects should be careful, which framing (messages) they use when designing
smart charging systems. While pointing out to potential cost savings can increase
the charging flexibility seems to be a framing that works for all users, environmental
framing works well for some BEV users. In contrast, a social framing that represents
the electricity grid as a scarce resource can even reduce flexibility.
Digital nudging and framing, in particular, could also increase the flexibility of

the user against the user’s interest, e. g., if the operator of a smart charging system
retains the profit alone. This could even lead to situations, where the BEV users’
mobility needs are impaired because they provide too much flexibility. If nudging
results in such a disadvantage for the user or the objective of framing messages is
not fulfilled, a discussion of the ethical dimension becomes necessary.
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Another way to overcome problems with providing too much flexibility could be to
implement learning components for smart charging systems that assist the BEV user
in finding the right amount of flexibility. Based on the historic driving pattern, such
systems could guide the BEV users decision when to charge flexibly and when the
full charging power is required to reach the next destination. Chapter 11 proposes
forecasts of charging flexibility allowing for such assistance.

Overall the results show that the careful design of charging systems will be crucial
to integrate BEVs energy system and whether their impacts will be negative, e. g.,
causing grid congestion, or positive, e. g., fostering the integration of RES. As en-
vironmental objectives motivate some BEV users to charge flexibly, this could even
lead to a self-reinforcing effect. If the smart charging system controls the charging
session to integrate more RES it could provide the BEV users with feedback (i. e., a
nudge) on the effects of their flexibility provision. This feedback nudge could moti-
vate BEV users to provide even more flexibility. The following chapter proposes a
forecast-based smart charging system that can provide such feedback.
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Data Driven Smart Charging





CHAPTER 10

CO2 EFFICIENT SMART CHARGING

This chapter is based on joint work conducted by Julian Huber, Kai Lohmann,
Marc Schmidt, and Christof Weinhardt, currently under review in Journal of
Cleaner Production, cited here as: Huber et al. (2020b). The working paper
expands on the ideas and analyses published in Huber and Weinhardt (2018)

Greenhouse gas emissions of BEVs depend on the energy sources generating the
electricity for charging. Depending in the merit-order the CO2 emissions of BEV
charging on the public grid vary over time. Smart charging offers the possibility
to minimize carbon dioxide emissions by shifting the charging session to moments
with lower emissions in power generation, e. g., times with high renewable generation
(Jochem et al., 2015).
While BEV users usually have only limited knowledge and understanding about

the energy system (Biresselioglu et al., 2018), the previous chapter shows that their
willingness to charge flexibly (i. e., accept delayed charging) increases if the flexibility
is used to integrate more renewable energies (Huber et al., 2019a). Even when BEV
users are not experts on the energy system, they are more willing to use smart
charging if it is used to minimize carbon emissions (Will and Schuller, 2016). In
particular, CO2 emission savings are higher the more flexible BEV users are with
their charging (Huber and Weinhardt, 2018). Research on choice architecture shows
that feedback on their energy consumption behaviour can nudge users to consume
less energy (Mathur et al., 2018; Froehlich, 2009).
Similarly, direct feedback on the expected outcome of the action is a digital nudge

that changes the decision environment and provides users with an understanding of
their actions and could guide them towards more sustainable behaviour (see Chap-

109
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ter 7). Smart charging could implement such a feedback system in a smartphone
application or charging station display. The display could provide the users with
direct feedback on the expected CO2 emissions of optimized charging based on the
charging settings, i. e., how fast the users want their BEVs to charge.

To implement such a feedback system, the charging station operator requires a
methodology to estimate the CO2 saving potentials based on the charging settings
in real-time. Additionally, the system should re-schedule the charging session to
achieve forecasted emission savings.

CO2 emissions in the energy system are volatile and differ based on the assessment
methodology (Jochem et al., 2015). In result, providing feedback based on historical
average values can result in both increased CO2 emissions and far-off forecasts. For
instance, a overly optimistic forecast could lead users to provide much flexibility, even
when the system cannot save CO2 emissions. For a discussion on the legitimacy of
ethical nudging to increase sustainability see Kasperbauer (2017).

In summary, the feedback system requires a comprehensible method that returns
the forecast of CO2 emission savings for individual charging sessions in real-time.

Huber and Weinhardt (2018) first prose the idea of such a feedback and control
system as a digital nudge. However, the system assumes perfect foresight and uses
average emission factors (AEF). In this case, marginal emission factors (MEF) are
more suited as they provide information on how the carbon emissions change for a
change in load (Zivin et al., 2014).

In contrast, this chapter proposes a method to provide feedback and schedule
smart charging in a way that avoids CO2 emissions of an individual charging session
using MEFs. We evaluate the system on data of the Germany energy market in 2017.
The analysis of MEFs is based on historical generation data of German power plants
with individual estimates for CO2 efficiency and is calculated using the methodology
by Hawkes (2010). Next, we develop a short-term forecaster for MEFs to estimate
the emission factors during the charging session. Based on this forecast, we perform
CO2 minimizing charging strategies for different charging scenarios. In particular,
we answer the following research questions.

First, we expect there are distinct patterns in the MEFs caused by reoccurring
effects in the energy system (e. g., low emission in hours with high PV generation).
Starting from here, we analyse the most promising situations for smart charging to
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save CO2 emissions.

RQ 3 At what time during the day can smart charging achieve the highest CO2

emission savings?

Second, we contribute to the discussion on using AEFs or MEFs for the evaluation
of load shifting potentials. We hence answer the question:

RQ 4 What are the absolute and temporal differences in CO2 emission saving
potentials assessed with average and marginal emission factors?

Third, we compare the forecasted CO2 saving feedback with the optimal solution
to evaluate the performance of the scheduling algorithm.

RQ 5 To what degree can a forecast-based system realize the CO2 emission saving
potentials of a perfect foresight scenario?

The remainder of this chapter is structured as follows. Section 10.1 provides an
overview of the related work regarding CO2 emission factors and smart charging for
RES integration. Next, we specify the input data and assumptions for the analysis
in Section 10.2. Section 10.3 describes the methodology for deriving and forecasting
the emission factors and the scheduling in smart charging. Section 10.4 presents the
results of the analysis in the same order. We end the chapter with a discussion and
of the results and a conclusion in Section 10.5 and Section 10.6.

10.1. Related Work

In the following, we present related work. Subsection 10.1.1 provides an overview of
the calculation of different CO2 emission factors and discusses their advantages and
disadvantages. Next, Subsection 10.1.2 discusses the forecasting of such emission
factors. Last, we discuss how emission factors have been used in smart charging.
The literature review has two starting points: First, we use the literature gathered
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by Fritz Braeuer in a newsgroup discussion on emission factors1. Next, we search
two literature databases, i. e., Google Scholar, ScienceDirect, with different keywords
(e. g., ’marginal CO2 emission factor’, ’MEFs load shifting’, ’marginal CO2 intensity
forecast’ ). The keyword search results in 30 relevant studies. Last, a backward or
forward search from these matches produces more papers.

10.1.1. Emission Factors

Smart charging represents load shifting, where energy consumption is moved in time
to obtain an optimization goal. In particular, we aim to shift the charging demand
towards periods with low CO2 emissions. Emission factors allow quantifying the
minimization potential of emission savings from shifting electric loads (Ryan et al.,
2016). CO2 emission factors describe the amount of emissions emitted during the
generation or consumption of an energy unit in gCO2/ kWh (Zheng et al., 2015).
Literature distinguishes two types of emission factors: AEFs indicate the CO2 emis-
sions attributed to an amount of energy, while MEFs indicate how the emission factor
changes if an additional unit of energy is generated or consumed.

Olkkonen and Syri (2016) discuss what emission factor to consider in attributional
and consequential life-cycle assessments. Attributional approaches evaluate emission
in static energy systems and assign them to different generators or consumers (e. g.,
using AEF). For analyzing the environmental impact of a future change in demand
structure, however, a consequential life-cycle assessment is required. In the case of
smart charging, using MEF considers the effect of future load shifting on the energy
system (Regett et al., 2018).

Besides attributional and consequential analysis, Yang (2013) provides two tempo-
ral dimensions to differentiate emission factors: First, emission factors can be broken
down into different temporal resolutions. For instance, when analyzing the effects of
load shifting in smart charging, the resolution should be high enough so that there
are observable differences in the emission factors during the charging session. Next,
the analysis of emission factors can have a retrospective or forward-looking perspec-
tive. In this use case, the perspective is forward-looking, as the scheduling process
requires a forecast of the emission factors.

1Email by Fritz Braeuer of 02.08.2018, available after registration at www.strommarkttreffen.
org/, last accessed on 19.01.2019
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Average Emission Factors AEFs are the ratio of emissions to energy generated in
a given period. For instance, Doucette and McCulloch (2011) use AEFs to attribute
CO2 emissions caused by BEVs in several countries to compare them with emissions
from vehicles with ICE. They acknowledge that MEFs would be more suitable for
their consequential assessment, but discard them because of the higher calculation
effort. Bickert et al. (2015) use AEF to compare environmental and economic po-
tentials of small electric and combustion engine vehicles but do not discuss their
choice. Likewise, Huber and Weinhardt (2018) propose a CO2 feedback system to
incentivize smart charging based on AEFs. When providing feedback to the end-user
it might be easier to explain that there are times with higher and lower emissions
in the energy system (i. e., an attributional approach with AEF) than what would
hypothetically happen if they shifted their load (consequential approach with MEF).
However, the attributional approach does not reflect the actual effects resulting from
smart charging. Jochem et al. (2015) analyse the CO2 emissions of BEV based on
different assessment methods. They evaluate the emissions based on the annual av-
erage mix (i. e., AEF) and marginal electricity mix (i. e., MEF), without considering
the timing of BEV charging during the evaluation year. To cover such temporal
effects, they also calculate the time-dependent average mix. Further, they consider
a zero-change scenario based on the notion of the EU Emission Trading System.

Marginal Emission Factors MEFs describe the change in emission when the
system load is incremented or reduced by one unit (Zheng et al., 2015; Hawkes,
2010). As load shifting reduces the system load at one point in time and moves it to
another, the MEFs should be used to account for avoided emissions (Ensslen et al.,
2017; Eßer and Sensfuß, 2016; Li et al., 2017; Siler-Evans et al., 2012). Likewise,
they are the basis for consequential assessment of the impact of additional demand
(e. g., BEVs) in a system (Doucette and McCulloch, 2011).
As the results of the assessment can vary strongly between different methods, the

use of AEFs can lead to misleading results, misinform decision-makers, and lead to
wrong interventions (Siler-Evans et al., 2012).
Literature provides two approaches to determine the MEFs of an energy system

(Zheng et al., 2015; Ryan et al., 2016). The first method is based on electricity
market models. Electricity market models allow to model the dispatch of the power
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plants and thus determine the last generation unit in the merit order that would
react to a change in load. In this case, the MEF is defined as the emission factor
of the last generation unit. However, due to other restrictions, the most expen-
sive power plant is not necessarily the marginal power plant (Dandres et al., 2017).
Such confusion would result in misleading MEFs. As a benefit, such models can
consider fundamental changes in the power system and are often used for long-term
assessments in contrast to statistical methods based on historical data.

For instance, McCarthy and Yang (2010) use cost-based merit order models for
the Californian energy market and find that the MEFs exceed the AEFs at most
points in time. Thomas (2012) use the same approach for all US regions and find
that BEV with uncontrolled charging could increase carbon emissions when replacing
ICE vehicles. In a study on the long-term effects of BEV integration in the German
energy market up to 2030, Jochem et al. (2015) find that switching from ICE to BEVs
will not naturally avoid CO2 emission in case of uncontrolled charging. As smart
charging can reduce CO2 emission compared to uncontrolled charging, the authors
call for measures to incentivize smart charging. For specialized assessments, some
research also expands merit order models to temporal and regional effects. Olkkonen
and Syri (2016) consider imports and exports while Zheng et al. (2015) focus on the
start-up restrictions of power plants. When assessments rely on a full model of the
analysed energy system, they are well suited to analyse the effects of fundamental
changes in these systems (e. g., integration a higher share of RES or a large number
of new consumers such as BEVs).

A second approach avoids modelling the merit order explicitly. In this approach
the MEFs are estimated by an evaluation of historical, empirical data. If there
are no significant changes in the energy systems during the assessment period, the
analysis of empirical data can produce estimates of MEFs. Hawkes (2010) proposes
a regression-based methodology to calculate the MEFs for Great Britain that is
used by many subsequent studies (Thomson et al., 2017; Holland and Mansur,
2008; Holland et al., 2015; Staffell, 2017). In this approach, at each time step, the
change in the system’s emissions is explained with the change in system load. This
relationship allows estimating the marginal emission for different states (e. g., load
levels) of the energy system.



Related Work 115

Siler-Evans et al. (2012), Li et al. (2017), and Thind et al. (2017) apply the
model to American electricity markets. Siler-Evans et al. (2012) expand it for other
emission factors (i. e., nitrogen oxides (NOx) and sulphur dioxid (SOx)). A further
expansion by Siler-Evans et al. (2012) is to include non-emitting power plants such
as nuclear power plants and renewable energy plants. They argue that with the
increasing share in the electricity generation portfolio, they also are more likely to
be part of the last generators in the merit order that influences the MEFs.
To analyse the effects of smart charging, Pareschi et al. (2017) apply the method-

ology for the German and Swiss electricity market. They find that BEVs can con-
tribute substantially to CO2 emissions, even in a low emission energy system (i. e.,
Switzerland) if cross-border flows are considered.
Such assessments based on historical data are suitable for short-term considera-

tions but rather unsuitable for long-term studies. With a long time horizon, struc-
tural changes, e. g., in the infrastructure, may occur that are not taken into account
by the determined emission factors (Thind et al., 2017). As an advantage, the regres-
sion approach implicitly consideres the power systems characteristics (e. g., market
power, transfer and other restrictions) that would have to be modelled otherwise
(Graff Zivin et al., 2014; Siler-Evans et al., 2012). Besides, they are easier to com-
pute and transparent compared to system models and simulations (Yang, 2013). For
this reasons, a regression-based approach is well suited for a short-term analysis in
a real-time feedback system.

10.1.2. Short-Term Forecasting

Besides historical MEF, a load shifting system requires a short-term forecast of the
MEF to schedule charging in a CO2 saving fashion. To our knowledge, literature
does not provide a forecast of short-term MEFs (e. g., to provide customers with real-
time information on the optimal charging strategy). Such a forecast can result from
models of the future merit order or, in case of a regression-based assessment, from
a forecast based on historical data. While there is no short-term forecast of MEFs,
Lowry (2018) generates short-term AEF forecasts. Besides lagged actual values of
AEF they do not use any external variables.
As the regression models relies on a system’s load level, short-term MEF-forecasts
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can utilize short-term load forecasts. Short-term forecasts cover a forecasting horizon
from several minutes to days and can be classified into time series and causal models
(Hippert et al., 2001).

time series models include auto-regressive models or models based on Kalman
filters. Causal models include box Jenkins, linear regressions, or ARMAXmodels. As
the load is not linearly dependent on exogenous variables, machine learning models
(e. g., artificial neural networks) are applied to find and use these relationships. Khan
et al. (2016) show that methods of machine learning for short-term load forecasting
can significantly improve the accuracy compared to simple statistical models. Short-
term load forecasting can rely on extensive literature with different models and
exogenous variables (Charytoniuk et al., 1998; Hagan and Behr, 1987; Huang and
Shih, 2003; Chow and Leung, 1996).

10.1.3. Smart Charging

CO2 emission factors are the basis of life-cycle assessments of BEVs (Ma et al., 2012)
especially when compared to cars with ICE (Onat et al., 2015; Yuksel et al., 2016)

Smart charging literature does not only consider saving CO2 emission, but many
other objectives (Huber et al., 2019b): For instance, peak shaving (Druitt and Früh,
2012), cost minimisation for drivers (Hahn et al., 2013; Cao et al., 2012), and charging
station operators (Weis et al., 2015).

Schuller et al. (2015) propose a charging schedule to maximize the share of RES
in the electricity mix, but do not evaluate emission savings. However, other studies
research the CO2 saving potentials of load shifting: Huber and Weinhardt (2018)
determine CO2 saving potential of individual charging sessions based on hourly AEFs.
Hoehne and Chester (2016) use regionally and temporally differentiated MEFs of
Siler-Evans et al. (2012) to investigate the CO2 saving potential in the short-term
optimized control of charging sessions and find a savings potential of 31% compared
to pre-planned loading plans under standard conditions. Short-term MEFs are also
used for other applications of demand-side management, e. g., storage technologies
(McKenna et al., 2017) or data centres (Dandres et al., 2017). However, these
evaluations do only analyse the potential under prefect foresight based on historical
data and do not prose a real-time system.
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For long-time analysis, Kim and Rahimi (2014) use a dispatch model to determine
MEFs and to analyse the effects of aggregated load shifting. Jochem et al. (2015)
consider controlled charging for the year 2030 on an aggregated level and compare
both AEF and modelled MEFs.
The related work shows that MEF can be used to evaluate short-term CO2 sav-

ing potentials of load shifting (Hoehne and Chester, 2016). However, the existing
approaches do not account for uncertainty when forecasting future emission factors.
Evaluating the saving potentials requires a time series of the MEFs. For a short-term
analysis, MEF time series can be evaluated with a data-based approach (Hawkes,
2010). The data basis is described in the following chapter.

