
P4TC—Provably-Secure yet Practical Privacy-Preserving
Toll Collection

MAX HOFFMANN∗, Ruhr-Universität Bochum, Germany
VALERIE FETZER†, MATTHIAS NAGEL‡, ANDY RUPP§, and REBECCA SCHWERDT¶, Karls-
ruhe Institute of Technology, Germany

Electronic toll collection (ETC) is widely used all over the world not only to finance our road infrastructures, but also to
realize advanced features like congestion management and pollution reduction by means of dynamic pricing. Unfortunately,
existing systems rely on user identification and allow tracing a user’s movements. Several abuses of this personalized location
data have already become public. In view of the planned European-wide interoperable tolling system EETS and the new EU
General Data Protection Regulation, location privacy becomes of particular importance.

In this paper, we propose a flexible security model and crypto protocol framework designed for privacy-preserving toll
collection in the most dominant setting, i.e., Dedicated Short Range Communication (DSRC) ETC. A major challenge in
designing the framework at hand was to combine provable security and practicality, where the latter includes practical
performance figures and a suitable treatment of real-world issues, like broken on-board units etc. To the best of our knowledge,
our work is the first in the DSRC setting with a rigorous security model and proof and arguably the most comprehensive
formal treatment of ETC security and privacy overall.

Additionally, we provide a prototypical implementation on realistic hardware. This implementation already features fairly
practical performance figures, even though there is still room for optimizations. An interaction between an on-board unit and
a road-side unit is estimated to take less than a second allowing for toll collection at full speed assuming one road-side unit
per lane.

Contents
1 Introduction 2
2 Considered Scenario 7
3 Security Model 10
4 System Definition 12
5 Protocol Overview 18
6 Security Theorem 23
7 Protocol Performance Evaluation 24
References 27
A Information Leakage and Discussion on Privacy Implications 30
B Full System Definition 33
C Setting and Building Blocks 44
D Full Protocol Description 55
E Adversarial Model 76
F Security Proof 78

∗The author is supported by DFG grant PA 587/10-1.
†The author is supported by DFG grant RU 1664/3-1.
‡The author is supported by the German Federal Ministry of Education and Research within the framework of the project “Sicherheit
vernetzter Infrastrukturen (SVI)” in the Competence Center for Applied Security Technology (KASTEL).
§The author is supported by DFG grant RU 1664/3-1 and the Competence Center for Applied Security Technology (KASTEL).
¶The author is supported by the German Research Foundation (DFG) as part of the Research Training Group GRK 2153: Energy Status
Data-Informatics Methods for its Collection, Analysis and Exploitation.

2 M. Hoffmann, V. Fetzer, M. Nagel, A. Rupp, R. Schwerdt • P4TC

1 INTRODUCTION
Electronic toll collection (ETC) is already deployed in many countries all over the world. A recent study [56]
conducted by “Markets and Markets” predicts a CAGR for this market of 9.16% from 2017 to 2022 reaching 10.6
Billion USD by 2022. Europe plans to introduce the first implementation of a fully interoperable tolling system
(EETS) until 2027 [28]. Hence, ETC has been and will be an important technology deserving a careful analysis of
security and privacy issues as well as custom-tailored secure solutions.
As ETC will become the default option for paying tolls with no easy way to opt-out, privacy is a concern

of particular importance. Unfortunately, the systems in use today do not protect the location privacy of their
users. This encourages abuse: EZ-Pass records, for instance, have been used as evidence in divorce lawsuits [59],
EZ-pass transponders are abused to track drivers throughout New York City [64], and the Norwegian AutoPASS
system allowed anyone to obtain a transcript of which toll booths a car visited [30].

However, the only legitimate reason to store personalized location records in these systems is to bill customers.
As opposed to other systems, as for instance loyalty systems, this data should not be used for other business
relevant purposes like, e.g., personalized advertising. Thus, an efficient and cost-effective privacy-preserving
mechanism which avoids data collection in the first place, but still enables the billing functionality, should be
of interest to ETC providers as well. In this way, there is no need to deploy costly technical and organizational
measures to protect a large amount of sensitive data and there is no risk of a data breach resulting in costly
law suits, fines, and loss of customer trust. This is especially interesting in view of the new EU General Data
Protection Regulation (GDPR) [36] which is in effect since May 2018. The GDPR stipulates comprehensive
protection measures and heavy fines in case of non-compliance.

1.1 Classification of ETC
One can classify ETC systems based on what the user is charged for, where toll determination takes place, and
how this determination is done [27, 60].
Concerning what the user is charged for, we distinguish between two major types of charging schemes:

Distance-based: The toll is calculated based on the distance traveled by the vehicle and adapted by other parameters
like the type of vehicle, discounts, etc.

Access-based: Tolls apply to a specific geographic area, e.g. part of a city, segment of a highway, tunnel, etc. As
before, it can also be dynamically adapted by other parameters. This charging scheme is typically used in
urban areas—not only to finance the road infrastructure but also for congestion management and pollution
reduction by adapting tolls dynamically.

There are two main types of toll determination environments:
Toll plaza: This is the traditional environment where cars pass toll booths on physically separated lanes which

may be secured by barriers or cameras to enforce honest behavior.
Open road: In open road tolling the traffic is not disrupted as tolls are collected in a seamless fashion without

forcing cars to slow down. In the DSRC setting, this is enabled by equipping roads with toll gantries and
cameras enforcing participation.

Several key technologies define how toll is determined:
Dedicated Short-Range Communication (DSRC): Today, this is the most widely used ETC technology worldwide

and the de facto standard in Europe [60]. It is based on bidirectional radio communication between a
road-side unit (RSU) and a mobile device aka on-board unit (OBU) installed in the vehicle. In todays systems,
the OBU just identifies the user to trigger a payment. However, more complex protocols (like ours) between
OBU and RSU can be implemented.

Automatic Number Plate Recognition (ANPR): ANPR, aka video tolling, inherently violates privacy.

M. Hoffmann, V. Fetzer, M. Nagel, A. Rupp, R. Schwerdt • P4TC 3

Global Navigation Satellite System (GNSS): In a GNNS-based system the OBU keeps track of the vehicle’s location
(e.g., by means of GPS) and processes the necessary information to measure its road usage autonomously,
i.e., without the aid of an RSU. GNSS is typically used in combination with GSM for communicating with
the toll service provider.

1.2 Drawbacks of Existing Systems and Proposals
Independent of the technology used, systems deployed in practice build on identifying the user to charge him.
Previous work on privacy-preserving toll collection mainly considers the GNSS setting and comes—apart from a
few exceptions [6, 26, 29]—without any formal security analysis. Although DSRC is the most dominant setting in
practice, it did not receive much attention in the literature so far. Moreover, practical issues like “what happens if
an OBU breaks down”, are usually not taken into account by these proposals. We elaborate on related work in
Section 1.4.

1.3 P4TC
We propose a comprehensive security model as well as provably-secure and efficient protocols for privacy-friendly
ETC in the DSRC setting. Our definitional framework and the system are very flexible. We cover access-based and
distant-based charging schemes as well as combinations of those. Our protocols work for toll plaza environments,
but are (due to offline precomputations) efficient enough for open road tolling. Additionally, we also cope with
several issues that may arise in practice, e.g., broken/stolen OBUs, RSUs with non-permanent internet connection,
imperfections of violation enforcement technology, etc. To the best of our knowledge, we arguably did the most
comprehensive formal treament of ETC security and privacy overall.

Section 2 provides an overview on the toll collection scenario and the desired properties we consider. Section 1.5
gives details on our contribution.

1.4 Related Work
In this section, we review proposals for privacy-preserving ETC. So far, more elaborate systems have been
proposed for the GNSS setting in comparison to the actually more widely used DSRC setting.

1.4.1 DSRC (OBU/RSU) Setting. Previous work [31, 46–48] in this setting mainly focuses on a pre-pay scenario
where some form of e-cash is used to spend coins when passing an RSU. This mode is not preferred by users
due to its inconveniences. A user needs to ensure that he always has enough e-coins to pay the tolls. This is
particularly inconvenient when prices change dynamically. In addition, using standard offline e-cash (e.g., [17]),
the user may not overpay since he cannot get change from the RSU in a privacy-preserving way. Also transferable
e-cash [7] does not solve the problem of change as the impossibility result of [19] applies to the ETC setting. So a
user would not only need enough money but the right denomination of e-coins.
In [46–48] multiple electronic road pricing systems specifically tailored for Low Emission Zones (LEZ) are

proposed. In [46] a user drives by an RSU and directly pays some price depending on this RSU. For [47, 48] the
price a user has to pay depends on the time spent inside the LEZ. To this end, the user receives some e-ticket
from an Entry-RSU when entering the LEZ which he needs to present again at an Exit-RSU when leaving the
LEZ. For the actual payment in all these systems, some untraceable e-cash scheme that supports dynamic pricing
is assumed but not specified. The systems require tamper-proof hardware for the OBU and are claimed to provide
fraud protection and privacy for honest drivers.

In [31], a simple access-based toll collection system based on RSA blind signatures is sketched. Users buy a set
of tokens/coins during registration which are used to pay toll while driving. Double-spending detection can be
detected with high probability and some ideas are presented to keep the double-spending database small.

4 M. Hoffmann, V. Fetzer, M. Nagel, A. Rupp, R. Schwerdt • P4TC

In [10], the authors propose an interesting scheme for distance-based toll collection. Here, a user obtains a coin,
used as an entry ticket, which is worth the maximum toll in the system and can be reused a fixed number of times.
The actual toll is calculated at the exit RSU where the user is reimbursed for the difference. The system supports
revocation of a user’s anonymity and token revocation. The instantiation mixes cryptographic primitives from
the Paillier and DLog setting. Zero-knowledge proofs for languages which mix statements (and share variables) of
the two settings are also required. The actual proofs are not specified in the paper. Instead they are just claimed to
be “quite standard”, what we doubt. As opposed to ours, their system relies on online “over-spending” detection
and does not come with any formal model or security proof.

1.4.2 GNSS Setting. A variety of GNSS-based system proposals can be found in the literature. Here, the OBU
equipped with GPS and GSM typically collects location-time data or road segment prices and sends this data to
the toll service provider (TSP). To ensure that the user behaves honestly and, e.g., does not omit or forge data,
unpredictable spot checks are assumed which force a user to reveal the data he sent at a certain location and
time. In a reconciliation phase, the user calculates his toll based on the data sent and proves that his calculation is
correct.
One example for the GNSS approach is the simple and flexible electronic road pricing system in [32]. There

the server collects hash values of the trip records from the OBUs in form of a hash tree. In the reconciliation
phase the consistency of the hash tree is verified. However, the whole system is only described imprecisely and
the security and privacy of the system are not proven.
In VPriv [61], the OBU anonymously sends tagged location-time data to the TSP while driving. The user

previously committed to use exactly these random tags in a registration phase with the TSP. In an inefficient
reconciliation phase, each user needs to download the database of all tagged location-time tuples, calculate his
total fee, and prove that for this purpose, he correctly used the tuples belonging to his tags without leaking those.
In [29] ProVerif is used to show that VPriv is privacy-preserving for honest-but-curious adversaries.

In [43] a road pricing system, where the OBU anonymously sends location data to a central server, is presented.
The system is based on splitting a single trip into several unlinkable segments (called “legs”) and on distributing
the calculation of the fee for a trip between several distinct entities. During the reconciliation phase, every OBU
learns the locations of the spot check devices that recorded its corresponding vehicle. The security and privacy
requirements are only proved informally.
In the PrETP [6] scheme, the OBU non-anonymously sends payment tuples consisting of commitments to

location, time, and the corresponding price that the OBU determined itself. During reconciliation with the TSP,
the user presents his total toll and proves that this is indeed the sum of the individual prices he sent, using the
homomorphic property of the commitment scheme.
The authors prove their system secure using the ideal/real world paradigm.
In [57], the authors identify large-scale driver collusion as a potential threat to the security of PrETP (and other

systems): As spot check locations are leaked to the drivers in the reconciliation phase, they may collude to cheat
the system by sharing these locations and only sending correct payment tuples nearby. To this end, the Milo
system is constructed. In contrast to PrETP, the location of the spot checks is not revealed during the monthly
reconciliation phase. Therefore, drivers are less motivated to collude and cheat. However, if a cheating user is
caught, the corresponding spot check location is still revealed. Thus, Milo does not protect against mass-collusion
of dishonest drivers. No security or privacy proofs are given.

In [25], the authors propose a system based on group signatures that achieves k-anonymity. A user is assigned
to a group of drivers during registration. While driving, the user’s OBU sends location, time, and group ID—signed
using one of the group’s signature keys—to the TSP. At the end of a billing period, each user is expected to pay
his toll. If the sum of tolls payable by the group (calculated from the group’s location-time data) is not equal
to the total toll actually paid by the group, a dispute solving protocol is executed. During dispute solving, the

M. Hoffmann, V. Fetzer, M. Nagel, A. Rupp, R. Schwerdt • P4TC 5

group manager recalculates each user’s toll and, thus, catches the cheater. Choosing an appropriate group size is
difficult (the larger the size, the better the anonymity is protected, but the computation overhead rises), as well as
choosing a suited group division policy (users in a group should have similar driving regions and similar driving
patterns). In [26], the system’s security and privacy properties are verified using ProVerif.
Another cell-based road pricing scheme is presented in [37]. Here, a roadpricing area is divided into cells,

where certain cells are randomly selected as spot check cells. A trusted platform module (TPM) inside each OBU
is aware of this selection. While driving, the OBU tells its TPM the current location and time. The TPM updates
the total toll and also generates a “proof of participation” which is sent to the TSP. This proof is the signed and
encrypted location-time data under the TSP’s public key if the user is inside a spot check cell and 0 otherwise. In
this way, the TSP can easily verify that a user behaved honestly at spot check cells without leaking their locations
to honest users. A security proof is sketched.

A main issue with all systems described above is that their security relies on a strong assumption in practice:
invisible spot checks at locations which are unpredictable in each billing period. Otherwise users could easily
collude and cheat. On the other hand, spot checks reveal a user’s location. Hence, fixing the number of spot checks
is a trade-off between ensuring honesty and preserving privacy. Clearly, the penalty a cheater faces influences
the number of spot checks required to ensure a certain security level.
In [50], the authors argue that even mass surveillance, protecting no privacy at all, cannot prevent collusion

under reasonable penalties. They present a protocol for a privacy-preserving spot checking device where the
locations of these devices can be publicly known. Drivers interacting with the device identify themselves with
a certain probability, but do not learn whether they do so, therefore being forced to honesty. To let a user not
benefit from turning off his OBU between two spot check devices, such a device is needed at every toll segment.
Furthermore, to encourage interaction with the device, an enforcement camera is required. However, since
all these road-side devices are needed anyway, there is no advantage in terms of infrastructure requirements
compared to the DSRC setting.

1.5 Our Contribution
Our contribution is threefold:

1.5.1 Protocols. While the overall idea underlying our construction might appear intuitive and we partly draw
from known techniques, a major challenge was to twist and combine all these techniques to achieve simulation-
based security and practicality at the same time.
To this end, we start from a payment system building-block called black-box accumulation (BBA+), recently

introduced in [41]. BBA+ offers the core functionality of an unlinkable user wallet maintaining a balance. Values
can be added to and subtracted from the wallet by an operator, where the use of an old wallet is detected offline
by a double-spending mechanism. Besides unlinkability, the system guarantees that a wallet may only be used by
its legitimate owner and with its legitimate balance. While BBA+ provides us with some ((P1), (P3), (P4) and (P9)
partially) of the desired properties identified in Section 2.3, significant modifications and enhancements had to be
made to fully suit our needs.

For instance, the basic BBA+ mechanism does not allow for efficient blacklisting of individual wallets (P6) nor
to recalculate individual balances (P7). We solve this by having an individual trapdoor for each wallet (accessible
to the DR in case of an incident) which makes transactions involving this wallet forward and backward linkable.
The trapdoor does not allow to link wallets of other users.1 To realize this, we adopt and adjust an idea from
the e-cash literature [18]. More precisely, we make use of a PRF applied to a counter value (which is bound to a
wallet) to generate some fraud detection ID for a wallet state. To ensure security and privacy, we let both the user
1To be precise, in the BBA+ system, there is a TTP-owned trapdoor that allows to link a user’s transactions. However, this is not a user- or
wallet-specific trapdoor, which means, that if handed to the TSP, it could track each and every user in the system.

6 M. Hoffmann, V. Fetzer, M. Nagel, A. Rupp, R. Schwerdt • P4TC

and the TSP jointly choose the PRF key with the key remaining unknown to the TSP. To make it accessible in
case of an incident, the user is forced to deposit the key encrypted under the DR’s public key. The correctness of
this deposit is ensured to the TSP by means of a NIZK proof. This part is tricky due to the use of Groth-Sahai
NIZKs for efficiency reasons and the lack of a compatible (i.e., algebraic) encryption scheme with message space
Zp. By letting a user choose a new PRF key for each billing period, his transactions from previous/upcoming
periods stay unlinkable.

As a minor but very useful modification, we added (user and RSU) attributes to a wallet, which, of course, get
signed along with the wallet to protect from forgery. This allows us to bind wallets to a billing period encoded as
attribute. By making RSUs only accept wallets from the current period, the size of the blacklist checked by the
RSU can be limited to enable fast transactions. Similarly, the database needed to recalculate balances can be kept
small.
Another problem is the use of a single shared wallet certification key in the BBA+ scheme. Translated to our

setting, the TSP and all RSUs would share the same secret key. Hence, if an adversary corrupted a single RSU, he
could create new wallets for fake users, forge user attributes, balances, etc. In order to mitigate this problem (P8),
we take the following measures: First, we separate user identity and attribute information, i.e., the fixed part of a
wallet, from balance information, i.e., the updatable part. The first part is signed by a signature key only held
by the TSP when the wallet is issued. The second part is signed by an RSU each time the balance of a wallet is
updated. This prevents a corrupted RSU to issue new wallets or fake user attributes. Furthermore, the individual
key of each RSU is certified by the TSP along with its attributes. In this way, a RSU may not forge its attributes
(P2) but may still fake the balance. By including an expiration date into the RSU attributes, one can limit the
potential damage involved with the latter issue. In view of the fact that RSUs are usually not easily accessible
physically and key material is usually protected by a HSM, we believe that these measures are sufficient. We
intentionally refrain from using key revocation mechanisms like cryptographic accumulators [54] in order to
retain real-time interactions.

Finally, we added mechanisms to prove the participation in Debt Accumulation interactions (P10) and to enable
a simulation-based security proof.

1.5.2 System Definition, Security Model and Proof. Having the scenario from Section 2 at the back of our
mind, we propose a system definition and security model for post-payment toll collection systems based on the
real/ideal-paradigm. More precisely, we build upon the UC framework [20].

Our work is one of very few that combines a complex, yet practical crypto system with a thorough UC security
analysis. Typically, the standard approach is to cast a complex system as an MPC problem and then resort to a
generic but inefficient UC-secure MPC protocol [22, 45].
The security of BBA+ has been modeled by formalizing each security property from a list of individual

properties as it is usually done in the game-based setting. This approach bears the intrinsic risk that important
and expedient security aspects are overlooked, e.g., the list is incomplete. This danger is eliminated by our
UC-approach where we do not aim to formalize a list of individual properties but rather how an ideal system
should look like.
A challenging task was to find a formalization of such an ideal system (aka ideal functionality) such that a

reasonable trade-off between various aspects is accomplished: On the one hand, it needs to be sufficiently abstract
to represent the semantics of the eventual goal “toll collection” while it should still admit a realization. On the
other hand, keeping it too close to the concrete realization and declaring aspects as out-of-scope only provides
weak security guarantees.

We decided to directly model the ETC system as a single functionality with (polynomially) many parties that
reactively participate in (polynomially) many interactions. This leads to a clean interface but makes the security
analysis highly non-trivial. At first sight, it seems tempting to follow a different approach: Consider the system

M. Hoffmann, V. Fetzer, M. Nagel, A. Rupp, R. Schwerdt • P4TC 7

as a composition of individual two-party protocols, analyze their security separately and argue about the security
of the whole system using the UC composition theorem. We refrain from this approach, however, as it entails a
slew of technical subtleties due to the shared state between the individual two-party protocols.
Moreover, although our system uses cryptographic building blocks for which UC formalizations exist (com-

mitments, signatures, NIZK), these abstractions cannot be used. For example, UC-signatures are just random
strings that are information-theoretic independent of the message they sign. Thus it is impossible to prove in
zero-knowledge any statement about message-signature-pairs. Hence, our security proof has to start almost
from scratch. Although parts of it are inspired by proofs from the literature, it is very complex and technically
demanding in its entirety.

1.5.3 Implementation. In addition to our theoretical framework, we also evaluate the real-world practicality of
P4TC by means of an implementation. We specifically benchmarked our protocols on an embedded processor
which is known to be used in currently available OBUs such as the Savari MobiWAVE [62]. The major advantage
for real-world deployment originates in the use of non-interactive zero-knowledge proofs, where major parts of
the proofs can be precomputed and verification equations can be batched efficiently. This effectively minimizes
the computations which have to be performed by the OBU and the RSU during an actual protocol run. Our
implementation suggests that provably-secure ETC at full speed can indeed be realized using present-day
hardware.

2 CONSIDERED SCENARIO
Here, we sketch the considered scenario, giving an idea of the required flexibility and complexity of our framework.
We target a post-payment toll collection system in the DSRC setting which allows access-based as well as distance-
based charging and can be deployed in a toll-plaza as well as an open-road environment. It involves the following
entities:

• The Toll Collection Service Provider (TSP) which might be a privately owned company.
• The State Authority (SA), e.g., the Department of Transportation, which outsourced the toll collection
operations to the TSP but is responsible for violation enforcement.
• A Dispute Resolver (DR), e.g., an NGO protecting privacy, which is involved in case of an incident or dispute.2
• Users who participate in the system by means of a (portable or mounted) On-Board Unit (OBU). The OBU
is used for on-road transactions and in the scope of debt and dispute clearance periods. For the latter, it
needs to establish a (3G) connection to the TSP/SA. Alternatively, a smartphone might be used for that
purpose, which, however, needs access to the OBU’s data.
• Road-Side Units (RSUs) which interact with OBUs and are typically managed by the TSP. To enable fast and
reliable transactions with OBUs, we do not require RSUs to have a permanent connection to the TSP. We
only assume that they are periodically online for a short duration (presumably at night when there is not
much traffic) to exchange data for fraud detection with the TSP.
• Enforcement Cameras triggered by the RSUs which are typically owned by the SA and used to make photos
of license plates (and possibly drivers) only in case anything goes wrong. Alternatively, there might be
barriers in a toll-plaza environment which are controlled by the RSU.

2.1 Main Protocols
In the following, we sketch the main protocols of the system involving the parties from above. Fig. 1 provides an
overview of these interactions. A more detailed description that also includes the remaining protocols can be

2Note that we assume the DR to be trusted by all other parties. It implements an optional “kind of key escrow” mechanism.

8 M. Hoffmann, V. Fetzer, M. Nagel, A. Rupp, R. Schwerdt • P4TC

TSP
(Toll Collection
Service Provider)

RSU
(Road-Side Unit)

DR
(Dispute Resolver)

User
SA

(State Authority)Camera

RSU Certification

Debt Accumulation

Blacklisting and Recalculation

Prove Participation

User
Registration

Wallet
Issuing

Debt
Clearance

Double-Spending Detection

Fig. 1. The P4TC System Model

found in Section 5. For simplicity, let us envision a system with (e.g., monthly) billing periods, although this is
not mandatory but suggested for our framework.

User Registration: To participate in the system, a user needs to register with the TSP using some physical ID (e.g.,
passport, SSN) which is verified out-of-band. This is done once and makes the user accountable in case he
cheats or refuses to pay his bills.

RSU Certification: RSU gets a certificate from the TSP.
Wallet Issuing: An (empty) wallet is issued to a user by the TSP. The wallet is bound to the user’s ID and attributes

(see next paragraph) in a privacy-preserving manner.
Debt Accumulation: Every time a user passes an RSU, his OBU and the RSU execute the Debt Accumulation

protocol. The due toll is determined and added to the user’s wallet—possibly along with public attributes of
the RSU. The toll may be dynamic and depend on different factors like the current time of day, congestion
level, some user attributes attached to the wallet as well as some attributes of the previous RSU the user
drove by.
The camera takes a photo of the license plate(s) in case the RSU reports any protocol failure or a car in
the range of the RSU refuses to communicate at all. Due to technical limitations, it might be impossible to
determine which car triggered the camera, especially in open-road tolling environments [44]. In this case,
photos of more than one car in the range of the RSU are taken and transmitted to the SA.

Prove Participation: After the SA has identified the users behind the license plates involved in an incident, it
determines who caused the incident. Since we demand that Debt Accumulation transactions are anonymous,
the users need to interact with the SA to help with this matching. To this end, an instance of the Prove
Participation protocol is executed between the SA and each of these users consecutively. This prevents
honest users who successfully ran Debt Accumulation from being penalized.

Debt Clearance: At the end of a billing period, users participate in an (asynchronous) clearance phase with the
TSP. As this protocol is not anonymous, users can be penalized if they refuse to run the protocol within a
certain time frame. In a protocol execution, a user presents his wallet and the accumulated debt to the TSP.
Then he may clear his debt immediately or within a certain grace period. A successful protocol execution
invalidates his wallet. He can get a new one by rerunning Wallet Issuing.

M. Hoffmann, V. Fetzer, M. Nagel, A. Rupp, R. Schwerdt • P4TC 9

Double-spending Detection: As the system is largely offline, a malicious user might re-use an old state of his wallet
(e.g., with lower debt) and thus commit double-spending. To mitigate this problem, Wallet Issuing, Debt
Accumulation and Debt Clearance generate double-spending information that is eventually collected by
the TSP. The TSP periodically runs Double-Spending Detection on its database to find pairs of matching
double-spending information and to identify fraudulent users.

Blacklisting and Recalculation: With the help of the trusted DR, the TSP is able to blacklist fraudulent users and
to recalculate what they owe.

2.2 Attributes, Pricing Function and Privacy Leakage
Our scenario involves two types of attribute vectors: user attributes as well as (previous) RSU attributes. To keep
our framework flexible, we do not stipulate which kind of attributes or how many of them are used. Those details
depend on the concrete pricing model with a pricing function depending on the user attributes, the current and
previous RSU attributes and auxiliary, publicly verifiable input. However, we expect that for most scenarios
very little information needs to be encoded into these attributes. For instance, one could realize access-based
toll collection with a pricing function primarily depending on auxiliary input like location, time and congestion
without any previous RSU attributes and only encoding the current billing period as a user attribute. Including
the previous RSU’s attributes into the toll calculation also allows to cover distance-based charging, where RSUs
are installed at each entry and exit of a highway. Running Debt Accumulation at the Entry-RSU does not add any
debt to the wallet but only encodes the previous RSU’s ID as attribute. At the Exit-RSU, the appropriate toll is
calculated and added but no RSU attribute is set.3 To mitigate the damage of a stolen RSU, one might want RSUs
to have a common “expiration date” which is periodically renewed and encoded as an RSU attribute. Likewise, to
enforce that a user eventually pays his debt, the user attributes should at least encode the billing period they are
valid for.4

Obviously, the concrete content of the attributes affects the “level” of user privacy in an instantiation of our
system. Our goal is to provide provable privacy up to what can be possibly be deduced by an operator who
explicitly learns (1) those attributes as part of its input to the pricing function and (2) the total debt of a user at
the end of a billing period. Our framework guarantees that protocol runs of honest users do not leak anything
(useful) beyond that. In Appendix A, we analyze the privacy leakage of our system in more detail.

In order to allow users to assess the privacy of a particular instantiation of our framework, we assume that all
attributes, all possible values for those attributes and how they are assigned, as well as the pricing function are
public. In this way, the TSP is also discouraged from running trivial attacks by tampering with an individual’s
attribute values (e.g., by assigning a billing period value not assigned to any other user). To this end, a user needs
to check if the assigned attribute values appear reasonable. Such checks could also be conducted (at random) by a
regulatory authority or often also automatically by the user’s OBU. Likewise, if a (corrupted) RSU tries to break
privacy by charging a peculiar price that differs from the prescribed pricing function, the user is assumed to file a
claim.

2.3 Desired Properties
The following list summarizes the desired security properties we had in mind in an informal manner. In Section 3
we then propose an ideal world model formally covering what we achieve.

(P1) Owner-binding: A user may only use a wallet legitimately issued to him.

3In this way, the entry point of a user’s trip can be linked to his exit point. However, our system ensures that the user is still anonymous and
multiple entry/exit pairs are unlinkable.
4Clearly, for privacy reasons, unique expiration dates in attributes need to be avoided.

10 M. Hoffmann, V. Fetzer, M. Nagel, A. Rupp, R. Schwerdt • P4TC

(P2) Attribute-binding: In Debt Accumulation, a user cannot pretend that he owes less by forging the attributes
attached to his wallet.

(P3) Balance-binding: In Debt Clearance, a user cannot claim to owe less than the amount added to his wallet
unless he has committed double-spending.

(P4) Double-spending Detection: If a user reuses an old copy of his wallet, he will be identified.
(P5) Participation Enforcement: If a user fails to participate in Debt Accumulation, he will be identified.
(P6) Blacklisting: The TSP is able—with a hint from the DR—to efficiently blacklist wallets of individual users.

This is important in practice, e.g., to mitigate the financial loss due to stolen or compromised OBUs or
double-spending.

(P7) Debt Recalculation: The TSP is able—with a hint from the DR—to efficiently recalculate the debt for individual
users during a billing period. This is important in practice, e.g., to mitigate the financial loss due to broken,
stolen, or compromised OBUs. Furthermore, it allows to determine the actual debt of a double-spender.
Also, in a dispute, a user may request a detailed invoice listing the toll points he visited and the amounts
being charged.

(P8) Renegade Expulsion: As an RSU’s secrets enable tampering with user debt, there is a mechanism to mitigate
financial loss due to compromised RSUs.

(P9) Unlinkability: If user attributes and (previous) RSU attributes are ignored, a collusion of TSP and RSUs may
not be able to link a set of Wallet Issue, Debt Accumulation and Debt Clearance transactions of an honest
user given that he is not blacklisted nor committed double-spending. More precisely, Wallet Issuing, Debt
Accumulation and Debt Clearance do not reveal any information (except for user attributes, RSU attributes
and the final balance in case of Debt Clearance) that may help in linking transactions.

(P10) Participation Provability: Prove Participation enables the SA to deanonymize a single transaction of an
honest user in case of an incident.

