KIT | KIT-Bibliothek | Impressum | Datenschutz

TSCMF: Temporal and social collective matrix factorization model for recommender systems

Tahmasbi, Hamidreza; Jalali, Mehrdad ORCID iD icon 1; Shakeri, Hassan
1 Institut für Nanotechnologie (INT), Karlsruher Institut für Technologie (KIT)

Abstract:

In real-world recommender systems, user preferences are dynamic and typically change
over time. Capturing the temporal dynamics of user preferences is essential to design an efficient
personalized recommender system and has recently attracted significant attention. In
this paper, we consider user preferences change individually over time. Moreover, based on
the intuition that social influence can affect the users’ preferences in a recommender system,
we propose a Temporal and Social CollectiveMatrix Factorization model called TSCMF for
recommendation.We jointly factorize the users’ rating information and social trust information
in a collective matrix factorization framework by introducing a joint objective function.
We model user dynamics into this framework by learning a transition matrix of user preferences
between two successive time periods for each individual user. We present an efficient
optimization algorithm based on stochastic gradient descent for solving the objective function.
The experiments on a real-world dataset illustrate that the proposed model outperforms
the competitive methods.Moreover, the complexity analysis demonstrates that the proposed
... mehr


Postprint §
DOI: 10.5445/IR/1000122914
Veröffentlicht am 16.08.2021
Originalveröffentlichung
DOI: 10.1007/s10844-020-00613-w
Scopus
Zitationen: 14
Web of Science
Zitationen: 11
Dimensions
Zitationen: 14
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Funktionelle Grenzflächen (IFG)
Institut für Nanotechnologie (INT)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2021
Sprache Englisch
Identifikator ISSN: 0925-9902, 1573-7675
KITopen-ID: 1000122914
HGF-Programm 43.22.01 (POF III, LK 01) Functionality by Design
Erschienen in Journal of intelligent information systems
Verlag Springer
Band 56
Seiten 169–187
Vorab online veröffentlicht am 15.08.2020
Schlagwörter Social recommender system · Preference dynamics · Temporal dynamics ·, Collective matrix factorization
Nachgewiesen in Web of Science
Dimensions
Scopus
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page