10.2. Data

The estimation of MEFs requires an energy system model or an extensive database
of data of real energy systems. This section presents the data used to estimate the
MEFs for Germany based on the regression approach by Hawkes (2010). All the
pre-processed data sets and calculations are available at Lohmann et al. (2019). In
particular, the estimation of MEFs relies on the electric emission factors of each
power plant (i. e., the power plants electric efficiency and the fuels emission factor)
and their generation. Besides, we use weather data to improve the forecast of the
system load and MEFs.

10.2.1. Fuel-specific CO2 Emission Factors

Oxidation breaks down carbon-based fuels into H2O and CO2 (and other compounds)
and generates thermal energy. As some fuels have a higher ratio of carbon atoms
compared to bindings, they result in a higher number of CO2 molecules while generat-
ing the same amount of thermal energy. This relation is described by the fuel-specific
CO2 emission factor in g/J. Like Ensslen et al. (2017), we rely on the data of the
Germany Federal Environment Agency (2018, p. 833 f.). Table 10.1 shows the fuel-
specific CO2 emission factors used for this work. These emission factors are the net
emission factors which only account for the emissions released during combustion.
They do not consider up- or down-stream process emissions. We only consider fuel
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types relevant in the power plant-specific generation data for Germany by ENTSO-E
(2019b) described in the following section.

Table 10.1.: Thermal CO2 emission factors for different generation technologies and fuels.

Fuel / Technology CO2 Emission Factor
[gCO2/ kWhth]

Lignite Rhineland 407
Lignite Middle
Germany

374

Lignite Lusatia 401
Hard Coal 337
Natural Gas 201
Fuel Oil 280
Other Fossiles 424
Waste 329
Hydro 0
Nuclear Power 0

10.2.2. Power Plant Efficiency

Power plant efficiency describes how much electrical energy a thermal power plant
produces for an input of one thermal energy unit. Estimates for power plant effi-
ciencies in Germany are available at the Open Power System Data project (OPSD,
2018). The project provides list of conventional power plants in Germany based on
data from Bundesnetzagentur (2018) and Umweltbundesamt (2019).

The data contains 226 power plants with a generation capacity beyond 100 MWel.
Ninety of the power plants have a researched efficiency. The efficiency of the remain-
ing power plants is estimated based on Egerer et al. (2014) using a linear function
of the technology and the year of construction.

The mean deviation of the estimated values from the researched values is 2.6 per-
centage points. To keep things consistent, we decide for using only estimated values,
even if the researched values for the individual power plants might be more accurate.
There is no data for plants operated with ’other fossil gases’. For these plants, we
use the mean values for natural gas power plant2.

2Steam turbine: 36,9 % Gas and steam: 53,5 %
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10.2.3. System Load and Generation

ENTSO-E (2019a) provides system load and generation data for power plants beyond
100 MWel in a temporal resolution of 15 minutes. To link the load data with the
emission data, we aggregate to hourly values by calculating the mean value.

10.2.4. Weather Variables

The weather data for the load forecasts includes the air temperature in hourly res-
olution for 78 measuring stations in Germany (Deutscher Wetterdienst, 2019). We
use the values of the stations in Stuttgart, Berlin, Dusseldorf and Nuremberg as an
input to the load forecast to cover different regions in Germany. The selection of
these four stations is arbitrary and does not follow a specific framework, e. g., Hong
et al. (2015). We omit a more sophisticated approach as the forecast is not in the
focus of this work and we find no strong correlation of temperature variables with
the German load.

10.3. Methodology

This chapter discusses the methodology used to answer the research questions.
Figure 10.1 describes the methodology in a flow chart. After gathering and pre-
processing the data for Germany in 2017, we calculate the AEF and MEFs based
on a linear regression model. Next, we generate a forecast for the MEFs. Last,
we optimize charging based on these forecasts and determine the emission saving
potentials.

10.3.1. Plant-Specific Emission Factors

Using emission factors on power plant level aims to improve the accuracy of sub-
sequent analyses compared to using technology-specific emission factors currently
applied in the literature (Hawkes, 2010). The plant-specific emission factor γp in
gCO2/ kWhel of a power plant p, using a fuel type k, depends on the fuel-specific
emission factor γk and the electric efficiency of the power plant ηp:
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Data for Germany 2017

𝛾௞ thermal emission factors [Umweltbundesamt 2018]
𝜂
௣ electric efficiency [OPSD 2018, Egerer et al. 2014] 
𝐺௧
௣generation of plant p [ENTSOE 2019] 

Total CO2-emissions:

Γ௧ = ∑ Γ௧
௣

௉

Average Emission Factors:

𝐴𝐸𝐹௧ =
Γ௧

𝐺௧

Marginal Emission Factors [Hawkes 2010]:
ΔΓ௧ = 𝛽Δ𝐺௧

Average and Marginal Emission Factors

Data Split
Load Forecast with MLP [Hong 2010]
MEF Forecast based on Load Forecast

Short-Term Forecast

Charging Scenarios: 30kWh, 10 kW
Charging Flexibility: from 0 to 8 hours
Charging Strategies: Dumb and Smart Charging

Optimized Charging

Figure 10.1.: Flow chart of the evaluation process for CO2 efficient smart charging.
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γp = γk · ηp. (10.1)

The specific emission factor γp of a power plant and its hourly generation Gp
t result

in its absolute CO2 emissions Γpt :

Γpt = γp ·Gp
t . (10.2)

Table 10.2 shows the specific emission factors calculated on plant-level data aver-
aged by technology and in comparison to Ensslen et al. (2017). Note that the table
aggregates different lignite specifications and that the definition of the individual
technologies in this work and the literature reference may not follow the same defini-
tion as in the related work. For instance, Ensslen et al. (2017) do not provide values
for waste or other fossil gases). Apart from fuel oil, all technologies are on similar
levels.

Table 10.2.: Comparison of average fuel-specific electric CO2 emission factors based on own
calculations of plant-specific thermal efficiencies.

Electric CO2 Emission Factor [g/ kWhel]

This Work Ensslen et al. (2017)

Technology Mean Max Min Mean

Lignite 1,082 1,288 935 1,160
Hard Coal 832 1,014 729 905
Natural Gas 410 594 328 377
Fuel Oil 778 857 731 571
Other Fossile Gases 971 1149 793 -
Waste 997 997 997 -
Nuclear 0 0 0 0
Hydro 0 0 0 0

10.3.2. Average Emission Factors

The AEFs provide a benchmark and allow answering RQ 4. We use the system-wide
AEFs to enable a comparison with Huber and Weinhardt (2018). The system-wide
AEFt is calculated based on the net emission factor γk of the technology k and the
share skt of the technology k of the total generation in hour t:
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AEFt =
∑
K

(γk · skt ). (10.3)

We assign the subgroups in technologies in ENTSO-E (2019c) to superordinate
categories in Table 10.2. RES (i. e., wind, solar, and biomass) are assumed to have
a CO2 emission factor of 0 gCO2/ kWhel.

Note that the power plants in this calculation differ from the power plants used to
determine the MEFs. The AEFs consider all power plants (in particular, wind and
solar plants) and plants with generation capacity below 100MW. The shares skt are
based on the generation data by technology described above.

10.3.3. Marginal Emission Factors

We calculate the MEFs according to the methodology of Hawkes (2010) using a
linear regression model. In the following, we discuss the methodological steps and
decisions in determining the MEFs. This description includes the calculation of the
system’s emission factor and load, choice of the regressor, splitting the time series,
and the analysis of the marginal mix.

Linear Regression of Marginal Emission Factors

The estimation of MEFs using linear regression model depends on assumptions dur-
ing the modelling process. In particular, the estimated MEF change with the sharp-
ness of emission factors (i. e., whether technology or power plant-specific emission
factors are used). Next, they depend on the choice of the explanatory variable of the
regression model (i. e., system load, residual load, or generation). Last, they are af-
fected by the geographical and temporal resolution of the analysis and the grouping
of data in different temporal or systematic groups with separate regression models.
We unfold our considerations and decisions on these assumptions in the following
paragraphs.

The regression model explains the hourly change of the system’s CO2 emissions
with the hourly change of its conventional generation (Hawkes, 2010; Siler-Evans
et al., 2012). We fit the regression model based on aggregated hourly emission
values of the energy system (i. e., all power plants) and the conventional generation
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(i. e., residual load) in Germany for the year 2017. We only consider CO2 emissions,
other greenhouse gases or equivalents are not considered.
The hourly generationGt and the hourly emissions Γt are the sums of the respective

values of the individual power plants p (Formula 10.4 and 10.5):

Gt =
∑
P

(Gp
t ). (10.4)

Γt =
∑
P

(Γpt ). (10.5)

Subsequently, Formula 10.7 and 10.8 result in the hourly changes in the generation
∆Gt and the CO2 emissions ∆Γt for each hour of the year. The linear regression
model (Formula 10.6) with the slope β describes the hourly change in CO2 emissions
with the hourly change in generation.

∆Γt = β ·∆Gt + ε, (10.6)

where

∆Γt = Γt − Γt−1, (10.7)

and

∆Gt = Gt −Gt−1. (10.8)

The slope in the regression model β in Figure 10.2 is interpreted as the average
MEF (i. e., the historical change in emissions given a change in conventional gener-
ation). The y-axis section of the regression line is set to zero to obtain unique and
comparable slope values (Li et al., 2017).

Selection of Power Plants

The MEF should only consider power plants that are marginal generators because
these are the ones that react to load shifting (i. e., power plants that adapt their
generation in reaction to load changes). These are usually the most expensive power
plants. In contrast, a power plant with low operational costs such as renewable
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energies or nuclear power plants should not be marginal generators (McCarthy and
Yang, 2010). Likewise, power plants whose generation naturally fluctuates (i. e.,
RES) and does not react to changes in demand are not part of the marginal mix. Li
et al. (2017) provide an in-depth discussion of which generators to consider.

Most of the literature only considers conventional power plants (Hawkes, 2010;
Siler-Evans et al., 2012; Graff Zivin et al., 2014). Consequently, we use the con-
ventional power plants included in the ENTSO-E (2019a) data set which does not
include wind, solar, and biomass power plants.

As a sensitivity analysis, we also used other power plants for the estimation of
MEF. The results of this analysis are noted in Table 10.3. The first row represents
all the power plants from the ENTSO-E (2019a) data set. The second row omits
pumped storage power plants, while the third row only includes coal and gas power
plants. Pumped storage power plants have an emission factor of zero and have a
significant change in their generation patterns. These effects result in higher average
MEFs (i. e., β in Table 10.3) for regressions without pumped storage power plants
(row 2 and 3). As pumped storage power plants are not subject to natural fluctuation
but react as peak load power plants to changes in demand, we consider them relevant
in the analysis.

Table 10.3.: Sensitivity of marginal emission factors β in tCO2/ kWhel for different gener-
ation technologies in the considered generation.

Considered Technologies R2 β

Lignite, Hard Coal, Natural Gas,
Fuel Oil, Other Fossil Gases,
Waste, Nuclear, Hydro, Pumped
Storage

0.84 0.54

Lignite, Hard Coal, Natural Gas,
Fuel Oil, Other Fossil Gases,
Waste, Nuclear, Hydro

0.97 0.73

Hard Coal, Natural Gas 0.99 0.69

The MEFs describe a change in emissions with the conventional generation (i. e.,
regressor in the regression model). Literature names both, the system load and the
conventional generation, as possible regressors. If the total generation covers the
total system load (i. e., ignoring imports and exports), the system load corresponds
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to the generation.
In this chapter, we use the hourly generation of the selected power plants as the

regressor. The generation of these power plants also represents the residual load
(i. e., the system load less the feed-in of fluctuating producers3). This decision is
based on the following notion:
Only those generators which react to load changes are relevant for consideration

of marginal power plants. In contrast, we do not aim to consider generators with
a natural fluctuation independent from changes in load. As we focus on the load
changes that are not covered by natural factors, we use the generation of conventional
and hydro power plants as a regressor. Otherwise, the analysis would also include
the effects of changes in emissions that are not related to the changes in connected
load (i. e., potentially shifted charging).
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Figure 10.2.: Linear regression for system-wide CO2 emissions ∆Γt and change in resid-
ual load ∆Gt with marginal emission factor β considering lignite, hard coal,
natural gas, fuel oil, other fossil gases, waste, nuclear, hydro, and pumped
storage.

3We also omit biomass power plants and power plants with a nominal capacity of less than
100MW.



126 CO2 Efficient Smart Charging

Marginal Emission Factors for different Load Levels

Figure 10.2 resembles a single MEF for the full year of 2017 (i. e., each observation
the hourly change throughout this year). As the status of the energy system
changes over time, there are different approaches to evaluate MEFs in greater
detail. Different load levels represent a different dispatch in the merit order, it is
common to evaluate the MEFs for different load levels (Hawkes, 2010; Siler-Evans
et al., 2012; Li et al., 2017). In this case, the regression is fitted separately for each
load level and the slope of the regression is interpreted as the average MEF for the
specific load level. Consequently, the resulting MEFs depend on the definition of
load levels. One way is to split the data in quantiles so that each range contains
the same number of observed system load points. While this split guarantees that
the regression can rely on a sufficient number of data points, a quantile could cover
a broad range of values resulting in unstable results. Alternatively, load data can
be divided into ranges with a fixed width. However, these ranges could be sparse
containing only a few data points resulting in similar problems.

When splitting the data, there is a trade-off between a more differentiated MEF
image and the stability of the regression models. A higher number ob quantiles leads
to a more refined picture, but can lead to instability in the results due to fewer data
points in each range. In this chapter, we follow Hawkes (2010) and Siler-Evans et al.
(2012), which use 5% quantiles resulting in 20 load ranges. The use of 5% quantiles
ensures a sufficient number of data points for regression in all ranges. We compose
the time series of MEFs based on the system load assigning each hour of 2017 to a
5 % load quantile and the corresponding MEF (see Figure 10.3).

Marginal Mix

The marginal mix describes the composition of marginal power plants at a certain
point in time. These are the power plants that show a change in generation compared
to the previous hour. In particular, the marginal mix at a certain time or load range
helps to explain the level of the MEFs in this particular situation. For example, times
when fossil power plants ramp-up show large MEFs. However, the characteristics of
the marginal mix depend on the definition and following calculation procedure (Siler-
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Evans et al., 2012; Li et al., 2017):
Absolute changes in generation can be added up at technology or plant level. If

added on plant level, opposed changes in individual generation technologies (e. g.,
in coal power plant ramping up, another reducing load) would result in a small
change in the system load but high changes in coal-generation. This effect can result
in very large shares of the specific technologies in the marginal mix. The effect
can be avoided by summing the absolute values of changes on technology level. As
using technology-level evaluation helps to explain the MEFs, we use the absolute
changes on technology level in relation to the sum of all changes. In this way, the
visualisation in Figure 10.5 explains the composition of the marginal mix but does
not show whether technologies behave positively or negatively towards the total
change in generation.

10.3.4. Short-Term Forecast for Marginal Emission Factors

To derive, short-term forecasts for marginal emission factors, we follow Hong (2010),
who uses a three-layer feed-forward multi-layer perceptron (MLP) for short-term load
forecasts. As there are no simple rules to determine the optimal number of neurons
in the hidden layer (Hong, 2010), we use a grid search between 5 to 50. We decide
on a forecast horizon of eight hours to cover the average duration of a parking event
(compare Chapter 5 and 11). There are two possibilities to forecast eight hours into
the future. Each hour can be forecasted by a single MLP with eight output neurons
or eight MLPs with one output neuron. We use the second option, as smaller MLPs
are more robust against over-fitting (Hippert et al., 2001). As input variables, we use
essential parameters from (Hippert et al., 2001; Hong, 2010): historical load data,
temperature data, and calendar information.
Based on the auto-correlation function, we use the last two values before the

forecasting horizon and the load one day and one week before the forecasted hours
as inputs.
We implement the MLP using the implementation by Seabold and Perktold (2010)

and follow the default settings in all but the following properties. The activation
function is a rectified linear unit recommended by Goodfellow et al. (2016). The
solver (adam) stops at 1000 iterations or reaching a stopping criterion.
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First, we split a 20 % test set from the data by sampling 8-hour splits from the data.
We omit a rolling cross-validation to obtain results for the whole year. Doing so,
we break the temporal integrity of the data. However, Bergmeir and Beńıtez (2012)
show that this has no adverse effect on out-of-sample performance in practice. On
the remaining 80 % of the data, we perform a shuffled 5-fold cross-valdiation used in
the grid search for selecting the best model by minimizing the MAPE. MAPE is the
standard accuracy measure in load forecasting (Hong, 2010; Tripathi et al., 2008):

MAPE =
1

n

n∑
t=1

| yt − ŷt
yt

| ·100%. (10.9)

As MAPE is undefined if yt = 0 it should not be used in time series that have
values of zero (Hyndman and Athanasopoulos, 2018). However, zero values doe not
occur in Germany’s system load.