(P11) Protection Against False Accusation: The user is protected against false accusation of having committed
double-spending (cp. (P4)).

3 SECURITY MODEL
Our toll collection system FP4TC is defined within the UC-framework by Canetti [20], which is a simulation-based
security notion. We briefly explain the UC-framework in this section; for a more detailed introduction to UC see
[20].

3.1 Introduction to UC
In the UC-framework security is defined by indistinguishability of two experiments: the ideal experiment and
the real experiment. In the ideal experiment the task at hand is carried out by dummy parties with the help of
an ideal incorruptible entity—called the ideal functionality F—which plainly solves the problem at hand in a
secure and privacy preserving manner. In the real experiment the parties execute a protocol π in order to solve
the prescribed tasks themselves. A protocol π is said to be a (secure) realization F if no PPT-machineZ, called
the environment, can distinguish between two experiments.

3.1.1 The Basic Model of Computation. The basic model of computation consists of a set of instances (ITIs) of
interactive Turing machines (ITMs). An ITM is the description of a Turing machine with additional tapes for its
identity, for subroutine input and output and for incoming and outgoing network messages. An ITI is a tangible
instantiation of an ITM and is identified by the content of its identity tape. The order of activation of the ITIs is
message-driven. If the ITI provides subroutine output or writes an outgoing message, the activation of the ITI
completes and the ITI to whom the message has been delivered to gets activated next. Each experiment has two
special ITIs: the environmentZ and the adversary A (in the real experiment) or the simulator S (in the ideal

M. Hoffmann, V. Fetzer, M. Nagel, A. Rupp, R. Schwerdt • P4TC 11

experiment). The environmentZ is the ITI that is initially activated. If the environmentZ provides subroutine
output, the whole experiments stops. The output of the experiment is the output ofZ.

3.1.2 The (Dummy) Adversary. The adversaryA is instructed byZ and representsZ’s interface to the network,
e.g., A reports all network messages generated by any party to Z and can manipulate, reroute, inject and/or
suppress messages onZ’s order. This modeling reflects the idea of an unreliable and untrusted network. Please
note: Only incoming/outgoing messages are under the control of A. Subroutine input/output is authenticated,
confidential and of integrity. Moreover,Z may instruct A to corrupt a party. In this case, A takes over the role
of the corrupted party, reports its internal state toZ and from then on may arbitrarily deviate from the protocol
π in the name of the corrupted party as requested byZ.

3.1.3 The Real Experiment. In the real experiment, denoted by EXECπ ,A,Z(1n), the environmentZ interacts
with parties running the actual protocol π and is supported by a real adversary A. The environmentZ specifies
the input of the honest parties, receives their output and determines the overall course of action.

3.1.4 The Ideal Experiment. In the ideal experiment, denoted by EXECF,S,Z(1n), the protocol parties are mere
dummies that pass their input to a trusted third party F and hand over F ’s output as their own output. The ideal
functionality F executes the task at hand in a trustworthy manner and is incorruptible. The real adversary A
is replaced by a simulator S. The simulator must mimic the behavior of A, e.g., simulate appropriate network
messages (there are no network messages in the ideal experiment), and come up with a convincing internal state
for corrupted parties (dummy parties do not have an internal state).

3.1.5 Definition of Security. A protocol π is said to securely UC-realize an ideal functionality F , denoted by
π ≥UC F , if and only if

∃S ∀Z : EXECπ ,A,Z(1n)
c
≡ EXECF,S,Z(1n)

holds whereby the randomness is taken over the initial input of Z and the random tapes of all ITIs.5 If no
environmentZ can tell executions of the real and the ideal experiment apart, then any successful attack existing
in the real experiment would also exist in the ideal experiment. Therefore the real protocol π guarantees the
same level of security as the (inherently secure) ideal functionality F .

3.2 Remarks on Privacy
Regarding privacy, please note that all parties (including the simulator) use the ideal functionality as a black-box
and only know what the ideal functionality explicitly allows them to know as part of their prescribed output.
The output to the simulator is also called leakage. This makes UC suitable to reason about privacy in a very
nice way. As no additional information is unveiled, the achieved level of privacy can directly be deduced from
the defined output of the ideal functionality. In other words, the privacy assessment can be conducted onto the
ideal functionality and is completely decoupled from the analysis of the protocol implementation. The proof of
indistinguishability asserts that any secure realization of the functionality provides the same level of privacy.

3.3 UC Model Conventions
The bare UC model does not specify many important aspects. For example, it leaves open which ITIs are allowed
to communicate with each other, how parties are corrupted and which ITI is allowed to invoke what kind of new
ITIs. In this section we clarify these aspects. Our conventions are probably the mostly used one and quite natural.
• Each party is identified by its party identifier (PID) pid which is unique to the party and is the UC equivalent
of the physical identity of this party. A party runs a protocol π by means of an ITI which is called the main

5N.b.: To streamline this short introduction we directly defined the so-called dummy adversary. The original definition all-quantifies over all
adversaries in the first step. In the second step it is shown that the dummy adversary—as defined here—is the most severe one and complete.

12 M. Hoffmann, V. Fetzer, M. Nagel, A. Rupp, R. Schwerdt • P4TC

party of this instance of π . An ITI can invoke subsidiary ITIs to execute sub-protocols. A subsidiary and its
parent use their subroutine input/output tapes to communicate with each other. The set of ITIs taking part
in the same protocol but for different parties communicate through their message tapes. An instance of a
protocol is identified by its session identifier (SID) sid. All ITIs taking part in the same protocol instance
share the same SID. A specific ITI is identified by its ID id = (pid, sid).
• Ideal functionalities are an exception to this rule. An instance of an ideal functionality F owns a SID but
no PID. Input to and output from F is performed through dummy parties which share the same SID as F ,
but additionally have the PIDs of the parties they belong to.
• As already stated in Section 3.1.2 subroutine input/output is identifying. This implies in particular that an
ideal functionality knows the pid of the party to/from whom it writes/reads input/output, because an ideal
functionality communicates with its calling ITI by means of intermediary dummy ITIs and subroutine
input/output.
• We assume PID-wise corruption: either all ITIs of party are corrupted or none.

All these conventions capture the natural intuition that ITIs with the same PID represent processes within the
same physical computer and therefore can communicate with each other directly. But communication between
different physical computers (i.e., parties) is only possible through an unreliable network under the control of an
adversary.

3.4 Setup Assumptions — CRS FCRS and Bulletin-Board Gbb

As commonly found in the UC setting, we also draw from constitutive trust assumptions, or setup assumptions
in the UC terminology. Setup assumptions are ideal functionalities that remain ideal in the real experiment,
e.g., their secure realization is left unspecified. In our scenario, we assume a common reference string (CRS),
denoted FCRS, and a globally available bulletin board, Gbb [23, Fig. 3], which is sometimes also referred to as key
registration service in the literature [8, 21].
A CRS is a short piece of information that has been honestly generated and is shared between all parties. A

bulletin board can be depicted as the abstract formalization of a globally available key registration service which
associates (physical) party identifiers (PIDs) with (cryptographic) public keys. Every party has the option to
register a key for itself once and Gbb ensures that the registering party cannot lie about its (physical) identity pid.
In our scenario the PID of users could be a passport number or SSN. For RSUs the geo-location could be used
as a PID. The key can be any value v , i.e., Gbb is totally agnostic to the data. Moreover, every party can obtain
keys that have been registered by any other party in a trustworthy way. Our augmentations to Gbb are only
syntactical bagatelles. Parties can also perform a reverse lookup, i.e., lookup the PID of the party that registered
a value, and parties can not only register an opaque string of bits but an ordered tuple of strings. The latter is
required to support reverse searches on substrings.

4 SYSTEM DEFINITION
We now give a condensed description of our ideal functionality FP4TC and point out how it ensures the desired
properties given in Section 2.3. We do not formalize each task (e.g., Wallet Issuing, Debt Accumulation, . . .) as an
individual ideal functionality, but the whole system as a monolithic, highly reactive functionality FP4TC with
polynomially many parties as users and RSUs. This allows for a shared state between the individual interactions
and to define correctness and security more easily.

An excerpt of FP4TC is depicted in Fig. 2. For better understanding we refrain from giving a complete descrip-
tion of all the tasks FP4TC provides at this point. Instead we focus on the most important task, namely Debt
Accumulation, and only sketch the remaining tasks. We also state why the ideal model reflects the security

M. Hoffmann, V. Fetzer, M. Nagel, A. Rupp, R. Schwerdt • P4TC 13

Functionality FP4TC
I. State
• A set TRDB of transaction entries trdb having the form

trdb = (sprev, s,ϕ,x , λ, pidU , pidR ,p,b)

∈ S × S × Φ × N0 × L × PIDU × PIDR × Zp × Zp .

• A (partial) mapping fΦ assigning a wallet ID λ and a counter x to a fraud
detection ID ϕ:

fΦ : L × N0 → Φ, (λ,x) 7→ ϕ

• A (partial) mapping fAU assigning user attributes to a given wallet ID λ:
fAU : L → AU , λ 7→ aU

• A (partial) mapping fAR assigning RSU attributes to a given RSU PID pidR :
fAR : PIDR → AR , pidR 7→ aR

II. Behavior (Task Debt Accumulation only)
User input: (pay_toll, sprev)
RSU input: (pay_toll, blR)

(1) Pick serial number s
R
← S that has not previously been used.

(2) User corrupted: Ask the adversary if the PID pidU of another corrupted user
should be used.a

(3) Look up (·, sprev,ϕprev,xprev, λprev, pidU , pidprev
R
, ·,bprev) ∈ TRDB, with

(sprev, pidU) being the unique key.
(4) Adopt previous walled ID λ := λprev and increase counter x := xprev + 1.
(5) Double-spending/Blacklisted: In this case ϕ := fΦ(λ,x) has already been de-

fined; continue with (6).
Pick fraud detection ID ϕ

R
← Φ that has not previously been used.

User corrupted: Allow the adversary to choose a previously unused fraud
detection ID ϕ.b
Append assignment (λ,x) 7→ ϕ to fΦ.

(6) If ϕ ∈ blR , output blacklisted to both parties and abort.
(7) Look up attributes (aU , aR , a

prev
R
) :=

(
fAU (λ), fAR (pidR), fAR (pidprev

R
)

)
.

(8) Calculate price p := Opricing(aU , aR , a
prev
R
).

RSU corrupted: Leak (aU , aR , a
prev
R
) to the adversary and obtain a price p.

(9) Calculate new balance b := bprev + p.
(10) Append new transaction (sprev, s,ϕ,x , λ, pidU , pidR ,p,b) to TRDB.

User output: (s, aR ,p,b)
RSU output: (s,ϕ, aU , a

prev
R
)

aIf corrupted users collude, they might share their credentials and use each other’s wallet.
bThe ideal model only guarantees privacy for honest users. For corrupted users the fraud detection ID

might be chosen adversarially.

Fig. 2. An excerpt of the ideal functionality FP4TC.

14 M. Hoffmann, V. Fetzer, M. Nagel, A. Rupp, R. Schwerdt • P4TC

and privacy level we wish to achieve. Again, we only concentrate on Debt Accumulation. The full-fledged ideal
functionality can be found in Appendix B.
For the ease of presentation, all instructions in Fig. 2 that are typically executed are printed in normal font,

while some conditional side tracks are grayed out. The normal execution path defines the level of security and
privacy achieved for honest, well-behaving parties. The conditional branches deal with corrupted, misbehaving,6
or blacklisted parties. The key idea behind FP4TC is to keep track of all conducted transactions in a pervasive
transaction database TRDB (cp. Fig. 2). Each transaction entry trdb ∈ TRDB is of the form

trdb = (sprev, s,ϕ,x , λ, pidU , pidR ,p,b).

It contains the identities pidU and pidR of the involved user and RSU (or TSP) respectively,7 the price p (toll)
associated with this particular transaction and the total balance b of the user’s wallet, i.e., the accumulated sum of
all prices so far including this transaction. In other words, FP4TC implements a trustworthy global bookkeeping
service that manages the wallets of all users. Each transaction entry is uniquely identified by a serial number
s . Additionally, each entry contains a pointer sprev to the logically previous transaction, a unique wallet ID λ, a
counter x indicating the number of previous transactions with this particular wallet, and a fraud detection ID ϕ.
Some explanations are in order with respect to the different IDs. In a truly ideal world FP4TC would use the

user identity pidU to look up its most recent entry in the database and append a new entry. Such a scheme,
however, could only be implemented by an online system. Since we require offline capabilities—allowing a user
and RSU to interact without the help of other parties and without permanent access to a global database—the
inherent restrictions of such a setting must be reflected in the ideal model:
• (Even formally honest) users can misbehave, reuse old wallet states and commit double-spending without
being noticed instantly.
• Double-spending is eventually detected after-the-fact.

In order to accurately define security, these technicalities have to be incorporated into the ideal functionality,
which causes the bookkeeping to be more involved. The whole transaction database is best depicted as a directed
graph. Nodes are identified by serial numbers s and additionally labeled with (ϕ,x , λ, pidU ,b). Edges are given by
(sprev, s) and additionally labeled with (pidR ,p). A user’s wallet is represented by the subgraph of all nodes with
the same wallet ID λ and forms a connected component. As long as a user does not commit double-spending
the particular subgraph is a linked, linear list. In this case, each transaction entry has a globally unique fraud
detection ID ϕ. If a user misbehaves and reuses an old wallet state (i.e., there are edges (sprev, s) and (sprev, s ′)),
the corresponding subgraph degenerates into a directed tree. In this case, all transaction entries that constitute
a double-spending, i.e., all nodes with the same predecessor, should share the same fraud detection ID ϕ. To
this end, the counter x and the injective map fΦ : L × N0 → Φ have been introduced in order to manage fraud
detection IDs consistently: For any newly issued wallet with ID λ, the counter x starts at zero and x = (xprev + 1)
always holds. It counts the number of subsequent transactions of a wallet since its generation, i.e., x equals the
depth of a node. The function fΦ maps a transaction to its fraud detection ID ϕ, given its wallet (aka tree) λ and
its depth x .

Besides storing transaction data, FP4TC also keeps track of parties’ attributes by internally storing RSU attributes
aR upon certification and user (or rather wallet) attributes aU when the wallet is issued. To give a better
understanding of how FP4TC works, we explain the task Debt Accumulation in more detail.

6Please note, that users do not need to be formally corrupted in order to commit double-spending. We call these users honest, but misbehaving.
7The party identifier (PID) can best be depicted as the model’s counterpart of a party’s physical identity in the real world. E.g., the user’s
physical identity could be a passport number or SSN; the “identity” of an RSU could be its geo-location. Generally, there is no necessary
one-to-one correspondence between a PID and a cryptographic key. Also, the ideal functionality always knows the PID of the party it interacts
with by the definition of the UC framework.

M. Hoffmann, V. Fetzer, M. Nagel, A. Rupp, R. Schwerdt • P4TC 15

4.1 Task “Debt Accumulation”
In this task, the user provides a serial number sprev as input to FP4TC, indicating which past wallet state he wishes
to use for this transaction. The participating RSU inputs a list of fraud detection IDs that are blacklisted.

Firstly, FP4TC randomly picks a fresh serial number s for the upcoming transaction. If (and only if) the user is
corrupted, FP4TC allows the simulator to provide a different value for pidU that belongs to a another corrupted
user. This is a required technicality as corrupted users might share their credentials and thus might use each
other’s wallet. Please note that this does not affect honest users. FP4TC looks up the previous wallet state trdbprev

in TRDB. The ideal functionality extracts the wallet ID from the previous record (λ := λprev) and increases the
counter for this particular wallet (x := xprev + 1). Then, it checks if a fraud detection ID ϕ has already been
defined for the wallet ID λ and counter x (n.b.: tree and depth of node). If so, the current transaction record will
be assigned the same fraud detection ID ϕ. Otherwise, FP4TC ties a fresh, uniformly and independently drawn
fraud detection ID ((λ,x) 7→ ϕ) to the x ’th transaction of the wallet λ. If this fraud detection ID is blacklisted, the
task aborts.8 If and only if the user is corrupted and ϕ has not previously been defined, the adversary is allowed
to overwrite the fraud detection ID with another value.9 Moreover, FP4TC looks up the user’s attributes bound
to this particular wallet (aU := fAU (λ)) and the attributes of the current and previous RSU (aR := fAR (pidR),
aprev
R

:= fAR (pidprev
R
)). Finally, the ideal functionality queries the pricing oracle Opricing for the price p of this

transaction, calculates the new balance of the wallet (b := bprev + p) and appends a new record to the transaction
database.

If and only if the RSU is corrupted, the adversary learns the involved attributes and is allowed to override the
price. Please note that leaking the user/RSU attributes to the adversary does not weaken the privacy guarantees
as the (corrupted) RSU learns the attributes as an output anyway. The option to manipulate the price on the other
hand was a design decision. It was made to enable implementations in which the pricing function is unilaterally
evaluated by the RSU and the user initially just accepts the price. It is assumed that a user usually collects any
toll willingly in order to proceed and (in case of a dispute) files an out-of-band claim later (before making the
actual payment).

The user’s output are the serial number s of the current transaction, the current RSU’s attributes aR , the price p
to pay and the updated balance b of his wallet. The RSU’s output are the serial number s of the current transaction,
the fraud detection ID ϕ and the attributes aU and aprev

R
of the user and the previous RSU, respectively. Learning

their mutual attributes is necessary, because the RSU and user must evaluate the pricing function themselves in
the real implementation without the help of a third party.10

4.2 Correctness and Operator Security
Both are immediately asserted by the ideal functionality. As FP4TC represents an incorruptible bookkeeper, the
user has no chance to cheat. The only input of a (possibly malicious) user is his choice of which previous wallet
state should be used. Hence, the user has no chance to lie about his attributes aU , the balance bprev associated
with this state, the calculated new balance b nor anything else. If the user is malicious, the adversary has the
additional options to choose an alternative (malicious) user that is being charged and to choose a different fraud
detection ID. Both do not effect operator security. The former does not change the total amount due to the

8Note, that the probability to blacklist a feshly drawn fraud detection ID is neglible. Only if fΦ(λ, x) has already been defined by a past task,
this yields a chance to successfully blacklist a user.
9Again, this is a technical concession to the security proof. Corrupted users are not obliged to use “good” randomness. This might affect
untrackability, but we do not aim to provide this guarantee for corrupted users.
10At least, it is unavoidable for any practical implementation given our scenario. Due to the offline capabilities there is no third party available.
Hence, the only alternative approach would be to use some generic SFE/2PC techniques which are prohibitively inefficient for an open-road
ETC system using low-end hardware. Moreover, the legal framework of most countries requires that the value being charged can be checked
manually.

16 M. Hoffmann, V. Fetzer, M. Nagel, A. Rupp, R. Schwerdt • P4TC

operator. It only changes the party liable which is unavoidable, if a group of corrupted users collude. The latter
does not affect the operator at all.

4.3 User Security and Privacy Leakage
User security follows by the same arguments as for operator security.

The information leakage that needs to be considered for an assessment of user privacy directly follows from the
in- and output of the ideal functionality. At this point, we exemplarily consider the leakage of Debt Accumulation
only. We refer to Appendix A for an overview of the leakage of the remaining tasks.

We stress that we only care about privacy for honest, well-behaving, non-blacklisted11 users. Hence, the grayed
out steps can be ignored. First note that the serial number of the previous transaction sprev is a private input of
the user and never output to any party. The RSU only learns the serial number s and the fraud detection ID ϕ
of the current transaction which are both freshly, uniformly and independently drawn by FP4TC. Hence, it is
information-theoretically impossible to track the honest and well-behaving user across any pair of transactions
using any of these numbers. The only “real” information leakage (to the RSU) in this task is determined by the
user’s and the previous RSU’s attributes aU and aprev

R
.

Independence of the fraud detection ID might be lost for two cases:
• The user is corrupted and the adversary playing a corrupted user knows all his secrets anyway. In this case,
the adversary is allowed to pick the fraud detection ID if not previously defined.
• The mapping (λ,x) 7→ ϕ is already defined, because the user repeatedly runs Debt Accumulation with the
same inputs and thus tries to attempt double-spending or the user has been blacklisted. (Our blacklisting
task—sketched later—prefills fΦ and creates a pool of fraud detection IDs to be used.)

In neither of these cases we aim to provide untrackability.

4.4 Remaining Tasks
We briefly sketch the remaining tasks of the ideal functionality omitting some details regarding corrupted parties.
Full details are given in Appendix B.
Registration and Certification: There are auxiliary tasks for registration/certification of parties. They are modeled

in the obvious way and append the appropriate mappings (e.g., fAR) with the given attributes for the PIDs.
Wallet Issuing: In Wallet Issuing a new wallet ID λ is freshly, uniformly and independently drawn. A new

transaction entry for the particular user is inserted into the database using this λ and a zero balance. This
entry can be depicted as the root node of a new wallet tree.

Debt Clearance: The task Debt Clearance is very similar to Debt Accumulation described above except that the
TSP additionally learns the user’s party ID pidU and the wallet balance b. Debt Clearance is identifying for
the user to allow the operator to invoice him and check if he (physically) pays the correct amount. Also,
the user does not obtain a new serial number such that this the transaction entry becomes a leaf node of
the wallet tree.

Blacklisting and Recalculation: The task Blacklisting and Recalculation is run between the DR and TSP. The TSP
inputs the PID of a user it wishes to blacklist and obtains the debt the user owes and a list of upcoming
serial numbers. For the latter, FP4TC draws a sequence of fresh, uniform and independent fraud detection
IDs ϕi and prefills the mapping fΦ for all wallets the user owns. This ensures that upcoming transactions
use predetermined fraud detection IDs that are actually blacklisted.

Prove Participation: The task Prove Participation simply checks if a record exists in the database for the particular
user and serial number.

11Note that the TSP may only blacklist users with the help of the incorruptible DR who only cooperates if the user agreed or misbehaved.

M. Hoffmann, V. Fetzer, M. Nagel, A. Rupp, R. Schwerdt • P4TC 17

Double-Spending Detection: The task Double-Spending Detection checks if the given fraud detection ID exists
multiple times in the database, i.e. if double-spending has occurred with this ID. If so, FP4TC leaks the
identity of the corresponding user to the adversary and asks the adversary to provide an arbitrary bit string
that serves as a proof of guilt. FP4TC outputs both—the user’s identity and the proof—to the TSP and records
the proof as valid for the user. Please note, correctness, completeness and soundness is is guaranteed by
the ideal bookkeeping service.

Guilt Verification: The task Guilt Verification checks if the given proof is internally recorded as being issued for
the particular user.

4.5 Mapping of the Desired Properties to the Ideal Model
In this section we discuss why the ideal functionality FP4TC captures an ideal model of a secure and privacy-
preserving ETC scheme. Especially, we illustrate how the high-level objectives of a toll collection scheme (cp.
Section 2.3) are reflected in FP4TC. The properties (P1) to (P8) are consolidated under the term Operator security,
while properties (P9) to (P11) are summed up under User Security and Privacy.

Operator Security. At the bottom line, operator security, especially correctness of billing, follows from the fact
that FP4TC represents an incorruptible accountant which manages all wallets and their associated transactions in
a single, pervasive database. In Debt Accumulation and Debt Clearance a (possibly malicious) user only inputs a
serial number to indicate which previous wallet state should be used. All relevant information is then looked up
by FP4TC internally.
(P1) Owner-binding: Given the serial number of a previous wallet state, FP4TC checks that the associated wallet

belongs to the calling user and thus that is has legitimately been issued to him. If the user is malicious, the
adversary is allowed to indicate another corrupted user instead. Only corrupted users are able to swap
wallets, they cannot use wallets of honest users. Please note that this does not change the total amount
due to the operator. It only changes the party liable, which is unavoidable if corrupted users collude and
mutually share their credentials.

(P2) Attribute-binding: As the attributes aU and aprev
R

attached to the users wallet are internally managed by
FP4TC, the user is unable to claim his wallet contains any other information than it actually does.

(P3) Balance-binding: By the same argument as in (P2) a user is unable to claim an incorrect balance bbill in Debt
Clearance. For each transaction, given the previous serial number, FP4TC looks up the previous balance
bprev, calculates the price p and creates a new entry in the transaction database with balance b := bprev + p.
The user only learns the price and the new balance, but cannot tamper with it. Assuming that no double-
spending occurred, the set of transactions for a particular wallet forms a linked, linear list and hence bbill
equals the sum of all prices.

(P4) Double-spending Detection: The same fraud detection ID ϕ occurs in multiple transaction entries if and
only if double-spending was committed. In this case the task Double-Spending Detection provides the
TSP with the identity pidU of the respective user and a publicly verifiable proof π that this user has
committed double-spending. Again, a fraudulent user cannot elude detection as FP4TC internally asserts
that all transactions which have the same predecessor share the same fraud detection ID ϕ.

(P5) Participation Enforcement: This is handled outside the scope of FP4TC. As discussed in Section 2 we assume
users to be physically identified by cameras if they do not properly participate in Debt Accumulation.

(P6) Blacklisting: Given a user ID pidU , the task Blacklisting and Recalculation provides the TSP with a set of
past and upcoming fraud detection IDs ϕ of all wallets of this user. In order to lock down the upcoming
fraud detection IDs FP4TC pre-fills the mapping fΦ with fresh, uniform and independent fraud detection
IDs ϕi . In Debt Accumulation FP4TC uses these already determined fraud detection IDs from fΦ for the new
wallet state. Then, FP4TC checks whether the fraud detection ID of the new wallet state is contained in the

18 M. Hoffmann, V. Fetzer, M. Nagel, A. Rupp, R. Schwerdt • P4TC

blacklist provided by the RSU. Hence, the user is successfully blacklisted, if the RSU inputs the “correct”
blacklist, i.e., a list containing fraud detection IDs from the TSP.

(P7) Debt Recalculation: Within the Blacklisting and Recalculation task, FP4TC sums up all prices of all past
transactions of all wallets of the user in question and outputs the resulting amount bbill to the TSP. As each
instance of Debt Clearance results in a transaction entry trdb with p = −bbill as the price, correctly cleared
and paid wallets cancel out in this sum and the result accurately gives the amount of debt still owed by
the user. Again, the user is not able to tamper with the resulting balance as the database of all transaction
entries is internally controlled by FP4TC.

(P8) Renegade Expulsion: This is handled outside the scope of FP4TC by encoding a limited time of validity into
the RSU’s attributes (cp. Section 2.2).

User Security and Privacy. The information leakage needed to assess the level of user privacy is directly
determined by the in- and output of FP4TC. We stress that we only care about privacy for honest, well-behaving,
non-blacklisted12 users. Hence, the grayed out steps in Fig. 2 can be ignored.

(P9) Unlinkability: First note that the serial number of the previous transaction sprev is a private input of the
user and never output to any party. After Debt Accumulation the RSU only learns the serial number s
and fraud detection ID ϕ of the current transaction which are both freshly, uniformly and independently
drawn by FP4TC. Wallet Issue only outputs s and Debt Clearance additionally outputs the final balance bbill.
Hence, it is information-theoretically impossible to track an honest and well-behaving user across any pair
of transactions using any of these numbers. The only “real” information leakage in Debt Accumulation
is determined by the user’s and the previous RSU’s attributes aU and aprev

R
which need to be assessed

separately (see below).
(P10) Participation Provability: As discussed in Section 2 we assume the user to be physically identified (out-of-

scope) if he does not properly participate in Debt Accumulation. In Prove Participation the SA inputs a
user ID and a set Spp

R
of serial numbers in question. FP4TC checks whether the user participated in any of

these transactions. If so, FP4TC simply outputs OK to the SA who does not learn anything about any of the
user’s transactions beyond that.

(P11) Protection Against False Accusation: Given a user ID and a bit string the task Guilt Verification checks if
the bit string has been recorded as a legitimate proof-of-guilt for this user. A proof-of-guilt can only be
registered via successful invocation of Double-Spending Detection. Hence soundness of the proof and thus
protection against false accusation is guaranteed by the internal bookkeeping of FP4TC.

FP4TC provides unlinkability of transactions ((P9)) up to information gained from user attributes, RSU attributes,
and the total debt. As discussed in Section 2 we assume the attributes to be sufficiently indistinct to not enable
any tracking. This is not ensured within the scope of FP4TC—apart from outputs to the user, which enable him to
check attributes. Their real-world impact on the privacy level crucially depends on the concrete deployment of
the system. Appendix A contains a detailed discussion on the practical impact of attributes on the privacy level.

5 PROTOCOL OVERVIEW
For the sake of brevity, this section gives only a simplified description of the main protocols illustrating the ideas
behind P4TC. For the full protocols see Appendix D.

Before describing our protocols, some remarks about the used crypto building blocks, secure channels and the
structure of user wallets are in order.

12Note that the TSP cannot blacklist users alone and the incorruptible DR only cooperates if the user agreed or misbehaved.

M. Hoffmann, V. Fetzer, M. Nagel, A. Rupp, R. Schwerdt • P4TC 19

5.1 Crypto Building Blocks and Algebraic Setting
Our construction makes use of (Fgp-extractable) non-interactive zero-knowledge (NIZK) proofs, equivocal and
extractable homomorphic commitments, digital signatures, public-key encryption, and pseudo-random functions
(PRFs). The latter building blocks need to be efficiently and securely combinable with the chosen NIZK (which is
Groth-Sahai [38] in our case). For readers not familiar with these building blocks, we refer to Appendix C for a
detailed description.
Our system instantiation is based on an asymmetric bilinear group setting (G1,G2,GT, e,p,д1,д2). Here,

G1,G2,GT are cyclic groups of prime order p (where no efficiently computable homomorphisms between G1 and
G2 are known); д1,д2 are generators ofG1,G2, respectively, and e : G1 ×G2 → GT is a (non-degenerated) bilinear
map. We rely on the co-CDH assumption (Definition C.3) as well as on the security of the building blocks in this
setting.
In this section we use a simpler notation than the one introduced in Appendix C in order to improve the

comprehension. Here, a commitment scheme consists of the PPT algorithms Com and Open, where Com returns
a commitment c together with an opening information d for a given messagem andOpen verifies if a commitment
c opens to a particular messagem given the opening information d . A digital signature scheme consists of the
PPT algorithms Sgn and Vfy, where Sgn takes as input the secret key sk and a messagem ∈ M, and outputs
a signature σ and Vfy takes as input the public key pk, a messagem ∈ M, and a purported signature σ , and
outputs a bit indicating whether or not the signature is valid.

5.2 Secure (Authenticated) Channels
In our system, all protocol messages are encrypted using CCA-secure encryption. For this purpose, a new session
key chosen by the user is encrypted under the public key of an RSU/TSP for each interaction. We omit these
encryptions when describing the protocols. Apart from the task Debt Accumulation we furthermore assume all
channels to be authenticated.

5.3 Wallets
A user wallet essentially consists of two signed commitments (cT , cR), where cT represents the fixed part of a
wallet and cR the updatable part. Accordingly, the fixed part is signed along with the user’s attributes aU by the
TSP using skT

T
during wallet issuing. Every time cR is updated, it is signed along with the serial number s of the

transaction by the RSU using skR . The fixed part cT = Com(λ, skU)13 is a commitment on the PRF key λ (which
is used as wallet ID) and the user’s secret key skU . The updatable part cR = Com(λ,b,u1,x) also contains λ (to
link both parts), the current balance b (debt), some user-chosen randomness u1 to generate double-spending tags
for the current state of the wallet, and a counter value x being the input to the PRF. The value PRF(λ,x) serves
as the wallet’s fraud detection ID ϕ. This choice of the fraud detection ID has the advantage that the different
versions of a wallet are traceable given λ but untraceable if λ is unknown.

5.4 The P4TC Protocols
We stress again that the following description of the P4TC protocols is a simplified version. The actual protocols,
including protocol interaction diagrams, can be found in Appendix D.

5.4.1 System Setup. In the setup phase, a trusted third party generates the bilinear group and a public common
reference string for the system. The latter contains parameters for some of the building blocks, namely the NIZK
and commitment scheme(s) we use.

13Note that by abuse of notation, we sometimes ignore the opening or decommitment value which is also an output of Com(·).

20 M. Hoffmann, V. Fetzer, M. Nagel, A. Rupp, R. Schwerdt • P4TC

5.4.2 DR/TSP/RSU Key Generation. The DR generates a key pair (pkDR, skDR) for an IND-CCA secure encryption
scheme, where pkDR is used to deposit a user-specific trapdoor (a PRF-key) which allows to link this user’s
transactions in case of a dispute. An individual signature key pair (pkR , skR) is generated for each RSU to sign
the updatable part of a user’s wallet. Moreover, the TSP generates several key pairs (pkT

T
, skT
T
), (pkcert

T
, skcert
T
),

(pkR
T
, skR
T
) for an EUF-CMA secure signature scheme. The key skT

T
is used to sign fixed user-specific information

when a new wallet is issued. Using skR
T
, the TSP can play the role of the initial RSU to sign the updatable part of

a new wallet.

5.4.3 RSU Certification. An RSU engages with the TSP in this protocol to get its certificate certR . It contains the
RSU’s public key pkR , its attributes aR (that are assigned in this protocol by the TSP), and a signature on both,
generated by the TSP using skcert

T
.

5.4.4 User Registration. To participate in the system, a user needs to generate a key pair (pkU = д
skU
1 , skU) ∈

G1 × Zp. We assume that the TSP out-of-band binds pkU to a verified physical user ID, in order to hold the user
liable in case of a misuse. The key pair (pkU , skU) is used to bind a wallet to a user.

5.4.5 Wallet Issuing. This protocol is executed between a user and the TSP to create a new wallet with a fresh
wallet ID λ and balance 0. Additionally, the PRF key λ is deposited under the DR’s public encryption key. To
generate the wallet, the user encodes λ together with his other secrets into the wallet. The PRF key λ needs to
be chosen jointly and remain secret to the TSP. If only the user chose the key, an adversary could tamper with
recalculations and blacklisting, as well as with double-spending detection (e.g., by choosing the same key for two
different users). If only the TSP chose it, a user’s transactions would be linkable.
To this end, the user and the TSP engage in the first two messages of a Blum coin toss. After the second

message λ is fixed and the user knows his own share λ′ as well as the TSP’s share λ′′. Then the user computes the
commitments cT = Com(λ, skU) and cR := Com(λ,b := 0,u1,x := 0). Additionally, he prepares the deposit of λ.
This is a bit tricky, as the user needs to prove that the ciphertext he gives to the TSP is actually an encryption
of λ under pkDR. For practical reasons, we use Groth-Sahai NIZKs and the Dodis-Yampolski PRF. Ideally, one
would want an encryption scheme that is compatible with Groth-Sahai and whose message space equals the key
space of the PRF, i.e., Zp. Unfortunately, we are not aware of any such scheme.14 Instead, we use a CCA-secure
structure-preserving encryption scheme for vectors of G1-elements and the following workaround: The user
splits up its share λ′ into small chunks λ′i < B (e.g., B = 232) such that recovering the discrete logarithm of
Λ′i := дλ

′
i

1 becomes feasible. All chunks Λi ∈{0, ..., ℓ−1} , the TSP’s share Λ′′ := дλ′′1 , and the user’s public key pkU
are jointly encrypted as e∗ under pkDR. The CCA-secure ciphertext e∗ unambiguously binds the PRF key λ to the
user’s key pkU and rules out malleability attacks. Otherwise, a malicious TSP could potentially trick the DR into
recovering the trapdoor for a different (innocent) user. It is not necessary to split the TSP share λ′′, because it is
known to the TSP anyway and thus can additionally be stored in the clear alongside e∗. The user then sends over
e∗, cT , cR along with a NIZK π proving that everything has been generated honestly and the wallet is bound to
the user owning skU . When the TSP receives this data, it verifies the NIZK first. If the check passed, the TSP
signs cT along with attributes aU and cR along with s using skR

T
.15 The resulting signatures σT , σR are sent to

the user, who checks their correctness. The user finally stores his freshly generated state token

τ := (aU , cR ,dR ,σR , cT ,dT ,σT , λ := λ′ + λ′′,b := 0,u1,x := 1, s),

14Note that Paillier encryption works in a different algebraic setting and cannot easily be combined with Groth-Sahai proofs.
15During the protocol run, a uniformly random serial number s for this transaction was jointly generated by user and TSP by means of a
Blum-like coin toss (see Debt Accumulation for a description).

M. Hoffmann, V. Fetzer, M. Nagel, A. Rupp, R. Schwerdt • P4TC 21

where dR and dT are the decommitment values required to open cR and cT , respectively. The TSP stores
htd := (pkU , s, λ′′, e∗) as hidden user trapdoor to recover λ with help of DR.

5.4.6 Blacklisting and Recalculation. This is a protocol executed by the DR upon request of the TSP. We assume
that DR and TSP agreed out-of-band that the user with public key pkDR

U
should be blacklisted before the protocol

starts. For example, the TSP might have presented a proof of guilt to the DR or the user affirmed to be voluntarily
blacklisted (for example due to a stolen car). Given e∗ and λ′′, the DR recovers the contained PRF key but only if
it is bound to pkDR

U
. To this end, DR decrypts e∗ using skDR to obtain Λ′i , Λ

′′, and pkU . If pkU , pkDR
U

or Λ′′ , дλ′′1
it aborts. Otherwise, it computes the (small) discrete logarithms of the Λ′i to the base д1 to recover the chunks
λ′i of the user’s share of the PRF key. This is feasible as the DLOGs are very small. The key is computed as
λ := λ′′ +

∑ℓ−1
i=0 λ

′
i · B

i . The DR also checks if the provided share of the TSP λ′′ matches the decrypted version Λ′′

and if the decrypted user key pkT
U
equals the expected key pkDR

U
. If the check fails, the DR aborts.

Using λ, the fraud detection IDs belonging to the previous and upcoming versions of a user’s wallet can be
computed. Thus, all interactions of the user (including double-spendings) in the TSP’s database can be linked and
the legitimate debt recalculated. Also, the fraud detection IDs for upcoming transactions with this wallet can be
precomputed and blacklisted.

5.4.7 Debt Accumulation. In this protocol (Fig. 3) executed between an anonymous user and an RSU, the toll p is
determined and a new state of the user’s wallet with a debt increased by p is created. The toll p may depend on
the user’s attributes, the current and the previous reader’s attributes, as well as other factors like the current
time, etc. The user stays anonymous, i.e., the RSU does not receive the user’s key or see the previous balance.
Only aU and aprev

R
(the attributes of the RSU who signed the previous state of the wallet) are revealed to the RSU,

which are assumed not to contain identifying information.
The user’s main input is the state token

τ prev := (aU , c
prev
R
,d

prev
R
,σ

prev
R
, cT ,dT ,σT , λ,b

prev,u
prev
1 ,x , sprev)

containing the state of his previous protocol run and wallet. To update his wallet state, the user computes a fresh
commitment c ′

R
on (λ, bprev, unext1 , x), where except for unext1 the same values are contained in the previous wallet

state. The double-spending mask unext1 is freshly and randomly chosen by the user and is used to generate a
double-spending tag for the new wallet state. In order to get his new wallet state certified by the RSU, the user
needs to invalidate his previous state. To do so, he needs to reveal the fraud detection ID and double-spending tag
of his previous state. For the latter, the RSU sends the double-spending randomness u2 along with a commitment
c ′′ser = Com(s ′′) on his share of the serial number of this transaction (which is part of the Blum coin toss). Upon
receiving these values, the user computes the double-spending tag t := u2 · skU + u

prev
1 mod p (a linear equation

in the unknowns uprev1 and skU), the fraud detection ID ϕ := PRF(λ,x), and a hidden user ID chid := Com(pkU).
The latter is used in Prove Participation to associate this interaction with the user.16 As response, the user sends
over chid, c ′R , ϕ, t , aU , a

prev
R

, π , and s ′, where π is a NIZK proving that everything has been computed honestly,
and s ′ is the user’s share of the serial number. In particular, π shows that the user knows a certified wallet state
involving commitments cT and cprev

R
such that cprev

R
and c ′

R
are commitments on the same messages except for the

double-spending mask, that the (hidden) signature on cprev
R

verifies under some (hidden) RSU key pkprev
R

certified
by the TSP, and that t , ϕ, and chid have been computed using the values contained in cT and cprev

R
.

When receiving this data, the RSU first checks that ϕ is not on the blacklist and π is correct. Then it calculates
the price p, adds it to the user’s balance bprev and increases the counter x by 1 using the homomorphic property
of c ′

R
. The resulting commitment cR is signed along with the serial number s := s ′ · s ′′ using skR . Then the

16We are aware of alternatives realizing this mechanism without introducing chid, which are, however, less efficient.

22 M. Hoffmann, V. Fetzer, M. Nagel, A. Rupp, R. Schwerdt • P4TC

U(pkU , skU ,τ
prev) R(certR , skR , blR)

s ′
R
← G1 s ′′

R
← G1

unext1
R
← Zp u2

R
← Zp

(c ′
R
,d ′
R
) ← Com(λ,bprev,unext1 ,x) (c ′′ser,d

′′
ser) ← Com(s ′′)

u2, c
′′
ser

←−−

t := skUu2 + u
prev
1

ϕ := PRF(λ,x)

(chid,dhid) ← Com(pkU)

Compute proof π

chid, c
′
R
,ϕ, t , aU , a

prev
R
,π , s ′

−−→

if ϕ ∈ blR ∨ π does not verify

return ⊥
Calculate price p

s := s ′ · s ′′

(c ′′
R
,d ′′
R
) ← Com(0,p, 0, 1)

cR := c ′
R
· c ′′
R

σR ← Sgn(skR , (cR , s))

cR ,d
′′
R
,σR ,p, certR , s

′′,d ′′ser
←−−

dR := d ′
R
· d ′′
R

if Open(s ′′, c ′′ser,d
′′
ser) = 0 ∨

Vfy(pkR ,σR , (cR , s)) = 0
return ⊥

τ := (aU , cR ,dR ,σR , cT ,dT ,σT , λ,

b := bprev + p,unext1 ,x + 1, s := s ′ · s ′′)

return (τ , chid,dhid) return (ϕ, aU , a
prev
R
,p,

t ,u2, chid, s)

Fig. 3. A Simplified Version of Debt Accumulation

RSU sends cR to the user, along with its decommitment information dR , its signature σR , the added price p, the
certificate for pkR , RSU’s share s ′′ of the serial number and the decommitment value d ′′ser for c ′′ser.

The user checks if the received data is valid and ends up with an updated state token

τ := (aU , cR ,dR ,σR , cT ,dT ,σT , λ,bprev + p,unext1 ,x + 1, s)

containing his new wallet state cT , cR ,σT ,σR . He additionally stores (chid,dhid), where dhid allows to open the
hidden ID. The RSU stores (ϕ,p, t ,u2, chid, s) as transaction information.

5.4.8 Prove Participation. In this protocol executed between a user and the SA, the user proves that he participated
in one of the Debt Accumulation transactions under audit by the SA. This protocol is identifying, as the SA
retrieved the user’s physical ID from his license plate number and, thus, is aware of his public key pkU . First, it

M. Hoffmann, V. Fetzer, M. Nagel, A. Rupp, R. Schwerdt • P4TC 23

sends the list Ωpp
R

of hidden ID commitments observed by the RSU during the considered interactions. If the user
owns some chid contained in Ωpp

R
, he simply sends over chid along with the corresponding opening dhid he stored

and the serial number s of the transaction.17 The SA accepts if the commitment dhid indeed opens to pkU and s is
part of the corresponding transaction information the RSU stored. No other user may claim to have sent chid, as
this would imply to open chid with a different public key.

5.4.9 Debt Clearance. In this protocol executed between a user and the TSP, the user identifies himself using
skU and reveals the balance for his current wallet state. The wallet is invalidated by not creating a new state.
Upon receiving a challenge u2 from the TSP, the user computes the double-spending tag t and fraud detection ID
ϕ for his wallet. This is the same as in Debt Accumulation. Then the user sends over pkU , bprev, ϕ, t and a NIZK
π . This NIZK essentially shows that the user knows a certified wallet state with balance bprev, fraud detection
ID ϕ, and double-spending tag t which is bound to pkU . Note that if the user does not make use of his latest
wallet state, double-spending detection will reveal this. If the proof verifies, the balance and the double-spending
information, i.e., (bprev,ϕ, t ,u2), is stored by the TSP.

5.4.10 Double-Spending Detection. This algorithm is applied by the TSP to its database containing all double-
spending tags collected by the RSUs. The fraud detection ID ϕ is used as the database index associated with
the double-spending tag for a wallet state. If the same index appears twice in the TSP’s database, a double-
spending occurred and the cheater’s key pair can be reconstructed from the two double-spending tags as
follows: Let us assume there exist two records (ϕ, t ,u2), (ϕ, t ′,u ′2). In this case, skU can be recovered as skU =
(t − t ′)(u2 − u

′
2)
−1 mod p with overwhelming probability. The cheater’s public key pkU can be computed from

skU . As a consequence, the wallet bound to pkU could be blacklisted. The output of the protocol is the fraudulent
user’s public key pkU along with a proof-of-guilt π := skU .

5.4.11 Guilt Verification. This algorithm can be executed by any party to verify the guilt of an accused double-
spender. Given a public key pkU and a proof-of-guilt π , it checks if дπ1 = pkU .

6 SECURITY THEOREM
Assuming co-CDH is hard and our building blocks are secure, we prove that the protocols from Section 5
(combined as one comprehensive toll collection protocol πP4TC) UC-realize the ideal model FP4TC from Section 4
(in the (FCRS,Gbb)-hybrid model), i.e.,

π
FCRS,Gbb
P4TC ≥UC F

Gbb .

Informally, this means the ideal model and our protocol are indistinguishable and therefore provide the same
guarantees regarding security and privacy. The statement holds given static corruption of either
(1) A subset of users.
(2) All users and a subset of RSUs, TSP and SA.
(3) A subset of RSUs, TSP and SA.
(4) All RSUs, TSP and SA as well as a subset of users.

Note that we assume the DR to be honest. In Appendix E.1, more details on corruption possibilities are presented.
Other details of our adversarial model, i.e. the underlying channel model and handling of aborts, can be found in
Appendix E as well. Section 6 gives an outline of the proof, the full proof is given in Appendix F.

Proof Outline
As mentioned above, we separately prove correctness, operator security and user security and privacy.

17By additionally providing a time interval out-of-band this search can be accelerated.

24 M. Hoffmann, V. Fetzer, M. Nagel, A. Rupp, R. Schwerdt • P4TC

The first step does not consider the real protocol, but only examines the ideal functionality. Showing correctness
separately, serves two purposes: The ideal functionality is rather complex and virtually constitutes a protocol on
its own. Hence it is not immediately obvious whether the ideal functionality actually does what it is expected
to do. From this perspective, the proof of correctness is closely coupled to the properties we want to achieve
(cp. Sections 2.3 and 4.5). In some way, the proof of correctness provides a more formal backup why the desired
properties are fulfilled. Secondly, for didactic reasons the proof of correctness is convenient to introduce notation
and to present the graph-theoretical approach that is common to all our proofs.
To show correctness of the ideal functionality (cp. Appendix F.1), we start by asserting several structural

properties of the ideal transaction database TRDB. First, note that the entries trdb = (sprev, s,ϕ, λ, pidU , pidR ,p,
b) of the ideal transaction database define a graph structure with vertices being represented by serial numbers
s and edges by pairs (sprev, s). Assigning a label (ϕ, λ, pidU ,b) to the vertex s and a label (pidR ,p) to the edge
(sprev, s) results in a graph where every vertex represents the state of a wallet and the incoming edge represents
the transaction that led to this wallet state. We call this perception of TRDB the Ideal Transaction Graph and give
graph-theoretic proofs of its structural properties. These properties include that the graph as a whole is a directed
forest where each tree corresponds to a wallet ID λ, double-spending corresponds to branching and different
wallet states have the same fraud detection ID ϕ if and only if they have the same depth in the same tree.

The proofs of operator security and user security are conducted by explicitly specifying a simulator for the
ideal experiment. In addition a sequence of hybrid experiments defines a stepwise transformation from the real
experiment to the ideal experiment. The indistinguishability between the real and ideal experiment follows from
the pairwise indistinguishable of consecutive hybrids. The latter is proven by individual reductions to the security
of our cryptographic building blocks and hardness assumptions. However, the spirit of the hybrids for operator
security at the one hand side and of the hybrids for user security at the other hand side is quite different.

For the proof of operator security (cp. Appendix F.2) input privacy does not significantly matter. There is nearly
no input of the operator that needs to be kept secret. Consequently, the user learns nearly everything about the
operator even in the ideal model as part of its prescribed output and thus simulation of mostly all messages is
perfectly enabled. The crucial point is to prove that no user can deviate from the protocol and thereby cheat the
operator. To this end, the simulator maintains a separate graph of transactions TRDB. This Simulated Transaction
Graph resembles the Ideal Transaction Graph but augments each node by the in- and out-commitments (c in

R
, c in
T
)

and (cout
R
, cout
T
) from the real protocols. These commitments are the fixed and updateable part of the wallet before

and after the transaction (cp. Section 5). This information gives an alternative set of edges where two transactions
trdb and trdb

′
are connected if (cout

R
, cout
T
) corresponds to (c in

R

′
, c in
T

′
). Most hybrids introduce an additional check

on this alternative graph structure. Together, these checks assert that the alternative graph structure of the
Simulated Transaction Graph coincides with the Ideal Transaction Graph and thus a malicious user cannot cheat
with overwhelming probability.

Contrarily, the proof of user security (cp. Appendix F.3) follows a different spirit. In this case, input privacy
of the user is the crucial point while deviation from the protocol by the operator is a minor concern. For this
reasons, most hybrids replace messages from the user by information-theoretically “empty” messages that are
independent from any user secret.

7 PROTOCOL PERFORMANCE EVALUATION
In order to evaluate the practicality of P4TC, we implemented our system for a realistic target platform. We
performed our measurements for the user side on an i.MX6 Dual-Core processor running at 800MHz with
1GB DDR3 RAM and 4GB eMMC Flash, the same processor as used in the Savari MobiWAVE-1000 OBU [62].
The processor runs an embedded Linux, is ARM Cortex-A9 based (32-bit), and also exists in a more powerful
Quad-Core variant. For the RSU hardware we take the ECONOLITE Connected Vehicle CoProcessor Module

M. Hoffmann, V. Fetzer, M. Nagel, A. Rupp, R. Schwerdt • P4TC 25

Table 1. Averaged performance results for execution time t and transmitted data n. Byte values are rounded.

Protocol
|aU | = |aR | = 1 |aU | = |aR | = 4

tuser tRSU/TSP nuser nRSU/TSP tuser tRSU/TSP nuser nRSU/TSP
[ms] [ms] [byte] [byte] [ms] [ms] [byte] [byte]

Session Key Generation 15.01 0.03 131 – 15.00 0.01 131 –
Wallet Issuing 27 063.61 (8 490.00) 87 951 944 27 182.82 (8 544.74) 88 107 1 152
Debt Accumulation
– Precomp (offline) 2 715.03 – – – 2 715.66 – – –
– Online 348.14 474.64 8 128 976 455.52 525.83 8 336 1 088
– Online (cached certificate) 41.01 474.64 8 128 976 40.23 525.83 8 336 1 088
– Postprocessing (offline) 33.84 – – – 33.78 – – –
Debt Clearance 2 435.47 (745.30) 7 071 96 2 435.78 (766.90) 7 280 96

as a reference system, which was specifically “designed to enable third-party-developed or processor-intensive
applications” [39] and measured on comparable hardware. For simplicity, we measured TSP runtime on a standard
laptop featuring an i7-6600U processor, although we can expect the TSP to be equipped with much more powerful
hardware.
As the CPU of the OBU and the RSU are comparable, we measured both sides using the OBU processor.

7.1 Building Block Instantiation
We implemented P4TC in C++14 using the RELIC toolkit v.0.4.1, an open source cryptography and arithmetic
library written in C, with support for pairing-friendly elliptic curves [5]. We developed our own library for
Groth-Sahai NIZK proofs [35, 38] and employed the method in [15] to realize the range proofs required in Wallet
Issuing. We make use of two types of commitments: the shrinking commitment scheme from [3], as well as a
(dual-mode) extractable commitment scheme from [38]. Moreover, we implemented the structure-preserving
signature scheme from [1]. We use an adopted variant of the IND-CCA-secure encryption scheme from [16] (cp.
Appendix C.2.5) for encrypting PRF key shares in the Wallet Issuing protocol, as well as the IND-CCA-secure
encryption scheme from [24] (in combination with AES-CBC and HMAC-SHA256) to establish secure channels
for exchanging protocol messages. The PRF is instantiated with the Dodis-Yampolskiy construction introduced
in [34].

7.2 Parameter Choice
As for the bilinear group setting, we use the Barreto-Naehrig curves Fp254BNb and Fp254n2BNb presented by
Aranha et al. [11, 49]. For the pairing function, we use the optimal Ate pairing since it results in the shortest
execution times [58]. This yields a security level of about 100 bit [9].
We evaluated P4TC for two sizes of attribute vectors: |aU | = |aR | = 1 and |aU | = |aR | = 4. With curves of

254-bit order, each vector component can encode up to 253 bits of arbitrary information. In practice, it should be
possible to encode multiple attributes into one such component. Since the actual encoding of data depends on
the concrete scenario, we only focus here on evaluating the performance penalties when increasing the size of
the vectors.

26 M. Hoffmann, V. Fetzer, M. Nagel, A. Rupp, R. Schwerdt • P4TC

7.3 Implementation Results
Table 1 shows the results of our measurements on the OBU and on the RSU/TSP side in terms of execution time
and transmitted data. All values are averaged over 1000 independent protocol executions. Note that the processor
is running an embedded Linux, hence execution times can vary by tens of milliseconds due to internal processes
and scheduling. We only considered the main protocols which include the expensive NIZKs. The row entitled
“Session Key Generation” in Table 1 includes the execution time and size of data to setup a session key for the
secure channel which is established prior to any protocol run.18 In order to utilize the capabilities of our OBU
hardware, the user side algorithms were optimized for two CPU cores. Note that the given TSP times (the gray
entries in Table 1) are likely an upper bound, since the TSP is equipped with more powerful hardware than a
standard laptop.

Debt Accumulation. While the protocols Wallet Issuing and Debt Clearance can be regarded as non-time-critical,
Debt Accumulation is performed while driving (possibly at high speed). Thus, execution has to be as efficient as
possible. Fortunately, all parts of the expensive NIZK proof which do not involve the challenge value u2 (provided
by the RSU) can be precomputed (offline phase) at the OBU which takes approximately 2700ms. Regarding
|aU | = |aR | = 1, computations in this online phase take only approximately 350ms on the OBU, mostly due to the
verification of the RSU certificate. When caching valid certificates, the runtime can be reduced to approximately
40ms. After the OBU received a response from the RSU, which computes for about 475ms, the internal wallet has
to be updated. Since this step can be done offline again, we measure the execution time separately and call the
phase postprocessing. We also optimized the computations performed by the RSU, taking advantage of the 4 CPU
cores and the batching techniques for Groth-Sahai verification by Herold et al. [42]. In summary, all computations
in the online phase of Debt Accumulation can be performed in about 825ms or just 515ms when the certificate
has already been cached.

The WAVE data transmission standard on DSRC guarantees a transmission rate of 24 Mbit/s [55]. At this rate,
all data of the Debt Accumulation protocol are transmitted in approximately 27ms. While the standard claims
communication ranges of up to 1km, we assume a toll collection zone of 50m. Moreover, we may assume one
RSU per lane [52] such that the workload can be easily spread among the available units. Going at 120km/h, it
takes a car 1.5s to travel this distance, leaving us with a time buffer of about 700ms for uncached certificates or 1s
for cached certificates. Considering the mandated safety distance at this speed, there should only be a single car
inside the 50m zone on each lane. However, since computations take less time than it takes a car to cross the toll
collection zone, the system could theoretically handle cars with a distance of only 28m (uncached certificate)
or 17m (cached certificate) at 120km/h. We therefore conclude that the performance is sufficient for real-world
scenarios.

Storage Requirements. During Debt Accumulation, the RSU and the OBU collect data in order to, e.g., prevent
double-spending or to prove participation in a protocol run. In Debt Accumulation, the OBU has to store 137 bytes
of transaction information and (optionally) 268 bytes to cache the RSU certificate. Assuming that in one billing
period 10000 transactions are performed by the OBU, it only has to store 1.37MB of transaction information
and, even if all visited RSUs were different, 2.68MB of cached certificates. The wallet itself consumes 1kB of
memory and is fixed in size. The RSU has to store 246 bytes of transaction information after each run of Debt
Accumulation (for 32-bit toll values). All this information is eventually aggregated at the TSP’s database. The
US-based toll collection system E-ZPass reported about 252.4 million transactions per month in 2016 [40], which
would result in a database of size 62GB. In case a wallet is blacklisted, an RSU is updated with a list of future
fraud detection IDs. Each detection ID consumes 35 bytes of memory. Using appropriate data structures such as

18All communication between the participants is encrypted with AES-CBC and HMAC-SHA256 to realize a secure channel. Therefore, each
individual protocol is preceded by a symmetric key exchange via the KEM by Cash et al. [24].

M. Hoffmann, V. Fetzer, M. Nagel, A. Rupp, R. Schwerdt • P4TC 27

hashsets or hashmaps, a lookup is performed in less than 1ms in sets of size 106. Hence, blacklisting does not
affect the execution time on the RSU. Such a set consumes 35MB of memory, neglecting the overhead induced by
the data structure.

Computing DLOGs. To blacklist a user, the DR has to compute a number of discrete logarithms to recover λ.
With our choice of parameters, λ is split into 32-bit values, thus resulting in the computation of eight 32-bit
DLOGs. While DLOGs of this size can be brute-forced naively, the technique of Bernstein et al. [14] can be used
to speed up this process. Using their algorithm, computing a discrete logarithm in an interval of order 232 takes
around 1.5 seconds on a single core of a standard desktop using a 55kB table of precomputed elements. These
precomputations need to be done only once by the DR when setting up the system and take one hour on a desktop
computer. Thus, the required DLOGs can be computed in reasonable time by the DR.

REFERENCES
[1] Masayuki Abe, Jens Groth, Kristiyan Haralambiev, and Miyako Ohkubo. 2011. Optimal Structure-Preserving Signatures in Asymmetric

Bilinear Groups. In Advances in Cryptology – CRYPTO 2011 (Lecture Notes in Computer Science), Phillip Rogaway (Ed.), Vol. 6841. Springer,
Heidelberg, 649–666.

[2] Masayuki Abe, Jens Groth, Miyako Ohkubo, and Takeya Tango. 2014. Converting Cryptographic Schemes from Symmetric to Asymmetric
Bilinear Groups. In Advances in Cryptology – CRYPTO 2014, Part I (Lecture Notes in Computer Science), Juan A. Garay and Rosario
Gennaro (Eds.), Vol. 8616. Springer, Heidelberg, 241–260. https://doi.org/10.1007/978-3-662-44371-2_14

[3] Masayuki Abe, Markulf Kohlweiss, Miyako Ohkubo, and Mehdi Tibouchi. 2015. Fully Structure-Preserving Signatures and Shrinking
Commitments. In Advances in Cryptology – EUROCRYPT 2015, Part II (Lecture Notes in Computer Science), Elisabeth Oswald and Marc
Fischlin (Eds.), Vol. 9057. Springer, Heidelberg, 35–65. https://doi.org/10.1007/978-3-662-46803-6_2

[4] Carolin Albrecht, Frank Gurski, Jochen Rethmann, and Eda Yilmaz. 2018. Knapsack Problems: A Parameterized Point of View. Theoretical
Computer Science (2018).

[5] D. F. Aranha and C. P. L. Gouvêa. 2016. RELIC is an Efficient Library for Cryptography. Online Resource. (2016). https://github.com/
relic-toolkit/relic.

[6] Josep Balasch, Alfredo Rial, Carmela Troncoso, Bart Preneel, Ingrid Verbauwhede, and Christophe Geuens. 2010. PrETP: Privacy-
Preserving Electronic Toll Pricing (extended version). In Proceedings of the 19th USENIX Security Symposium. 63–78.

[7] Foteini Baldimtsi, Melissa Chase, Georg Fuchsbauer, and Markulf Kohlweiss. 2015. Anonymous Transferable E-Cash. In Public-Key
Cryptography - PKC 2015 - 18th IACR International Conference on Practice and Theory in Public-Key Cryptography, Gaithersburg, MD,
USA, March 30 - April 1, 2015, Proceedings (Lecture Notes in Computer Science), Jonathan Katz (Ed.), Vol. 9020. Springer, 101–124.
https://doi.org/10.1007/978-3-662-46447-2_5

[8] Boaz Barak, Ran Canetti, Jesper Buus Nielsen, and Rafael Pass. 2004. Universally Composable Protocols with Relaxed Set-Up Assumptions.
In 45th Annual Symposium on Foundations of Computer Science. IEEE Computer Society Press, 186–195.