We compare the MLPs performance with two naive benchmarks adapted from
Hyndman and Athanasopoulos (2018). First, we use the values of the forecast origin
for the next eight hours:

ŷt0+[1,8] = t0. (10.10)

Second, we use the observation one week before as a naive seasonal forecast for
each hour:

ŷt = yt−168. (10.11)

Finally, we create the MEF forecast assigning the predicted load levels to MEFs
using the quantile from estimating the MEF.

10.3.5. Optimized Charging

Finally, we apply the forecast to minimize CO2 emissions during smart charging.
The flexibility and potentials of load shifting dependend on charging power, energy
demand, and time constraints (Babrowski et al., 2014). We model these parameters
based on Huber and Weinhardt (2018) and Petersen et al. (2013).

As before, we use a discrete model with time steps t̄. Each charging session’
earliest start is at time of arrival ta when the BEV connects to the charging station.
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The charging session ends no later than the time of departure td. The time between
connection and departure is the parking duration d of the charging session:

d = td − ta. (10.12)

During this time, the charging load Ct is limited by the maximum charging
power Ċ. Further constraints are the battery of the electric vehicle with a maxi-
mum energy capacity Wmax and state of charge SoCt.
The required or desired amount of charged energy at the end of charging W td is

equals the difference of initial state of charge SoCa and SoCd:

W td ≤ (1− SoCa) ·Wmax. (10.13)

The incremental amount of energy charged during a time step wt is limited by
the maximum charging power and the temporal resolution. The charging energy for
each time step wt is the decision variable of the smart charging problem. In contrast,
dumb charging at Ċ results in the shortest possible charging duration δmin:

δmin =
W td

Ċ
. (10.14)

We define, the temporal flexibility ζtemp as the difference in parking duration and
the shortest possible charging duration:

ζtemp = d− δmin. (10.15)

The total emissions during a charging session ΓAEF and ΓMEF depend on the
emissions for each time step γAEFt , γMEF

t , the energy demand and the temporal
flexibility.
To answer the research question, we compare the emission of two charging strate-

gies: Direct and uninterrupted (dumb) charging Ψu at the maximal charging power
starting at time of arrival has a ζtemp of zero causes the following emissions:

Γ =
ta+δmin∑
t=ta

(t̄× γt × Ċ) (10.16)

The smart charging strategy Ψs to minimize the CO2 emissions has the following
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optimization problem:

min
wt

Γ =
td∑
t=ta

(wt × γt)

s.t. wt ≤ t̄× Ċ
td∑
t=ta

wt = W td

wt ≥ 0.

(10.17)

Table 10.4.: Evaluation scenarios with different charging strategies and underling emission
factors.

Dumb Charging Smart Charging

AEF Ψu,AEF Ψs,AEF

MEF Ψu,MEF Ψs,MEF , Ψ̂s,MEF

To answer the research questions, we calculate five different scenarios based on the
charging strategies noted in Table 10.4. First, we create ground truth data for AEFs
and MEFs using perfect foresight. Thereby, we use both strategies resulting in four
different scenarios (Ψu,AEF , Ψs,AEF , Ψu,MEF , Ψs,MEF ). Besides, we use scheduling
based on the forecast to evaluate the performance of the real-time feedback system
with scenario Ψ̂s,MEF .
The comparison on the scenarios allows to answer the research questions. RQ 3

evaluates the CO2 saving potentials of smart charging, by comparing the emissions
of dumb and smart charging based on the emissions in scenario Ψu,MEF and Ψ̂s,MEF .
A comparison of the saving between smart and dumb charging with AEF and MEF
(Ψu,AEF and Ψs,AEF ) and (Ψu,MEF and Ψs,MEF ) answers on the differences of con-
sidering different emission factors (RQ 4). Last, we evaluate RQ 5 by comparing
the saving potentials with perfect foresight (Ψu,MEF ) with the performance of the
real-time feedback system (Ψ̂s,MEF ).
As the data used has an hourly resolution, we also use time step of t̄ of one

hour in optimizing the charging. Hence, each smart charging strategy Ψs can be
interrupted for each hour during the charging period h. Our assumptions on the
charging session follow Huber and Weinhardt (2018) and Schuller et al. (2015) to
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obtain comparable results. The desired amount of energy at the end of charging
Wtd is 30 kWh and the maximum charging power Cmax is 10 kW. To evaluate the
saving potentials of individual charging sessions throughout the year, we do not make
further assumptions on the charging behaviour.
The idea is to generate direct feedback and decisions for the users at the start of the

charging session, the optimization runs on the start of the charging session ta. After
that point, we do not generate new optimized forecasts or use online-optimization.

10.4. Results

In this section, we discuss the results of the methodology. First, we present the
estimated MEFs for Germany in 2017. In Subsection 10.4.2, we describe the perfor-
mance of the short-term forecasts. Last, we evaluate the CO2 saving potentials of
the smart charging sessions.

10.4.1. Marginal Emission Factors for Germany in 2017

The regression model results in an average MEF for 2017 of 550 gCO2/ kWhel. This
is around 17 % higher than the system-wide AEF, based on the entire generation
mix (469 gCO2/ kWhel). As the results depend on the characteristics of the energy
system, they are difficult to compare with other studies from the US or UK: For
example, the MEFs exceed the AEFs in Bettle et al. (2006) by up to 50%, Siler-
Evans et al. (2012) determines differences of -25% to +35% depending on the region.
An analysis for Germany by Pareschi et al. (2017) using the same methodology
(Hawkes 2010) finds average MEF of 760 gCO2/ kWhel. As they do not reveal all
assumptions, especially the power plants used, there is no way in explaining the
differences. Jochem et al. (2015) use a energy system model, to determine MEFs in
Germany in 2030 and find MEFs of 550 gCO2/ kWhel.
Figure 10.5 shows the average MEF depending on the system load for 20 load

quantiles. The MEF shows a negative correlation with increasing load level. The
highest MEF is at the lowest load level4 at 729 gCO2/ kWhel. In the highest load
range5 the MEF is 343 gCO2/ kWhel.

4Average load value of the lowest load range: 37 gigawatts (GW)
5Average load value of the highest load range: 75.5GW
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Figure 10.3.: Exemplarily time series of marginal emission factors in May 2017.

Regett et al. (2018) names this finding the merit order dilemma of emissions: Power
plants with a high emission factor have lower marginal costs and are dispatched at
lower load levels.

There are only minor changes in average MEFs between the months of the
year (i. e., spreads of 74 gCO2/ kWhel in different months compared to spreads of
386 gCO2/ kWhel in different load levels. There is no clear pattern throughout the
year with the highest values in March, June, November.

Changes throughout the day are higher and more relevant for the potentials of
smart charging. Figure 10.4 compares AEFs and MEFs depending on the time of
day. Averaged MEFs are higher than the AEFs for all times of the day but show
high correlation. The low system load in the night hours result in higher MEFs
with values of over 600 gCO2/ kWhel between 11 p.m. and 5 a.m. The AEF curve
has values around 500 gCO2/ kWhel in the evening and night hours and drops to
400 gCO2/ kWhel during the day due to solar generation.
Figure 10.5 shows the marginal mix based on relative changes in technology, the

MEFs, the AEFs in relation to the load level. The decrease in MEFs with increasing
load level results from a higher proportion of lignite and hard coal in the marginal
mix at low load levels (compared to higher levels). At high load levels pumped
storage and natural gas increase generation leading to a decline in MEFs. The AEFs
do not change much as the share of technologies in total conventional generation
does not change much, and the effects cancel each other out. Figure 10.5 shows a
shrinking share of nuclear power having zero emissions and lignite with high emissions
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Figure 10.4.: Hourly average of average and marginal emission factors in Germany 2017.

with higher load levels. The change in emissions is compensated with an increase in
generation from hard coal and RES. The composition of the total generation depends
more on the time of day (RES generation) than on the load level.
Comparing the total generation and the marginal mix shows that pumped storage

power plants are over-represented in the marginal mix, especially during high load
ranges. This over-representation also applies to hard coal and natural gas. In con-
trast, the share of nuclear power in the marginal mix (included in Others) is lower
than in the total generation.

10.4.2. Forecast for Marginal Emission Factors

For the short-term load forecasts, the grid search resulted in 30 or 35 neurons in the
hidden layer. The average out-of-sample MAPE is 3.83 % averaged over the whole
forecast horizon. Table 10.5 compares the MAPE for the MLP and the naive bench-
mark models. For all forecast horizons, the MLP outperforms the naive benchmark
models. With increasing forecast horizon, the performance of the MLP approaches
the naive benchmark models.
Visual examination of the forecasting errors does not reveal any clear patterns.
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Figure 10.5.: In descending order: Share of generation technologies in marginal mix, share
of generation technologies in total generation, marginal and AEFs, and density
function of system load. All other graphs are in relation to system load. Style
adopted from Thind et al. (2017).



Results 135

However, the highest MAPEs (around 7 %) are at 6 a.m. and 7 a.m., while the aver-
age error decreases in the evening hours. The weekdays with the worst performance
are Mondays and Saturdays. This error pattern indicates that the model did not
learn to fully differentiate working days and weekends. The model put too much
weight on the auto-regressive terms of the day before. This error could be reduced
by training separate models for weekdays and weekends.
The forecasting errors for the MEF are lower as the emission factors are not

forecasted directly, but are assigned to the forecast load values based on the quantiles.
The MAPE for MEF on the test set is 3.23 %.

Table 10.5.: Out-of-sample MAPE in % of the load forecasters by forecasting horizon.

Horizon [h] MLP ŷt = yt−168 ŷt[1,8]
= t0

t0 + 1 1.95 4.66 3.71
t0 + 2 3.23 4.64 7.13
t0 + 3 4.00 4.63 10.26
t0 + 4 4.02 4.60 13.03
t0 + 5 4.20 4.59 15.53
t0 + 6 4.31 4.60 17.66
t0 + 7 4.38 4.68 19.55
t0 + 8 4.57 4.69 21.01

10.4.3. CO2 Optimized Charging

Finally, we evaluate the CO2 saving potentials based on analysis of the charging
scenarios. We present the results in the order of the research questions.

CO2 Saving Potentials of Smart Charging Comparing the emissions of dumb
Ψu,MEF and smart charging under prefect foresight with Ψs,MEF allows to evaluate
the full CO2 saving potentials. Based on an assumed charging duration of three
hours within a parking period of eight hours, the average CO2 saving potentials are
7.43 %.
Figure 10.7 shows the average CO2 saving potentials of Ψs,AEF and Ψs,MEF

grouped by time of day. The most substantial saving potentials of over 10% ex-
ist in the morning hours between 0 and 5 a.m.. Due to the lower system load in the
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morning hours, there are high MEFs (see Figure 10.5). With a high parking duration
of eight hours, charging sessions could be shifted to the hours with lower MEFs after
6 a.m. During the load increase in the morning, there is a drop in MEFs resulting in
the greatest saving potential. In contrast, there are only very small saving potentials
of less than 2 % between 3 p.m. to 9 p.m.

The CO2 saving potentials depend strongly on the selected charging parameters
and the end-users time flexibility (i. e., parking duration). Figure 10.6 shows how the
saving potentials depend on the parking duration (i. e., time flexibility) and the time
of arrival. Adding one hour to the available charging time results in an average saving
potential of 1.5 %. The highest emission savings of 24.0 % are achieved starting the
charging session at 03:00 a.m. with high flexibility (i. e., a parking duration of eight
hours when only three are required for charging).
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Figure 10.6.: Mean hourly CO2 saving potential in relation to time of arrival and parking
duration if three hours of charging were required.

Suitability of Average Emission Factors Next, we evaluate how well the saving
potentials estimated with AEF do approximate the results using MEF by comparing
the saving of Ψs,AEF compared to Ψu,AEF with the savings of Ψs,MEF compared to
Ψu,MEF .
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The average savings potential with AEFs (i. e., Ψu,AEF to Ψs,AEF ) is 6.0 % and on
the same level as the MEF. The potential is on the same level (6.40 %) as Huber
and Weinhardt (2018) using the same assumptions and the same year.
Figure 10.7 compares the estimated average savings potentials in the optimization

of MEFs and AEFs depending on the time of day at charging duration of three
hours within a parking period of eight hours. Based on AEFs, the most substantial
savings would be achieved when starting the charging period at 6 a.m.. The smallest
saving potentials are at noon. The evaluation using MEFs results in a similar curve.
However, the cure shows an offset in time with a higher maximum value at 3 a.m..
This offset results in different recommended actions for a CO2 efficient charging.
Using AEF instead of MEF underestimated the savings on average and can misinform
the users on the best starting times for saving CO2 emissions.
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Figure 10.7.: Mean hourly CO2 saving potentials based on average and marginal emission
factors.

Potentials of a Real-Time Forecasting System Using the forecasted MEF
in scenario Ψ̂s,MEF compared to perfect foresight Ψu,MEF for a eigth hour parking
duration and three hours needed for charging only reduces the average saving poten-
tials by 0.42 absolute percentage points from 7.27% down to 6.85 % on the test set.
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The forecast can obtain CO2 emission reduction in 85.6 % of occasions. However,
the forecasting error can also shift loads away from low-emission hours and results
in higher emission during charging. Figure 10.8 indicates that that there are 441
arrival times in the test set in which no emission savings are possible (i. e., the first
three hours having the lowest emission factors). The forecast misses to realize most
of the very high emission saving potentials above 20 %.
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Figure 10.8.: Histogram of CO2 savings on the test set with perfect foresight and forecasted
marginal emission factors.

10.5. Discussion

As there is not directly observable ground truth data for MEFs, findings from this
evaluation are sensitive to the assumptions outlined in the previous sections. De-
pending on the assumptions, evaluation could differ from other evaluations of the
same year and energy system. We rely on the definition of marginal generation and
regression model from Hawkes (2010) as this is well accepted in the area of research.

In this chapter, we calculate the MEF based on the marginal mix that includes
the power plants that change their generation from one hour to the next hour. We
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decide against differing definitions in other studies. For instance, McCarthy and
Yang (2010) base the MEFs on the marginal power plant (i. e., the last power plant
that feeds into the grid to meet demand at a certain point in time). In their definition,
the marginal mix contains all power plants that change their generation to meet the
electricity demand of BEVs. Jochem et al. (2015) define the marginal generation as
the amount of energy additionally required due to BEV charging in the long-term.
We acknowledge that shifting a single BEVs charging load is unlikely to have any
measurable influence on the composition of the marginal mix. However, using the
definition and methodology of the marginal mix of Hawkes (2010) is more robust
than estimating the single marginal power plant that changes generation in reaction
to load shifting. Besides, shifting individual charging sessions would only cause small
changes in consumption that will not have any effects in the merit order.
A limitation in the estimation due to data availability is that it considers only

power plants with an installed capacity higher than 100 MW. Also, the estimation
neither considers imports nor exports. As Germany generates 99.8 % of the annual
electricity consumption itself, we assume that ignoring imports has limited effects
(ENTSO-E, 2018). However, as 8.5 % of annual production is exported (ENTSO-E,
2018) this could have a substantial effect and provides room for further research.
As reported in the results, the forecaster for system load has weaknesses in dif-

ferentiating weekends and weekdays. However, as the results of RQ 5 indicate, it is
accurate enough to provide similar results as using the ground truth. However, we
see a substantial number of 14.4 % events in the test set where using the forecast
increases the carbon emissions, while the increase in these cases is rather low, such
events could deter BEV users from using such systems.
Besides CO2, we consider no other emissions (e. g., NOx, particulate matter, or

SOx). First, these emissions are more unlikely to be motivating feedback to the end-
user as Germany already meets its emission reduction target. Second, the negative
health impacts of imissions of NOx, particulate matter, and SOx are mainly a problem
in inner cities. As fossil power plant are mostly not in the city centre, the emissions
caused by BEV charging are already less harmful than such of car with ICE in the
cities.
Using input data in a one-hour resolution leads to the same resolution in all further

analyses. When optimizing the charging sessions, shorter time steps would allow for
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a more differentiated consideration. As a a higher resolution would result in higher
spreads in MEF, the analyses in this chapter are a conservative estimate for emission
saving potentials, which could be even higher.

The analysis is agnostic to assumptions of BEV users’ charging behaviour. Instead,
we rely on the assumptions from Schuller et al. (2015) and Huber et al. (2019a) with
a rather high charging power of 10 kW, compared to home charging, and an energy
demand of 30 kWh. According to Schäuble et al. (2017) energy demand is often lower
than 20 kWh and many charging sessions are rather slow, especially when charging
at home. The methodology and data provided offers to compare different charging
situations concerning their CO2 saving potential. Such an analysis would help to put
into perspective the high potentials at night that could be somewhat misleading. In
reality, only a few BEVs would be connected at 3 a.m. and charged directly.