[9] Razvan Barbulescu and Sylvain Duquesne. 2017. Updating key size estimations for pairings. Cryptology ePrint Archive, Report 2017/334.
(2017). http://eprint.iacr.org/2017/334.

[10] Amira Barki, Solenn Brunet, Nicolas Desmoulins, Sébastien Gambs, Saïd Gharout, and Jacques Traoré. 2016. Private eCash in Practice
(Short Paper). In International Conference on Financial Cryptography and Data Security (FC 2016). Springer, 99–109.

[11] Paulo S. L. M. Barreto and Michael Naehrig. 2006. Pairing-Friendly Elliptic Curves of Prime Order. In SAC 2005: 12th Annual International
Workshop on Selected Areas in Cryptography (Lecture Notes in Computer Science), Bart Preneel and Stafford Tavares (Eds.), Vol. 3897.
Springer, Heidelberg, 319–331.

[12] Mihir Bellare. 2015. New Proofs for NMAC and HMAC: Security Without Collision-Resistance. Journal of Cryptology 28, 4 (2015),
844–878.

[13] Mihir Bellare, Anand Desai, David Pointcheval, and Phillip Rogaway. 1998. Relations Among Notions of Security for Public-Key
Encryption Schemes. In Advances in Cryptology – CRYPTO’98 (Lecture Notes in Computer Science), Hugo Krawczyk (Ed.), Vol. 1462.
Springer, Heidelberg, 26–45.

[14] Daniel J. Bernstein and Tanja Lange. 2012. Computing small discrete logarithms faster. Cryptology ePrint Archive, Report 2012/458.
(2012). http://eprint.iacr.org/2012/458.

[15] Jan Camenisch, Rafik Chaabouni, and abhi shelat. 2008. Efficient Protocols for Set Membership and Range Proofs. In Advances in
Cryptology – ASIACRYPT 2008 (Lecture Notes in Computer Science), Josef Pieprzyk (Ed.), Vol. 5350. Springer, Heidelberg, 234–252.

[16] Jan Camenisch, Kristiyan Haralambiev, Markulf Kohlweiss, Jorn Lapon, and Vincent Naessens. 2011. Structure Preserving CCA Secure
Encryption and Applications. In Advances in Cryptology – ASIACRYPT 2011 (Lecture Notes in Computer Science), Dong Hoon Lee and
Xiaoyun Wang (Eds.), Vol. 7073. Springer, Heidelberg, 89–106.

https://doi.org/10.1007/978-3-662-44371-2_14
https://doi.org/10.1007/978-3-662-46803-6_2
https://github.com/relic-toolkit/relic
https://github.com/relic-toolkit/relic
https://doi.org/10.1007/978-3-662-46447-2_5
http://eprint.iacr.org/2017/334
http://eprint.iacr.org/2012/458

28 M. Hoffmann, V. Fetzer, M. Nagel, A. Rupp, R. Schwerdt • P4TC

[17] Jan Camenisch, Susan Hohenberger, and Anna Lysyanskaya. 2005. Compact E-Cash. In Advances in Cryptology - EUROCRYPT 2005,
24th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Aarhus, Denmark, May 22-26, 2005,
Proceedings (Lecture Notes in Computer Science), Ronald Cramer (Ed.), Vol. 3494. Springer, 302–321. https://doi.org/10.1007/11426639_18

[18] Jan Camenisch, Susan Hohenberger, and Anna Lysyanskaya. 2005. Compact E-Cash. In Advances in Cryptology – EUROCRYPT 2005
(Lecture Notes in Computer Science), Ronald Cramer (Ed.), Vol. 3494. Springer, Heidelberg, 302–321.

[19] Sébastien Canard and Aline Gouget. 2008. Anonymity in Transferable E-cash. In Applied Cryptography and Network Security, 6th
International Conference, ACNS 2008, New York, NY, USA, June 3-6, 2008. Proceedings (Lecture Notes in Computer Science), StevenM. Bellovin,
Rosario Gennaro, Angelos D. Keromytis, and Moti Yung (Eds.), Vol. 5037. 207–223. https://doi.org/10.1007/978-3-540-68914-0_13

[20] Ran Canetti. 2001. Universally Composable Security: A New Paradigm for Cryptographic Protocols. In 42nd Annual Symposium on
Foundations of Computer Science. IEEE Computer Society Press, 136–145.

[21] Ran Canetti. 2007. Obtaining Universally Composable Security: Towards the Bare Bones of Trust. Cryptology ePrint Archive, Report
2007/475. (2007). http://eprint.iacr.org/2007/475.

[22] Ran Canetti, Yehuda Lindell, Rafail Ostrovsky, and Amit Sahai. 2002. Universally composable two-party and multi-party secure
computation. In 34th Annual ACM Symposium on Theory of Computing. ACM Press, 494–503.

[23] Ran Canetti, Daniel Shahaf, and Margarita Vald. 2016. Universally Composable Authentication and Key-Exchange with Global PKI.
In PKC 2016: 19th International Conference on Theory and Practice of Public Key Cryptography, Part II (Lecture Notes in Computer
Science), Chen-Mou Cheng, Kai-Min Chung, Giuseppe Persiano, and Bo-Yin Yang (Eds.), Vol. 9615. Springer, Heidelberg, 265–296.
https://doi.org/10.1007/978-3-662-49387-8_11

[24] David Cash, Eike Kiltz, and Victor Shoup. 2008. The Twin Diffie-Hellman Problem and Applications. In Advances in Cryptology –
EUROCRYPT 2008 (Lecture Notes in Computer Science), Nigel P. Smart (Ed.), Vol. 4965. Springer, Heidelberg, 127–145.

[25] Xihui Chen, Gabriele Lenzini, Souke Mauw, and Jun Pang. 2012. A Group Signature Based Electronic Toll Pricing System. In 2012
Seventh International Conference on Availability, Reliability and Security (ARES 2012). 85–93.

[26] Xihui Chen, Gabriele Lenzini, Sjouke Mauw, and Jun Pang. 2013. Design and Formal Analysis of A Group Signature Based Electronic
Toll Pricing System. JoWUA 4, 1 (2013), 55–75. http://isyou.info/jowua/papers/jowua-v4n1-3.pdf

[27] European Commission. 2015. Study on State of the Art of Electronic Road Tolling. https://ec.europa.eu/transport/sites/transport/files/
modes/road/road_charging/doc/study-electronic-road-tolling.pdf. (2015). [Online; accessed April-19-2018].

[28] European Commission. 2017. Proposal for a Directive of the European Parliament and of the Council on the Interoperability of
Electronic Road Toll Systems and Facilitating Crossborder Exchange of Information on the Failure to Pay Road Fees in the Union (recast).
https://ec.europa.eu/transport/sites/transport/files/com20170280-eets-directive.pdf. (2017). [Online; accessed April-19-2018].

[29] Morten Dahl, Stéphanie Delaune, and Graham Steel. 2012. Formal Analysis of Privacy for Anonymous Location Based Services. Theory
of Security and Applications (2012), 98–112.

[30] Datatilsynet. 2007. Statens Vegvesen Holdt Tilbake Viktig AutoPASS-Informasjon (Press release). http://www.datatilsynet.no/. (2007).
[Online; accessed April-19-2018].

[31] Jeremy Day, Yizhou Huang, Edward Knapp, and Ian Goldberg. 2011. SPEcTRe: Spot-checked Private Ecash Tolling at Roadside. In
Proceedings of the 10th Annual ACM Workshop on Privacy in the Electronic Society (WPES ’11). 61–68.

[32] Wiebren de Jonge and Bart Jacobs. 2008. Privacy-Friendly Electronic Traffic Pricing via Commits. In Formal Aspects in Security and Trust
– FAST 2008 (Lecture Notes in Computer Science), Vol. 5491. 143–161.

[33] Deutsches Bundesamt für Güterverkehr. 2018. Monatliche Mautstatistik für Januar 2018. https://www.bag.bund.de/SharedDocs/
Downloads/DE/Statistik/Lkw-Maut/18_Monatstab_01.html (in German). (2018). [Online; accessed January-09-2019].

[34] Yevgeniy Dodis and Aleksandr Yampolskiy. 2004. A Verifiable Random Function With Short Proofs and Keys. Cryptology ePrint Archive,
Report 2004/310. (2004). http://eprint.iacr.org/2004/310.

[35] Alex Escala and Jens Groth. 2014. Fine-Tuning Groth-Sahai Proofs. In PKC 2014: 17th International Conference on Theory and Practice
of Public Key Cryptography (Lecture Notes in Computer Science), Hugo Krawczyk (Ed.), Vol. 8383. Springer, Heidelberg, 630–649.
https://doi.org/10.1007/978-3-642-54631-0_36

[36] eugdpr.org. 2018. The EU General Data Protection Regulation (GDPR). https://www.eugdpr.org/. (2018). [Online; accessed April-19-2018].
[37] Flavio D Garcia, Eric R Verheul, and Bart Jacobs. 2011. Cell-Based Roadpricing. In European Public Key Infrastructure Workshop – EuroPKI

2011 (Lecture Notes in Computer Science), Vol. 7163. 106–122.
[38] Jens Groth and Amit Sahai. 2008. Efficient Non-interactive Proof Systems for Bilinear Groups. In Advances in Cryptology – EURO-

CRYPT 2008 (Lecture Notes in Computer Science), Nigel P. Smart (Ed.), Vol. 4965. Springer, Heidelberg, 415–432.
[39] ECONOLITE Group. 2018. Connected Vehicle CoProcessor Module. http://www.econolitegroup.com/wp-content/uploads/2017/05/

controllers-connectedvehicle-datasheet.pdf. (2018). [Online; accessed 07-April-2018].
[40] E-ZPass Group. 2017. E-ZPass Statistics: 2005 - 2016. https://e-zpassiag.com/about-us/statistics. (2017). [Online; accessed May-08-2018].
[41] Gunnar Hartung, Max Hoffmann, Matthias Nagel, and Andy Rupp. 2017. BBA+: Improving the Security and Applicability of Privacy-

Preserving Point Collection. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, CCS 2017,
Dallas, TX, USA, October 30 - November 03, 2017, Bhavani M. Thuraisingham, David Evans, Tal Malkin, and Dongyan Xu (Eds.). ACM,

https://doi.org/10.1007/11426639_18
https://doi.org/10.1007/978-3-540-68914-0_13
http://eprint.iacr.org/2007/475
https://doi.org/10.1007/978-3-662-49387-8_11
http://isyou.info/jowua/papers/jowua-v4n1-3.pdf
https://ec.europa.eu/transport/sites/transport/files/modes/road/road_charging/doc/study-electronic-road-tolling.pdf
https://ec.europa.eu/transport/sites/transport/files/modes/road/road_charging/doc/study-electronic-road-tolling.pdf
https://ec.europa.eu/transport/sites/transport/files/com20170280-eets-directive.pdf
http://www.datatilsynet.no/
https://www.bag.bund.de/SharedDocs/Downloads/DE/Statistik/Lkw-Maut/18_Monatstab_01.html
https://www.bag.bund.de/SharedDocs/Downloads/DE/Statistik/Lkw-Maut/18_Monatstab_01.html
http://eprint.iacr.org/2004/310
https://doi.org/10.1007/978-3-642-54631-0_36
https://www.eugdpr.org/
http://www.econolitegroup.com/wp-content/uploads/2017/05/controllers-connectedvehicle-datasheet.pdf
http://www.econolitegroup.com/wp-content/uploads/2017/05/controllers-connectedvehicle-datasheet.pdf
https://e-zpassiag.com/about-us/statistics

M. Hoffmann, V. Fetzer, M. Nagel, A. Rupp, R. Schwerdt • P4TC 29

1925–1942. https://doi.org/10.1145/3133956.3134071
[42] Gottfried Herold, Max Hoffmann, Michael Klooß, Carla Ràfols, and Andy Rupp. 2017. New Techniques for Structural Batch Verification

in Bilinear Groups with Applications to Groth-Sahai Proofs. In ACM CCS 17: 24th Conference on Computer and Communications Security,
Bhavani M. Thuraisingham, David Evans, Tal Malkin, and Dongyan Xu (Eds.). ACM Press, 1547–1564.

[43] Jaap-Henk Hoepman and George Huitema. 2010. Privacy Enhanced Fraud Resistant Road Pricing. What Kind of Information Society?
Governance, Virtuality, Surveillance, Sustainability, Resilience (2010), 202–213.

[44] Kapsch (Toll Collection System Integrator and Supplier). 2018. Personal Communication. (2018).
[45] Yuval Ishai, Manoj Prabhakaran, and Amit Sahai. 2008. Founding Cryptography on Oblivious Transfer - Efficiently. In Advances in

Cryptology – CRYPTO 2008 (Lecture Notes in Computer Science), David Wagner (Ed.), Vol. 5157. Springer, Heidelberg, 572–591.
[46] Roger Jardí-Cedó, Jordi Castellà-Roca, and Alexandre Viejo. 2014. Privacy-Preserving Electronic Toll System with Dynamic Pricing for

Low Emission Zones. In Data Privacy Management, Autonomous Spontaneous Security and Security Assurance – DPM 2014, SETOP 2014
and QASA 2014. Revised Selected Papers (Lecture Notes in Computer Science), Vol. 8872. 327–334.

[47] Roger Jardí-Cedó, Macià Mut-Puigserver, M. Magdalena Payeras-Capellà, Jordi Castellà-Roca, and Alexandre Viejo. 2014. Electronic
Road Pricing System for Low Emission Zones to Preserve Driver Privacy. In Modeling Decisions for Artificial Intelligence – MDAI 2014.
Proceedings. 1–13.

[48] Roger Jardí-Cedó, Macià Mut-Puigserver, M. Magdalena Payeras-Capellà, Jordi Castellà-Roca, and Alexandre Viejo. 2016. Privacy-
preserving Electronic Road Pricing System for Multifare Low Emission Zones. In Proceedings of the 9th International Conference on
Security of Information and Networks (SIN 2016). 158–165.

[49] Yuto Kawahara, Tetsutaro Kobayashi, Michael Scott, and Akihiro Kato. 2016. Barreto-Naehrig Curves. Internet Draft. Internet Engineering
Task Force. Work in Progress.

[50] Florian Kerschbaum and Hoon Wei Lim. 2015. Privacy-Preserving Observation in Public Spaces. In ESORICS 2015: 20th European
Symposium on Research in Computer Security, Part II (Lecture Notes in Computer Science), Günther Pernul, Peter Y. A. Ryan, and Edgar R.
Weippl (Eds.), Vol. 9327. Springer, Heidelberg, 81–100. https://doi.org/10.1007/978-3-319-24177-7_5

[51] Eike Kiltz, Jiaxin Pan, and Hoeteck Wee. 2015. Structure-Preserving Signatures from Standard Assumptions, Revisited. In Advances in
Cryptology – CRYPTO 2015, Part II (Lecture Notes in Computer Science), Rosario Gennaro and Matthew J. B. Robshaw (Eds.), Vol. 9216.
Springer, Heidelberg, 275–295. https://doi.org/10.1007/978-3-662-48000-7_14

[52] Hamish Koelmeyer and Sithamparanathan Kandeepan. 2017. Tagless Tolling using DSRC for Intelligent Transport System: An Interference
Study. In Asia Modelling Symposium. IEEE.

[53] Sebastian Kummer, Maria Dieplinger, and Mario Dobrovnik. 2015. Endbericht der Studie “Flächendeckende Schwerverkehrs-Maut in
Österreich”. https://www.wko.at/branchen/stmk/transport-verkehr/gueterbefoerderungsgewerbe/Endbericht_FlaechendeckendeMaut_
final.pdf (in German). (2015). [Online; accessed January-09-2019].

[54] Jorn Lapon, Markulf Kohlweiss, Bart De Decker, and Vincent Naessens. 2010. Performance Analysis of Accumulator-Based Revocation
Mechanisms. In Security and Privacy - Silver Linings in the Cloud - 25th IFIP TC-11 International Information Security Conference, SEC
2010, Held as Part of WCC 2010, Brisbane, Australia, September 20-23, 2010. Proceedings (IFIP Advances in Information and Communication
Technology), Kai Rannenberg, Vijay Varadharajan, and Christian Weber (Eds.), Vol. 330. Springer, 289–301. https://doi.org/10.1007/
978-3-642-15257-3_26

[55] Yunxin Jeff Li. 2010. An overview of the DSRC/WAVE technology. In International Conference on Heterogeneous Networking for Quality,
Reliability, Security and Robustness. Springer, 544–558.

[56] Markets and Markets. 2017. Electronic Toll Collection Market Study. https://www.marketsandmarkets.com/Market-Reports/
electronic-toll-collection-system-market-224492059.html. (2017). [Online; accessed April-19-2018].

[57] Sarah Meiklejohn, Keaton Mowery, Stephen Checkoway, and Hovav Shacham. 2011. The Phantom Tollbooth: PrivacyPreserving
Electronic Toll Collection in the Presence of Driver Collusion. In Proceedings of the 20th USENIX Security Symposium.

[58] Dustin Moody, Rene C. Peralta, Ray A. Perlner, Andrew R. Regenscheid, Allen L. Roginsky, and Lidong Chen. 2015. Report on Pairing-
based Cryptography. In Journal of Research of the National Institute of Standards and Technology, Vol. 120. National Insititute of Standards
and Technology, Gaithersburg, MD, USA, 11–27.

[59] ABC News. 2008. Toll Records Catch Unfaithful Spouses. https://abcnews.go.com/Technology/story?id=3468712&page=1. (2008).
[Online; accessed April-19-2018].

[60] European Parliament. 2014. Technology Options for the European Electronic Toll Service. http://www.europarl.europa.eu/RegData/
etudes/STUD/2014/529058/IPOL_STUD(2014)529058_EN.pdf. (2014). [Online; accessed April-19-2018].

[61] Raluca Ada Popa, Hari Balakrishnan, and Andrew J. Blumberg. 2009. VPriv: Protecting Privacy in Location-Based Vehicular Services. In
Proceedings of the 18th USENIX Security Symposium. 335–350.

[62] Savari.net. 2017. MobiWAVE On-Board-Unit (OBU). http://savari.net/wp-content/uploads/2017/05/MW-1000_April2017.pdf. (2017).
[Online; accessed 05-February-2018].

[63] Latanya Sweeney. 2002. k-Anonymity: A Model for Protecting Privacy. International Journal of Uncertainty, Fuzziness and Knowledge-
Based Systems 10, 5 (2002), 557–570. https://doi.org/10.1142/S0218488502001648

https://doi.org/10.1145/3133956.3134071
https://doi.org/10.1007/978-3-319-24177-7_5
https://doi.org/10.1007/978-3-662-48000-7_14
https://www.wko.at/branchen/stmk/transport-verkehr/gueterbefoerderungsgewerbe/Endbericht_FlaechendeckendeMaut_final.pdf
https://www.wko.at/branchen/stmk/transport-verkehr/gueterbefoerderungsgewerbe/Endbericht_FlaechendeckendeMaut_final.pdf
https://doi.org/10.1007/978-3-642-15257-3_26
https://doi.org/10.1007/978-3-642-15257-3_26
https://www.marketsandmarkets.com/Market-Reports/electronic-toll-collection-system-market-224492059.html
https://www.marketsandmarkets.com/Market-Reports/electronic-toll-collection-system-market-224492059.html
https://abcnews.go.com/Technology/story?id=3468712&page=1
http://www.europarl.europa.eu/RegData/etudes/STUD/2014/529058/IPOL_STUD(2014)529058_EN.pdf
http://www.europarl.europa.eu/RegData/etudes/STUD/2014/529058/IPOL_STUD(2014)529058_EN.pdf
http://savari.net/wp-content/uploads/2017/05/MW-1000_April2017.pdf
https://doi.org/10.1142/S0218488502001648

30 M. Hoffmann, V. Fetzer, M. Nagel, A. Rupp, R. Schwerdt • P4TC

Table 2. Information an adversary learns about honest users.

Protocol Leakage
pkU aU aR/aT aprev

R
p bbill

User Registration •

Wallet Issuing • • •

Debt Accumulation • • • •

Debt Clearance • (•) • •

Prove Participation •

[64] American Civil Liberties Union. 2015. Toll Records Catch Unfaithful Spouses. https://www.aclu.org/blog/privacy-technology/
location-tracking/newly-obtained-records-reveal-extensive-monitoring-e-zpass. (2015). [Online; accessed April-19-2018].

A INFORMATION LEAKAGE AND DISCUSSION ON PRIVACY IMPLICATIONS
As briefly discussed in Section 2.2, possibly known background information and the leakage of the ideal function-
ality determines the level of user privacy in P4TC. Since we prove our real protocol πP4TC to be indistinguishable
from the ideal functionality FP4TC, it is ensured that an adversary attacking πP4TC in the real world can only
learn as much about a user as an adversary in the ideal model. Table 2 summarizes what an adversary learns
about the users in each task. We omitted the serial number s and the fraud detection ID ϕ in the table as these
are independently and uniformly drawn randomness and thus cannot be exploited. In all tasks except Debt
Accumulation the user’s public key pkU is leaked. The variables aU , aR , a

prev
R

and aT refer to attributes of the
participating parties. The variable p denotes the price of a Debt Accumulation transaction, and bbill is the total
debt the user owes at the end of the task Debt Clearance.

For every billing period, the TSP collects all transaction information from every RSU. Hence, the TSP eventually
possesses two datasets:
(1) A database of users that are identified by their public key pkU together with their attributes and total debt.

This dataset comprises all information from every conducted task but Debt Accumulation.
(2) A database of anonymous transactions. This dataset stems from the Debt Accumulation tasks (cp. Table 2).

With respect to practical privacy considerations one can naturally pose several questions: Can a single transaction
be linked to a specific user? Has a user passed by a particular RSU? Can a user be mapped to a complete track,
i.e., a sequence of consecutive transactions? A final answer to these questions crucially depends on the concrete
instantiation of the attributes aU , aR and the pricing function but also on “environmental” parameters that
cannot be chosen by the system designer such as the total number of registered users, the average length of a
trip, etc. An in-depth analysis would require plausible and justifiable assumptions about probability distributions
for these parameters, and would constitute a separate line of research in its own right.

In the following, however, we would like to elaborate a bit on the general aspects of the question, how a user
can be linked to a full track. This problem can be depicted as a graph-theoretical problem of finding a path in a
directed, layered graph. The graph consists of initial nodes, inner nodes that are ordered in layers and terminal
nodes. Initial nodes represent Wallet Issuing transactions and are linked to a users. Terminal nodes represent
Debt Clearance transactions and are also linked to users and final balances bbill.
Inner nodes represent the (anonymous) transactions in between. Assuming that transactions can only occur

at discrete points in time, the inner nodes can be ordered in layers. A directed edge connects two nodes if the
target node is a plausible successor of the source node. As a bare minimum, this requires that the represented
transactions have equal user attributes aU , the attribute a

prev
R

of the target node equal aR of the source node and

https://www.aclu.org/blog/privacy-technology/location-tracking/newly-obtained-records-reveal-extensive-monitoring-e-zpass
https://www.aclu.org/blog/privacy-technology/location-tracking/newly-obtained-records-reveal-extensive-monitoring-e-zpass

M. Hoffmann, V. Fetzer, M. Nagel, A. Rupp, R. Schwerdt • P4TC 31

the target node is in a later layer than the source node (because time can only increase). Additionally, background
knowledge such as the geo-position of the RSUs, the given road infrastructure, etc. can be utilized to only insert
an edge between two nodes if, e.g., the corresponding RSUs are within a certain distance bound. Obviously, the
average in- and out-degree of a node heavily depends on the distribution of distinct values for aU and aR . Given
this graph, the task is to find a path from the initial node to the terminal node for a particular user such that
the sum of the prices of the transactions on this path equals the total balance. Moreover, if the transactions of
all users are taken into account, there must be a path for each user such that all paths are pairwise disjoint and
every node (i.e., transaction) lies on exactly one path.
For privacy, two characteristics are important: How many solutions do exist and what is the computational

complexity to find one (or all) solutions? This results in a trade-off between two borderline cases:
(1) There is exactly one unique solution. At first glance, this contradicts privacy. However, the mere existence

of a unique solution is worthless, if it is computationally infeasible to find it.
(2) Finding a solution is easy but there are many equally valid solutions. In this case privacy is preserved as

well.
If additional background information is omitted, the problem can be cast as a specialized instance of various

NP-complete problems, e.g., the parallel-version of the KNAPSACK problem. Parallel KNAPSACK is defined as
follows: Let {ui }i ∈{1, ...,n } be a finite set of knapsacks (users) with volume bi := b(ui) (total balance). Further let
{tj }j ∈{1, ...,m } be a finite set of items (transactions) with volumes pj := p(tj) (price) respectively. Let xi j ∈ {0, 1}
be variables that indicate if knapsack i contains item j. The task is to maximize the objective function

m∑
j=1

n∑
i=1

xi jv(tj) (1)

under the constraints
m∑
j=1

xi jpj ≤ bi for i ∈ {1, . . . ,m} (2)

and
n∑
i=1

xi j ≤ 1 for j ∈ {1, . . . ,m} (3)

Here, v denotes a value function that assigns a benefit to each item. In our case, we set v = const, i.e., each item
(transaction) is equally valuable. Informally, this means to pack as many items (transactions) into knapsacks
(invoices) without exceeding the volume (balance) of each knapsack (invoice) or assigning an item to more than
one knapsack. Since we know that all knapsacks can be filled exactly without any item being left over, we can
conclude that any solution that does not completely use a knapsack up to its limit must omit an item. Hence,
such a solution is never optimal and equality holds for all optimal solutions in Eq. (2).
Two remarks are in order. With the above explanation, we map an instance of our track-finding problem

onto an instance of the KNAPSACK problem, i.e., this only shows that our problem at hand is not harder than
KNAPSACK. To be fully correct, we would have to show the inverse direction, namely that a restricted set of
instances of the parallel KNAPSACK problem can be cast into our track-finding problem (without background
knowledge). The general KNAPSACK problem is NP-complete. This is beneficial as it implies that finding a
solution is generally believed to be intractable. However, there might be good heuristics for all “natural” instances.
Especially since we only need to consider those instances for which the optimal solution is a perfect solution (i.e.,
each knapsack is completely filled). Nonetheless, this restricted class of KNAPSACK problems is still NP-complete
and can indeed be mapped onto our track-finding problem. Moreover, depending on the concrete parameters

32 M. Hoffmann, V. Fetzer, M. Nagel, A. Rupp, R. Schwerdt • P4TC

(e.g., an upper bound on the maximum price p or the balance bbill) the problem might become fixed-parameter
tractable [4]. In other words, although solving the general problem has super-polynomial runtime in the instance
size, it might still be practically solvable for “real world” instances. We stress again, that an in-depth analysis
requires to look at concrete distributions of these parameters which may be the basis for an independent work.
Nonetheless, there are indicators that—if finding one solution is easy—there might be a myriad of solutions,

which again yields privacy. We take the German Toll Collect19 for trucks and analyze the statistics from January,
2018 [33], as a more concrete example. This system uses 24 distinct20 values for the user attributes. We assume
that transaction times are recorded with 5min resolution which is a little bit larger than the timespan a truck
needs to travel between two subsequent RSUs.21 Within this timeslot each RSU is passed by 28.4 other trucks.
Picking a fixed RSU and a fixed timeslot, this implies that the probability that at least one other truck with
identical attributes passes by equals

p = 1 −
(

23
24

)28.4
≈ 0.7 (4)

This means, for a randomly chosen transaction in the graph the probability to find at least one other transaction
in the same layer (i.e., timeslot) for the same RSU and for identical user attributes equals 0.7. In other words, for a
randomly chosen node in the transaction graph the in- and out-degree is at least two with probability 0.7.
The average length of trips per month of a single vehicle equals 3 398 km and the vehicle passes 613 RSUs.

This means the average trip consists of 613 transactions. For approximately 0.7 · 613 = 429 of these transactions
there are at least two identically looking transactions that are a plausible predecessor or successor. However, it is
completely wrong to assume this would yield 2429 identically looking paths that could be assigned to a particular
user. This kind of analysis would assume an independence of the transactions which does not hold. Again, let us
randomly pick a particular RSU and timeslot and consider the geographically next RSU in the following time slot.
If two identical transactions are observed at the first RSU, the conditional probability to observe two identical
transactions at the next RSU again is assumedly much higher than 0.7, given that there are no entry points,
exit points or intersections in between. Vice versa, if an transaction is unique at the first RSU, the conditional
probability to observe a second, identical transaction at the next RSU is assumedly much lower. On the contrary,
we expect to have some transaction nodes with a high in-/out-degree, namely those before an exit point or after
an entry point. If a truck leaves the tolling system, it might either promptly re-enter the system at some nearby
entry point or at some distant entry point in the remote future.
In summary, the analysis above is overly simplified as we assume uniform distributions of all values and an

independence of random variables that is likely not given in reality. Nonetheless, this indicates that the solution
space for mapping a particular user to a specific trip might be vast and it points out why an in-depth analysis
would justify an independent work on its own. Please also note that this analysis is only based on trucks not
passenger cars where we expect much higher probabilities for joint occurrence of identical attributes due to the
higher number of participants and higher travel speeds.

Remark A.1. In practice, several privacy notions like k-anonymity are established. For several reasons these
notions are not directly applicable here. First of all, these notions evaluate the privacy level of a concrete dataset
and we stress again that this is out of the scope of this work. While at first glance the calculations above might
suggest that our system features k-anonymity [63] for some yet to be determined k , the notion of k-anonymity
is actually not applicable due to formal reasons. The definition of k-anonymity requires the database to have

19https://www.toll-collect.de/en/
20The actual system uses more attribute values (i.e., 720) for statistical purposes. However, we only counted attribute values that the price
depends on.
21Since the German toll collection system is GNSS-based and has no RSUs, the average distance between two RSUs is assumed to be 5 km as
in the Austrian Toll Collection system [53]. Additionally, we assumed 80 km

h travel speed for trucks.

https://www.toll-collect.de/en/

M. Hoffmann, V. Fetzer, M. Nagel, A. Rupp, R. Schwerdt • P4TC 33

Functionality FP4TC
I. State
• Set TRDB = {trdb} of transactions

trdb = (sprev, s,ϕ,x , λ, pidU , pidR ,p,b)

∈ S × S × Φ × N0 × L × PIDU × PIDR × Zp × Zp .

• A (partial) mapping fΦ giving the fraud detection ID ϕ corresponding to given wallet ID λ and counter x :
fΦ : L × N0 → Φ, (λ,x) 7→ ϕ

• A (partial) mapping fAU assigning user attributes to a given wallet ID λ:
fAU : L → AU , λ 7→ aU

• A (partial) mapping fAR assigning RSU attributes to a given RSU PID pidR :
fAR : PIDR → AR , pidR 7→ aR

• A (partial) mapping fΠ assigning a user PID pidU and a proof of guilt π to a validity bit:
fΠ : PIDU × Π → {OK, NOK}

II. Behavior
• DR Registration (Fig. 5)
• TSP Registration (Fig. 6)
• RSU Registration (Fig. 7)
• User Registration (Fig. 8)
• RSU Certification (Fig. 9)

• Wallet Issuing (Fig. 10)
• Debt Accumulation (Fig. 11)
• Debt Clearance (Fig. 12)

• Prove Participation (Fig. 13)
• Double-Spending Detection (Fig. 14)
• Guilt Verification (Fig. 15)
• Blacklisting and Recalculation (Fig. 16)

Fig. 4. The functionality FP4TC

exactly one entry for each individual, but our transaction database features several entries per user. Therefore,
the notion of k-anonymity is syntactically not applicable to the users of our system. While we could still discuss
k-anonymity in this setting if the TSP combined all entries that pertain to the same user into one single entry,
privacy of our system largely stems from the TSP not being able to link transactions of the same user in this way
and hence such a discussion would largely undervalue the privacy protection P4TC provides.

B FULL SYSTEM DEFINITION
In this appendix we give a detailed description and explanation of our ideal privacy-preserving electronic toll
collection functionality FP4TC. As explained before we define this as a monolithic, reactive functionality with
polynomially many parties. This is mainly due to a shared state that the system requires. We will therefore
first explain how this state is recorded by FP4TC before we go on to describe its behavior in a modular way by
explaining each task22 it provides.

The main feature of FP4TC is that it keeps track of all conducted transactions in a global transaction database
TRDB (see Fig. 4). Note that in this case by “transaction” we mean every instance of the tasks Wallet Issuing, Debt

22Note that we are intentionally avoiding the word “phase”—which is commonly used in other composite functionalities—as it suggests a
predefined order/number of executions.

34 M. Hoffmann, V. Fetzer, M. Nagel, A. Rupp, R. Schwerdt • P4TC

Table 3. Notation that only occurs in the ideal functionality

Identifier Description

PIDcorrupt set of corrupted party identifiers
fΦ (partial) mapping giving the fraud detection ID ϕ corresponding to given wallet ID λ and

counter x
fAU (partial) mapping assigning user attributes to a given wallet ID λ

fAR (partial) mapping fAR assigning RSU attributes to a given RSU PID pidR

Accumulation or Debt Clearance, not just Debt Accumulation. Each transaction entry trdb ∈ TRDB is of the form

trdb = (sprev, s,ϕ,x , λ, pidU , pidR ,p,b).

It contains the identities pidU and pidR of the involved user and RSU (or TSP in the case of Wallet Issuing and
Debt Clearance) respectively, the ID λ of the wallet that was used as well as the price p and total balance b of the
wallet state after this transaction. Furthermore, each transaction entry is identified by a unique serial number s
and links via sprev to the previous transaction trdbprev (which corresponds to the wallet state before trdb). Lastly,
a fraud detection ID ϕ and a counter x are part of the transaction entry. The counter starts at zero for any newly
registered wallet and x = (xprev + 1) always holds. Hence, it is unique across all wallet states belonging to the
same wallet λ if and only if no double-spending has been committed with this wallet. The fraud detection ID is
constant for each pair (λ,x) of wallet ID and counter instead of being unique for each transaction, but unique
for different pairs of wallet ID and counter. Therefore, fraud detection IDs are stored in a partially defined, but
one-to-one, mapping fΦ : (L × N0) → Φ within FP4TC. Full transaction entries trdb are only created by instances
of Debt Accumulation. Both Wallet Issuing and Debt Clearance create stubs of the form

(⊥, s,ϕ, 0, λ, pidU , pidT , 0, 0) and

(sprev,⊥,ϕ,x , λ, pidU , pidT ,−b
bill, 0)

respectively. Every other task does not alter TRDB but only queries it. Although this database and the mapping
to fraud detection IDs contains most of the information our toll collection scheme needs, FP4TC stores three more
partially defined mappings: fAU : L → AU and fAR : PIDR → AR of user and RSU attribute vectors as well
as fΠ of proofs of guilt that have been issued or queried in the context of double-spending detection.
The ideal function FP4TC provides twelve different tasks in total which we divide up into three categories:

“System Setup Tasks” (comprising all Registrations and RSU Certification), “Basic Tasks” (Wallet Issuing, Debt
Accumulation and Debt Clearance), and “Feature Tasks” (Prove Participation, Double-Spending Detection, Guilt
Verification and Blacklisting and Recalculation).

For better clarity of the following task descriptions, an overview of the variables used can be found in Tables 3
and 4.

B.1 System Setup Tasks
To set up the system two things are required: All parties—the DR, TSP, RSUs and users—have to register public
keys with the bulletin board Gbb to be able to participate in the toll collection system. As all of these registration
tasks are similar, we will not describe them separately. In the special case of RSUs a certification conducted with
the TSP also needs to take place.

M. Hoffmann, V. Fetzer, M. Nagel, A. Rupp, R. Schwerdt • P4TC 35

Table 4. Notation that occurs in the ideal functionality and in the real protocol

Identifier Abstract Domain Instantiation Description

pidDR PIDDR {0, 1}∗ party identifier of the DR
pidT PIDT {0, 1}∗ party identifier of the TSP
pidR PIDR {0, 1}∗ party identifier of a RSU
pidU PIDU {0, 1}∗ party identifier of a user
pkDR PKDR G3

1 ×G
3
2 × (G

2
1)

ℓ+2 × (G2
2)

4 × (G2
2)

ℓ+2 public DR key
pkT PKT G j+3

1 × (G3
1 ×G

y+3
2) × (G

3
1 ×G2) public TSP key

pkR PKR G3
1 ×G2 public RSU key

pkU PKU G1 public user key
aU AU G j

2 user attributes
aR AR G

y
1 RSU attributes

aT AR G
y
1 TSP attributes

b Zp Zp balance
p Z Z price to pay at an RSU
ϕ Φ G1 fraud detection ID
s S G1 serial number
λ L Zp wallet ID; is used as PRF

seed
x N0 {0, . . . , nPRF} (PRF) counter
blR list of Φ elements list of G1 elements RSU blacklist
xblR N N RSU blacklist parameter
blT list of PKU elements list of G1 elements TSP blacklist

B.1.1 Registrations. The tasks of DR, RSU and User Registration (cp. Figs. 5 to 8) are straightforward and
analogous. They do not take any input apart from “register”, but in the case of the user we assume the physical
identity of the party has been verified out-of-band before this task is conducted. In each case a check is performed
first whether the task has been run before for this party. If this does not lead to an abort, the adversary is asked to
provide a public key pk for the respective party which is then registered with the bulletin board Gbb and output
to the newly registered party.

The registration of the TSP is slightly different (cp. Fig. 6). In addition to “register” it takes an attribute vector
aT as input, which—after a check if this task has been run before—is leaked to the adversary together with pidT
when the public key pkT is obtained. In addition, all data structures of FP4TC are initialized as empty sets and
empty (partial) mappings respectively. Again, the public key pkT is output to the TSP.

B.1.2 RSU Certification. RSU certification (cp. Fig. 9) is a two-party task between the TSP and an RSU in which
the RSU is assigned an attribute vector aR .23 The content of attribute vectors is in no way restricted by FP4TC
23Although only attributes are set in this task, we will later see in the task of Debt Accumulation that these also serve as a kind of certificate,
as RSUs are only able to successfully participate in Debt Accumulation if they have been assigned attributes by the TSP.

36 M. Hoffmann, V. Fetzer, M. Nagel, A. Rupp, R. Schwerdt • P4TC

Functionality FP4TC (cont.) – Task DR Registration
DR input: (register)
(1) If this task has been run before, output ⊥ and abort.
(2) Send (registering_dr, pidDR) to the adversary and obtain the key (pkDR).a

(3) Call Gbb with input (register, pkDR).
DR output: (pkDR)

aGiving the adversary the power to control the key generation serves two purposes: i) It gives a stronger security guarantee, i.e., security for a honest TSP is
retained, even if its keys are maliciously generated (due to bad random number generator). ii) It gives the simulator the lever to simulate faithfully.

Fig. 5. The functionality FP4TC (cont. from Fig. 4)

Functionality FP4TC (cont.) – Task TSP Registration
TSP input: (register, aT)
(1) If this task has been run before, output ⊥ and abort.
(2) TRDB := ∅
(3) Send (registering_tsp, pidT , aT) to the adversary and obtain the key (pkT).a

(4) Call Gbb with input (register, pkT).
TSP output: (pkT)
aGiving the adversary the power to control the key generation serves two purposes: i) It gives a stronger security guarantee, i.e., security for a honest TSP is

retained, even if its keys are maliciously generated (due to bad random number generator). ii) It gives the simulator the lever to simulate faithfully.

Fig. 6. The functionality FP4TC (cont. from Fig. 4)

Functionality FP4TC (cont.) – Task RSU Registration
RSU input: (register)
(1) If this task has been run before, output ⊥ and abort.
(2) Send (registering_rsu, pidR) to the adversary and obtain the key (pkR).a

(3) Call Gbb with input (register, pkR).
RSU output: (pkR)
aGiving the adversary the power to control the key generation serves two purposes: i) It gives a stronger security guarantee, i.e., security for honest parties
is retained, even if their keys are maliciously generated (due to bad random number generator). ii) It gives the simulator the lever to simulate faithfully.

Fig. 7. The functionality FP4TC (cont. from Fig. 4)

and can be used to implement different scenarios like location-based toll collection or entry-exit toll collection,
but could also be maliciously used to void unlinkability. This aR is input by the TSP, while the RSU only inputs
its desire to be certified. FP4TC checks if there have already been attributes assigned to the RSU previously (in
which case it aborts) and otherwise appends fAR (pidR) := aR to the partial mapping fAR which internally stores

M. Hoffmann, V. Fetzer, M. Nagel, A. Rupp, R. Schwerdt • P4TC 37

Functionality FP4TC (cont.) – Task User Registration
User input: (register)
(1) If this task has been run before, output ⊥ and abort.
(2) Send (registering_user, pidU) to the adversary and obtain the key (pkU).a

(3) Call Gbb with input (register, pkU).
User output: (pkU)
aGiving the adversary the power to control the key generation serves two purposes: i) It gives a stronger security guarantee, i.e., security for honest parties
is retained, even if their keys are maliciously generated (due to bad random number generator). ii) It gives the simulator the lever to simulate faithfully.

Fig. 8. The functionality FP4TC (cont. from Fig. 4)

Functionality FP4TC (cont.) – Task RSU Certification
RSU input: (certify)
TSP input: (certify, aR)
(1) If fAR (pidR) is already defined, output ⊥ to both parties and abort; else append fAR (pidR) := aR to fAR .
(2) Leak (certifying_rsu, pidR , aR) to the adversary.

RSU output: (aR)
TSP output: (OK)

Fig. 9. The functionality FP4TC (cont. from Fig. 4)

all RSU attributes already assigned. The identity pidR and attributes aR are leaked to the adversary before the
attributes are output to the RSU.

B.2 Basic Tasks
In this appendix we describe the basic tasks you would expect from any toll collection scheme. These tasks are
Wallet Issuing, Debt Accumulation and Debt Clearance. As mentioned before, those are the only tasks in which
transaction entries are created.

B.2.1 Wallet Issuing. Wallet Issuing (cp. Fig. 10) is a two-party task between a user and the TSP in which a
new and empty wallet is created for the user. The TSP inputs an attribute vector aU and a blacklist blT of user
public keys that are not allowed to obtain any new wallets. First, FP4TC randomly picks a (previously unused)
serial number s for the new transaction entry trdb. If the user is corrupted, the adversary may at this point
choose another corrupted user’s identity pidU that is to be used for this wallet. Multiple corrupted users are
allowed to have wallets issued for one another but are not able to request a new wallet for an honest user. The
corresponding public key for the user ID pidU is obtained from the bulletin board Gbb and checked against the
TSP’s blacklist blT . If this does not lead to an abort, a new wallet ID λ and fraud detection ID ϕ are uniquely and
randomly picked, unless the user is corrupted in which case the adversary chooses ϕ. This may infringe upon the
unlinkability of the user’s transactions and we do not give any privacy guarantees for corrupted users. Finally, a
transaction entry

trdb := (⊥, s,ϕ, 0, λ, pidU , pidT , 0, 0)

38 M. Hoffmann, V. Fetzer, M. Nagel, A. Rupp, R. Schwerdt • P4TC

Functionality FP4TC (cont.) – TaskWallet Issuing
User input: (issue)
TSP input: (issue, aU , blT)

(1) Pick serial number s
R
← S that has not previously been used.

(2) If pidU ∈ PIDcorrupt leak (s, aU) to the adversary, and ask if another PID pidU ∈ PIDcorrupt should be used instead.a

(3) Receive pkU from the bulletin-board Gbb for PID pidU .⊥
(4) If pkU ∈ blT , output blacklisted to both parties and abort.
(5) Pick wallet ID λ

R
← L that has not previously been used.

(6) If pidU < PIDcorrupt pick ϕ
R
← Φ that has not previously been used, otherwise ask the adversary for a fraud detection

ID ϕ that has not previously been used.b Append fΦ(λ, 0) := ϕ to fΦ.
(7) Append trdb := (⊥, s,ϕ, 0, λ, pidU , pidT , 0, 0) to TRDB
(8) Append fAU (λ) := aU to fAU .

User output: (s, aU)
TSP output: (s)

⊥If this does not exist, output ⊥ and abort.
aIf a group of corrupted users collude, a correct mapping to a specific users cannot be guaranteed, because corrupted users might share their credentials.
bPicking the upcoming fraud detection ID randomly asserts untrackability for honest users. For corrupted user, we do not (and cannot) provide such a

guarantee.

Fig. 10. The functionality FP4TC (cont. from Fig. 4)

corresponding to the new and empty wallet is stored in TRDB and the wallet’s attributes fAU (λ) := aU are
appended to the partial mapping fAU . Both parties get the serial number s as output; the user also receives
the attribute vector aU to check this has been assigned correctly and more importantly does not contain any
identifying information.

B.2.2 Debt Accumulation. This two-party task (cp. Fig. 11) is conducted whenever a registered user passes an
RSU and it serves the main purpose of adding toll to a previous wallet state of the user. In this task the user
only inputs a serial number sprev, indicating which past wallet state he wishes to use for this transaction. The
participating RSU in turn inputs a blacklist blR of fraud detection IDs. First, FP4TC randomly picks a (previously
unused) serial number s for the new transaction entry trdb. If the user is corrupted, the adversary may at this
point choose another corrupted user’s identity pidU that is to be used for this transaction. FP4TC looks up if a
wallet state trdbprev in TRDB corresponds to the user input sprev and belongs to the users pidU . This guarantees
that each user can only accumulate debt on a wallet that was legitimately issued to him. Multiple corrupted users
may choose to swap wallets between them but are not able to use an honest user’s wallet. The ideal functionality
uses part of the information from the previous wallet state

trdbprev = (·, sprev,ϕprev,xprev, λprev, pidU , pidprev
R
, ·,bprev)

to determine the content of the new transaction entry trdb. The user ID pidU and wallet ID λ stay the same, pidR
is set to the identity of the participating RSU, and the counter xprev is increased by one to obtain x . FP4TC checks
if there is already a fraud detection ID ϕ := fΦ(λ,x) assigned to the pair (λ,x) (either because the user committed
double-spending or because it has been precalculated for blacklisting purposes). If not and the user is honest, it
picks a new ϕ uniquely at random. If the user is corrupted, the fraud detection ID is not randomly drawn but

M. Hoffmann, V. Fetzer, M. Nagel, A. Rupp, R. Schwerdt • P4TC 39

Functionality FP4TC (cont.) – Task Debt Accumulation
User input: (pay_toll, sprev)
RSU input: (pay_toll, blR)

(1) Pick serial number s
R
← S that has not previously been used.

(2) If pidU ∈ PIDcorrupt ask the adversary, if another PID pidU ∈ PIDcorrupt should be used instead.a

(3) Select (·, sprev,ϕprev,xprev, λprev, pidU , pidprev
R
, ·,bprev) ∈ TRDB (with sprev, pidU being the uniqe key)⊥.

(4) Set λ := λprev and x := xprev + 1.
(5) If fΦ(λ,x) is already defined, set ϕ := fΦ(λ,x).

Else, if pidU < PIDcorrupt pick ϕ
R
← Φ that has not previously been used, otherwise ask the adversary for a fraud

detection ID ϕ that has not previously been used.b Append fΦ(λ,x) := ϕ to fΦ.
(6) If ϕ ∈ blR , output blacklisted to both parties and abort.
(7) Set aU := fAU (λ), aR := fAR (pidR), and aprev

R
:= fAR (pidprev

R
).⊥

(8) Calculate price p := Opricing(aU , aR , a
prev
R
). If pidR ∈ PIDcorrupt, then leak (aU , aR , a

prev
R
) to the adversary and obtain a

price p.
(9) b := bprev + p.
(10) Append (sprev, s,ϕ,x , λ, pidU , pidR ,p,b) to TRDB.

User output: (s, aR ,p,b)
RSU output: (s,ϕ, aU , a

prev
R
)

⊥If this does not exist, output ⊥ and abort.
aIf a group of corrupted users collude, a correct mapping to a specific users cannot be guaranteed, because corrupted users might share their credentials.

bThe ideal model only guarantees privacy for honest users. For corrupted users the fraud detection ID might be chosen adversarially (cp. text body).

Fig. 11. The functionality FP4TC (cont. from Fig. 4)

picked by the adversary. This may infringe upon the unlinkability of the user’s transactions, but, as mentioned
before, we do not give any privacy guarantees for corrupted users. The fraud detection ID ϕ is checked against
blR .24 The attributes aU , aR and aprev

R
are again looked up internally and leaked to the adversary who chooses the

price p of this transaction. Having the price determined in this way makes it clear that FP4TC does not give any
guarantees on the “right” amount of debt being added at this point. Instead, it gives the user enough information
about the transaction to appeal out-of-band afterwards if the wrong amount of debt is added. We assume this
detectability will keep RSUs in the real world from adding too much debt. Finally, the new balance b is calculated
from the price and old balance before trdb is stored in TRDB. Note that all information leading to the new wallet
state came from data internally stored in FP4TC itself, not from an input by the user or RSU, and can therefore not
be compromised. The serial number, RSU attributes, price and balance are output to the user so he may check he
only paid the amount he expected. The RSU gets the serial number as well but also the fraud detection ID to
enable double-spending detection and the attributes of the user and previous RSU.

B.2.3 Debt Clearance. As Debt Clearance (cp. Fig. 12) is very similar to the task of Debt Accumulation, we will
refrain from describing it again in full detail but rather just highlight the differences to Debt Accumulation. The
first difference is that it is conducted with the TSP rather than an RSU and no blacklist is taken as input as we
do not want to prevent anyone from paying their debt. Although this task results in a transaction entry trdb as
24Note, that the probability to blacklist a feshly drawn fraud detection ID is neglible. Only if fΦ(λ, x) has already been defined by a past task,
this yields a chance to successfully blacklist a user.

40 M. Hoffmann, V. Fetzer, M. Nagel, A. Rupp, R. Schwerdt • P4TC

Functionality FP4TC (cont.) – Task Debt Clearance
User input: (clear_debt, sprev)
TSP input: (clear_debt)

(1) Pick serial number s
R
← S that has not previously been used.

(2) If pidU ∈ PIDcorrupt ask the adversary, if another PID pidU ∈ PIDcorrupt should be used instead.a

(3) Receive pkU from the bulletin-board Gbb for PID pidU .⊥
(4) Select (·, sprev,ϕprev,xprev, λprev, pidU , pidprev

R
, ·,bprev) ∈ TRDB (with sprev, pidU being the unique key).⊥

(5) Set λ := λprev and x := xprev + 1.
(6) If fΦ(λ,x) is already defined, set ϕ := fΦ(λ,x).

Else, if pidU < PIDcorrupt pick ϕ
R
← Φ that has not previously been used, otherwise ask the adversary for a fraud

detection ID ϕ that has not previously been used.b Append fΦ(λ,x) := ϕ to fΦ.
(7) If pidT ∈ PIDcorrupt, set a

prev
R

:= fAR (pidprev
R
)⊥, and leak aprev

R
to the adversary.

(8) bbill := bprev.
(9) Append (sprev, s,ϕ,x , λ, pidU , pidT ,−b

bill, 0) to TRDB.
User output: (bbill)
TSP output: (pkU ,ϕ,b

bill)

⊥If this does not exist, output ⊥ and abort.
aIf a group of corrupted users collude, a correct mapping to a specific users cannot be guaranteed, because corrupted users might share their credentials.

bThe ideal model only guarantees privacy for honest users. For corrupted users the fraud detection ID might be chosen adversarially (cp. text body).

Fig. 12. The functionality FP4TC (cont. from Fig. 4)

well, no new serial number s is picked. This emphasizes that the new wallet state is final and can not be updated
again by using its serial number as input for another transaction. Instead of obtaining a price from the adversary,
the attributes aprev

R
of the previous RSU pidprev

R
are leaked to the adversary in case the TSP is corrupted. The

(negative) price for the transaction entry is set to the billing amount bbill which in turn is taken to be the previous
balance bprev of the wallet. As new transaction entry

trdb := (sprev,⊥,ϕ,x , λ, pidU , pidT ,−b
bill, 0)

is added to TRDB and the bill bbill output to both parties. Furthermore, the TSP gets the user’s ID pidU , as we
assume Debt Clearance to be identifying, as well as the fraud detection ID ϕ to enable double-spending detection.

B.3 Feature Tasks
To obtain a more secure toll collection system we also provide the feature tasks Prove Participation, Double-
Spending Detection, Guilt Verification and Blacklisting and Recalculation. All of those tasks deal with different
aspects arising from fraudulent user behavior.

B.3.1 Prove Participation. This is a two-party task involving a user and the SA (cp. Fig. 13) and assumed to be
conducted with every user that has been physically caught by one of the SA’s cameras. It allows an honest user to
prove his successful participation in a transaction with the RSU where the photo was taken, while the fraudulent
user will not be able to do so. The SA inputs the public key pkU of the user which the SA wishes to prove its
participation and a set Spp

R
of serial numbers in question. The user has no explicit input but simply expresses its

consent by running the protocol.

M. Hoffmann, V. Fetzer, M. Nagel, A. Rupp, R. Schwerdt • P4TC 41

Functionality FP4TC (cont.) – Task Prove Participation
User input: (prove_participation)
SA input: (prove_participation, pkU , S

pp
R
)

(1) Obtain pid ′
U
for pkU from Gbb.a

(2) If (pid ′
U
< PIDcorrupt ∨ pidU < PIDcorrupt) ∧ pid ′

U
, pidU , abort.

(3) If pidU ∈ PIDcorrupt leak S
pp
R

to the adversary.
(4) If ∃ (·, s, ·, ·, ·, pid ′

U
, ·, ·, ·) ∈ TRDB such that s ∈ Spp

R
,

then outU := outSA := OK
else outU := outSA := NOK.

User output: (outU)
SA output: (outSA)

apidU is the implicit PID of the user participating in the protocol. pidU is not necessarily equal to pid′
U

which denotes the user that is expected by the SA.

Fig. 13. The functionality FP4TC (cont. from Fig. 4)

First note, there is no guarantee that the user which participates in the protocol (with PID pidU) is the user
the SA wants to prove its participation (with user key pkU and pid ′

U
). Nonetheless, the ideal functionality

checks if TRDB contains a transaction for the requested PID pid ′
U

and a serial number s in S
pp
R
. Hence, the ideal

functionality ensures that either the SA receives the correct answer—even for corrupted users—or aborts.
Some remarks are in order to the abort condition—which is only a technical concession to what can be

practically realized. If pid ′
U
= pidU holds (i.e., the SA communicates with the expected user), everything is fine.

If pid ′
U
, pidU holds (i.e., the SA communicates with the wrong user) and at least one of the users is honest, the

ideal functionality aborts. This models the fact that a malicious user must neither be able to embody an honest
user nor an honest user embodies a malicious user. But if pid ′

U
, pidU holds (i.e., the SA communicates with the

wrong user) and both users are corrupted, the ideal functionality proceeds normally, but guarantees to return the
correct result for the user in question (i.e., with pid ′

U
). This models the limitation that two corrupted users can

share their credentials. A corrupted user (with pid ′
U
) can pass its transaction information to another corrupted

user (with pidU) which then proves participation to the SA. However, the latter user can still only prove the
participation of the original user and not misuse the information to falsely prove participation for itself.

If the user is corrupted, the set of serial numbers in question is leaked to the adversary. Note further that this
task also deanonymizes the one transaction proven by the user and leaks the respective serial number. Although
the SA only obtains a single bit of information, whether the user’s serial number is a member of the set Spp

R
or

not, this single bit of information is sufficient to restore the complete serial number by means of a bi-sectional
search. The SA could repeatedly run the task and summon the user to prove its participation for a descending
sequence of bi-sected sets until the last set only contains a single serial number. Nonetheless, this does not effect
the anonymity or unlinkability of any other transactions.

B.3.2 Double-Spending Detection and Guilt Verification. Due to our requirement to allow offline RSUs, a user is
able to fraudulently collect debt on outdated states of his wallet. This double-spending can not be prevented but
must be detected afterwards. To ensure this, FP4TC provides the tasks Double-Spending Detection (cp. Fig. 14)
and Guilt Verification (cp. Fig. 15).

Double-Spending Detection is a one-party task performed by the TSP. It takes a fraud detection ID ϕ as input
and checks the transaction database TRDB for two distinct entries containing this same fraud detection ID. In case

42 M. Hoffmann, V. Fetzer, M. Nagel, A. Rupp, R. Schwerdt • P4TC

Functionality FP4TC (cont.) – Task Double-Spending Detection
TSP input: (scan_for_fraud,ϕ)
(1) Pick trdb , trdb′ in TRDB such that trdb = (·, ·,ϕ, ·, ·, pidU , ·, ·, ·) and trdb′ = (·, ·,ϕ, ·, ·, pidU , ·, ·, ·).⊥
(2) Ask the adversary for a proof π ∈ Π corresponding to pidU and append (pidU ,π) 7→ OK to fΠ .
(3) Receive pkU from the bulletin-board Gbb for pidU⊥.

TSP output: (pkU ,π)
⊥If this does not exist, output ⊥ and abort.

Fig. 14. The functionality FP4TC (cont. from Fig. 4)

Functionality FP4TC (cont.) – Task Guilt Verification
Party input: (verify_guilt, pkU ,π)
(1) Receive pidU from the bulletin-board Gbb for key pkU .⊥
(2) If fΠ(pidU ,π) is defined, then set out := fΠ(pidU ,π) and output (out).
(3) If pidU ∈ PIDcorrupt, then leak (pidU ,π) to the advesary and obtain result out, else set out := NOK.
(4) Append (pidU ,π) 7→ out to fΠ .

Party output: (out)
⊥If this does not exist, output ⊥ and abort.

Fig. 15. The functionality FP4TC (cont. from Fig. 4)

such entries are present the adversary is asked for a proof π to be issued for this instance of double-spending. The
user ID and proof (pidU ,π) are appended to fΠ and marked as valid. Additionally, both are output to the TSP.

Guilt Verification is a one-party task as well but can be performed by any party. It takes a user ID pidU and a
double-spending proof π as input. First, it checks if this particular pair (pidU ,π) has already been defined and
outputs whatever has been output before. This is necessary to ensure consistency across different invocations. If
(pidU ,π) has neither been issued nor queried before and the affected user is corrupted, the adversary is allowed to
decide if this proof should be accepted. This implies that we do not protect corrupted users from false accusations
of guilt. If the user is honest and (pidU ,π) has neither been issued nor queried before, then the proof is marked
as invalid. This protects honest users from being accused by made-up proofs which have not been issued by the
ideal functionality itself. Finally, the result is recorded for the future and output to the party. This possibility of
public verification is vital to prevent the TSP from wrongly accusing any user of double-spending and should
for instance be utilized by the DR before it agrees to blacklist and therefore deanonymize a user on the basis of
double-spending.

B.3.3 Blacklisting and Recalculation. Blacklisting and Recalculation (cp. Fig. 16) is a two-party task between the
DR and TSP and serves two purposes: First, the debt bbill owed by the user that is to be blacklisted is calculated.
Second, fraud detection IDs for all of the user’s wallets are determined and handed to the TSP so it may add them
to the RSU blacklist blR . Note that the generation of the blacklist blT of user public keys is handled internally by
the TSP and not in the scope of this task or FP4TC.

M. Hoffmann, V. Fetzer, M. Nagel, A. Rupp, R. Schwerdt • P4TC 43

Functionality FP4TC (cont.) – Task Blacklisting and Recalculation
DR input: (blacklist_user, pkDR

U
)

TSP input: (blacklist_user, pkT
U
)

(1) If pkDR
U
, pkT

U
, abort.

(2) Receive pidU from the bulletin-board Gbb for pkTU .⊥
(3) Distinguish 3 cases:
(a) pidT < PIDcorrupt: Set Lbl := {λ | (·, ·, ·, ·, λ, pidU , ·, ·, ·) ∈ TRDB}.
(b) pidT ∈ PIDcorrupt, pidU < PIDcorrupt: Obtain a set of serial numbers Sroot from the adversary and set Lbl := {λ |
(⊥, s, ·, ·, λ, pidU , ·, ·, ·) ∈ TRDB with s ∈ Sroot}.

(c) pidT ∈ PIDcorrupt, pidU ∈ PIDcorrupt: Let the adversary decide on the output for DR and TSP and stop.
(4) TRDBbl := {trdb ∈ TRDB | trdb = (·, ·, ·, ·, λ, ·, ·,p, ·) s. t. λ ∈ Lbl}

(5) bbill :=
∑

trdb∈TRDBbl p.
(6) For each λ ∈ Lbl:
(a) xλ := max{ x | fΦ(λ,x) is already defined}.
(b) For x ∈ {xλ + 1, . . . ,xblR }:

(i) If pidU < PIDcorrupt, pick ϕ
R
← Φ that has not previously been used,

otherwise leak (λ,x) to the adversary and obtain fraud detection ID ϕ that has not previously been used.
(ii) Append (λ,x) 7→ ϕ to fΦ.