Last, the feedback system would propose shifting charging from low to high load
levels. This advice might seem counter-intuitive to end-users and would send all
users the same recommendation. If followed by many end-users, this advice could
result in both higher energy cost (from operating expensive peak power plant) and
grid congestion (due to the uniform signal for all users). As this is not a promising
coordination signal, the proposed a feedback system seems to be more useful to
communicate the benefits of smart charging in a single number (i. e., potential to
avoid CO2 emission) than as a system for actually scheduling smart charging.

10.6. Conclusion

In this chapter, we provide a real-feedback system and scheduling tool to avoid
carbon emissions with smart charging. The system builds on three methodological
aspects: the determination of MEFs for Germany based on Hawkes (2010), short-
term forecasts of MEFs, and the calculation of the CO2 optimized charging strategies.
We hereby close the research gap to provide feedback for individual charging sessions
based on MEFs.

As a byproduct, we calculated the MEF for Germany in 2017. The dataset is avail-
able at Lohmann et al. (2019). We find that the average MEF is 550 gCO2/ kWhel

and is about 17% higher than the system-wide AEF. In contrast to the AEF, the
MEF show a strictly negative correlation with system load in Germany.
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This negative correlation shifts loads towards times with already high loads. How-
ever, this would change with increasing CO2 prices that would move CO2 intensive
power plants to the end of the merit order. The highest CO2 saving potentials for
smart charging are when the charging session would start at night (low load, high
MEF) and is shifted towards morning (higher load, lower MEF).
Feedback based on AEFs (as done in Huber and Weinhardt (2018)) can provide

end-user with false information and even result in a worsening of CO2 emission. For
example, an AEF-based system would propose charging around noon, while the real
saving potentials are higher at night (Figure 10.7).
We find that forecasting the MEFs based on a simple short-term forecast of the

system load allows building a real-time feedback system that only performs slightly
worse than compared to perfect foresight.
BEV users are more motivated to use smart charging systems (Will and Schuller,

2016) and are more flexible in their charging setting (Huber et al., 2019a) if the sys-
tems consider environmental issues. The proposed methodology can be implemented
by a choice architect to provide BEV users with real-time feedback on their charging
flexibility and work as an incentive to charge more flexibly. It would be interesting
to examine out how such feedback would influence the willingness of BEV users to
charge more flexibly in real-world charging situations. In particular, different fram-
ings can be used to explain the avoided CO2 emissions. For instance, such a feedback
system could express emission savings in mass, volume, or distance traveled with an
BEV or conventional car.





CHAPTER 11

PROBABILISTIC FORECASTS OF TIME AND ENERGY
FLEXIBILITY

This chapter is based on joint work conducted by Julian Huber, David Dann,
and Christof Weinhardt, published in Applied Energy, cited here as: Huber et al.
(2020a).

The previous chapter described how smart charging allows integrating more RES
into the energy system. Feedback on RES integration could even motivate BEV users
to charge with more flexibility and enhance sustainability. However, the charging
of BEVs also challenges the electricity grid for several reasons. First, the maximum
charging power is very high compared to other household appliances. Second, charg-
ing multiple BEVs often has a high simultaneity. To overcome these challenges,
charging station operators can apply smart charging. Smart charging adjusts the
charging power of individual charging sessions by reducing or postponing them. In
this way, charging station operators can exploit low prices on electricity markets
(Huber and Weinhardt, 2018), provide system services (Staudt et al., 2018a).
Smart charging relies on flexibility in the charging demand. Charging demand

is flexible if the BEV’s parking duration at the charging station is longer than the
time needed to fulfil the BEV’s energy demand. Ludwig et al. (2017) introduce the
difference between two types of flexibility for industrial demand-side management,
i. e., energy and time flexibility. We transfer this idea to the charging session of
BEVs: Energy flexibility is the difference between the minimum required SoC and a
fully charged battery. For instance, if the BEV users are confident that their next
trip’s energy demand does not require a full SoC, they can provide energy flexibility

143
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by articulating that they do not require a full SoC at the end of the charging session.
Time flexibility results from the difference in time required to reach the final SoC and
the parking duration between arrival and departure at the station. Higher flexibility
sets broader constraints to the optimization of the charging session. For instance,
reducing charging power to reach the same final SoC over a more extended period
allows flattening load peaks.

To apply smart charging, the charging station operator requires a definite valuation
of the time and energy flexibility of each charging session. Otherwise, the operator
who uses smart charging runs the risk to constrain BEV users’ mobility by the time of
departure because the SoC is not sufficient for the BEV users to reach their intended
destination. To mitigate the risk of insufficient SoC, smart charging system operators
mostly rely on the users’ agreement to charge flexibly. Here, the users accept that
they cannot charge the BEV immediately and continuously at full capacity until the
BEV reaches its full SoC.

To do so, the users can communicate their flexibility by explicitly entering the
desired SoC and planned time of departure for each charging session. Analysis of
Lee et al. (2019) show hat BEV users often perform poorly when asked to provide
estimates of desired SoC and planned time of departure. In particular, the authors
find that the user input often represents a worse prediction than simple quantitative
forecasts. Alternatively, the users can define profiles that fit their driving habits and
can be adapted if necessary (Huber et al., 2019a). Setting these defaults is not a
trivial task as drivers have to consider multiple requirements and objectives.

In particular, BEV users often have a limited understanding of the energy system
and their mobility patterns Biresselioglu et al. (2018). While goal framing can hint
users to the useful objectives of smart charging and increase flexibility (Chapter 9),
limited understanding of their own mobility patterns could have negative effects on
their flexibility. As individual overestimate the probability of rare events (Thaler
and Sunstein, 2009), Huber et al. (2018e) argue that BEV users could overestimate
how much energy they require and suffer from charging fright (i. e., having anxiety
of not having enough SoC when using smart charging) which leads to low flexibility.
To overcome such biases, smart charging systems could provide decision support
(Flath et al., 2012). For instance, smart charging systems could provide forecasts
on the required SoC and parking duration for each parking event to set reasonable
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defaults. Findings from Chapter 7 show that defaults are a powerful tool of choice
architecture and influence user behaviour.
Such forecasts could assist charging station operators and BEV users in finding

the right amount of flexibility by predicting the charging flexibility and ensure that
the flexibility allowed by the system does not interfere with the users’ mobility needs.
In particular, flexibility can be predicted by using forecasts for the expected parking
duration and energy requirement of the next trip.
Alternatively to the users setting their preferences, the charging station operator

can use such forecasts to identify charging events with high flexibility to intervene
(e. g., by interrupting charging for a short period) without the users noticing. The
system must be designed conservatively so that the times it overestimates the parking
duration or underestimates the energy requirement for the next trip are kept at a
minimum. To make conservative estimates, the forecasts have to consider their
uncertainty so that the charging system operator is confident not to control the
inflexible charging events.
Various parties are positioning themselves as charging station operators to take

financial advantage of the flexibility in electric mobility. Grid operators want to use
the flexibility for system services and congestion management, home-owners aim to
maximize their self-consumption, while utilities and public charging infrastructure
operators want to benefit from temporal changes in electricity prices. Also, manu-
facturers of electric vehicles are pushing into the market of charging infrastructure
and energy trading, e. g., by offering vehicle-to-home solutions (Weiller and Neely,
2014). Compared to the other players, the vehicle manufacturers have an important
asset for determining charging flexibility: Global Positioning System (GPS) data of
the vehicle provides them with location data. This location data may enable a bet-
ter prediction of parking duration and energy requirements. At business level, the
question arises how big the advantage of this data is and whether charging station
operators should invest in the acquisition of this data or leave the field to the vehicle
manufacturers who have access to this data.
While previous scholars analyse the mobility patterns of car users (Zumkeller et al.,

2011) and flexibility potentials of different BEV user groups (Schuller et al., 2015),
to the best of our knowledge there is no established forecaster that allows predicting
the flexibility of individual BEV charging events. Furthermore, it is still unclear
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what kind of data is required to predict the time and energy flexibility of BEVs.
To address this striking research gap, this chapter describes the development of

a quantile forecast for parking duration and upcoming trip distance. We base our
analysis on a German data set of travel logs and follow the framework for forecast
development provided by Hyndman and Athanasopoulos (2018) shown in Figure
11.1 (also see Chapter 6). First, we outline the requirement for forecasts as input for
smart charging systems. Next, we generate features from the travel logs to resemble
the information that is available to charging stations from historical parking events
or tracing users’ travel data with smartphone applications. Next, we discuss feature
selection reduction and propose forecasters. Following, we select a model based
on cross-validation performance and discuss the forecasting results on the test set.
Finally, we show how charging station operators can profit from using quantile
forecasts to solve congestion or provide flexibility on an ancillary market. In doing
this, we answer the following research questions:

RQ 6 To what extent does travel data improve the accuracy of probabilistic
forecasts for parking duration and next trip distance of individual parking events?

RQ 7 What number of mobility impairments can be avoided using a smart
charging strategy based on probabilistic forecasts as compared to point forecasts?

We answer RQ 6 comparing the cross-validated performance of forecasters with
and without location data. RQ 7 is answered by using the best forecast from the
model selection step to schedule BEV charging loads from the test set using a greedy
heuristic.

With this chapter, we contribute by deriving interpretable features that can assist
charging station operators ans smart charging systems to forecast parking duration
and trip distance to predict BEV charging flexibility. We use these features to pro-
pose four forecasters that are evaluated on an open data set and can serve as a
benchmark for further model development. The evaluation of the forecast results
shows that charging station operators should acquire location data to improve fore-
cast accuracy and use probabilistic forecasters instead of point forecasts when using
real-world scheduling problems.
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Figure 11.1.: Implementation of the basic steps of forecasting by Hyndman and Athana-
sopoulos (2018) in Chapter 11.

The structure of the chapter bases on the framework mentioned above: After pro-
viding the problem definition in the first section, we describe the related work on
forecasting in BEV charging in Section 11.1. Next, we introduce the data and derive
features used for the evaluation in Section 11.2. Section 11.3 describes the method-
ology, including the choosing and fitting of the forecasters. The forecast results
are presented in Section 11.4. In Section 11.5, we present a case study to evaluate
the improvements obtained by the forecasts. The chapter closes with Section 11.6,
discussing the results and a conclusion and practical implications in Section 11.7.

11.1. Related Work

The increased number of BEVs is being accompanied by scientists working on how
to meet the challenges of increasing energy demand and the high simultaneity of
charging sessions. In Xin et al. (2010), the authors discuss what kind of forecasts are
valuable to foster the integration of BEVs into the energy system and charging station
planning and operation. They mention the forecast of electricity cost (i. e., electricity
price and charging demand), occupation of charging stations, and the development
of the electric vehicle population. Indeed, several authors (e. g., Schellenberg and
Sullivan 2011, Plötz et al. 2014, and Gnann et al. 2015) try to predict the long-
term development of BEV diffusion for different countries. Given that these are, by
comparison, long-term forecast, covering years, such forecasts are difficult to evaluate
with real-world observations. While these forecasts provide a valuable foundation for
strategic planning, their contribution to the day-to-day operation of smart charging
systems is limited.
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On the contrary, Wi et al. (2013) describe a smart charging method for smart
homes with PV systems. Their method relies on a time series model for the feed-in
of the PV systems and they assume perfect foresight on the BEV charging. Similarly,
Schuller et al. (2015) assume perfect foresight on the mobility data provided by the
German Mobility Panel (Zumkeller et al., 2011) for scheduling charging to integrate
fluctuating RES using a linear optimization model. Their analyses show that differ-
ent user types, e. g., retirees and full-time workers, show different charging flexibility.
Likewise, Sadeghianpourhamami et al. (2018) find three distinct behavioural clusters
in 387,524 BEV charging sessions from the Netherlands. The behavioural clusters
differ in the location and the flexibility of the charging situation. They identify
parking to charge, e. g., on a long journey, charging near home, e. g., overnight, and
charging near work.

The tables in Appendix F list work concerned with forecasting (Table F.1) and
simulating (Table F.2) of short-term charging demand. While simulations do not try
to predict real-world data, they aim to provide realistic scenarios for BEV charging
behaviour. In contrast, the forecasts in the upper half are evaluated against out-of-
sample data.

While most papers forecast charging demand of an aggregated BEV fleet, only
a few (Bikcora et al. 2016, Ai et al. 2018) forecast demand or occupation of single
charging stations or households. Most forecasts and simulations rely on conventional
trip data (i. e., from cars with ICE), assuming that they share BEV users’ mobility
patterns. Only a few studies rely on rather small samples of BEV charging (Bikcora
et al. 2016, Ai et al. 2018). Forecasters are different machine learning, time series
(Amini et al., 2015) or rule-based models of the charging behaviour (Xing et al.,
2019). Both the input features of simulations and forecasts of BEV charging rely
mainly on historic charging and parking patterns. Driving patterns and SoC patterns
are most often used in simulations, but not in forecasts. In contrast, some forecaster
use weather (Arias and Bae, 2016) or calendar data (Xydas et al., 2013) as external
variables.

As most forecasters predict the aggregated charging load of BEV fleets and sim-
ulation results are not evaluated compared to ground-truth data, the predictability
of a single BEVs charging behaviour is still unclear. The analyses mostly build
on conventional trip data or historic charging patterns, which provide only limited
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Table 11.1.: Example of travel log data for two drivers.

Driver Mo 00:00 Mo 00:15 ... Su 23:30 Su 23:45

distance 1 0 0 ... 20 7
location 1 home home ... driving leisure
distance 2 5 0 ... 0 0
location 2 shopping shopping ... home home

information about flexibility in the charging session. While many simulations con-
sider spatial mobility patterns as an essential input, they seldom considered in the
short-term forecast.
While there is no research on forecasting a single BEV’s parking duration or trip

distance and no insights on considering the uncertainty in such forecasts, there is
a vast literature on probabilistic energy load and price forecasting (Hong and Fan,
2016). As the problem is relatively similar in terms of domain and time frame, in
the following, we rely on findings and methods from this domain.
The review of existing literature shows that forecasting energy demands and park-

ing duration of BEVs has not received enough attention. In particular, to our knowl-
edge, there is no research on forecasting a single BEV’s parking duration or trip dis-
tance as a proxy for its flexibility. Besides, there are no insights on considering the
uncertainty in such forecasts as most prior work focuses on aggregated charging loads
using point forecasts. This chapter provides charging station operators with novel
insights regarding three aspects. First, we provide forecasts that allow assessing the
flexibility of charging events compared to mere load forecasts. Second, probabilistic
forecasts for individual parking events allow the account for their uncertainty. Third,
we evaluate the importance of historical driving patterns as an input feature for such
forecasters.

11.2. Data

Evaluating the impact of location features requires a data set of mobility patterns.
We found only one publicly available data set containing trip trajectories in Xing
et al. (2019). As this data stems from a ride-hailing company in China, it does not
compare to residential BEV users charging at home. To the best of our knowledge,
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Figure 11.2.: Scatter plots for parking duration and trip distance at home in the data-set
plotted by the time of arrival for working days (blue) and weekends (yellow)
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there are no public data sets of BEV charging combined with location data of BEVs.
For instance, Lee et al. (2019) recently published an extensive data set of charging
sessions of public charging stations in the US. However, this data set does not provide
information about the BEVs location data and, consequently, is not suited to answer
the posed research questions. Hence, we use the data set provided by Zumkeller
et al. (2011)1 that is also used in the analysis of Schuller et al. (2015). The data set
covers travel logs of 6,465 German car users.
The car users recorded their mobility behaviour for a whole week. The participants

started logging their mobility patterns on different days. In the end, the data was
aggregated starting on Monday. The time of data collection was selected so that there
were no holidays during the recording period. During the week, the participants
noted where they went, e. g., work, shopping, home, the mode of transportation,
and the distance travelled by car. This data results in mobility diaries in 15 minutes
resolution. Table 11.1 shows an extract of a travel log. User 1, for instance, is at
home on Monday from 00:00 to 00:30. On Sunday 23:30 to 23:45, she drives 20 km,
in the following 15 minutes, she drives for seven more km and arrives at a leisure
activity.
As an input, we use these travel logs as time series data. We generate a new time

series of parking events with entries at each arrival of a car at home. This time series
contains different users. As the time series for each user is rather short (one week
of data), learning weekly patterns to forecast the next week accurately is unlikely.
However, we assume that users’ mobility behaviour follows a weekly pattern. We use
the whole data set of all users to train the model with information from all days of
the week. The resulting time series contains all parking events in the data set with
the IDs of the users and lagged features of the specific user (e. g., previous parking
location).
While we cannot learn and forecast the weekly behaviour for a single user, we

assume that there are similarities within the user types (as found by Schuller et al.
2015) from which the forecasters may learn. Consequently, we decide to derive
aggregated features for single parking events, as described in the following. Another
merit of this procedure is that the data sampling for training, validation, and testing
is independent of the overall temporal order of the data. This split allows us to use

1available at daten.clearingstelle-verkehr.de/192/
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cross-validation and an evaluation of the models’ performance over the whole week
(and not only the end of each week). For the cross-validation, we use data from the
end of the week to train models that predict events that precede the training data.
While some researchers propose rolling-origin evaluations, to simulate a realistic
situation, where all the training data precedes the validation and test data (Tashman,
2000), Bergmeir and Beńıtez (2012) show that this has no adverse effect on the out-
of-sample performance.