(7) Φbl := { fΦ(λ,x) | λ ∈ Lbl, 0 ≤ x ≤ xblR }.
DR output: (OK)
TSP output: (bbill,Φbl)

⊥If this does not exist, output ⊥ and abort.

Fig. 16. The functionality FP4TC (cont. from Fig. 4)

Both parties—the TSP and the DR—input the public key (pkDR
U

and pkT
U
, resp.) of the user that is going to be

blacklisted. We assume both parties to agree on the same key out-of-band before the protocol starts. We first
describe the “normal” case (cp. Fig. 16, Step 3a) for an honest TSP. (N.b.: The DR is assumed to be always honest.)
To calculate the user’s outstanding debt, all transaction entries in TRDB containing pidU are taken and their
respective prices p summed up to obtain bbill. Note that although this sum may contain the prices of transactions
and wallets that have already been cleared, this does not falsify the value of bbill as every successful execution of
Debt Clearance creates an entry with the amount that was cleared as negative price. For the actual blacklisting
the set of all wallet IDs belonging to pidU is looked up and the remainder of the task is conducted for every
wallet λ separately. FP4TC checks how many values of fΦ(λ, ·) are already defined and extends them to the first
xblR fraud detection IDs, where xblR is a parameter we assume to be greater than the number of transactions a
user would be involved in within one billing period. To that end, yet undefined fraud detection IDs fΦ(λ,x) with
x ≤ xblR are uniquely and randomly drawn or—in case of a corrupted user—obtained from the adversary. Finally,
all fraud detection IDs ϕ = fΦ(λ,x) for x ≤ xblR and all wallets λ of the user are output to the TSP together with
the outstanding debt bbill.
It remains to describe the remaining two cases (cp. Fig. 16, Steps 3b and 3c). If the TSP is corrupted but the

user in question honest (Step 3b), the TSP is free to drop some of the user’s wallets and only partially blacklist
the user. This “attack”—a demented TSP—cannot be ruled out. In order to correctly map this in the ideal model,

44 M. Hoffmann, V. Fetzer, M. Nagel, A. Rupp, R. Schwerdt • P4TC

the adversary is asked to provide a set of associated serial numbers and only the wallets from the intersection
are used for blacklisting. This ensures that a malicious TSP can only blacklist less wallets but not more wallets
or even wallets of another user. If the TSP and the user in question are both corrupted (Step 3c), no guarantees
are given. Please note that a corrupted TSP could even come up with an “imaginary” corrupted user (which
only exists in the head of the TSP) and ask the DR to blacklist this user. Essentially, this is nothing else than a
cumbersome way to evaluate the PRF at inputs chosen by the TSP. However, the TSP can do this by itself anyway.
We stress that this does not affect the security or privacy of honest parties in the system.

C SETTING AND BUILDING BLOCKS
In this appendix we introduce the algebraic setting and building blocks we make use of. In particular, the latter
includes non-interactive zero-knowledge proofs, commitments, signatures, encryption and pseudo-random
functions. We also describe possible instantiations for these building blocks and explain how these primitives are
used in our system.

C.1 Algebraic Setting and Assumptions
Our protocol instantiations are based on an asymmetric bilinear group setting gp := (G1,G2,GT, e,p,д1,д2). We
adopt the following definition from [41].

Definition C.1 (Prime-order Bilinear Group Generator). A prime-order bilinear group generator is a PPT algorithm
SetupGrp that on input of a security parameter 1n outputs a tuple of the form

gp := (G1,G2,GT, e,p,д1,д2) ← SetupGrp(1n) (5)

where G1,G2,GT are descriptions of cyclic groups of prime order p, logp = Θ(n), д1 is a generator of G1, д2 is a
generator of G2, and e : G1 ×G2 → GT is a map (aka pairing) which satisfies the following properties:
• Efficiency: e is efficiently computable.
• Bilinearity: ∀a ∈ G1,b ∈ G2,x ,y ∈ Zp : e (ax ,by) = e (a,b)xy .
• Non-Degeneracy: e (д1,д2) generates GT.

The setting is called asymmetric, if no efficiently computable homomorphisms between G1 and G2 are known.
In the remainder of this paper, we consider the asymmetric kind.
Our construction relies on the co-CDH assumption for identification, and the security of our building blocks

(cp. Appendix C.2) in asymmetric bilinear groups. For our special instantiation of the building blocks (see there),
security holds under the SXDH and co-DLIN assumption. The former implies the co-CDH assumption.

The SXDH assumption essentially asserts that the DDH assumption holds in both source groups G1 and G2 of
the bilinear map and is formally defined as:

Definition C.2 (DDH and SXDH Assumption).
(1) We say that theDDH assumption holds with respect to SetupGrp overGi if the advantageAdvDDHSetupGrp,i,A(1

n)

defined by ��������� Pr


b = b ′

���������
gp := (G1,G2,GT, e,p,д1,д2) ← SetupGrp(1n)

x ,y, z ← Zp ;h0 := дxyi ;h1 := дzi
b

R
← {0, 1}

b ′ ← A(1n , gp,дxi ,д
y
i ,hb)


−

1
2

���������
is a negligible function in n for all PPT algorithms A.

(2) We say that the SXDH assumption holds with respect to SetupGrp if the above holds for both i = 1 and
i = 2.

M. Hoffmann, V. Fetzer, M. Nagel, A. Rupp, R. Schwerdt • P4TC 45

The co-CDH assumption is defined as follows:

Definition C.3 (Co-CDH assumption). We say that the co-CDH assumption holds with respect to SetupGrp if the
advantage AdvCO-CDHSetupGrp,A(1

n) defined by

Pr

 a = дx2

�������
gp := (G1,G2,GT, e,p,д1,д2) ← SetupGrp(1n)

x ← Zp
a ← A(1n , gp,дx1)


is a negligible function in n for all PPT algorithms A.

The co-DLIN assumption is defined as follows:

Definition C.4. We say that the co-DLIN assumption holdswith respect to SetupGrp if the advantageAdvCO-DLINSetupGrp,A(1
n)

defined by

Pr


b = b′

���������������

gp := (G1, G2, GT, e, p, д1, д2) ← SetupGrp(1n)

α, β, γ
R
← Zp

b
R
← {0, 1}

ȟ1 := дα1 , ȟ2 := дβ1 , ȟ3 := дα+β+bγ1
ĥ1 := дα2 , ĥ2 := дβ2 , ĥ3 := дα+β+bγ2
b′ ← A(1n, gp, ȟ1, ȟ2, ȟ3, ĥ1, ĥ2, ĥ3)


is a negligible function in n for all PPT algorithms A.

C.2 Cryptographic Building Blocks
Our semi-generic construction makes use of various cryptographic primitives including (Fgp-extractable) NIZK
proofs, equivocal and extractable homomorphic commitments, digital signatures, public-key encryption, sym-
metric encryption and pseudo-random functions. The latter building blocks need to be efficiently and securely
combinable with the chosen NIZK proof system, which is Groth-Sahai (GS) in our case. In the following, we give
an introduction to the formal definition of these building blocks.

C.2.1 Group setup. Let SetupGrp be a bilinear group generator (cp. Definition C.1) that outputs descriptions
of asymmetric bilinear groups gp← SetupGrp(1n). The following building blocks all make use of SetupGrp as
their common group setup algorithm.

C.2.2 NIZKs. Let R be a witness relation for some NP language L = {stmnt | ∃wit s.t. (stmnt,wit) ∈ R}. A
zero-knowledge proof system allows a prover P to convince a verifierV that some stmnt is contained in L without
V learning anything beyond that fact. In a non-interactive zero-knowledge (NIZK) proof, only one message, the
proof π , is sent from P to V for that purpose.
More precisely, a (group-based) NIZK proof system is defined as:

Definition C.5 (Group-based NIZK proof system). Let R be an efficiently verifiable relation containing triples
(gp,x ,w). We call gp the group setup, x the statement, andw the witness. Given some gp, let Lgp be the language
containing all statements x such that (gp,x ,w) ∈ R. Let POK := (SetupGrp, SetupPoK,Prove,Vfy) be a tuple of
PPT algorithms such that
• SetupGrp takes as input a security parameter 1n and outputs public parameters gp. We assume that gp is
given as implicit input to all algorithms.
• SetupPoK takes as input gp and outputs a (public) common reference string CRSpok.
• Prove takes as input the common reference string CRSpok, a statement x , and a witness w with (gp,x ,
w) ∈ R and outputs a proof π .

46 M. Hoffmann, V. Fetzer, M. Nagel, A. Rupp, R. Schwerdt • P4TC

• Vfy takes as input the common reference string CRSpok, a statement x , and a proof π and outputs 1 or 0.
POK is called a non-interactive zero-knowledge proof system for R with Fgp-extractability, if the following
properties are satisfied:
(1) Perfect completeness: For all gp ← SetupGrp(1n), CRSpok ← SetupPoK(gp), (gp,x ,w) ∈ R, and π ←

Prove(CRSpok,x ,w) we have that Vfy(CRSpok,x ,π) = 1.
(2) Perfect soundness: For all (possibly unbounded) adversaries A we have that

Pr


Vfy(CRSpok,x ,π) = 0

���������
gp← SetupGrp(1n)

CRSpok ← SetupPoK(gp)
(x ,π) ← A(CRSpok)

x < Lgp


is 1.

(3) Perfect Fgp-extractability: There exists a polynomial-time extractor (SetupEPoK, ExtractW) such that for all
(possibly unbounded) adversaries A

(a) we have that the advantage Advpok-ext-setupPOK,A (n) defined by����������
Pr

[
1← A(CRSpok)

����� gp← SetupGrp(1n),
CRSpok ← SetupPoK(gp)

]
− Pr

[
1← A(CRS′pok)

����� gp← SetupGrp(1n),
(CRS′pok, tdepok) ← SetupEPoK(gp)

]
����������

is zero.
(b) we have that the advantage Advpok-extPOK,A(n) defined by

Pr


∃ w : Fgp(w) =W ∧ (gp,x ,w) ∈ R

������������

gp← SetupGrp(1n)
(CRS′pok, tdepok) ← SetupEPoK(gp)

(x ,π) ← A(CRS′pok, tdepok)

1← Vfy(CRS′pok,x ,π)

W ← ExtractW(CRS′pok, tdepok,x ,π)


is 1.

(4) Composable Zero-knowledge: There exists a polynomial-time simulator (SetupSPoK, SimProof) and hint
generator GenHint such that for all PPT adversaries A

(a) we have that the advantage Advpok-zk-setupPOK,A (n) defined by������������
Pr

[
1← A(CRSpok)

����� gp← SetupGrp(1n),
CRSpok ← SetupPoK(gp)

]
− Pr

 1← A(CRS′pok)

�������
gp← SetupGrp(1n),
hint ← GenHint(gp),

(CRS′pok, tdspok) ← SetupSPoK(gp, hint),



������������
is negligible in n.

(b) we have that the advantage Advpok-zkPOK,A(n) defined by�������
Pr

[
1← ASimProof′(CRS′pok,tdspok, ·, ·)(1n ,CRS′pok, tdspok)

]
− Pr

[
1← AProve(CRS′pok, ·, ·)(1n ,CRS′pok, tdspok)

]
�������

M. Hoffmann, V. Fetzer, M. Nagel, A. Rupp, R. Schwerdt • P4TC 47

is negligible inn, where gp← SetupGrp(1n), (CRS′pok, tdspok) ← SetupSPoK(gp), and SimProof ′(CRS′pok,
tdspok, ·, ·) is an oracle which on input (x , z) ∈ R returns SimProof(CRS′pok, tdspok,x). Both SimProof ′ and
Prove return ⊥ on input (x , z) < R.

We wish to point out some remarks.

Remark C.6. (1) The considered language Lgp may depend on gp.
(2) Fgp-extractability actually implies soundness independent of Fgp: If there was a false statement x which

verifies, violating soundness, then obviously there is no witnessw for x , which violates extractability.
(3) Extractability essentially means that ExtractW—given a trapdoor tdepok—is able to extract Fgp(wit) for an

NP-witness wit for stmnt ∈ Lgp from any valid proof π . If Fgp is the identity function, then the actual
witness is extracted and the system is called a proof of knowledge.

Our Instantiation. We choose the SXDH-based Groth-Sahai proof system [35, 38] as our NIZK, as it allows
for very efficient proofs (under standard assumptions). On the other hand, GS comes with some drawbacks,
which makes applying it sometimes pretty tricky: It only works for algebraic languages containing certain
types of equations, it is not always zero-knowledge, and Fgp is not always the identity function. For the sake of
completeness Appendix C.3 contains a description what types of equations are supported by GS. When choosing
our remaining building blocks and forming equations we ensured that they fit into this framework. Likewise, we
ensured that the ZK-property holds for the languages we consider.

For proving correctness of the computations taking place on the user’s side we need three different instantiations
of the GS proof system, denoted by P1, P2 and P3, respectively. The corresponding functions F (1)gp , F

(2)
gp and F (3)gp

depend on the considered languages L1, L2 and L3 (defined in Appendices D.6 to D.8) but they have the following
in common: They behave as the identity function with respect to group elements and map elements from Zp
either to G1 or G2 (by exponentiation with basis д1 or д2) depending on whether these are used as exponents of a
G1 or G2 element in the language.

All proof systems will share a common reference string. More precisely, we demand that there is a shared
extraction setup algorithm which generates the CRS and also a single extraction trapdoor for P1, P2 and P3. Let
us denote this algorithm by SetupEPoK and its output by (CRSpok, tdepok) ← SetupEPoK(gp) in the following.
Furthermore, let us denote the prove and verify algorithms of these proof systems by PX .Prove and PX .Vfy, for
1 ≤ X ≤ 3.

Range Proofs. For one particular task25 we need range proofs in order to show that some Zp-element λ′i is
“smaller” than some fixed system parameter B with both elements being regarded as elements from {0, . . . ,p− 1}
and the normal ≤-relation from the integers. We realize these range proofs using Groth-Sahai by applying the
signature-based technique in [15]. Here, the verifier initially chooses parameters q and t such that every possible
λ′i can be represented as λ′i =

∑t
j=0 djq

j with 0 ≤ dj < q. He also generates a signature on every possible value of
a digit, i.e., 0, . . . ,q − 1. The prover then shows using a Groth-Sahai NIZK that each λ′i can be indeed represented
in this way and that he knows a signature by the verifier for each of its digits. Clearly, a structure-preserving
signature scheme is needed for this purpose and we use the one in [1].

C.2.3 Commitments. A commitment scheme allows a user to commit to a messagem and publish the result,
called commitment c , in a way thatm is hidden from others, but also the user cannot claim a differentm afterwards
when he opens c . A commitment scheme is called an Fgp-binding commitment scheme for a bijective function
Fgp on the message space, if one commits to a messagem but opens the commitment using Fgp(m). We call the
codomain of Fgp the implicit message space.

25More precisely: The task Wallet Issuing

48 M. Hoffmann, V. Fetzer, M. Nagel, A. Rupp, R. Schwerdt • P4TC

Definition C.7. A commitment scheme COM := (SetupGrp,Gen,Com,Open) consists of four algorithms:

• SetupGrp takes as input a security parameter 1n and outputs public parameters gp. These parameters
also define a message spaceM, an implicit message spaceM ′ and a function Fgp :M →M ′ mapping a
message to its implicit representation. We assume that gp is given as implicit input to all algorithms.
• Gen is a PPT algorithm, which takes gp as input and outputs public parameters CRScom.
• Com is a PPT algorithm, which takes as input parameters CRScom and a messagem ∈ M and outputs a
commitment c tom and some decommitment value d .
• Open is a deterministic polynomial-time algorithm, which takes as input parameters CRScom, commitment
c , an implicit messageM ∈ M ′, and opening d . It returns either 0 or 1.

COM is correct if for all gp ← SetupGrp(1n), CRScom ← Gen(gp),m ∈ M, and (c,d) ← Com(CRScom,m) it
holds that 1 = Open(CRScom, Fgp(m), c,d).
We say that COM is a (computationally) hiding, Fgp-binding, equivocal, extractable commitment scheme if it

has the following properties:

(1) Hiding: For all PPT adversaries A it holds that the advantage AdvHidingCOM,A(1
n) defined by

�������������
Pr


b = b ′

�������������

gp← SetupGrp(1n)
CRScom ← Gen(gp)

(m0,m1, state) ← A(1n ,CRScom)

b
R
← {0, 1}

(c,d) ← Com(CRScom,mb)

b ′ ← A(c, state)


−

1
2

�������������
is negligible in n. The scheme is called statistically hiding if AdvHidingCOM,A(1

n) is negligible even for an
unbounded adversary A.

(2) Fgp-Binding: For all PPT adversaries A it holds that the advantage AdvFgp-Binding
A

(1n) defined by

Pr


Open(CRScom,M, c,d) = 1

∧

Open(CRScom,M ′, c,d ′) = 1

���������
gp← SetupGrp(1n)
CRScom ← Gen(gp)

(c,M,d,M ′,d ′) ← A(1n ,CRScom)
M , M ′


is negligible in n.

(3) Equivocal: There exist PPT algorithms SimGen, SimCom and Equiv such that for all PPT adversaries A
(a) we have that the advantage AdvSimGen

COM,A(n) defined by

����������
Pr

[
1← A(CRScom)

����� gp← SetupGrp(1n),
CRScom ← Gen(gp)

]
− Pr

[
1← A(CRS′com)

����� gp← SetupGrp(1n),
(CRS′com, tdeqcom) ← SimGen(gp)

]
����������

is negligible in n.

M. Hoffmann, V. Fetzer, M. Nagel, A. Rupp, R. Schwerdt • P4TC 49

(b) we have that the advantage AdvEquivCOM,A(n) defined by��������������������

Pr


1← A

(
CRS′com, tdeqcom,m, c,d

)
���������

gp← SetupGrp(1n),
(CRS′com, tdeqcom) ← SimGen(gp),

m ←M,

(c,d) ← Com(CRS′com,m)


− Pr


1← A

(
CRS′com, tdeqcom,m, c

′,d ′
)
�����������

gp← SetupGrp(1n),
(CRS′com, tdeqcom) ← SimGen(gp),

(c ′, r) ← SimCom(gp),
m ←M,

d ′ ← Equiv(CRS′com, tdeqcom,m, r)



��������������������
is zero.

(4) Extractable: There exist PPT algorithms ExtGen and Extract such that for all PPT aversaries A
(a) we have that the advantage AdvExtGenCOM,A(n) defined by����������

Pr
[

1← A(CRScom)

����� gp← SetupGrp(1n),
CRScom ← Gen(gp)

]
− Pr

[
1← A(CRS′com)

����� gp← SetupGrp(1n),
(CRS′com, tdextcom) ← ExtGen(gp)

]
����������

is negligible in n.
(b) we have that the advantage AdvExtCOM,A(n) defined by

Pr


Extract(CRS′com, tdextcom, c) , Fgp(m)

���������
gp← SetupGrp(1n),

(CRS′com, tdextcom) ← ExtGen(gp),
c ← A(CRS′com),

∃!m ∈ M, r : c ← Com(CRS′com,m; r)


is zero.

Furthermore, assume that themessage space ofCOM is an additive group. ThenCOM is called additively homomor-
phic, if there exist additional PPT algorithms c ← CAdd(CRScom, c1, c2) and d ← DAdd(CRScom,d1,d2) which on
input of two commitments and corresponding decommitment values (c1,d1) ← Com(CRScom,m1) and (c2,d2) ←

Com(CRScom,m2), output a commitment c and decommitmentd , respectively, such thatOpen(CRScom, c, Fgp(m1+

m2),d) = 1.
Finally, we call COM opening complete if for allM ∈ M ′ and arbitrary values c,d withOpen(CRScom,M, c,d) =

1 holds that there existsm ∈ M and randomness r such that (c,d) ← Com(CRScom,m; r).

Our Instantiation. We will make use of two commitment schemes that are both based on the SXDH assumption.
We first use the shrinking α-message-commitment scheme from Abe et al. [3]. This commitment scheme has
message space Zαp , commitment space G2 and opening value space G1. It is statistically hiding, additively homo-
morphic, equivocal, and F ′gp-Binding, for F ′gp(m1, . . . ,mα) := (дm1

1 , . . . ,д
mα
1). We use this commitment scheme as

C1 with CRS CRS1
com in the following ways in our system:

• In the Wallet Issuing task we use C1 for messages from Zp (α := 1), Z2
p (α := 2) and Z4

p (α := 4).
• In the Debt Accumulation task we use C1 for messages from Zp (α := 1) and Z4

p (α := 4).
We also use the (dual-mode) equivocal and extractable commitment scheme from Groth and Sahai [38]. This

commitment scheme has message space G1, commitment space G2
1 and opening value space Z2

p. It is equivocal,

50 M. Hoffmann, V. Fetzer, M. Nagel, A. Rupp, R. Schwerdt • P4TC

extractable, hiding and F ′gp-Binding for F ′gp(m) :=m. In our system, we use this commitment scheme as C2 with
CRS CRS2com in the Wallet Issuing and Debt Accumulation tasks.

C.2.4 Digital signatures. A signature allows a signer to issue a signature σ on a message m using its secret
signing key sk such that anybody can publicly verify that σ is a valid signature form using the public verification
key pk of the signer but nobody can feasibly forge a signature without knowing sk.

Definition C.8. A digital signature scheme S := (SetupGrp,Gen, Sgn,Vfy) consists of four PPT algorithms:
• SetupGrp takes as input a security parameter 1n and outputs public parameters gp. We assume that gp is
given as implicit input to all algorithms.
• Gen takes gp as input and outputs a key pair (pk, sk). The public key and gp define a message spaceM.
• Sgn takes as input the secret key sk and a messagem ∈ M, and outputs a signature σ .
• Vfy takes as input the public key pk, a messagem ∈ M, and a purported signature σ , and outputs a bit.

We call S correct if for all n ∈ N, gp ← SetupGrp(1n),m ∈ M, (pk, sk) ← Gen(gp), σ ← Sgn(sk,m) we have
1← Vfy(pk,σ ,m).

We say that S is EUF-CMA secure if for all PPT adversaries A it holds that the advantage AdvEUF-CMA
S,A (1n)

defined by

Pr


Vfy(pk,σ ∗,m∗) = 1

���������
gp← SetupGrp(1n)
(pk, sk) ← Gen(gp)

(m∗,σ ∗) ← ASgn(sk, ·)(1n , pk)
m∗ < {m1, . . . ,mq }


is negligible in n, where Sgn(sk, ·) is an oracle that, on inputm, returns Sgn(sk,m), and {m1, . . . ,mq} denotes
the set of messages queried by A to its oracle.

Our Instantiation. As we need to prove statements about signatures, the signature scheme has to be algebraic.
For our construction, we use the structure-preserving signature scheme of Abe et al. [1], which is currently
the most efficient structure-preserving signature scheme. Its EUF-CMA security proof is in the generic group
model, a restriction we consider reasonable with respect to our goal of constructing a highly efficient P4TC
scheme. An alternative secure in the plain model would be [51]. For the scheme in [1], one needs to fix two
additional parameters µ,ν ∈ N0 defining the actual message space Gν

1 ×G
µ
2 . Then sk ∈ Zµ+ν+2

p , pk ∈ Gµ+2
1 ×Gν

2
and σ ∈ G2

2 ×G1.
We use the signature scheme S from Abe et al. [1] in the following ways in our system:
• In the Wallet Issuing and Debt Accumulation tasks we use S for messages from G2 ×G1 (ν = 1 and µ = 1).
• In the Wallet Issuing task we use S for messages from G2ℓ+2

1 (ν = 2ℓ + 2 and µ = 0).
• In the RSU Certification and TSP Registration tasks we use S for messages fromG

3+y
1 (ν = 3 + y and µ = 0).

C.2.5 Asymmetric Encryption. We use the standard definitions for asymmetric encryption schemes and cor-
responding security notions, except that we enhance them with a SetupGrp algorithm to fit our algebraic
setting.

Definition C.9 (Asymmetric Encryption). An asymmetric encryption scheme E := (SetupGrp,Gen, Enc,Dec)
consists of four PPT algorithms:
• SetupGrp takes as input a security parameter 1n and outputs public parameters gp. We assume that gp is
given as implicit input to all algorithms.
• Gen(gp) outputs a pair (pk, sk) of keys, where pk is the (public) encryption key and sk is the (secret)
decryption key.
• Enc(pk,m) takes a key pk and a plaintext messagem ∈ M and outputs a ciphertext c .

M. Hoffmann, V. Fetzer, M. Nagel, A. Rupp, R. Schwerdt • P4TC 51

• Dec(sk, c) takes a key sk and a ciphertext c and outputs a plaintext messagem or ⊥. We assume that Dec is
deterministic.

Correctness is defined in the usual sense.
An asymmetric encryption scheme E is IND-CCA2-secure if for all PPT adversariesA it holds that the advantage

AdvIND-CCA-asymE,A (1n) defined by���������������
Pr


b = b′

���������������

gp← SetupGrp(1n)
(pk, sk) ← Gen(gp)

(state,m0,m1) ← A
Dec(sk, ·)(1n, pk)

b
R
← {0, 1}

c∗ ← Enc(pk,mb)

b′ ← ADec′(sk, ·)(state, c∗)


−

1
2

���������������
is negligible in n, where |m0 | = |m1 |, Dec(sk, ·) is an oracle that gets a ciphertext c from the adversary and returns
Dec(sk, c) and Dec′(sk, ·) is the same, except that it returns ⊥ on input c∗.

An asymmetric encryption scheme E isNM-CCA2-secure if for all PPT adversariesA it holds that the advantage
AdvNM-CCA

E,A (1n) defined by ���SuccsNM-CCA
E,A,real (1

n) − SuccsNM-CCA
E,A,random(1

n)

���
is negligible with

SuccsNM-CCA
E,A,real (1

n) := Pr



c < c ∧
⊥ < m ∧

R(m, m) = 1

�����������������

gp← SetupGrp(1n)
(pk, sk) ← Gen(gp)

(M, state) ← ADec(sk, ·)(1n, pk)

m
R
← M

c ← Enc(pk,m)
(R, c) ← ADec′(sk, ·)(1n, state, c)

m← Dec(sk, c)


and

SuccsNM-CCA
E,A,random(1

n) := Pr



c < c ∧
⊥ < m ∧

R(m̃, m) = 1

�����������������

gp← SetupGrp(1n)
(pk, sk) ← Gen(gp)

(M, state) ← ADec(sk, ·)(1n, pk)

m, m̃
R
← M

c ← Enc(pk,m)
(R, c) ← ADec′(sk, ·)(1n, state, c)

m← Dec(sk, c)


,

whereM denotes a space of valid, equally long messages, R ⊆ M ×M∗ denotes an relation, Dec(sk, ·) is an oracle
that gets a ciphertext c from the adversary and returns Dec(sk, c) and Dec′(sk, ·) is the same, except that it returns
⊥ on input c .

An encryption is IND-CCA2 secure if and only if it is NM-CCA2 secure [13].

Our Instantiation. We will make use of two different IND-CCA2-secure encryption schemes:
• We implicitly use the encryption scheme by Cash et al. [24] to realize the secure channels underlying our
model.
• We use a variant of Camenisch et al. [16] to instantiate the explicit encryption scheme E1 for the deposit
Wallet IDs.

52 M. Hoffmann, V. Fetzer, M. Nagel, A. Rupp, R. Schwerdt • P4TC

The former scheme is based on the TWIN-DH assumption and is used to setup a session key for a symmetric
encryption of all protocol messages (cp. Appendix C.2.6) in the usual way.

The latter scheme is an adapted variant of the structure-preserving, IND-CCA2 secure encryption scheme by
Camenisch et al. [16]. Thus, some remarks are in order. The original scheme is formalized for a symmetric type-1
pairing, but we need a scheme that is secure in the asymmetric type-3 case. For the conversion we followed the
generic transformation proposed by Abe et al. [2] with some additional, manual optimizations. The transformed
scheme encrypts vectors of G1-elements and is secure under the co-DLIN assumption (cp. Definition C.4) which
holds in the generic group model. This follows automatically from [2] (or can also be easily seen by inspecting
the original proof in [16]). We present the modified scheme in full detail.

Definition C.10 (Type-3 variant of Camenisch et al. [16]). Let gp := (G1,G2,GT, e,p,д1,д2) ← SetupGrp(1n) be
as in Definition C.1. Let ℘ be the dimension of the message space G℘

1 . The algorithms Gen, Enc and Dec are
depicted in Fig. 17.

We instantiate this scheme with ℘ = ℓ + 2.

C.2.6 Symmetric Encryption. We use standard definitions for symmetric encryption schemes and corresponding
security notions.

Definition C.11 (Symmetric Encryption). A symmetric encryption scheme E := (Gen, Enc,Dec) consists of three
PPT algorithms:
• Gen(1n) outputs a (random) key k .
• Enc(k,m) takes a key k and a plaintext messagem ∈ M and outputs a ciphertext c .
• Dec(k, c) takes a key k and a ciphertext c and outputs a plaintext messagem or ⊥. We assume that Dec is
deterministic.

As for asymmetric encryption, we require correctness in the usual sense.
We now define a multi-message version of IND-CCA2 security. It is a well-known fact that IND-CCA2 security

in the multi-message setting is equivalent to standard IND-CCA2 security. (This can be shown via a standard
hybrid argument.)

Definition C.12 (IND-CCA2-Security for Symmetric Encryption). A symmetric encryption scheme E is IND-
CCA2-secure if for all PPT adversaries A it holds that the advantage AdvIND-CCA-symE,A (1n) defined by�����������

Pr


b = b ′

�����������
k ← Gen(1n)

(state, j,m0,m1) ← A
Enc(k, ·),Dec(k, ·)(1n)

b ← {0, 1}
c∗ ← (Enc(k,mb,1), . . . , Enc(k,mb, j))

b ′ ← AEnc(k, ·),Dec′(k, ·)(state, c∗)


−

1
2

�����������
is negligible in n, where m0,m1 are two vectors of j ∈ N bitstrings each such that for all 1 ≤ i ≤ j:

��m0,i
�� = ��m1,i

��,
Enc(k, ·) and Dec(k, ·) denote oracles that return Enc(k,m) and Dec(k, c) for am or c chosen by the adversary,
and Dec′(k, ·) is the same as Dec(k, ·), except that it returns ⊥ on input of any c∗i that is contained in c∗.