For further analyses, we make the following assumptions. We assume that the
mobility patterns of conventional car users are the same for BEV users. Pasaoglu
et al. (2014) analyse the potential of mobility surveys of conventional car owners
to support studies on the impact of electric vehicles. They do not mention any
differences in conventional car owners or BEV users. With insufficient BEV data
available, most studies in Table F.1 use trip data from conventional cars. As most
trips are rather short, 150 km range could cover 95 % of trips of German residential
car users (Lunz and Sauer, 2015), we see no reason why BEV users would (have to)
behave differently.

However, we cut off the longest trips at 350 km, which is the range of a current
Tesla Model 3 which is the best-selling BEV in US (see Table A.1). Apart from that,
we apply no further cleansing as we see no unrealistic outliers. We next restructure
the data, so that one observation represents a parking event, i. e., when a car is not
used for driving. Note that a parking event is usually the moment when a BEV is
parked and connected to the charging station. As most private BEV users charge
their car at home (Hardman et al., 2018), we reduced the data to the parking events
at home for the following evaluation. This reduction resulted in a total of 38,086
parking events at home. We further derived the set of features listed in Table 11.2
for all parking events.

For each parking event of index i, we make a forecast based on the data available on
the start of the parking event at the time of arrival ta being the forecast origin. Note
that there are two variables of interest when scheduling the charging of a BEV by
predicting its flexibility. First, the parking duration di determines the time flexibility
by giving the time frame that is available for charging the BEV. The longer the BEV
is parking at the charging station, the higher the time flexibility and opportunity
for load shifting. Next, the user requires enough charge to reach the next charging
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station. The survey conducted by Huber et al. (2019a) shows that BEV users do
not always require a full SoC after each charging session but are willing to provide
flexibility in general. Hence, the charging session also has certain energy flexibility,
i. e., the difference between 100% SoC and the SoC required for the next trip, which
is highly correlated with the trip distance li of the next trip. Next, we aim to forecast
trip distance and parking duration to improve the inputs for smart charging systems.
As mentioned above, different forecasters might have access to different amounts

of data. The charging station operator knows the parking duration and energy
requirements of the past charging sessions at the station for billing. For accounting,
the operator will usually also have an identification of the BEV users, which enables
the operator to learn from the driver’s behaviour patterns. With one week of data,
we only observe around five parking events per driver. As this is too short to learn
distance patterns of a single user, we use the user type as an input feature. This
feature set τ , available to the charging station operator, is denoted as τstation in the
following.
We define location features as information that requires knowledge on the BEVs’

position over time, e. g., retrieved by GPS data. This information is available for
vehicle manufacturer by on-board GPS or can be obtained by the charging station
operator by tracking the BEV users via a smartphone application. As many people
already share GPS data with application providers via their smartphone with little
privacy concerns, we assume a charging station operator could obtain such data by
its applications.
From the travel logs, we obtain the following location features: the last destination

before arriving at the station (implemented as a category e. g., work, shopping,
leisure), duration and distance of the last drive to the parking position, and the
number, distance, and duration of previous trips of the same calendar day. The
complete feature set, including location data, is denoted as τall.
In the way we derived features from the travel log, an arbitrary number of further

features can be derived. We tested further features in pretests and evaluated them
in terms of out-of-sample forecasting accuracy, but they did not improve models’
performance significantly. Consequently, we remained with the features described
in Table 11.2 as further features render understanding and interpreting the results
more difficult.
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Figure 11.2 presents the parking duration and trip distance for all parking events in
the data set over a day. The histogram on the x-axis shows that most parking events
at home occur either around noon or in the evening. Most parking durations (left
graph) are rather short (below one day). Only a few parking events cluster around
multiples of 24 hours, represented as the horizontal bands in the graph. These bands
drop to the right, as cars that arrive later often still depart at similar times in the
next morning. The trip distance in the right graph does not show such a distinctive
characteristic. Most trips starting at home are rather short (below 50 km). With
the same data set, Plötz et al. (2017) show that this distribution of trip length in
Germany corresponds to a Weibull distribution. In so far, charging sessions with high
flexibility (promising for smart charging) are the ones with high parking duration
and short trip distances. The first group is in the upper segment of the left graph,
where the time flexibility is high as only a portion of the parking duration is needed
to charge the BEVs. The latter are the processes in the lower section of the right
graph that have high energy flexibility as only little SoC is needed to fulfil the energy
requirements of the upcoming trip.
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11.3. Methodology

Next, we develop promising forecasters to identity the most flexible charging sessions.
As we find no benchmark models for this problem in literature, we decide to use
forecasters used in probabilistic (electricity) load forecasting, which is, besides price
forecasting, the most common forecasting task in the energy domain (Hong et al.,
2016). In probabilistic forecasting, a forecaster (model) F does not aim to predict a
single value ŷ, but the distribution of the forecasted value P̂ (Y < y). Forecasters,
hereby, often rely on a set of features τ that have some predictive power on the
forecasted variable y.

F : τ → P̂ (Y < y). (11.1)

In many cases, the forecasters do not predict a complete probability distribution
P (Y < y). Instead, they predict a selected set of quantiles Q (see Equation 6.3). In
this way, many forecasters predict a set of quantiles Q to approximate the probability
distribution P̂ (Y < y). The quantile prediction allows accounting for the uncertainty
in the forecast. Having information on the expected probability distribution is a
valuable property in various use cases. For instance, they provide more information
in decisions under uncertainty, as they provide information on the interval in which
the realized outcome lies within a given probability. Especially for scheduling BEV
charging, it is not only essential to know whether the starting time will be short
or long, but also whether the forecaster is confident in its forecast. To derive a
forecast for parking duration and trip distance, we follow the framework outlined in
Figure 11.1:
After prepossessing (described in the previous section), we shuffled and split the

data randomly in two parts. 85 % for training and model selection (training and
validation set) and a 15 % hold-out sample for final evaluation (test set). For model,
parameter, and feature selection, we perform five-fold cross-validation by splitting
the 85 % training and validation set in five different folds. By choosing five-fold
cross-validation, the validation sets have a similar proportion of the total data as the
test set (17 % compared to 15 %).
To answer RQ 6 regarding the value of location information, we differentiate two
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feature sets noted in Table 11.2: A set τall that contains all features including location
information and set τstation that only includes data available at the charging station.
We compare the cross-validation results for the forecaster with the smallest average
difference in performance between two feature sets τall and τstation.
To substantiate the results of the model selection, we then evaluate the results on

the hold-out test set. In contrast to measures for point forecasts e. g., Root Mean
Squared Error (RMSE) or Mean Absolute Percentage Error (MAPE), pure accuracy
measures for probabilistic forecasts are usually hard to interpret, as they do not
provide an average or percentage deviation. Moreover, the framework of Hyndman
and Athanasopoulos (2018) prescribes to use and test the forecasts in a use case.
Following this framework, we apply the trained forecasters in a case study scheduling
the interruption of BEVs’ charging sessions. We use these results to answer RQ 6
on the value of probabilistic forecast in BEV scheduling problems. In the following
section, we first describe error measures used as criteria for model selection. We then
present the selected feature sets and forecasters.

11.3.1. Selected Features

Some of the features listed in Table 11.2 contain similar information. For instance,
the previous trip duration and distance should show a high correlation. As some
forecasters might perform better, when the set of input features is reduced, e. g.,
quantile regression (Guyon and Elisseeff, 2003), we consider performing a feature
selection step for both forecasted variables. For both forecasted variables and feature
sets (τstation and τall), we perform a lasso regression (Ludwig et al., 2015) on the
training and validation set. As the results of the lasso regression show non-zero
coefficients for all features and forecasted variables, we decide to omit the feature
reduction. The decision to do so is also motivated by the fact that the feature
selection is based on a point forecast, while the final models aim at probability density
forecast. A feature may have little information on the average parking duration or
trip distance, i. e., not improving the point forecasts accuracy, but high information
for predicting other segments of the probability density.



158 Probabilistic Forecasts of Time and Energy Flexibility

11.3.2. Error Measures

Point forecasts in energy forecasting are mostly evaluated in terms of RMSE or
MAPE (Hippert et al., 2001). While the RMSE expresses the error in the unit of
the forecasted variable, MAPE is a relative error measure that somewhat allows
comparing the forecasters’ performance on different data sets. The MAPE is given
in Equation 6.9.

As Figure 11.2 shows, the distribution of data is very skewed in both parking
duration and trip distance. To provide a error measure insensitive against very high
observations, i. e., outliers being parking events with very the long parking duration
and trip distance, we follow the recommendation by Armstrong and Collopy (1992)
and also use the median of the absolute percentage errors (MdAPE):

MdAPE = median| ŷ − y
y
| · 100%. (11.2)

On the contrary, the evaluation of probabilistic forecast is less straight forward.
Gneiting and Katzfuss (2014) and Gneiting and Raftery (2007) discuss prediction
spaces, calibration, and sharpness as possible evaluation criteria and provide guide-
lines for proper scoring rules. Such scoring rules assign a numerical score S(F, y) to
the probabilistic forecast F and the observed value y. They propose the continuous
ranked probability score and Dawid–Sebastiani score as a more practical alternative.
The energy load forecasting community establishes the pinball score a quasi-

standard by using it in the evaluation of the global energy forecasting competition
(Hong et al. 2016, Hong and Fan 2016). Accordingly, we decide to use the pinball
score instead of the other available measures mentioned before. The pinball loss for
each quantile qa is calculated by

La(qa, y) =

{
(1− a) · (qa − y), if y < qa

a · (y − qa), if y ≥ qa.
(11.3)

This definition results in a tilted loss function resembling the trajectory of a pinball
hitting the barrier having the following properties. If the observed value matches
the predicted quantile, the loss function is zero for this quantile and non zero for
all other quantiles. For the median (50 % quantile), the loss function becomes
symmetric, returning half the absolute error. In case the observed value is higher
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than predicted quantile value, the pinball loss La returns a high penalty, especially
for high quantiles.
We use the MAPE and MdAPE to evaluate the point forecasts being the predic-

tion of the 50 % quantile. The pinball score is the average pinball loss La for all
considered quantiles in Q. For the probabilistic forecasts, we use the pinball score
for two reasons. First, it resembles the loss function in quantile regression, which is
a forecaster often used to generate quantile predictions. Second, pinball score is well
established and well understood in the energy forecasting domain, which makes it
easier for fellow researchers to interpret and compare the results.

11.3.3. Selected Forecasters

In the following subsection, we describe the selected forecasters. These forecasters
are based on models found in the energy forecasting literature, e. g., wind, solar,
load, price. For each forecaster, we briefly describe the general idea and applications
in energy forecasting. We further describe how we implement the forecaster for our
evaluation.

Naive Benchmark

Forecasting often uses a simple (naive) model to evaluate the improvements achieved
by the introduction of the more sophisticated models developed. For point forecasts
of time series, a standard naive benchmark is to use the last observed value as a
forecast for the next point in time (Hyndman and Athanasopoulos, 2018). Similarly,
the mean observation in the training set can be used as a forecast. Analogously, we
use the historical distribution, i. e., quantiles, in the training set as a forecast for
the distribution for each observation in the test set. The histograms on the right in
Figure 11.2 resemble these naive forecasters.

Quantile Regression

Koenker and Bassett (1978) introduced quantile regression in 1978. Quantile re-
gression extends the ordinary least-squares estimation of conditional mean models
to allow for the estimation of an ensemble of models for several conditional quantile
functions. Since then it has become a standard tool for forecasting uncertainty in the
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energy domain (e. g., in Kaza 2010, Hammoudeh et al. 2014, Hong et al. 2016, or Liu
et al. 2017). For our analysis, we use the implementation provided in Python package
statmodels (Seabold and Perktold, 2010). In the following, we name the forecasters
based on the model and the set of input features QRτ (Quantile Regression), MLPτ

(Multi-Layer Perceptron), KDEτ (Kernel Density Estimator), and Naive.

Quantile Regression with Multi-Layer Perceptron

The approach of quantile regression has been adapted by using similar loss functions
within artificial neural networks to model non-linear relationships (Taylor 2000, Can-
non 2011). Artificial neural networks with more conventional loss functions (e. g.,
absolute error) are a common forecaster in the load forecasting community (Hippert
et al. 2001, He et al. 2016). In our analysis, we rely on the implementation pro-
vided by Abeywardana (2019). To answer RQ 6 on feature importance, we do not
require the best forecast possible. Instead, we aim to find whether the additional
features improve the forecast independent from the forecaster used. Consequently,
we keep the neural network reasonably simple. We do not put much effort into the
optimization of hyper-parameters, i. e., number of hidden nodes and layer, selection
of activation function, and feature representation. As we use separate models for
each quantile, the artificial neural network has a single output neuron predicting the
quantile. We implement the neural network using Tensorflow (Abadi et al., 2016)
and Keras (Chollet et al., 2015) by defining a tilted loss function that is the pinball
loss L(qa, y) (defined above).

Based on a grid search in the cross-validation, the neural networks consist of two
hidden layers with a number of units resembling the minimum of the number of
input features or at least twenty. Such shallow networks are usually sufficient for
comparable forecasting tasks (Park et al., 1991). We use a linear rectifier unit as an
activation function (Li and Yuan, 2017):

f(x) = max(0, x). (11.4)

The network is trained using the Adam algorithm (Kingma and Ba, 2014). To
prevent over-fitting, training stops if the validation error does not improve for ten
epochs.
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Multivariate Conditional Kernel Density Estimator

On the contrary to quantile regression, Kernel Density Estimators (KDE) provide a
full probability density (John and Langley, 1995). The estimated density function
bases on the aggregation of kernels (often Gaussian distributions) based on historical
data. An essential parameter in fitting such models is the bandwidth of the kernels
influencing the smoothness of the fitted distribution. Conditional KDEs expand
this concept to picture the conditional distribution given the realization of other
continuous or discrete input variables. They have been used as a forecaster for
smart meter data (Arora and Taylor, 2016) and wind power (Jeon and Taylor, 2012).
We use the implementation provided by the Python package statsmodels (Seabold
and Perktold, 2010). This package also includes a bandwidth selection heuristic
(Bashtannyk and Hyndman, 2001) that we use in training the forecasters.

11.4. Forecasting Results

In this section, we first describe the results of the model selection step in the cross-
validation and evaluate the value of local information answering RQ 6. We further
check the results of the model selection step by presenting the results on the hold-out
test set.

11.4.1. Cross-Validation

Figure 11.3 and Table 11.3 show the results of the five folds in the cross-validation.
The dots in Figure 3 indicate the out-of-sample performance of the forecasters on
different data splits. The out-of-sample performance results from the average pinball
score of all predictions in the concerning hold-out sample. The hold-out sample
is either one of the five validation sets from the cross-validation or the test set
(see Section 11.3). For the parking duration, the MLP shows the best results on
average. The QR also outperforms the naive benchmark for both feature sets. The
KDE, however, does not achieve good results and performs worse than the naive
benchmark. The variance in the pinball score of the KDEτstation with the smaller
feature set is fairly high compared to the quantile regression models. For every
single forecaster (QR, MLP , KDE), the forecast with the local information τall



162 Probabilistic Forecasts of Time and Energy Flexibility

outperforms the forecast using only station data τstation. Table 11.3 shows that
pinball score is a good indicator of the MdAPE. Forecasters with a low pinball score
also show a low MdAPE, around 30 % for the best forecasters. The MAPE, on
the other hand, is very high (around 300 %). The high values are likely caused by
the occurrence of high values in the distribution, i. e., the occurrence of very high
parking durations, and cannot be clearly associated with the pinball score.

There is an underlying similarity in the pattern for the predictions of trip dis-
tance. On average, QR and KDE outperform the naive benchmark. However, the
improvements of both QR forecasters and MLPτstation using only station data are
very small. The MLPτall with the full data set appears to be better on average than
the other models. The model fitted and predicted the data very well on four of the
five cross-validation folds (low bias). In contrast, it does not manage to predict the
data well in the fifth fold (high variance). As the trip distance is limited to 350 km
(i. e., maximum range and maximum charging requirement BEVs) in preprocessing,
the distribution is less skewed (see Figure 11.2). As a result, MAPE (around 100 %)
and MdAPE (around 60 %) are lower than those for trip distance.

11.4.2. Value of Location Information

To answer RQ 6 on the value of location information, we investigate the forecaster
(QR) as it is the most robust model and has the smallest difference in average
pinball score between the full feature set τall containing local information and the
reduced feature set τstation. We test the null hypothesis that there is no difference
in forecasting accuracy, i. e., pinball score, between the same forecaster using the
different feature sets:

H0 : LQRτstation = LQRτall . (11.5)

As the pinball scores are not normally distributed, see Figure 11.3, and the samples
are not independent, the data does not fulfil the assumptions for t-test or ANOVA.
Consequently, we test the hypothesis using a Wilcoxon signed-rank test. This test
requires paired samples, chosen at random, and a variable on an interval or ordinal
scale. Wilcoxon test’s requirements are met, as the cross-validation sets are created
by shuffling the data. We compare the results of the same folds (one to five), and
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Figure 11.3.: Cross-validation and test set performance of different forecasters evaluated
using pinball score.
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the pinball score provides an ordinal scale. For both, parking duration and trip
distance, the test results in a test statistic of V = 15, rejecting the null hypothesis at
a confidence level of p > 0.03125. Consequently, we answer RQ 6: The use of location
data improves quantile predictions of both parking durations and trip distances.

11.4.3. Model Selection

On a practical level, the user of the forecast must decide what forecast to rely on an
unseen data set. Typical criteria for model selection are the complexity of the learned
classifier, generalization accuracy on new examples, and the amount of training data
available and needed to achieve high accuracy (Engle and Brown, 1986). The amount
of training data available is usually given ex-ante for each forecasting task and cannot
be changed. Less complex models are often easier to interpret and less likely to overfit
the training data (compare QR and MLP results for trip distance). High accuracy
on an out-of-sample fit, e. g., using cross-validation, is usually the most important
criterion in established literature (Hong et al. 2015, Hippert et al. 2001). This factor
can be directly measured in the out-of-sample performance of the model. Often,
the model selection is not based on statistical analysis but the rule of thumbs. For
instance, (Hastie et al., 2009) chooses the model with the lowest complexity within
one standard error of the best model, while Hong et al. (2015) test for the right
weather station combinations to forecast electricity load and selects the set with the
highest out-of-sample accuracy. Given the boxplots in Figure 11.3, MLPτall reliably
outperforms all other forecasters and should be selected. For trip distance, MLPτall

also has the lowest average pinball score. As the model shows poor performance on
the fifth fold, we decide to use the second-best forecaster ORτall .

11.4.4. Model Performance on Test Set

The evaluation results on the test set in Figure 11.3 and Table 11.3 confirm the
results of the cross-validation. For parking duration, the test set results are better
than the average in the cross-validation for all forecasters but KDEτall . The selected
model MLPτall remains to be the model with the lowest pinball score. In the trip
distance, there is a small worsening for the selected model QRτall . However, it
remains the second-best performing model in the test set. The best model MLPτall
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shows substantial improvement, as it is compared to the average of cross-validations
(containing the outlier in the fifth fold). The MLP also seems to profit from the
larger amount of training data resulting from the model being retrained on the set
that was split in training and cross-validation before. On the test set, the relative
improvement in pinball score achieved using the location data in MLPτall compared
to MLPτstation is 0.56 % for trip distance and 13.7 % for parking duration.

11.4.5. Error Analysis

Figures 11.4 a and b show the distribution of the pinball score for different days
of the week predicted with ORall. Each violin shows the kernel density estimation
and box plot of the errors (i. e., pinball score) in the test set for different weekdays.
For both parking duration and trip distance, the pinball score is rather low for most
predictions. However, there are a few observations, where the prediction is very far
off. There is no clear pattern for these outliers over the week. Predictions of parking
duration (Figure 11.4 a) are, on average, worse on Fridays and Saturdays, showing a
substantial number of poor predictions on Fridays. For trip distance (Figure 11.4 b),
the highest variation in forecasting errors is on Sundays with no evident patterns in
the average values over the week.
As we see no clear pattern for the outliers in the day of week and time of day,

we look into the relationship between forecasting error and the observed values in
Figures 11.5 a and b. The figures show the absolute percentage error (APE) in red
and pinball score (grey) for all the observations in the test set. The APE compares
the prediction of the 50 % quantile with the observed value, while the pinball score
compares all predicted quantiles to the observation.
For both parking duration and trip distance, we see very high APE values when

the observed variable assumes small values. The high error values are an arte-
fact of the error measure: For instance, if trip distance or parking duration is very
short (e. g., 15 min) and the prediction is close to the average parking duration
around 500 min, this results in high APEs (for instance: (500 min-15 min)/15 min
= 3,233 %). For higher observed values, the APE gets better for both trip distance
and parking duration.
In contrast, we see an increase in pinball score with higher observations for both
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predicted variables. Here, the relative increase in pinball score is higher for parking
durations (where the variance in the data is higher (see Figure 11.2).
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(a) Distribution of pinball score for parking duration for different days.
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(b) Distribution of pinball score for trip distance for different days.

Figure 11.4.: Forecasting errors in the test set predicted with QRall grouped by weekday.
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(a) Pinball score and APE for parking duration in relation to observed
values.
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(b) Pinball score and APE for trip distance in relation to observed values.

Figure 11.5.: Forecasting errors in the test set predicted with QRall compared to observed
values.
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11.5. Case Study

For the case study, we assume that a charging station operator can control the charg-
ing of all BEVs in the test set. Figure 11.6 shows the aggregated number of assumed
charging sessions in the test set. Most charging sessions at home start in the evening
from Monday to Thursday. On Friday and Saturday, most charging sessions start
around noon. The test set only contains a few charging sessions starting on Sunday.
If no charging coordination is applied, the peak in numbers of charging sessions will
likely lead to a peak in electricity consumption, which can cause grid congestion on
distribution level (Salah et al., 2015). One way to avoid congestion is to interrupt
some of the charging sessions in the BEV charging portfolio. For example, the Ger-
man legislator proposes to register BEV charging stations as interruptible consumer
facilities (EnWG § 19). For the distribution system operator (DSO) to interrupt them
if necessary, the station operator benefits from reduced network charges. Other rea-
sons for the operator to interrupt some of the charging sessions at point t could be to
provide auxiliary services or the optimize against fluctuations in the energy markets.
In the case study, we assume that a charging system operator can control the

charging of all the BEVs in the test set I. At each point t, in the test set, the
charging station operators can decide to interrupt an arbitrary number n of the
running uncontrolled charging sessions It. For each t and n, the operators have to
decide for an order to interrupt the charging sessions based an interruption heuristic
Λ. The set of the first n interrupted charging sessions at time t using Λ is It,n,Λ.
The BEVs are charged directly after arriving at home with the maximum charging

power of 2.3 kW, i. e., a CEE 7/4 plug AC household socket charger outlet. To fulfil
its driver’s mobility needs, each BEV has to charge enough energy to last the next trip
assuming an energy consumption of 20 kWh/100 km (United States Environmental
Protection Agency and U.S. Department of Energy, 2016). All assumptions are laid
out in Table 11.4.
This uncontrolled charging results in an uncontrolled charging period between the

time of arrival tai and tbi of parking event i:

tbi = tai +
ηBEV · li

Ċ
. (11.6)
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Figure 11.6.: Aggregated number of charging sessions (connected BEVs) at each time step
in the test set.

Table 11.4.: Assumptions for charging infrastructure, interruption duration, and energy
consumption in the case study.

Assumption Unit

Energy consumption ηBEV 20 kWh/100 km
Maximum Charging Power Ċ 2.3 kW
Duration of interruption ι 60 min

11.5.1. Interruption Heuristic

Interruption strategies for BEV charging could follow on the intuition of time and
energy flexibility: As long as parking duration is long enough to charge the BEV
after the interruption, the interruption has no negative influence on the mobility of
the BEV user. Not impairing the mobility is very likely for charging sessions with
the following characteristics. If the next trip is rather short, the energy flexibility is
high as only a small amount of energy has to be procured during parking duration.
If the parking duration is long and time flexibility is high, there is enough time to
charge even a substantial amount of energy. In contrast, interruptions leading to
insufficient SoC at the departure impair the mobility of the driver.
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Interrupting the charging sessions with the highest time or energy flexibility can be
implemented by different heuristics. For instance, a first-in-first-out heuristic ΛFiFo

could start with interrupting the charging sessions of the BEV that arrived first.
In addition, the charging station operator can use the forecast for parking duration

to estimate the quantile forecast of the time of departure tdi for each charging session:

t̂di,q = tai + d̂i,q. (11.7)

We derive the forecast for the parking duration d̂i fromMLPall. The charging sta-
tion operator can now apply Λt̂ by interrupting the BEV with the highest remaining
parking duration first. To account for energy flexibility, we also predict trip distance
l̂i,q using MLPall. Using Λl̂, the charging station operator starts with interrupting
the charging sessions that are likely to be followed by a short trip and require little
time for charging. As benchmark, we also evaluate interrupting the charging sessions
by drawing at random ΛRandom.
The charging station operator applies a heuristic Λ, described in a scheduling

Algorithm 1 to interrupt a given number nt out of the currently running charging
sessions It at point t in the test set. Algorithm 1 results in a list of interrupted
charging sessions IΛ

t,n.

Algorithm 1: Scheduling interruptions using heuristic Λ for interrupting n
charging sessions in It
Data: It, n, Λ;
Result: IΛ

t,n list of interrupted charging sessions;
1 initialization;
2 sort It using interruption heuristic Λ;
3 set IΛ

t,n the first n charging sessions from It;
4 return IΛ

t,n;

Each interruption in IΛ
t,n can result in an insufficient charge at departure if the

duration of the interruption ι is so long that not enough SoC can be charged at
capacity Ċ to fulfil the next driving event of trip distance li at tdi in which case the
mobility behaviour µ(i, ι) of a charging session is impaired:



172 Probabilistic Forecasts of Time and Energy Flexibility

µ(i, ι) =

1 if (tdi − tai − ι) · Ċ < li · ηBEV

0 (tdi − tai − ι) · Ċ ≥ li · ηBEV
. (11.8)

This formula assumes that BEVs arrive at the charging station with an SoC of
zero and that the BEV can be charged at their next stop, so they do not get stranded
there. While this assumption might is not realistic, it allows for a fair comparison
between the heuristics as no other factors, i. e., SoC at arrival or location of the next
stop, biasing the results.

This allows to count the number impaired mobility events z for interruption n

charging sessions in t using Λ by:

z(t, n, ι,Λ) =
∑
i∈IΛ

t,n

µ(i, ι). (11.9)

11.5.2. Evaluation Scenario

We apply the interruption heuristics to 5,709 parking events in the test set. For each
15 min time slot t in C, we determine the number of running charging sessions It
and count the number of impaired mobility events z(t, n, ι,Λ) when interrupting n
charging sessions at t. For each time step, we apply all interruption heuristics Λ to
interrupt one up to all running charging sessions. Note that for most time slots in the
test set, several charging sessions cannot reach sufficient SoC even if uninterrupted.
To compare the performance of the different charging heuristics, we calculated the

quotient Z of impaired mobility events. This quotient returns the share of charging
events with insufficient SoC for all possible interruptions (i. e., interrupting one to
all charging sessions for each point in time in the test set C):

Z(Λ) =
1

|C|
∑
t∈C

1

nt

∑
n∈It

z(t, n, ι,Λ)

nt
. (11.10)

11.5.3. Case Study Results

This equation results in the share of mobility impairment Z plotted in Figure 11.7.
Drawing at random using ΛRandom impairs 25.1 % of mobility events. The first-in-
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Figure 11.7.: Performance of interruption heuristics on the test set based on different deci-
sion variables.

first-out ΛFiFo improves the share of impaired mobility events down to 17.5 %. Using
the predicted trip distance as a heuristic Λl̂ outperforms the random benchmark, but
never outperforms ΛFiFo no matter which quantile q is used.
There is a clear pattern in using Λt̂d

. The prediction of the upper quantiles does
not improve the scheduling of interruptions. Using the median prediction (50 %
quantile) result in a higher interruption rate than the ΛFiFo and Λl̂. However, using
the lower quantiles (10-30 %) improves the scheduling down to a 16.5 % interruption
rate.
Using the 10 % quantile prediction ΛQ10 improves the rate of impaired mobility

events to 16.5 %. The relative improvement of 7.0 % by using quantile predictions
compared to point forecast answers RQ 7: Using probabilistic forecasts is beneficial
in BEV charging coordination.

11.6. Discussion

This section starts with discussing the forecasts performance and error analysis. We
next address the findings from the case study.
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11.6.1. Forecasting Accuracy

All evaluated forecasters, except for conditional kernel density estimators, provide
more accurate forecasting results compared to the naive benchmark. In this way,
even charging station operators without location data may profit from the forecasters
developed in this chapter. While the improvement of including location features is
statistically significant, it is quite low. However, the difference might further increase
with better data (e. g., trip trajectories).

However, even the limited location information in the data set can improve such
forecasts. We assume that forecasts can be even more accurate if more data about
the single users’ behaviour is available. In this case, other forecasters like neural
networks with long short-term memory could help to make use of this additional
temporal information.

As discussed before, MAPE and MdAPE are sensitive towards low observation
values in the data. The analysis of the pinball score indicates that the accuracy
drops with high observations of parking durations. Such observations are very sparse
in the data and probably not sufficiently considered in the model as the models stop
at predicting the 90 % quantile. This results in around 10 % of observations that are
higher than the predicted 90 % quantile. Some of them can be much larger than the
predicted 90 % quantile resulting in a high pinball loss. This effect does not occur
when predicting trip distance, where the distribution is less skewed. However, this
is not a problem for most smart charging use cases where it is not crucial whether
the parking duration is long or very long (e. g., one compared to several days of
parking). In some use cases, it might be sufficient to predict a flexibility ranking
of charging sessions compared to other running processes or are classification into
different groups of short and long parking duration. In this way, all very long parking
events could be grouped in one class (e. g., longer than one day) if the use case does
not require information on how much longer the individual parking event is. In this
way, the predicted variable would be less skewed and probably easier to predict.
However, such classifications offer lower information content compared to quantile
predictions.

The forecasting errors for both parking durations and trip distance are not par-
ticularly small in terms of MAPE and MdAPE. However, we could not find any
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similar evaluations to benchmark the results. Nevertheless, even if the forecasting
accuracy seems low, the information derived from the probability forecast still helps
with ranking the flexibility of different charging sessions.

11.6.2. Forecast Application

The application of the quantile forecasts in the case study shows that using forecasts
for parking duration can improve scheduling of BEV charging. In this case study,
the forecasts of the lower quantiles are more useful for this task than the point
forecasts of the median values. However, the improvements are small compared to
the first-in-first-out heuristic.
For interrupting the charging sessions with high flexibility, we use the low quantile

value as a proxy for identifying charging events where we expect a long parking
duration with high certainty. Quantile predictions lower than 10 % or other low
quantile might work as well.
We keep the heuristic rather simple and do not consider the already achieved SoC

at interruption time or a combination of the estimated time of departure and esti-
mated trip distance. This simplification allows observing the benefits of probabilistic
forecast without any overlays. Using forecasts for trip distance do not show a dis-
tinct improvement for different quantiles and are lower than the improvements for
parking duration. Figure 11.2 shows that the distribution of trip distance is nar-
rower than the distribution for parking durations (i. e., observed trip distances are
closer together). We suspect that even with lower forecast errors, in general, this
makes it harder to rank the charging sessions regarding energy flexibility. Besides,
in the specific case study time, flexibility is more relevant than energy flexibility. If
we observe a very long trip, it is more likely that its energy requirement cannot be
fulfilled with or without the interruption. On the contrary, it is much more useful
to differentiate the very short from the medium parking durations.
In case of congestion, a DSO might have to shed loads. In this case, the DSO has

to decide which loads to shed. There are some non-discriminating options (reducing
maximum charging power for all BEVs affecting the congestion or interruption in or-
der of connection time, e. g., ΛFiFo in the case study. However, the proposed forecasts
for individual charging sessions provide additional information for this decision. In
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case a charging station operator interrupts the drivers charging session centrally, it
seems unlikely that BEV users will accept smart charging schemes that impair their
mobility even if it comes with a discount charging price. To overcome this challenge,
the charging station operator might send out a notification to the BEVs drivers to
approve the interruption in case of congestion. In this case, the charging station
operator profits from an accurate forecast to decide which processes to interrupt and
which BEV users to notify and ask to approve the interruptions. In this case, a
more accurate forecast can improve the number of correct notifications, i. e., when
the user accepts interruption and can increase acceptance of such smart charging
schemes. Will and Schuller (2016) find that such personalized smart charging can
increase acceptance of smart charging.

11.7. Conclusion

In this chapter, we describe forecasters for the time and energy flexibility of BEV
charging that are needed for effective scheduling of BEV charging and can assist BEV
users. We focus on charging at home and present how to derive a set of interpretable
features from travel logs, charging stations, or GPS data that can be used to predict
deciles of parking duration and trip distance as proxies for time and energy flexibility.

Our evaluation is based on an open data set from German drivers and shows that
a multi-layer-perceptron with tilted loss function achieves the most accurate results
compared to quantile regression, a conditional multivariate kernel density estimator,
and a naive benchmark. In particular, we find that using location information of the
BEV significantly increases the forecasting accuracy of decile forecasts evaluated in
pinball score.

As the data set only provides limited data, i. e., one week, the forecasters can-
not rely on long-term usage patterns of single BEV users. Given the limitations
of the data set, we limited our efforts in feature engineering and hyper-parameter
tuning. The proposed forecasters are rather simple to implement and can serve as a
benchmark for similar forecasting tasks.