Our Instantiation. We use an IND-CCA2-secure symmetric encryption scheme in our protocol to encrypt the
exchanged protocol messages. To this end, we combine an IND-CCA2-secure asymmetric encryption (see Appen-
dix C.2.5) with an IND-CCA2-secure symmetric encryption in the usual KEM/DEM approach. The symmetric
encryption can for example be instantiated with AES in CBC mode together with HMAC based on the SHA-256
hash function. The result will be IND-CCA2-secure if AES is a pseudo-random permutation and the SHA-256
compression function is a PRF when the data input is seen as the key [12].

M. Hoffmann, V. Fetzer, M. Nagel, A. Rupp, R. Schwerdt • P4TC 53

Gen(gp, ℘)

parse (G1,G2,GT, e,p,д1,д2) := gp

α1, . . . ,α℘, β0, . . . , β3,γ1, . . . ,γ℘
R
← Z3

p

sk := ({αi }i=1, ...,℘, {βi }i=0, ...,3, {γi }i=1, ...,℘)

ξ1, . . . , ξ3
R
← Z∗p

ȟ1 := дξ1
1 , ȟ2 := дξ2

1 , ȟ3 := дξ3
1

ĥ1 := дξ1
2 , ĥ2 := дξ2

2 , ĥ3 := дξ3
2

xi,1 := ȟαi,11 ȟ
αi,3
3 , xi,2 := ȟαi,22 ȟ

αi,3
3 , for i = 1, . . . , ℘

yi,1 := ĥβi,11 ĥ
βi,3
3 , yi,2 := ĥβi,22 ĥ

βi,3
3 , for i = 0, . . . , 3

zi,1 := ĥγi,11 ĥ
γi,3
3 , zi,2 := ĥγi,22 ĥ

γi,3
3 , for i = 1, . . . , ℘

pk :=
(
ȟ1, ȟ2, ȟ3, ĥ1, ĥ2, ĥ3,

{xi,1,xi,2}i=1, ...,℘, {yi,1,yi,2}i=0, ...,3, {zi,1, zi,2}i=1, ...,℘
)

return (pk, sk)

(a) Key generation algorithm Gen

Enc(pk,m)

parse
(
ȟ1, ȟ2, ȟ3, ĥ1, ĥ2, ĥ3, {xi,1,xi,2}i=1, ...,℘,

{yi,1,yi,2}i=0, ...,3, {zi,1, zi,2}i=1, ...,℘
)

:= pk

r , s
R
← Zp

ǔ1 := ȟr1 ǔ2 := ȟs2 ǔ3 := ȟr+s3

û1 := ĥr1 û2 := ĥs2 û3 := ĥr+s3
ci =mix

r
i,1x

s
i,2 for i = 1, . . . , ℘

v =
3∏
i=0

e
(
ǔi ,y

r
i,1y

s
i,2

) ℘∏
i=1

e
(
ci , z

r
i,1z

s
i,2

)
with ǔ0 := д1

c := (u, c,v) with u := (ǔ1, ǔ2, ǔ3, û1, û2, û3) and c := (c1, . . . , c℘)

return (c)

(b) Encryption algorithm Enc

Dec(sk, c)

parse ({αi }i=1, ...,℘, {βi }i=0, ...,3, {γi }i=1, ...,℘) := sk

parse (u, c,v) := c, (ǔ1, ǔ2, ǔ3, û1, û2, û3) := u and (c1, . . . , c℘) := c
ǔ0 := д1

if v ,
3∏
i=0

e
(
ǔi , û

βi,1
1 û

βi,2
2 û

βi,3
3

) ℘∏
i=1

e
(
ci , û

γi,1
1 û

γi,2
2 û

γi,3
3

)
abort

if e (ǔi ,д2) , e (д1, ûi) for any i ∈ {1, 2, 3} abort

mi := ciǔ
−αi,1
1 ǔ

−αi,2
2 ǔ

−αi,3
3 for i ∈ {1, . . . , ℘}

m := (m1, . . . ,m℘)

return (m)

(c) Decryption algorithm Dec

Fig. 17. The adapted CCA-secure encryption scheme by Camenisch et al. [16] with parameter ℘ and message space G℘
1

C.2.7 Pseudo-Random Functions. A pseudo-random function (PRF) F : K × X → Y is a keyed function whose
output cannot be distinguished from randomness, i.e., any PPT adversary given oracle access to either F (k, ·) or a
randomly chosen function R : X → Y, cannot distinguish between them with non-negligible probability. More
precisely, a PRF—more precisely a family of PRF’s in the security parameter 1n—is defined as follows.

54 M. Hoffmann, V. Fetzer, M. Nagel, A. Rupp, R. Schwerdt • P4TC

Definition C.13. A (group-based) pseudo-random function (PRF) PRF := (SetupGrp,Gen, Eval) consists of three
PPT algorithms:
• SetupGrp takes as input a security parameter 1n and outputs public parameters gp. We assume that gp is
given as implicit input to all algorithms. The input domain Xgp, the key space Kgp, and the codomain Ygp
may all depend on gp.
• Gen takes gp as input and outputs a key k ∈ Kgp. (Typically, we have k

R
← Kgp.)

• Eval is a deterministic algorithm which takes as input a key k ∈ Kgp and a value x ∈ Xgp, and outputs
some y ∈ Ygp. Usually, we simply write y = F (k,x) for short.

We say that PRF is secure if for all PPT adversaries A it holds that the advantage Advprf
A
(1n) defined by����������

Pr
[

1← AF (k, ·)(gp)

����� gp← SetupGrp(1n),
k ← Gen(gp)

]
− Pr

[
1← AR(·)(gp)

����� gp← SetupGrp(1n),

R
R
← {R : Xgp → Ygp}

]
����������

is negligible in n.

Our Instantiation. As we want to efficiently prove statements about PRF outputs, we use an efficient algebraic
construction, namely the Dodis-Yampolskiy PRF [34]. This function is defined by F (k,x) : Z2

p → G1, (k,x) 7→ д
1

x+k
1 ,

where k
R
← Zp is the random PRF key. It is secure for inputs {0, . . . , nPRF} ⊂ Zp under the nPRF-DDHI assumption.

This is a family of increasingly stronger assumptions which is assumed to hold for asymmetric bilinear groups.

C.3 Types of Equations Supported by GS-NIZKs
Let SetupGrp be a bilinear group generator (cf. Definition C.1) for which the SXDH assumption holds and gp :=
(G1,G2,GT, e,p,д1,д2,дT) ← SetupGrp(1n) denotes the output of SetupGrp. Furthermore, let X1, . . . ,Xm1 ∈ G1,
x1, . . . ,xm2 ∈ Zp, Y1, . . . ,Ym3 ∈ G2, and y1, . . . ,ym4 ∈ Zp denote variables in the following types of equations:
• Pairing-Product Equation (PPE):

m3∏
i=1

e (Ai ,Yi)
m1∏
i=1

e (Xi ,Bi)
m1∏
i=1

m3∏
j=1

e (Xi ,Yi)
γi, j = tT

for constants Ai ∈ G1, Bi ∈ G2, tT ∈ GT, γi, j ∈ Zp.
• Multi-Scalar Equation (MSE) over G1:

m4∏
i=1

A
yi
i

m1∏
i=1

Xbi
i

m1∏
i=1

m4∏
j=1

X
γi, jyj
i = t1

for constants Ai , t1 ∈ G1, bi ,γi, j ∈ Zp.
• Multi-Scalar Equation (MSE) over G2:

m2∏
i=1

Bxii

m3∏
i=1

Y ai
i

m2∏
i=1

m3∏
j=1

Y
γi, jxi
j = t2

for constants Bi , t2 ∈ G2, ai ,γi, j ∈ Zp.

M. Hoffmann, V. Fetzer, M. Nagel, A. Rupp, R. Schwerdt • P4TC 55

• Quadratic Equation (QE) over Zp:
m4∑
i=1

aiyi +
m2∑
i=1

xibi +
m2∑
i=1

m4∑
j=1

γi, jxiyj = t

for constants ai ,bi ,γi, j , t ∈ Zp.
Let Lgp be a language containing statements described by the conjunction of n1 pairing-product equations over
gp, n2 multi-scalar equations over G1, n3 multi-scalar equations over G2, and n4 quadratic equations over Zp,
where ni ∈ N0 are constants, as well as by witnesses

w = (X1, . . . ,Xm1 ,x1, . . . ,xm2 ,Y1, . . . ,Ym3 ,y1, . . . ,ym4) ,

wheremi ∈ N0. Then the Groth-Sahai proof system for Lgp, as introduced by [38], is perfectly correct, perfectly
sound, and satisfies Fgp-extractability [35, 38] for

Fgp : Gm1
1 × Z

m2
p ×G

m3
2 × Z

m4
p → Gm1

1 ×G
m2
1 ×G

m3
2 ×G

m4
2

with
Fgp(w) := ((Xi)i ∈[m1], (д

xi
1)i ∈[m2], (Yi)i ∈[m3], (д

yi
2)i ∈[m4]).

26

It is also known to be composable zero-knowledge [35, 38] as long as for all PPEs in Lgp holds that either
• tT = 1 or
• the right-hand side of the PPE can be written as

∏k
i=1 e (Ai ,Bi) for constants Ai ∈ G1, Bi ∈ G2, such that

for each i DLOG(Ai) or DLOG(Bi) is known.
In the latter case, hint from Definition C.5 would contain these discrete logarithms which would simply be put
(as additional elements) into the simulation trapdoor tdspok. Also note that if these discrete logarithms are not
known, there is a workaround which consists of adding new helper variables to Lgp [38].

D FULL PROTOCOL DESCRIPTION
In this appendix we describe and define a real protocol πP4TC that implements our toll collection system FP4TC.
We say

Definition D.1 (P4TC Scheme). A protocol π is called a privacy-preserving electronic toll collection scheme, if it
UC-realizes FP4TC.

The proof that πP4TC is a UC-realization of FP4TC is postponed to Appendix F. The style of the presentation
follows the same lines as the presentation of the ideal model FP4TC in Appendix B: Although πP4TC is a single,
monolithic protocol with different tasks, the individual tasks are presented as if they were individual protocols.

While in the ideal model all information is kept in a single, pervasive, trustworthy database, in the real model
such a database does not exist. Instead, the state of the system is distributed across all parties. Each party locally
stores a piece of information: The user owns a “user wallet”, which is updated during each transaction, the RSU
collects “double-spending tags” as well as “proof of participation challenges”, which are periodically sent to the
TSP, and the TSP creates and keeps “hidden user trapdoors” for each wallet issued. A precise definition what is
stored by which party is depicted in Fig. 18. For typographic reasons we additionally split the presentation of
most tasks into a wrapper protocol and a core protocol. Except for a few cases, there is a one-to-one correspondence
between wrapper and core protocols. The wrapper protocols have the same input/output interfaces as their
ideal counterparts and describe steps that are executed by each party locally before and after the respective core
protocol. These steps include loading keys, parsing the previously stored state, persisting the new state after
26F acts as identity function on group elements a ∈ G1 and b ∈ G2 but returns дs1 ∈ G1 or дs2 ∈ G2 for exponents s ∈ Zp .

56 M. Hoffmann, V. Fetzer, M. Nagel, A. Rupp, R. Schwerdt • P4TC

UC-Protocol πP4TC
I. Local State
(1) The TSP internally records:
• It’s public and private key (pkT , skT).
• A self-signed certificate certR

T
.

• A set HTD of hidden user trapdoors.
• A (partial) mapping {pkR 7→ aR} of RSU attributes.

(2) Each RSU internally records:
• It’s public and private key (pkR , skR).
• A certificate certR signed by the TSP.
• Sets Ωdsp, Ωbl and Ωpp

R
of transaction information for double-spending detection, blacklisting and prove participation

respectively.
(3) Each user internally records:
• His public and private key (pkU , skU).
• A set {τ } of all past tokens issued to him.
• A set Ωpp

U
of transaction information for prove participation.

II. Behavior
• DR Registration (Fig. 20)
• TSP Registration (Fig. 22)
• RSU Registration (Fig. 24)
• User Registration (Fig. 26)
• RSU Certification (Fig. 28)

• Wallet Issuing (Fig. 30)
• Debt Accumulation (Fig. 32)
• Debt Clearance (Fig. 34)

• Prove Participation (Fig. 36)
• Double-Spending Detection (Fig. 38)
• Guilt Verification (Fig. 39)
• Blacklisting and Recalculation (Fig. 40)

Fig. 18. The UC-protocol πP4TC

the core protocol has returned, etc. The core protocols describe the actual interaction between parties and what
messages are exchanged.
This dichotomy between wrapper and core protocols is lifted for four exceptions:
(1) We give an algorithm for the setup of the system (cf. Fig. 19) which explains how the CRS is generated. Of

course, there is no wrapper protocol because setup of the CRS is not even part of our protocol but part of
the setup assumption and provided by FCRS.

(2) We describe a “utility algorithm” WalletVerification (cf. Fig. 42). This algorithm has no purpose on its own,
but simple collects some shared code of multiple tasks.

(3)+(4) We only have “wrapper protocols” for the tasks Double-Spending Detection and Guilt Verification (cf.
Figs. 38 and 39) because they are so simple that splitting it each into two yields no advantage.

D.1 Secure Authenticated Channels
In our system, all protocol messages are encrypted using CCA-secure encryption. For this purpose, a new session
key chosen by the user is encrypted under the public key of an RSU/TSP for each interaction. Furthermore, we
make use of fully authenticated channels. The only exception to this is the task of Debt Accumulation where only
the participating RSU authenticates itself to the user who in turn remains anonymous. We omit these encryptions
and authentications when describing the protocols.

M. Hoffmann, V. Fetzer, M. Nagel, A. Rupp, R. Schwerdt • P4TC 57

Setup(1n ,B)
gp := (G1,G2,GT, e,p,д1,д2) ← SetupGrp(1n)

CRS1
com ← C1.Gen(gp)

CRS2com ← C2.Gen(gp)

CRSpok ← SetupPoK(gp)

CRS := (gp,B,CRS1
com,CRS

2
com,CRSpok)

return CRS

Fig. 19. System Setup Algorithm

D.2 Wallets
A central component of our toll collection system is the wallet that is created during Wallet Issuing. It is of the
form

τ := (s,ϕ,xnext, λ, aU , cR ,dR ,σR , certR , cT ,dT ,σT ,b,unext1).

Some of the components are fixed after creation, some change after every transaction. The fixed components
consist of the wallet ID λ (which is also used as the PRF seed), the user attributes aU , the TSP commitment cT (a
commitment on λ and the secret user key skU), its corresponding opening dT and a signature σT on cT and aU
created by the TSP.
The alterable components consist of the RSU commitment cR (a commitment on λ, b, unext1 and xnext), its

corresponding opening dR , a signature σR on cR and s created by a RSU, the balance b, the double-spending mask
unext1 for the next transaction, the PRF counter xnext for the next interaction, a RSU certificate certR and the serial
number s and fraud detection ID ϕ := PRF(λ,xnext − 1) for the current transaction. These components change
after each interaction with an RSU via the Debt Accumulation task.
In the following, a protocol or algorithm for each task is presented. For a better overview, it is depicted in

Fig. 1 which parties are involved in each task (except for some registration tasks). Also, the used variables are
summarized in Tables 4 and 5.

D.3 System Setup
To setup the system once (see Fig. 19), the public parameter CRS must be generated in a trustworthy way. The
CRS CRS consists of a description of the underlying algebraic framework gp, a splitting base B and the individual
CRSs for the used commitments and zero-knowledge proofs. We assume that the CRS is implicitly available to all
protocols and algorithms. Either a number of mutually distrusting parties run a multi-party computation (using
some other sort of setup assumption) to generate the CRS or a commonly trusted party is charged with this task.
As a trusted-third party (the DR) explicitly participates in our system (for resolving disputes), this party could
also run the system setup.

D.4 Registration
The registration algorithms of DR, T , R andU are all presented with a wrapper protocol πP4TC (see Figs. 20, 22,
24 and 26) and a core protocol (see Figs. 21, 23, 25 and 27). The wrapper protocol interacts with other UC entities,
pre-processes the inputs, post-processes the outputs and internally invokes the core protocols. In the following,
only the mechanics of the core protocols are explicitly described.

58 M. Hoffmann, V. Fetzer, M. Nagel, A. Rupp, R. Schwerdt • P4TC

Table 5. Notation that only occurs in the real protocol

Identifier Domain Description

skDR Z2ℓ+8
p secret DR key

skT Z
j+3
p × Z

y+6
p × Z4

p secret TSP key
pkT
T

G
j+3
1 public TSP commitment signing key (part of pkT)

skT
T

Z
j+3
p secret TSP commitment signing key (part of skT)

pkcert
T

G3
1 ×G

y+3
2 public certification key (part of pkT)

skcert
T

Z
y+6
p secret certification key (part of skT)

pkR
T

G3
1 ×G2 public TSP’s RSU commitment signing key (part of pkT)

skR
T

Z4
p secret TSP’s RSU commitment signing key (part of skT)

skR Z4
p secret RSU key

skU Zp secret user key

cT G2 TSP commitment
dT G1 decommitment of cT
σT G2

2 ×G1 signature on cT and aU
cR G2 RSU commitment
dR G1 decommitment of cR
σR G2

2 ×G1 signature on cR and s

certR G3
1 ×G

y
1 × (G

2
2 ×G1) RSU certificate

certR
T

G3
1 ×G

y
1 × (G

2
2 ×G1) TSP certificate

σ cert
R

G2
2 ×G1 signature on pkR and aR

σ cert
T

G2
2 ×G1 signature on pkR

T
and aT

chid G2 hidden ID
dhid G1 opening of hidden ID
c ′seed G2 commitment on the user half of the wallet ID
d ′seed G1 opening of c ′seed
c ′′ser G2

1 commitment on the RSU half of the serial number
d ′′ser Z2

p opening of c ′′ser
ωdsp G1 × Zp × Zp transaction information for double-spending
ωbl G1 × Zp transaction information for blacklisting
ω
pp
U

G1 ×G2 ×G1 user transaction information prove participation
ω
pp
R

G1 ×G2 RSU transaction information for prove participation

u1 Zp double-spending mask
u2 Zp double-spending randomness
t Zp double-spending tag

htd G1 ×G1 × Zp × ((G3
1 ×G

3
2) ×G

ℓ+2
1 ×GT) hidden user trapdoor

HTD set of (G1 ×G1 × Zp × ((G3
1 ×G

3
2) ×G

ℓ+2
1 ×GT)) elements set of hidden user trapdoors

nPRF N maximum value of the PRF counter

M. Hoffmann, V. Fetzer, M. Nagel, A. Rupp, R. Schwerdt • P4TC 59

UC-Protocol πP4TC (cont.) – Task DR Registration
DR input: (register)
(1) If a key pair (pkDR, skDR) has already been recorded, output ⊥ and abort.
(2) Obtain CRS CRS from FCRS.
(3) Run (pkDR, skDR) ← DRRegistration(CRS) (see Fig. 21).
(4) Record (pkDR, skDR) internally and call Gbb with input (register, pkDR).

DR output: (pkDR)

Fig. 20. The UC-protocol πP4TC (cont. from Fig. 18)

DRRegistration(CRS)

parse (gp,B,CRS1
com,CRS

2
com,CRSpok) := CRS

(pkDR, skDR) ← E.Gen(gp)

return (pkDR, skDR)

Fig. 21. DR Registration Core Protocol

UC-Protocol πP4TC (cont.) – Task TSP Registration
TSP input: (register, aT)
(1) If a key pair (pkT , skT) has already been recorded, output ⊥ and abort.
(2) Obtain CRS CRS from FCRS.
(3) Run (pkT , skT , certRT) ← TSPRegistration(CRS, aT) (see Fig. 23).
(4) Record (pkT , skT) and (certRT) internally and call Gbb with input (register, pkT).

TSP output: (pkT)

Fig. 22. The UC-protocol πP4TC (cont. from Fig. 18)

TSPRegistration(CRS, aT)

parse (gp,B,CRS1
com,CRS

2
com,CRSpok) := CRS

(pkT
T
, skT
T
) ← S.Gen(gp)

(pkcert
T
, skcert
T
) ← S.Gen(gp)

(pkR
T
, skR
T
) ← S.Gen(gp)

(pkT , skT) :=
(
(pkT
T
, pkcert
T
, pkR
T
), (skT

T
, skcert
T
, skR
T
)
)

σ cert
T
← S.Sgn(skcert

T
, (pkR

T
, aT))

certR
T

:= (pkR
T
, aT ,σ cert

T
)

return (pkT , skT , cert
R
T
)

Fig. 23. TSP Registration Core Protocol

60 M. Hoffmann, V. Fetzer, M. Nagel, A. Rupp, R. Schwerdt • P4TC

UC-Protocol πP4TC (cont.) – Task RSU Registration
RSU input: (register)
(1) If a key pair (pkR , skR) has already been stored, output ⊥ and abort.
(2) Obtain CRS CRS from FCRS.
(3) Run (pkR , skR) ← RSURegistration(CRS) (see Fig. 25).
(4) Store (pkR , skR) internally and call Gbb with input (register, pkR).

RSU output: (pkR)

Fig. 24. The UC-protocol πP4TC (cont. from Fig. 18)

RSURegistration(CRS)

parse (gp,B,CRS1
com,CRS

2
com,CRSpok) := CRS

(pkR , skR) ← S.Gen(gp)

return (pkR , skR)

Fig. 25. RSU Registration Core Protocol

UC-Protocol πP4TC (cont.) – Task User Registration
User input: (register)
(1) If a key pair (pkU , skU) has already been stored, output ⊥ and abort.
(2) Obtain CRS CRS from FCRS.
(3) Run (pkU , skU) ← UserRegistration(CRS) (see Fig. 27).
(4) Store (pkU , skU) internally and call Gbb with input (register, pkU).

User output: (pkU)

Fig. 26. The UC-protocol πP4TC (cont. from Fig. 18)

UserRegistration(CRS)

parse (gp,B,CRS1
com,CRS

2
com,CRSpok) := CRS

y
R
← Zp

(pkU , skU) := (дy1 ,y)
return (pkU , skU)

Fig. 27. User Registration Core Protocol

The DR computes a key pair (pkDR, skDR) which can be used to remove the unlinkability of user transactions
in case of a dispute between the user and the TSP (see Figs. 20 and 21). The DR could be a (non-governmental)
organization trusted by both, users to protect their privacy and the TSP to protect operator security.

M. Hoffmann, V. Fetzer, M. Nagel, A. Rupp, R. Schwerdt • P4TC 61

UC-Protocol πP4TC (cont.) – Task RSU Certification
RSU input: (certify)
TSP input: (certify, aR)
(1) At the RSU side:
• Load the internally recorded (pkR , skR).⊥

• Receive pkT from the bulletin-board Gbb for PID pidT .⊥
(2) At the TSP side:
• Load the internally recorded (pkT , skT).⊥

• Receive pkR from the bulletin-board Gbb for PID pidR .⊥
• Check that no mapping pkR 7→ a′

R
has been registered before, else output ⊥ and abort.

(3) Both sides: Run the code of RSUCertification between the RSU and the TSP (see Fig. 29)
((certR) , (OK)) ← RSUCertification

〈
R(pkT , pkR),T(pkT , skT , pkR , aR)

〉
.

(4) At the RSU side:
• Parse aR from certR .
• Record certR internally.

(5) At the TSP side:
• Record pkR 7→ aR internally.

RSU output: (aR)
TSP output: (OK)

⊥If this does not exist, output ⊥ and abort.

Fig. 28. The UC-protocol πP4TC (cont. from Fig. 18)

The TSP must also generate a key pair (see Figs. 22 and 23). Therefore, the TSP generates several signature
key pairs (pkT

T
, skT
T
), (pkcert

T
, skcert
T
), (pkR

T
, skR
T
), where skT

T
is used in the Wallet Issuing task to sign the TSP

commitment cT and the user attributes aU , skcertT is used to sign RSU public keys in the RSU Certification task
and skR

T
is used in the Wallet Issuing task to sign the RSU commitment cR and the serial number s in place of an

RSU. The TSP also generates a certificate certR
T
for its own key pkR

T
.

Each RSU must generate a key pair as well (see Figs. 24 and 25). For that purpose, each RSU generates a
signature key pair (pkR , skR) that is used in the Debt Accumulation task to sign the RSU commitment cR .

Each user also has to generate a key pair (see Figs. 26 and 27). The public key pkU will be used to identify the
user in the system and is assumed to be bound to a physical ID such as a passport number, social security number,
etc. Of course, for this purpose the public key needs to be unique. We assume that ensuring the uniqueness of
user public keys as well as verifying and binding a physical ID to them is done “out-of-band”, e.g., by the TSP,
before participating in the Wallet Issuing task.

D.5 RSU Certification
The RSU Certification task is executed between R and T when a new RSU is deployed into the field. The task is
presented in two parts: a wrapper protocol πP4TC (see Fig. 28) and a core protocol RSUCertification (see Fig. 29).
The wrapper protocol interacts with other UC entities, pre-processes the input and post-processes the output.

62 M. Hoffmann, V. Fetzer, M. Nagel, A. Rupp, R. Schwerdt • P4TC

R(pkT , pkR) T (pkT , skT , pkR , aR)

parse (pkT
T
, pkcert
T
, pkR
T
) := pkT parse (pkT

T
, pkcert
T
, pkR
T
) := pkT

parse (skT
T
, skcert
T
, skR
T
) := skT

σ cert
R
← S.Sgn(skcert

T
, (pkR , aR))

certR := (pkR , aR ,σ
cert
R
)

certR

parse (pk′
R
, aR ,σ cert

R
) := certR

if S.Vfy(pkcert
T
,σ cert
R
, (pkR , aR)) = 0

return ⊥
return (certR) return (OK)

Fig. 29. RSU Certification Core Protocol

The wrapper protocol internally invokes the core protocol

((certR) , (OK)) ← RSUCertification
〈
R(pkT , pkR),T(pkT , skT , pkR , aR)

〉
.

In the core protocol, the TSP certifies the validity of the RSU public key and stores the certificate on the RSU.
Note that the public key of an RSU pkR and the associated certificate certR has to be refreshed from time to

time. For the ease of presentation we assume that the same RSU (identified by its PID pidR) can only be registered
once. In other words, if the (physically identical) RSU is removed from the field, goes to maintenance and is
re-deployed to the field, we consider this RSU a “new” RSU.

D.6 Wallet Issuing
The Wallet Issuing task is executed betweenU and T . It is executed at the beginning of each billing period to
generate a fresh wallet for the user. The task is presented in two parts: a wrapper protocol πP4TC (see Fig. 30) and a
core protocolWalletIssuing (see Fig. 31). The wrapper protocol interacts with other UC entities, pre-processes the
input, post-processes the output and checks the validity of the created wallet by executing theWalletVerification
algorithm (see Fig. 42) after the core protocol. The wrapper protocol internally invokes the core protocol

((τ) , (s, htd)) ←WalletIssuing
〈
U(pkDR, pkU , skU),T(pkDR, skT , aU , cert

R
T
, blT)

〉
.

The joint input of the core protocol is the public key of the DR pkDR. The user additionally obtains its public and
secret key pair (pkU , skU). The TSP also gets his own secret key skT , the attribute vector aU for the user, its
own certificate certR

T
and the TSP blacklist blT as input.

The protocol fulfills four objectives:
(1) Jointly computing a fresh and random wallet ID for the user that is only known to the user.
(2) Storing this wallet ID in a secret form at the TSP such that it can only be recovered by the DR in the case

that the user conducts a fraud.
(3) Jointly computing a fresh and random serial number for this transaction.
(4) Creating a new wallet for the user.
For the first objective, both parties randomly choose shares of the wallet ID λ′ and λ′′, respectively, that

together form the wallet ID λ := λ′ + λ′′. To this end, the parties engage in the first two message of a Blum coin

M. Hoffmann, V. Fetzer, M. Nagel, A. Rupp, R. Schwerdt • P4TC 63

UC-Protocol πP4TC (cont.) – Task Wallet Issuing
User input: (issue)
TSP input: (issue, aU , blT)
(1) At the user side:
• Load the internally recorded (pkU , skU).⊥

• Receive pkT from the bulletin-board Gbb for PID pidT .⊥

• Receive pkDR from the bulletin-board Gbb for PID pidDR.⊥
(2) At the TSP side:
• Load the internally recorded (pkT , skT).⊥
• Load the internally recorded certR

T
.⊥

• Receive pkDR from the bulletin-board Gbb for PID pidDR.⊥
(3) Both sides: Run the code of WalletIssuing between the user and the TSP (see Fig. 31)

((τ) , (s, htd)) ←WalletIssuing
〈
U(pkDR, pkU , skU),T(pkDR, skT , aU , cert

R
T
, blT)

〉
.

(4) At the user side:
• Run the code ofWalletVerification(pkT , pkU ,τ) (see Fig. 42).
• If WalletVerification returns 0, output ⊥ and abort.
• Record τ internally.
• Parse s and aU from τ .

(5) At the TSP side:
• Insert htd into HTD.

User output: (s, aU)
TSP output: (s)

⊥If this does not exist, output ⊥ and abort.

Fig. 30. The UC-protocol πP4TC (cont. from Fig. 18)

toss and omit the last message. This way, the wallet ID λ is fixed and known by the user, but remains secret to
the TSP.

The second objective requires some sort of key-escrow mechanism. Ideally, the user would simply encrypt the
wallet ID λ under the public key pkDR of the DR and prove to the TSP that the encrypted value is consistent to
the committed shares in zero-knowledge. Unfortunately, we are unaware of a CCA-secure encryption scheme
whose message space equals the key space of our PRF underlying the wallet (i.e., Zp) and that is compatible to the
GS-NIZK proof system (i.e., is algebraic). Moreover, it is impossible to recover λ from дλ1 due to the hardness of the
DLOG problem inG1. Therefore, the user splits its share λ′ into λ′0, . . . , λ

′
ℓ−1 ∈ {0, . . . ,B−1} s.t. λ′ =

∑ℓ−1
i=0 λ

′
i · B

i

for some base B. The base B is chosen in a way that it is feasible for the DR to recover λ′i from д
λ′i
1 in a reasonable

amount of time (e.g., B = 232). Then the user encrypts a vector of all дλ
′
i

1 together with the TSP’s share дλ′′1 and
its own public key pkU under the public key pkDR of the DR and sends the ciphertext e∗ to the TSP. The TSP’s
share дλ′′1 and the public key pkU are embedded into the ciphertext in order to bind it to the user and to rule out
malleability attacks. The TSP creates the hidden user trapdoor as htd := (pkU , s, λ′′, e∗). In the case that the user
commits a fraud, the TSP sends the htd for each wallet of the fraudulent user to the DR and the DR recovers the
wallet ID λ for each wallet. For more details see the Blacklisting and Recalculation task in Fig. 41.