The findings demonstrate how charging station operators can build powerful fore-
caster with simple models and limited data. Besides, the results indicate that car
manufacturers and other actors having access to location data have a competitive
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advantage in forecasting BEVs charging flexibility which may allow building busi-
ness cases around this information advantage. Consequently, they will be capable
of predicting charging flexibility more accurate. Location data provides them with
an advantage in scheduling charging to optimize their energy procurement (Kristof-
fersen et al., 2011) or even tap into new revenue streams from balancing markets
(Sarker et al., 2015). As using the location data has a significant benefit in predict-
ing the distributions of parking duration and trip distance, charging station operators
should aim to acquire such data, e. g., by using smartphones apps providing driver
data or cooperating with car manufacturers. Otherwise, car manufacturers will have
a competitive advantage in operating smart charging systems.
The findings are backed by the evaluation of a case study using a greedy heuristic

for scheduling the interruption of BEV charging sessions. The heuristic is simple
and only uses one out of nine deciles predicted in the forecast. The results show
that charging system operators should not stick to simple point forecasts predicting
the expected median or mean of the variables relevant for smart charging. Results
show a 7.0 % relative improvement using the 90 % decile forecast compared to using
conventional point forecasts.
Besides peak shaving, other use cases could profit from such forecasts. For in-

stance, an aggregator using the flexibility from BEV to provide system services must
know about the parking duration and energy demand of the BEVs to plan when he
can provide how much flexibility.
In addition to helping charging station operators in scheduling decisions, the de-

veloped forecast can also be used as a choice architecture tool to aid the BEV users
to decide when to charge in a flexible charging mode, e. g., when they have local gen-
eration powering their home charging station. Such feedback can help at integrating
more local, RES in the mobility sector. Also, homeowners with PV generation and
a home energy management system could profit from such forecasts. When the
homeowners connect their BEV to the charging station, a local energy management
system could generate a probabilistic forecast for the flexibility of the BEV. The
forecast could also help end-users to overcome charging fright. Based on the risk
preference of the BEV users, the energy management system could select a default
charging settings that ensure a sufficiently charged BEV in 99 % of the historical
cases. If BEV users know that their mobility behaviour does not correspond to this
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forecast, they could still overrule the forecasted default (compare Chapter 9). In-
tegrating such a probability instead of point forecasts into the strategies of energy
management systems or aggregators is another opportunity for further research.

When predicting the distribution in a higher resolution (more quantiles), the charg-
ing station operator could use this information for more detailed evaluations (e. g.,
selecting charging sessions by their probability of parking longer than an arbitrary
time). Based on such considerations, a probabilistic forecast may constitute the ba-
sis for more sophisticated interruption and scheduling algorithms, that also include
the actual SoC and expected trip distance.

Further forecasts besides parking duration and energy demand might be needed
to improve BEV scheduling further. In particular, the charging operator could profit
from forecasts on the occupancy of the charging stations before the BEV arrives at
the charging station.

Based on such forecasts, more sophisticated smart charging methods, such as
stochastic optimization, can be used to improve the scheduling of BEV charging.
In this way, probabilistic forecasts of parking duration and trip distance will be a
valuable tool for charging station operators and BEV users for integrating more
BEVs in a grid friendly and cost-effective manner.



Part V.

Finale





CHAPTER 12

CONTRIBUTION AND IMPLICATIONS

BEV users can help to overcome the challenge to include a higher number of RES
and BEVs into the electricity system if they accept smart charging. This dissertation
contributes to solving this challenge by proposing UCSCS that consider the BEV
users’ needs and encourage them to provide flexibility during their charging sessions.
The engineering of UCSCS in this dissertation starts with understanding the re-

quirements and objectives BEV users have during smart charging. Next, choice ar-
chitecture and digital nudging provide ideas for increasing the charging flexibility of
BEV users using interface design elements that address the requirements of the BEV
users. Finally, this dissertation develops feedback, scheduling, and assistance func-
tions for UCSCS based on energy analytics. In particular, this dissertation answers
seven research questions (see Chapter 2) using online experiments and short-term
forecasting.
Chapter 8 aims at understanding the requirements of UCSCS. The first research

question is dedicated to identifying objectives that work from a technical perspective
and are likely to persuade BEV users to use smart charging. There is still a limited
number of BEV users who could be asked for their preferences in smart charging.
Instead, RQ1 is answered using a literature review and a survey with domain ex-
perts and results in the following findings: While smart charging can address many
optimization objectives, not all of them make sense from a technical perspective.
For instance, experts see only small potential for slowing down battery ageing with
smart charging, as the default charging modes already optimize battery lifetime.
Smart charging allows to integrate a higher share of RES during charging, minimiz-
ing emissions of greenhouse gases and harmful air pollutants. Social aspects of BEV
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charging (e. g., who is allowed to charge in case of congestion) have gained little
attention yet (see Chapter 5).

In summary, the expert-survey identifies cost advantages, congestion management
and ancillary services, and the integration of RES as promising applications of smart
charging as they rate high in technical accuracy. Out of these objectives, domain
experts expect that cost advantages and RES integration are the most likely to
convince BEV users to use smart charging. The design of UCSCS which consider
the BEV users should focus on the objectives of RES integration and cost reduction
to increase charging flexibility of BEV users.

Second, this dissertation addresses the question to what extent framing the charg-
ing decision towards these objectives can be used as a digital nudge to increase the
flexibility of BEV users. Answering the second research question allows to validate
the results of the first research question with actual BEV users. In particular, this
dissertation describes a scenario-based online experiment (in Chapter 9). The results
show that framing the charging decision towards different objectives can influence
BEV users’ charging flexibility. Monetary framing (i. e., mentioning potential cost
savings without adding any monetary incentives) increases charging flexibility (i. e.,
users choose a lower buffer and final SoC) compared to a neutral framing. A fram-
ing message that highlights grid congestion and social aspects, in contrast, can even
reduce charging flexibility. Environmental framing, on average, does not differ from
neutral framings. However, many of the most flexible participants are found in the
environmental framing group. This finding indicates that not all framing messages
work to the same degree for all users. Hence, digital nudges could be more effective
if they adapt to the particular user. In a broader perspective, the results show that
it is worth considering the BEV users’ willingness to provide flexibility not only from
an economic perspective as only mentioning potential cost savings without giving an
actual incentive can already significantly increase the BEV users’ flexibility. Design-
ers of smart charging systems should be aware that goal framing and other digital
nudges will have an impact on how the users will interact with their systems.

As some BEV users are strongly motivated by integrating more RES generation
during charging, the possibility to minimize CO2 emissions during charging could be
an incentive to charge with high flexibility. The third research question addresses
the needs of such users and evaluates the potential CO2 minimizing effects of smart
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charging. Evaluating the CO2 emissions of charging flexibility allows UCSCS to
provide BEV users with feedback on how much CO2 they can avoid when charging
more flexible. In analysing the emission factors of the German energy system in 2017,
this dissertation finds that the highest reductions in CO2 emissions during charging
can be achieved if the BEV charging is shifted from morning towards noon. Given
the mobility patterns of typical German end-users described in Chapter 5, smart
charging at work would have the highest CO2 minimizing potentials compared to
other locations. Governments and employees should consider promoting charging
stations at workplaces to increase the potential for CO2 minimized BEV charging.
These results depend on the approach used to estimate CO2 emission factors.

There are two different approaches to calculate emission factors for the evaluation of
CO2 minimization potentials. Average emission factors that allow an attribution of
CO2 emissions are easy to compute and therefore used by many authors. To evaluate
whether smart charging systems rely on this simple approach, the fourth research
question evaluates to what extent average emission factors can approximate marginal
emission factors. The analysis shows that average emission factors should not be used
to approximate marginal emission factors as they would result in substantial miss-
judgements in CO2 emissions and minimization potentials during smart charging.
Even worse, they could also recommend shifting charging towards hours that would
even increase the CO2 emissions of the charging session. These finding emphasize
that evaluation of the effects of load shifting of smart charging and other demand-
side measures on CO2 emissions should always rely on marginal emission factors.
In particular, the designers of smart charging systems could build on the data and
methodology provided in this dissertation to make accurate calculations of CO2

minimization potentials.
To achieve the CO2 minimization potential found in the analysis above, smart

charging systems require accurate forecasts of the marginal emission factors. This
dissertation develops and evaluates a short-term forecast of marginal emission factors
based on short-term load forecasts (RQ 5). The forecasting model for the marginal
emission factors and corresponding data is published online and can be reused for
other applications (Lohmann et al., 2019). A case study shows that this forecast is
accurate enough to allow for substantial CO2 minimization during charging sessions.
Additionally, the developed methods allow choice architects to implement real-time
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feedback in smart charging systems. When the BEV users move the slider to select
the temporal flexibility of their charging session, a UCSCS could offer instantaneous
feedback on the expected CO2 minimization potential of the charging settings. This
feedback can provide a digital nudge to users who are motivated by the integration
of RES during smart charging (see above).

While such feedback can nudge BEV users towards more flexibility, there are
good reasons for the BEV users not to provide too much flexibility. For instance, if
the flexibility in the charging setting is too large, the smart charging system might
postpone charging so far that the BEV is not sufficiently charged should the BEV
users return to their BEV for their next trip. UCSCS could provide decision support
and assistance to determine the proper amount of flexibility. This proper amount of
flexibility should balance between the BEV users’ secondary objectives, e. g., CO2

minimization, and their mobility needs.
This dissertation facilitates such assistance by developing a forecast for time and

energy flexibility of individual charging sessions based on historical charging and
mobility behaviour of individual BEV users. In particular, probabilistic forecasts of
time and energy flexibility allow recommending an appropriate amount of charging
flexibility to a given risk preference of the BEV users. The answer the sixth research
question shows that BEV users can further improve the forecast actuary for time and
energy flexibility if they are willing to share their location data of their BEV (e. g.,
GPS location from their smartphone) with the smart charging system. This finding
reveals that additional data on the BEV users’ mobility behaviour is a crucial asset
to all charging station operators who wan to make a business model based on smart
charging.

Last, such forecasts based on individual BEV users’ data can also help actors on
the supply-side in more efficient charging coordination. Given the current trends in
German regulation where DSOs are encouraged to treat BEVs as interruptible loads
(EnWG §14a), it seems likely that regulators themselves will establish flexible charg-
ing as the default to integrate a large number of BEVs into the electricity system.
The DSOs could use forecasts of time and energy flexibility schedule interruptions
in case of congestion. RQ 7 addresses such use cases and asks whether probabilistic
forecasts of time and energy flexibility are more useful than point forecasts in BEV
charging coordination. A case study shows that using these probabilistic forecast in
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scheduling interruption of BEV charging sessions with a greedy heuristic performs
better than relying in point forecasts. Using probabilistic forecasts allows the charg-
ing station operator (e. g., DSO) to interrupt more charging sessions (e. g., using a
higher amount of flexibility in case of congestion) without negatively affecting the
mobility demand of the BEV users.
In this way, UCSCS consider the BEV users and the supply-side by fulfilling grid-

centred objectives of DSOs, market-centred objectives of charging station operators,
or locally centred objectives in a home energy management system. In each case,
UCSCS components developed in this dissertation can help to increase charging flexi-
bility to align the demand- and supply-side, making BEV charging more sustainable.
The following paragraph provides an example of how the components developed in
this dissertation can help to foster flexible charging as a convenient default in the
everyday life of BEV users.
When setting up the system for the first time via a smartphone application, the

BEV users are informed about the advantages of flexible charging in terms of cost
reduction and RES integration. In the next step, the users can state their preferenced
charging settings for different charging situations to set them as default. Influenced
by the goal framing, the BEV users will probably choose more flexible defaults than
in a neutral setting. Besides, the users can accept to share their smartphones’ GPS
location with the UCSCS. Based on this data, the smart charging system could
forecast and recommend the individual users’ charging flexibility for each particular
charging situation based on their movements and charging patterns and improve the
self-defined default settings. More, the users can enter a personal risk preference
for the forecast-based charging settings. Based on the quantile forecast, the UCSCS
could then set the flexibility in the charging settings so that the proposed flexibility
level can ensure a high enough SoC to cover, an arbitrary number (e. g., 90 %) of all
mobility requirements in a comparable situation. Likewise, users could adjust the
defaults based on their personal preferences using other quantiles.
Once the BEV users connect their BEV to a charging station, the UCSCS can

propose charging settings based on the forecasts and the BEV users risk preferences.
The users could overwrite these proposals if they have additional information (e. g.,
if they plan a longer trip on the next day). While changing the charging settings,
the BEV users obtain feedback on how this would influence the CO2 emitted during
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the charging process. On most days, however, the users would not need to interact
with the UCSCS as the proposed charging settings ensure sufficient SoC. In this way,
intelligent defaults make flexible charging more convenient for the users and could
establish smart charging as a norm.

The findings of this dissertation show how a user-centric perspective on smart
charging system can help to integrate supply and demand-side. The results con-
tribute to increasing the flexibility provided by BEVs to integrate a higher number
of RES and BEVs into the electricity system.



CHAPTER 13

OUTLOOK AND RESEARCH OPPORTUNITIES

The findings of this dissertation show that choice architecture and digital nudging
are promising approaches to change BEV users’ behaviour towards smart charging.
Besides framing, Chapter 7 lists a set of other possible digital nudges that could lead
to more flexible charging. The effects of these nudges should be evaluated in further
experiments to find the most effective way to increase flexibility in BEV charging.
Testing these digital nudges in field-experiments would increase external validity
compared to other settings. However, as the effect sizes of nudges might be smaller
than the effects of goal framing in Chapter 9, such experiments would require a high
number of BEV users using smart charging systems to generate significant results.
In particular, the feedback and decision support features developed in Part IV of

this dissertation could be used in further digital nudges, that should be tested on
their effectiveness on increasing BEV users’ flexibility and technology acceptance.
Feedback about possible CO2 minimization potential could be a way to convince

users who are motivated by the integration of RES (see Chapter 9) to provide more
flexibility. This dissertation used data from the German electricity market to esti-
mate the CO2 minimization achievable with smart charging.
If the energy for charging is not drawn only from the grid, but from a local RES of

a building or in a local micro-grid the methodology should be expanded to address
for the effects of the local generation. Estimating the CO2 emissions in such a
system would also require to forecast local generation and consumption which is
likely to be more volatile that the emissions on system level. Depending on the
generation structure this would result in higher saving potentials if the forecasts are
accurate enough. To obtain real-time data as an input for the forecast, the local RES
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and the charging station must be connected into an internet of things. Given data
connection and proofs of origin for renewable generation from RES, the concepts
could also expand to connecting the charging station with a remote RES.

Regarding the user interface, the question arises to how the feedback on the avoided
CO2 emissions should best be expressed so that it is understandable and meaningful
for the BEV users. While relative differences in CO2 emissions expressed in per-
centage points or tons of CO2 are very abstract, a digital nudge could translate
this information into the CO2 emissions of an traditional ICE car travelling a given
distance or the CO2 binding potential of trees. As end-users’ understanding and ac-
ceptance is crucial to a successful energy transition (Mengelkamp et al., 2018), this
mapping of the CO2 emissions could be part of a larger discussion on how digital
nudging could be a tool to increase end-users’ understanding and acceptance of the
changes during this transition.

As of 2020, there are only a few smart charging systems operating in the field and
there is still much to learn about the BEV users’ interactions with such systems.
Huber et al. (2018e) discuss a model on how the objectives of the smart charging
system, and user characteristics influence technology acceptance and flexibility pro-
vision. Based on an understanding of these relationships, choice architects could set
out to design personalized nudges that fit the individual BEV user. Finding a large
spread in the effect that environmental framing had on different BEV users shows
that this might be a more promising approach than one-size-fits-all digital nudges.

Chapter 11 shows the power of machine learning using personal data for individual
forecasts of charging flexibility. Artificial intelligence could not only learn the users’
mobility behaviour but also what kind of nudging works for the particular user. Such
self-learning digital nudging agents could become very powerful so that a discussion
of ethical considerations and explainability of such systems becomes necessary.

Charging station operators could nudge BEV users towards high flexibility to earn
money with this flexibility. The risk of choosing to charge too flexibly and having
not enough SoC at the end of the charging session could be externalized to the BEV
users. If nudges have a different effect on different users, some users could suffer an
unfair disadvantage if they provide more flexibility without adequate compensations.

The consideration of fairness in BEV charging will become even more important as
the number of BEVs rises and their charging will cause local congestion in the grid.
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In such cases, local coordination mechanisms must be introduced to allocate the
limited distribution grid capacity (Huber et al., 2018b). Local markets could use the
willingness-to-pay of each BEV user to allocate charging capacity. However, as mo-
bility is a basic need of human life, more complex matching markets could distribute
charging capacity not only using financial metrics, but consider other factors such as
mobility behaviour and socio-demographics. Another approach, not unlike nudging,
could be to give communities the tools and platforms for self-administration of charg-
ing capacity so that they can allocate their limited capacity voluntarily. However, as
the social framing in Chapter 9 shows a negative effect on flexibility, further research
should explore what influences the effectiveness of normative framing. Follow-ups
could investigate whether information systems can help to increase the sense of con-
nection between BEV users within a community so that they are willing to provide
flexibility for each other’s mutual benefit.
A better understanding and forecasts of individual mobility behaviour is crucial

for smart charging but also useful for other sustainable mobility solutions (e. g., car
and ride sharing). Forecasts of mobility patterns not unlike the forecasts in Chap-
ter 11 could also help with other mobility applications like optimized routing and
fleet management for ride-hailing services. However, such improvement relies on
the integration of high-resolution data of personalized mobility patterns (i. e., GPS-
tracks). The first challenge is to derive valuable information from these large sets
of spatio-temporal data. Here, machine learning could help to derive meaningful
features, e. g., by learning when commuters are on their usual commute and when
they deviate, so that their behaviour becomes less predictable. However, such data
is very personal and sensitive. If users are not willing to share their mobility pat-
terns with cloud services and still want to profit from its applications, analytics and
coordination must become more decentralized. A promising approach is edge an-
alytics, where the data is analysed at its origin (e. g., the users’ smartphones). In
this way, only the results must be transmitted to central coordinating entities. Edge
analytics reduces the need for bandwidth and keeps sensitive data in the hand of
the users. Continuing this path, information systems can contribute to coordinating
supply and demand of energy and mobility more efficiently.
This dissertation outlined how UCSCS can integrate data for user assistance, edu-

cation, and behaviour change towards more flexibility in BEV charging. In this way,
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UCSCS can encourage the individual BEV user to contribute to a more sustainable
mobility and electricity system.
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APPENDIX A

SPECIFICATIONS OF BEST-SELLING BEV IN THE US
(IN 2019)

Table A.1.: Specifications of best-selling BEV in the US (in 2019).

Model Battery Capacity Efficiency Price Type Source[kWh] [kWh/100 km] [$]

Tesla Model 3 RWD 50.0 15.6 38,990 FEV (Tesla, 2019a)
Toyota Prius Prime LE 9.0 15.8 27,600 PHEV (Toyota, 2019)
Tesla Model X AWD 90D 90.0 20.7 84,990 FEV (Tesla, 2019c)
Chevrolet Bolt EV 60.0 17.6 36,620 FEV (Chevrolet, 2019a)
Tesla Model S AWD 100D 100.0 20.6 70,115 FEV (Tesla, 2019b)
Honda Clarity PHEV 17.0 19.0 33,400 PHEV (Honda, 2019)
Nissan LEAF (40 kWh) 40.0 18.7 29,990 FEV (Nissan, 2019)
Ford Fusion Energi 7.0 20.5 34,595 PHEV (Ford, 2019)
Chevrolet Volt 18.4 19.5 33,520 PHEV (Chevrolet, 2019b)
BMW 530e 9.2 28.5 53,900 PHEV (BMW, 2019)
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APPENDIX B

OBJECTIVES AND INDICATOR KEYWORDS FOR
SMART CHARGING

Table B.1.: Objectives and indicator keywords for smart charging.

Objectives Concept Indicators
Keywords

Source

Battery
degradation

lifetime, life-time, degra-
dation, aging, cell

(Schoch, 2016; Ortega-Vazquez,
2014; Sovacool et al., 2017)

Cost advan-
tage

market, markets, day-
ahead, cost, aggregator,
valley, price, prices,
auction

(US Energy Department, 2015;
Brandt et al., 2017; Limmer and
Dietrich, 2018; Li et al., 2018)

Social aspects social, fairness, commu-
nity

(De Groot et al., 2013; Koutitas,
2018; Limmer and Dietrich, 2018)

Integration of
RESs

pv, wind, renewable, RES,
pollution, emission, emis-
sions, solar, environment

(Will and Schuller, 2016;
Mwasilu et al., 2014; Huber and
Weinhardt, 2018)

Congestion
management

load curve, flattening, peak
demand, duck-curve, peak,
congestion, bus, feeder

(Mou et al., 2015)

Ancillary ser-
vices

frequency, voltage, power
quality, loss, current, flow,
reactive, security

(Will and Schuller, 2016; Mo-
jdehi and Ghosh, 2016; Mathur
et al., 2018; Garćıa-Villalobos
et al., 2014)
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Table B.2.: Results of the literature review.

Source Objective
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Deilami et al. (2011)   
Sortomme et al. (2011)  
Gan et al. (2013)  

...

369 423 169 511 378 57



APPENDIX C

EVALUATION OF STATEMENTS AND GROUPED AC-
CEPTANCE FACTORS

Incentive Original Statements in German P
er
su
as
iv
en

es
s

A
cc
u
ra
cy

Cost advantage ’Durch eine flexible Ladung kann der Nutzer von
geringeren Strompreisen profitieren.’

4.3 4.6

Cost advantage ’Mit zusätzlich freigegebener Flexibilität kann
günstiger geladen werden.’

4.3 4.5

Integration of
RES

’Durch Ladeflexibilität kann der Anteil an
erneuerbaren Energien zum Laden des Autos
deutlich erhöht werden.’

4.4 4.3

Cost advantage ’Flexibles Laden kann Netzentgelte und Kosten
reduzieren.’

4.3 4.3

Environmental
protection

’Beim flexiblen Laden kann mehr Strom
aus erneuerbaren Energiequellen genutzt und
dadurch die Umwelt geschützt werden.’

4.6 4.3

Cost advantage ’Laden ohne zusätzliche Flexibilität kann mehr
Geld kosten.’

4.2 4.2
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Integration of
RES

’Wenn Nutzer Ladeflexibilität bereitstellen,
kann das Auto mit mehr Solarstrom und
Windstrom geladen werden.’

4.3 4.1

Social aspects ’Das Stromnetz wird mit anderen Nutzern
geteilt und profitiert davon, dass diese flexibel
beim Aufladen von Elektroautos sind.’

4.3 3.9

Environmental
protection

’Flexibles Laden ermöglicht die Vermeidung von
fossilen Energieträgern und schädlichen Emis-
sionen.’

3.9 3.9

Integration of
RES

’Durch eine flexible Ladung können mehr
erneuerbare Energien zum Ladeprozess genutzt
werden.’

4.5 3.9

Climate impact ’Mit zusätzlicher zeitlicher Flexibilität kann
man klima-schädliche Emissionen, die zum Kli-
mawandel beitragen, einsparen.’

3.9 3.9

Environmental
protection

’Je mehr Ladeflexibilität bereitgestellt wird,
desto mehr klima-schädliche Emissionen
können eingespart werden.’

4.3 3.8

Environmental
protection

’Je flexibler die Ladung ist, desto besser können
Ressourcen geschont werden.’

4.5 3.8

Climate impact ’Mit zusätzlichen zeitlichen Flexibilität kannst
man einen positiven Beitrag zur Verminderung
des Klimawandels leisten.’

3.9 3.8

Environmental
protection

’Laden ohne Flexibilität strapaziert die Umwelt
durch klima-schädliche Emissionen.’

3.9 3.7

Environmental
protection

’Die Umwelt wird geschützt, wenn man
Flexibilität beim Laden freigibt, da dadurch
schädliche Emissionen eingespart werden
können.’

4.3 3.7

Grid impact ’Flexibles Laden kann Netzengpässe und Netza-
ufbau vermeiden.’

4.2 3.6
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Grid impact ’Laden ohne Ladeflexibilität kann die
Auswirkungen auf Netz strapazieren und
stellt eine größere Belastung für das Stromnetz
dar.’

4.4 3.5

Grid impact ’Durch Flexibilität beim Laden wird das Strom-
netz entlastet.’

4.5 3.4

Grid impact ’Eine flexible Ladung trägt positiv zur
Auswirkungen auf Netz bei.’

4.5 3.4

Grid impact ’Durch Ladeflexibilität tragen die Nutzer zur
Entlastung des Energienetzes bei.’

4.2 3.4

Climate impact ’Laden ohne Ladeflexibilität kann negativ zum
Klimawandel beitragen.’

3.8 3.4

Climate impact ’Durch Laden zu Spitzenzeiten wird viel klima-
schädliches Gas und Kohle verbrannt.’

3.6 3.3

Battery degra-
dation

’Flexibles Laden kann zur Schonung des Akkus
beitragen.’

2.6 3.2

Social aspects ’Elektroautonutzer sind sich einig, dass flexibel
geladen werden sollte.’

3.0 3.2

Health impact ’Ladeflexibilität kann konventionelle Erzeugung
vermeiden und somit gesundheitsgefährdende
Emissionen einsparen.’

3.9 3.2

Health impact ’Keine oder geringe Ladeflexibilität kann zu
höheren Emissionen bei der Energiegewinnung
führen, die die Gesundheit belasten können
(z.B. Asthma).’

3.7 3.1

Health impact ’Durch Laden zu Spitzenzeiten wird viel Gas
und Kohle verbrannt. Luftschadstoffe aus kon-
ventioneller gewonnener Energie können zu
Gesundheitsschäden führen (z.B. Asthma).’

3.3 3.1

Battery degra-
dation

’Flexibilität bei der Ladung kann die Lebens-
dauer des Akkus erhöhen.’

2.4 3.0
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Social aspects ’Andere Nutzer der Ladestation geben
grundsätzlich während der Ladung Flexibilität
frei.’

2.8 2.8

Battery degra-
dation

’Laden ohne Flexibilität kann den Akku von
Elektrofahrzeugen strapazieren.’

2.3 2.6

Table C.1.: Statements with experts’ evaluation average, ranked by persuasiveness towards
end-users



APPENDIX D

LAYOUT OF THE ONLINE EXPERIMENT

Figure D.1.: Starting page of the experiment.
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Figure D.2.: Question group E-mail.
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Figure D.3.: Question group Home charging scenario (control group) I.
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Figure D.4.: Question group Home charging scenario (control group) II.
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Figure D.5.: Question group Work charging scenario (control group) I.
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Figure D.6.: Question group Work charging scenario (control group) II.
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Figure D.7.: Question group Shopping center charging scenario (control group) I.
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Figure D.8.: Question group Shopping center charging scenario (control group) II.
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Figure D.9.: Question group Sociodemographic attributes.
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Figure D.10.: Question group Knowledge about flexible charging.

Figure D.11.: Question group Willingness to take risks.
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Figure D.12.: Question group Personality and agreeableness.
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Figure D.13.: Question group Car related attributes.
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Figure D.14.: Question group Environmental consciousness.





APPENDIX E

REGRESSION MODEL FOR THE INFLUENCE OF
FRAMING ON CHARGING FLEXIBILITY WITH ALL
CONTROL VARIABLES

Table E.1.: Full regression model for the influence of framing on charging flexibility with
all control variables.

Variable Coefficient Std. Error t-Statistic P>|t|

Intercept 0.5096 0.124 4.123 0.000
Framing[Cost] 0.0919 0.041 2.246 0.026
Framing[Environmental] 0.0078 0.037 0.210 0.834
Framing[Social] -0.1072 0.042 -2.525 0.013
Income [Low] -0.0408 0.056 -0.734 0.464
Income [Medium] -0.0958 0.054 -1.758 0.081
Income [High] -0.0374 0.048 -0.781 0.436
Income [Very high] -0.1279 0.048 -2.688 0.008
Age -0.0007 0.001 -0.479 0.633
Bev Ownership 0.0276 0.038 0.724 0.470
Gender -0.0225 0.039 -0.584 0.560
Willingnes to take Risk 0.0144 0.007 2.017 0.045
Environmentalism 0.0243 0.023 1.064 0.289

Dep. Variable: Charging Flexibility R-squared: 0.170
Model: OLS Adj. R-squared: 0.105
Method: Least Squares F-statistic: 2.586
No. Observations: 164 AIC: -84.35
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RELATED WORK ON FORECASING REGARDING
BEVS
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(ECIS), Guimarães, Portugal, 5-10 June 2017.

Meyerowitz, B. E. and Chaiken, S. (1987). The effect of message framing on breast
self-examination attitudes, intentions, and behavior. Journal of personality and
social psychology, 52(3):500.

Michie, S., Richardson, M., Johnston, M., Abraham, C., Francis, J., Hardeman, W.,
Eccles, M. P., Cane, J., and Wood, C. E. (2013). The behavior change technique
taxonomy (v1) of 93 hierarchically clustered techniques: building an international
consensus for the reporting of behavior change interventions. Annals of behavioral
medicine, 46(1):81–95.

Mirsch, T., Lehrer, C., and Jung, R. (2017). Digital nudging: Altering user behavior
in digital environments. Proceedings der 13. Internationalen Tagung Wirtschaftsin-
formatik (WI 2017), pages 634–648.

Moghe, R., Kreikebaum, F., Hernandez, J. E., Kandula, R. P., and Divan, D. (2011).
Mitigating distribution transformer lifetime degradation caused by grid-enabled
vehicle (gev) charging. In 2011 IEEE Energy Conversion Congress and Exposition,
pages 835–842. IEEE.

Mojdehi, M. N. and Ghosh, P. (2016). An on-demand compensation function for an
ev as a reactive power service provider. IEEE Transactions on Vehicular Technol-
ogy, 65(6):4572–4583.

Momsen, K. and Stoerk, T. (2014). From intention to action: Can nudges help
consumers to choose renewable energy? Energy Policy, 74:376–382.

Moon, S., Bergey, P. K., Bove, L. L., and Robinson, S. (2016). Message framing and
individual traits in adopting innovative, sustainable products (isps): Evidence
from biofuel adoption. Journal of Business Research, 69(9):3553–3560.



242 Bibliography

Mou, Y., Xing, H., Lin, Z., and Fu, M. (2015). Decentralized optimal demand-side
management for phev charging in a smart grid. IEEE Transactions on Smart Grid,
6(2):726–736.

Mwasilu, F., Justo, J. J., Kim, E.-K., Do, T. D., and Jung, J.-W. (2014). Electric
vehicles and smart grid interaction: A review on vehicle to grid and renewable
energy sources integration. Renewable and sustainable energy reviews, 34:501–516.

Nayar, A. (2017). Nudging urban water conservation: Evidence from india on the
effect of behavior economics on water consumption. European Journal of Research
in Social Sciences Vol, 5(4).

Neupane, B., Pedersen, T. B., and Thiesson, B. (2014). Towards flexibility detection
in device-level energy consumption. In International Workshop on Data Analytics
for Renewable Energy Integration, pages 1–16. Springer.

Newman, C. L., Howlett, E., Burton, S., Kozup, J. C., and Heintz Tangari, A. (2012).
The influence of consumer concern about global climate change on framing effects
for environmental sustainability messages. International Journal of Advertising,
31(3):511–527.

Nienhueser, I. A. and Qiu, Y. (2016). Economic and environmental impacts of
providing renewable energy for electric vehicle charging – a choice experiment
study. Applied Energy, 180:256–268.

Nissan (2019). 2019 nissan leaf ev | nissan usa. Retrieved from https://www.

nissanusa.com/vehicles/electric-cars/leaf.html. Accessed on 2020-01-13.

Olkkonen, V. and Syri, S. (2016). Spatial and temporal variations of marginal elec-
tricity generation: the case of the finnish, nordic, and european energy systems
up to 2030. Journal of Cleaner Production, 126:515–525.

Omran, N. G. and Filizadeh, S. (2013). Location-based forecasting of vehicular
charging load on the distribution system. IEEE Transactions on Smart Grid,
5(2):632–641.



Bibliography 243

Onat, N. C., Kucukvar, M., and Tatari, O. (2015). Conventional, hybrid, plug-in
hybrid or electric vehicles? state-based comparative carbon and energy footprint
analysis in the united states. Applied Energy, 150:36–49.

OPSD (2018). Open power system data (opsd) - data package conven-
tional power plants - version 2018-12-20. Retrieved from https://data.

open-power-system-data.org/conventional_power_plants/2018-12-20. Ac-
cessed on 2020-01-13.

Ortega-Vazquez, M. A. (2014). Optimal scheduling of electric vehicle charging and
vehicle-to-grid services at household level including battery degradation and price
uncertainty. IET Generation, Transmission & Distribution, 8(6):1007–1016.

Pareschi, G., Georges, G., and Boulouchos, K., editors (2017). Assessment of the
Marginal Emission Factor associated with Electric Vehicle Charging.

Park, D. C., El-Sharkawi, M., Marks, R., Atlas, L., and Damborg, M. (1991). Electric
load forecasting using an artificial neural network. IEEE transactions on Power
Systems, 6(2):442–449.

Pasaoglu, G., Zubaryeva, A., Fiorello, D., and Thiel, C. (2014). Analysis of european
mobility surveys and their potential to support studies on the impact of electric
vehicles on energy and infrastructure needs in europe. Technological Forecasting
and Social Change, 87:41–50.

Petersen, M. K., Edlund, K., Hansen, L. H., Bendtsen, J., and Stoustrup, J. (2013).
A taxonomy for modeling flexibility and a computationally efficient algorithm for
dispatch in smart grids. In 2013 American control conference, pages 1150–1156.
IEEE.

Piccoli, G. and Pigni, F. (2008). Information Systems for Managers. John Wiley &
Sons, Hoboken, NJ.
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June 2017.
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