64 M. Hoffmann, V. Fetzer, M. Nagel, A. Rupp, R. Schwerdt • P4TC

U(pkDR, pkU , skU) T (pkDR, skT , aU , cert
R
T
, blT)

parse (skT
T
, skcert
T
, skR
T
) := skT

s ′
R
← G1 s ′′

R
← G1

λ′i
R
← {0, . . . ,B − 1} for i ∈ {0, . . . , ℓ − 1}

λ′ :=
ℓ−1∑
i=0

λ′i · B
i λ′′

R
← Zp

(c ′seed,d
′
seed) ← C1.Com(CRS1

com, λ
′) (c ′′ser,d

′′
ser) ← C2.Com(CRS2com, s

′′)

pkU , c
′
seed

if pkU ∈ blT
return blacklisted

certR
T
, aU , c

′′
ser, λ

′′

parse (pkR
T
, aT ,σ cert

T
) := certR

T

if S.Vfy(pkcert
T
,σ cert
T
, (pkR

T
, aT)) = 0

return ⊥
λ := λ′ + λ′′

Λ := дλ1 ,Λ
′ := дλ

′

1 ,Λ
′′ := дλ

′′

1 ,Λ
′
i := дλ

′
i

1 for i ∈ {0, . . . , ℓ − 1} Λ′′ := дλ
′′

1

r1, r2
R
← Zp

e∗ ← E1.Enc(pkDR, (Λ
′
0, . . . ,Λ

′
ℓ−1,Λ

′′, pkU); r1, r2)

unext1
R
← Zp

(cT ,dT) ← C1.Com(CRS1
com, (λ, skU))

(cR ,dR) ← C1.Com(CRS1
com, (λ, 0,u

next
1 , 1))

stmnt := (pkU , pkDR, e
∗, cT , cR , c

′
seed,Λ

′′, λ′′)

wit := (λ, λ′, λ′0, . . . , λ
′
ℓ−1, r1, r2,Λ,Λ

′,

Λ′0, . . . ,Λ
′
ℓ−1,д

unext
1

1 ,dT ,dR ,d
′
seed,д

skU
2)

π ← P1.Prove(CRSpok, stmnt,wit)

s ′, e∗, cT , cR ,π

s := s ′ · s ′′

stmnt := (pkU , pkDR, e
∗, cT , cR , c

′
seed,Λ

′′, λ′′)

if P1.Vfy(CRSpok, stmnt,π) = 0
return ⊥

σT ← S.Sgn(skT
T
, (cT , aU))

σR ← S.Sgn(skR
T
, (cR , s))

s ′′,d ′′ser,σT ,σR

if C2.Open(CRS2com, s
′′, c ′′ser,d

′′
ser) = 0

return ⊥
s := s ′ · s ′′

τ := (s,PRF(λ, 0), 1, λ, aU ,

cR ,dR ,σR , cert
R
T
, cT ,dT ,σT , 0,unext1) htd := (pkU , s, λ

′′, e∗)

return (τ) return (s, htd)

Fig. 31. Wallet Issuing Core Protocol

M. Hoffmann, V. Fetzer, M. Nagel, A. Rupp, R. Schwerdt • P4TC 65

The goal of the third objective is to create a truly random serial number s ∈ G1 for this transaction. To ensure
that the serial number is indeed random (and not maliciously chosen by either party), the user and the TSP
engage in another and complete Blum coin toss.

For the last objective, the user generates the TSP and RSU commitments, i.e., the fixed and the updatable part
of the wallet. He commits to the wallet ID λ and his secret user key skU for the TSP commitment cT . For the
RSU commitment cR , he commits to the wallet ID λ, the balance b := 0, a fresh double-spending mask unext1 and
the PRF counter xnext := 1. He then computes a proof showing that these commitments are formed correctly.
The proof also shows that the encryption e∗ has been honestly created and that each λ′i is smaller than B. More
precisely, P1 is used to compute a proof π for a statement stmnt from the language L(1)gp defined by

L(1)gp :=



©­­­­­­­­­­­­­­­«

pkU
pkDR

e∗

cT
cR
c′seed
Λ′′

λ′′

ª®®®®®®®®®®®®®®®¬

⊤

������������������������������������

∃ λ, λ′, λ′0, . . . , λ′ℓ−1, r1, r2 ∈ Zp ;
Λ, Λ′, Λ′0, . . . , Λ

′
ℓ−1, U

next
1 , dT, dR, d ′seed ∈ G1;

SKU ∈ G2 :

e
(
pkU, д2

)
= e (д1, SKU)

C1.Open(CRS1
com, (Λ, pkU), cT, dT) = 1

C1.Open(CRS1
com, (Λ, 1, U

next
1 , д1), cR, dR) = 1

C1.Open(CRS1
com, Λ

′, c′seed, d
′
seed) = 1

e∗ = E1.Enc(pkDR, (Λ
′
0, . . . , Λ

′
ℓ−1, Λ

′′, pkU); r1, r2)

λ = λ′ + λ′′

Λ = дλ1 , Λ′ = дλ
′

1
λ′ =

∑ℓ−1
i=0 λ

′
i · B

i

∀i ∈ {0, . . . , ℓ − 1} :
λ′i ∈ {0, . . . , B − 1}

Λ′i = д
λ′i
1



(6)

Note that the first equation in Eq. (6) actually proves the knowledge of дskU2 (rather than skU itself).27 However,
computing дskU2 without knowing skU (only given pkU) is assumed to be a hard problem (Co-CDH).
In temporal order, the protocol proceeds as follows: In the first message (from user to TSP) the user sends

its own public key pkU and starts the Blum coin toss for the wallet ID by sending c ′seed. The TSP checks if the
user’s public key is contained in the TSP blacklist blT and potentially aborts. If not, the TSP replies with with
the second message of the Blum coin toss for the wallet ID by sending its own share λ′′ and starts the other
Blum coin toss for the serial number by sending c ′′ser. Moreover, the TSP sends its own certificate certR

T
and the

attributes aU the user is supposed to incorporate into its wallet. This completes the first Blum coin toss for the
wallet ID. At this point the user knows all information to create the two commitments cT and cR of the wallet,
the hidden user trapdoor e∗ for the key-escrow mechanism and to create a proof π that everything is consistent.
In the third message (again from user to TSP) the user sends all these elements (e∗, cT , cR and π) to the TSP
together with its share s ′ of the serial number as the second message of the second Blum coin toss. If the proof π
verifies, the TSP creates two signatures: σT on cT together with aU for the fixed part of the wallet, and σR on cR
together with s on the updatable part of the wallet. Please note that at this point the serial number s := s ′ · s ′′ is
fixed and known to the TSP. In the forth message (from TSP to user) the TSP sends the signatures σT and σR
to the user and completes the Blum coin toss for the serial number by sending its share s ′′ together with the
opening information d ′′ser. At this point the user assembles all part to obtain a fully functional wallet

τ := (s,ϕ := PRF(λ, 0),xnext := 1, λ := λ′ + λ′′, aU , cR ,dR ,σR , certRT , cT ,dT ,b := 0,unext1).

27Note that proving a statement ∃skU ∈ Zp : pkU = д
skU
1 instead would not help as we can only extract дskU1 from the proof.

66 M. Hoffmann, V. Fetzer, M. Nagel, A. Rupp, R. Schwerdt • P4TC

UC-Protocol πP4TC (cont.) – Task Debt Accumulation
User input: (pay_toll, sprev)
RSU input: (pay_toll, blR)
(1) At the user side:
• Load the internally recorded (pkU , skU).⊥

• Receive pkT from the bulletin-board Gbb for PID pidT .⊥
• Load the internally recorded token τ prev for serial number sprev.⊥

(2) At the RSU side:
• Load the internally recorded (pkR , skR).⊥
• Load the internally recorded certR .⊥
• Receive pkT from the bulletin-board Gbb for PID pidT .⊥

(3) Both sides: Run the code of DebtAccumulation between the user and the RSU (see Fig. 33)©­­«
(
τ ,ω

pp
U

)
,(

aU , a
prev
R
,ωdsp,ωbl,ω

pp
R

)ª®®¬ ← DebtAccumulation

〈
U(pkT , pkU , skU ,τ

prev),

ROpricing(·, ·, ·)(pkT , certR , skR , blR)

〉
and forward calls to the pricing oracle Opricing of the form (aU , aR , a

prev
R
) to the adversary and pass the result p back.

(4) At the user side:
• Run the code of WalletVerification(pkT , pkU ,τ) (see Fig. 42).
• If WalletVerification returns 0, output ⊥ and abort.
• Record τ and ωpp

U
internally.

• Parse s , certR , p and b from τ .
• Parse aR from certR .

(5) At the RSU side:
• Record ωdsp,ωbl and ωpp

R
internally.

• Parse s from ω
pp
R
.

• Parse ϕ from ωbl.
User output: (s, aR ,p,b)
RSU output: (s,ϕ, aU , a

prev
R
)

⊥If this does not exist, output ⊥ and abort.

Fig. 32. The UC-protocol πP4TC (cont. from Fig. 18)

At the end of the protocol, the user returns the wallet τ . The TSP returns the serial number of this transaction
and the hidden user trapdoor htd.

D.7 Debt Accumulation
When a driving car passes an RSU, the Debt Accumulation task is executed between U and R. The task is
presented in two parts: a wrapper protocol πP4TC (see Fig. 32) and a core protocol DebtAccumulation (see Fig. 33).
The wrapper protocol interacts with other UC entities, pre-processes the input, post-processes the output and
lets the user execute theWalletVerification algorithm (see Fig. 42) after the core protocol has terminated. The

M. Hoffmann, V. Fetzer, M. Nagel, A. Rupp, R. Schwerdt • P4TC 67

U(pkT , pkU , skU ,τ
prev) ROpricing(·, ·, ·)(pkT , certR , skR , blR)

parse (pkT
T
, pkcert
T
, pkR
T
) := pkT parse (pkT

T
, pkcert
T
, pkR
T
) := pkT

parse (sprev,ϕprev,x , λ, aU , c
prev
R
,d

prev
R
,σ

prev
R
, certR

prev,

cT ,dT ,σT ,b
prev,u1) := τ prev

parse (pkprev
R
, aprev
R
,σ cert
R

prev
) := certR

prev parse (pkR , aR ,σ
cert
R
) := certR

ϕ := PRF(λ,x)

s ′
R
← G1 s ′′

R
← G1

unext1
R
← Zp u2

R
← Zp

(c ′
R
,d ′
R
) ← C1.Com(CRS1

com, (λ,b
prev,unext1 ,x)) (c ′′ser,d

′′
ser) ← C2.Com(CRS2com, s

′′)

u2, c
′′
ser, certR

parse (pkR , aR ,σ
cert
R
) := certR

if S.Vfy(pkcert
T
,σ cert
R
, (pkR , aR)) = 0

return ⊥
t := skUu2 + u1 mod p

(chid,dhid) ← C1.Com(CRS1
com, skU)

stmnt := (pkT
T
, pkcert
T
,ϕ, aU , a

prev
R
, chid, c

′
R
, t ,u2)

wit := (x , λ, skU ,u1, s
prev,ϕprev,дx1 ,д

λ
1 , pkU ,д

bprev

1 ,дu1
1 ,д

unext
1

1 ,

dhid,d
prev
R
,d ′
R
,dT , pk

prev
R
, c

prev
R
, cT ,σ

prev
R
,σ cert
R

prev
,σT)

π ← P2.Prove(CRSpok, stmnt,wit)

s ′,π ,ϕ, aU , a
prev
R
, chid, c

′
R
, t

stmnt := (pkT
T
, pkcert
T
,ϕ, aU , a

prev
R
, chid, c

′
R
, t ,u2)

if P2.Vfy(CRSpok, stmnt,π) = 0
return ⊥

if ϕ ∈ blR
return blacklisted

// obtains the price from the pricing oracle

// based on aU , aR , a
prev
R

and possibly

// other public-verifiable, environmental information

p ← Opricing(aU , aR , a
prev
R
)

s := s ′ · s ′′

(c ′′
R
,d ′′
R
) ← C1.Com(CRS1

com, (0,p, 0, 1))
cR := c ′

R
· c ′′
R

σR ← S.Sgn(skR , (cR , s))

s ′′,d ′′ser, cR ,d
′′
R
,σR ,p

if C2.Open(CRS2com, s
′′, c ′′ser,d

′′
ser) = 0

return ⊥
s := s ′ · s ′′

dR := d ′
R
· d ′′
R

b := bprev + p

xnext := x + 1

τ := (s,ϕ,xnext, λ, aU , cR ,dR ,σR , certR , cT ,dT ,σT ,b,unext1)

ωdsp := (ϕ, t ,u2)

ωbl := (ϕ,p)

ω
pp
U

:= (s, chid,dhid) ω
pp
R

:= (s, chid)

return (τ ,ωpp
U
) return (aU , a

prev
R
,ωdsp,ωbl,ω

pp
R
)

Fig. 33. Debt Accumulation Core Protocol

68 M. Hoffmann, V. Fetzer, M. Nagel, A. Rupp, R. Schwerdt • P4TC

wrapper protocol internally invokes the core protocol

©­«
(
τ ,ω

pp
U

)
,(

aU , a
prev
R
,ωdsp,ωbl,ω

pp
R

)ª®¬ ← DebtAccumulation
〈

U(pkT , pkU , skU ,τ
prev),

ROpricing(·, ·, ·)(pkT , certR , skR , blR)

〉
.

The user gets his public and private key, the public key of the TSP and his current wallet

τ prev := (sprev,ϕprev,x , λ, aU , c
prev
R
,d

prev
R
,σ

prev
R
, certRprev, cT ,dT ,σT ,bprev,u1)

as input. The RSU gets its own secret key and certificate, the public key of the TSP and the RSU blacklist blR as
input. It has also access to a pricing oracle Opricing(·, ·, ·), which helps it to determine the price the user has to pay.
Analogous to WalletIssuing, the RSU and the user utilize a Blum coin toss to jointly compute a fresh and

random serial number s for this transaction. The detailed description of this coin toss is therefore omitted in the
following protocol description.

The RSU starts the protocol by sending its certificate certR and a fresh double-spending randomness u2 to the
user. The user checks the validity of the certificate and uses the randomness to calculate the double-spending tag
t := skU · u2 + u1 mod p. He then calculates the fraud detection ID for the current transaction as ϕ := PRF(λ,x).
The user then proceeds by preparing the updated wallet. Therefore, he first chooses a fresh double-spending mask
unext1 and executes (c ′

R
,d ′
R
) ← C1.Com(CRS1

com, (λ,b
prev,unext1 ,x)) to commit to his wallet ID, the current balance,

the fresh double-spending mask and the current counter. He also executes (chid,dhid) ← C1.Com(CRS1
com, skU)

to create a fresh commitment on his secret user key. This commitment can be used at a later point in the Prove
Participation task (cf. Figs. 36 and 37) to prove to the TSP that the user behaved honestly in this transaction.

The user continues by using P2 to compute a proof π for a statement stmnt from the language L(2)gp defined by

L(2)gp :=



©­­­­­­­­­­­­­­­­­«

pkT
T

pkcert
T

ϕ
aU
aprev
R

chid
c′
R

t
u2

ª®®®®®®®®®®®®®®®®®¬

⊤

������������������������������������

∃ x, λ, skU, u1 ∈ Zp ; sprev, ϕprev, X , Λ, pkU,

Bprev, U1, U next
1 , dhid, d

prev
R

, d ′
R
, dT ∈ G1;

pkprev
R
∈ G3

1 ; cprev
R

, cT ∈ G2; σ prev
R

, σ cert
R

prev
,

σT ∈ G2
2 ×G1 :

C1.Open(CRS1
com, (Λ, pkU), cT, dT) = 1

C1.Open(CRS1
com, pkU, chid, dhid) = 1

C1.Open(CRS1
com, (Λ, B

prev, U1, X), c
prev
R

, dprev
R
) = 1

C1.Open(CRS1
com, (Λ, B

prev, U next
1 , X), c′

R
, d ′
R
) = 1

S.Vfy(pkT
T
, σT, (cT, aU)) = 1

S.Vfy(pkprev
R

, σ prev
R

, (cprev
R

, sprev)) = 1
S.Vfy(pkcert

T
, σ cert
R

prev
, (pkprev

R
, aprev
R
)) = 1

ϕprev = PRF(λ, x − 1), ϕ = PRF(λ, x),
t = skUu2 + u1

pkU = д
skU
1 , U1 = д

u1
1 , X = дx1 , Λ = дλ1



(7)

This proof essentially shows that the wallet τ is valid, i.e., that the commitments cT and cprev
R

are valid, bound
to the user and have valid signatures, that the certificate certRprev from the previous RSU is valid and that the
fraud detection ID ϕprev from the last transaction has been computed correctly. It also shows that chid is valid and
contains the secret user key, that cprev

R
and c ′

R
contain the same values (except for the double-spending mask) and

that the fraud detection ID ϕ and the double-spending tag t are computed correctly.
The user then sends (π ,ϕ, aU , a

prev
R
, chid, c

′
R
, t) to the RSU, who first checks whether the proof π verifies and the

fraud detection ID ϕ is on the RSU blacklist blR or not. If one of the checks fails, the RSU aborts the communication
with the user and takes certain measures. These measures should include instructing the connected camera to
take a picture of the cheating vehicle.

M. Hoffmann, V. Fetzer, M. Nagel, A. Rupp, R. Schwerdt • P4TC 69

If the tests have been passed, the RSU calculates with the help of the pricing oracle the price p the user has to
pay, depending on factors like the user’s attributes, the attributes of the current and previous RSU and auxiliary
information (e.g., the time of the day, the current traffic volume). Then the RSU does its part to update the user’s
wallet. It blindly adds the price p to the wallet balance b and increases the PRF counter x by 1 by calculating
(c ′′
R
,d ′′
R
) := C1.Com(CRS1

com, (0,p, 0, 1)). Then it computes the new RSU commitment cR by adding c ′
R
and c ′′

R

(remember that C1 is homomorphic) and also signs it along with the serial number s . The RSU then sends
(cR ,d

′′
R
,σR ,p) to the user. It also stores several transaction information: The blacklisting transaction information

ωbl := (ϕ,p) can be used at a later point in the Blacklisting and Recalculation task (cf. Fig. 40) to calculate the
total fee of a fraudulent user. The double-spending transaction information ωdsp := (ϕ, t ,u2) enables the TSP to
identify the user if he uses the old state of the wallet (with unchanged balance) in another transaction (cf. Fig. 38).
The RSU prove participation transaction information ω

pp
R

:= (s, chid) can be used later in the Prove Participation
task (cf. Fig. 36).

The user can then calculate the remaining values needed to update the wallet, e.g., increasing the counter and
the balance. Then he can construct the updated wallet

τ := (s,ϕ,xnext, λ, aU , cR ,dR ,σR , certR , cT ,dT ,σT ,b,unext1).

The user’s output is the updated wallet along with the user prove participation transaction information ω
pp
U

:=
(s, chid,dhid). The RSU’s output are the user’s attributes aU , the attributes a

prev
R

of the RSU from the previous
transaction of the user and the three transaction information ωbl, ωdsp and ωpp

R
.

D.8 Debt Clearance
After the end of a billing period, the Debt Clearance task is executed betweenU and T . The task is presented in
two parts: a wrapper protocol πP4TC (see Fig. 34) and a core protocol DebtClearance (see Fig. 35). The wrapper
protocol interacts with other UC entities, pre-processes the input and post-processes the output. The wrapper
protocol internally invokes the core protocol

((
bbill

)
,
(
pkU ,ω

bl,ωdsp
))
← DebtClearance

〈
U

(
pkT , pkU , skU ,τ

prev) ,T (
pkT

)〉
.

The user gets the public key pkT of the TSP, his own public and private key (pkU , skU) and his current wallet

τ prev := (sprev,ϕprev,x , λ, aU , c
prev
R
,d

prev
R
,σ

prev
R
, certRprev, cT ,dT ,σT ,bprev,u1)

as input. The TSP gets its own public key pkT as input.
The protocol is similar to the DebtAccumulation protocol, with the difference that the user here is not

anonymous, the wallet balance is no secret and the TSP does not give the user an updated wallet. Like in
DebtAccumulation, the TSP first sends a fresh double-spending randomness u2 to the user and the user calculates
the double-spending tag t := skUu2 + u1 mod p and the fraud detection ID ϕ for this transaction. He then
continues by preparing a proof of knowledge. More precisely, P3 is used to compute a proof π for a statement

70 M. Hoffmann, V. Fetzer, M. Nagel, A. Rupp, R. Schwerdt • P4TC

UC-Protocol πP4TC (cont.) – Task Debt Clearance
User input: (clear_debt, sprev)
TSP input: (clear_debt)
(1) At the user side:
• Load the internally recorded (pkU , skU).⊥

• Receive pkT from the bulletin-board Gbb for PID pidT .⊥
• Load the internally recorded token τ prev for serial number sprev.⊥

(2) At the TSP side:
• Load the internally recorded (pkT , skT).⊥

(3) Both sides: Run the code of DebtClearance between the user and the TSP (see Fig. 35)(
(bbill), (pkU ,ω

bl,ωdsp)
)
← DebtClearance

〈
U(pkT , pkU , skU ,τ

prev),T(pkT)
〉
.

(4) At the TSP side:
• Record ωbl and ωdsp internally.
• Parse ϕ and −bbill from ωbl.

User output: (bbill)
TSP output: (pkU ,ϕ,b

bill)

⊥If this does not exist, output ⊥ and abort.

Fig. 34. The UC-protocol πP4TC (cont. from Fig. 18)

stmnt from the language L(3)gp defined by

L(3)gp :=



©­­­­­­­­­­­­­­­­­«

pkU
pkT
T

pkcert
T

ϕ
aU
aprev
R

Bprev

t
u2

ª®®®®®®®®®®®®®®®®®¬

⊤

����������������������������

∃ λ, x, u1, skU ∈ Zp ; ϕprev, sprev, X , Λ, U1,

dprev
R

, dT ∈ G1; pkprev
R
∈ G3

1 ; cprev
R

, cT ∈ G2;
σ prev
R

, σ cert
R

prev
, σT ∈ G2

2 ×G1 :

C1.Open(CRS1
com, (Λ, pkU), cT, dT) = 1

C1.Open(CRS1
com, (Λ, B

prev, U1, X), c
prev
R

, dprev
R
) = 1

S.Vfy(pkT
T
, σT, (cT, aU)) = 1

S.Vfy(pkprev
R

, σ prev
R

, (cprev
R

, sprev)) = 1
S.Vfy(pkcert

T
, σ cert
R

prev
, (pkprev

R
, aprev
R
)) = 1

ϕprev = PRF(λ, x − 1), ϕ = PRF(λ, x),
t = skUu2 + u1

pkU = д
skU
1 , U1 = д

u1
1 , X = дx1 , Λ = дλ1



(8)

The proof is a simplified version of the one in the DebtAccumulation protocol. The balance and the public user
key are now in the statement and not in the witness and one does not need to prove anything about c ′

R
and chid.

The user then sends (pkU ,π ,ϕ, aU , a
prev
R
,bprev, t) to the TSP. Unlike in DebtAccumulation, the balance and

the user’s public key are transmitted. The TSP then checks the validity of the proof and signals the user that the
proof successfully verified.

At the end of the protocol, the TSP outputs the user’s public key pkU , the blacklisting transaction information
ωbl := (ϕ,−bprev) and the double-spending transaction information ωdsp := (ϕ, t ,u2). The user just outputs his
final debt bprev for this billing period.

M. Hoffmann, V. Fetzer, M. Nagel, A. Rupp, R. Schwerdt • P4TC 71

U(pkT , pkU , skU ,τ
prev) T (pkT)

parse (pkT
T
, pkcert
T
, pkR
T
) := pkT parse (pkT

T
, pkcert
T
, pkR
T
) := pkT

parse (sprev,ϕprev,x , λ, aU , c
prev
R
,d

prev
R
,σ

prev
R
, certR

prev,

cT ,dT ,σT ,b
prev,u1) := τ prev

parse (pkprev
R
, aprev
R
,σ cert
R

prev
) := certR

prev

ϕ := PRF(λ,x)

u2
R
← Zp

u2

t := skUu2 + u1 mod p

stmnt := (pkU , pk
T
T
, pkcert
T
,ϕ, aU , a

prev
R
,дb

prev

1 , t ,u2)

wit := (x , λ, skU ,u1, s
prev,ϕprev,дx1 ,д

λ
1 ,д

u1
1 ,d

prev
R
,dT ,

pkprev
R
, c

prev
R
, cT ,σ

prev
R
,σ cert
R

prev
,σT)

π ← P3.Prove(CRSpok, stmnt,wit)

pkU ,π ,ϕ, aU , a
prev
R
,bprev, t

stmnt := (pkU , pk
T
T
, pkcert
T
,ϕ, aU , a

prev
R
,дb

prev

1 , t ,u2)

if P3.Vfy(CRSpok, stmnt,π) = 0
return ⊥

OK

bbill := bprev bbill := bprev

ωbl := (ϕ,−bbill)

ωdsp := (ϕ, t ,u2)

return (bbill) return (pkU ,ω
bl,ωdsp)

Fig. 35. Debt Clearance Core Protocol

Note that the wallet itself is discarded. It is expected that the user and the TSP execute the Wallet Issuing task
next, to give the user a fresh wallet. After the protocol has ended, the TSP can issue an invoice to the user for the
current billing period. The specifics of the actual payment process are out of scope.

D.9 Prove Participation
The Prove Participation task is used by a user to prove to the SA that he behaved honestly at a specific Debt
Accumulation transaction. In the case that more than one vehicle is captured on a photograph taken by a RSU
camera after a fraud occurred, this protocol can be used to identify the fraudulent driver.28 The SA recovers the
identities of the users captured on the photograph and executes the Prove Participation task which each of them.
The user that is not able to prove that he honestly participated in a corresponding RSU transaction is found guilty.

28Of course, the task can also be used in the case that only one vehicle was captured on the photograph to eliminate the possibility that the
RSU falsely instructed the camera to take a photograph.

72 M. Hoffmann, V. Fetzer, M. Nagel, A. Rupp, R. Schwerdt • P4TC

UC-Protocol πP4TC (cont.) – Task Prove Participation
User input: (prove_participation)
SA input: (prove_participation, pkU , S

pp
R
)

(1) At the SA side:
• Load the internally recorded set Ωpp

R
of all prove participation transaction information with serial numbers in S

pp
R
.

(2) At the user side:
• Load the internally recorded set Ωpp

U
of all prove participation transaction information.

(3) Both sides: Run the code of ProveParticipation between the User and the SA (see Fig. 37)
((outU), (outSA)) ← ProveParticipation

〈
U(Ωpp

U
), SA(pkU , S

pp
R
,Ωpp
R
)
〉
.

User output: (outU)
SA output: (outSA)

⊥If this does not exist, output ⊥ and abort.

Fig. 36. The UC-protocol πP4TC (cont. from Fig. 18)

U(Ωpp
U
) SA(pkU , S

pp
R
,Ωpp
R
)

S
pp
R

if ∃ ω
pp
U
= (s, chid,dhid) ∈ Ωpp

U
with s ∈ Spp

R

then outU := OK

else outU := NOK

s, chid,dhid

outSA := OK

if ωpp
R
= (s, chid) < Ωpp

R

outSA := NOK

if C1.Open(CRS1
com, pkU , chid,dhid) = 0

outSA := NOK

return (outU) return (outSA)

Fig. 37. Prove Participation Core Protocol

The task is presented in two parts: a wrapper protocol πP4TC (see Fig. 36) and a core protocol ProveParticipation
(see Fig. 37). In the wrapper protocol, the SA interacts with other UC entities and processes the set Spp

R
of all

serial numbers that were recorded by the RSU that took the photo at roughly the time the photo was taken. In
particular, the SA loads the internally recorded set Ωpp

R
of all RSU prove participation transaction information

that contain serial numbers that are also in S
pp
R
. Afterwards, the wrapper protocol invokes the core protocol

((outU), (outSA)) ← ProveParticipation
〈
U(Ωpp

U
), SA(pkU , S

pp
R
,Ωpp
R
)
〉
.

M. Hoffmann, V. Fetzer, M. Nagel, A. Rupp, R. Schwerdt • P4TC 73

UC-Protocol πP4TC (cont.) – Task Double-Spending Detection
TSP input: (scan_for_fraud,ϕ)
(1) Load the internally recorded set Ωdsp of all double-spending transaction information.
(2) Pick transaction information ωdsp = (ϕ, t ,u2) and ωdsp ′ = (ϕ ′, t ′,u ′2) from the database Ωdsp, such that ϕ = ϕ ′ and

u2 , u
′
2.⊥

(3) skU := (t − t ′) · (u2 − u
′
2)
−1 mod p.

(4) pkU := дskU1 .
(5) π := skU .

TSP output: (pkU ,π)
⊥If this does not exist, output ⊥ and abort.

Fig. 38. The UC-protocol πP4TC (cont. from Fig. 18)

The SA gets the user’s public key pkU , the set S
pp
R

of serial numbers that were observed roughly at the time the
photograph was taken and the set of corresponding RSU prove participation transaction information Ωpp

R
as

input. The user gets his internally recorded set Ωpp
U

of all prove participation transaction information as input.
The protocol itself is simple. The SA first sends Spp

R
to the user who searches Ωpp

U
for a user prove participation

transaction information ω
pp
U

for which the serial number s in ω
pp
U

is also in S
pp
R
. If one is found, the user’s output

bit outU is set to OK, if none is found, outU is set to NOK (“not ok”). The user then sends ωpp
U

:= (s, chid, dhid) to
the SA and the SA checks if (s, chid) ∈ Ωpp

R
and if dhid is the opening of chid under pkU . If both checks succeed,

the SA’s output bit outSA is set to OK, if at least one check fails, outSA is set to NOK. At the end of the protocol
both parties output their bits outU and outSA, respectively.29
If the SA’s output equals NOK, the user is found guilty and appropriate measures are taken (e.g., the user gets

blacklisted).

D.10 Double-Spending Detection
The double-spending transaction information ωdsp collected by the RSUs are periodically transmitted to the TSP’s
database, which is regularly checked for two double-spending transaction information associated with the same
serial number. If the database contains two such records, the Double-Spending Detection task (see Fig. 38) can be
used by the TSP to extract the public key of the user these double-spending transaction information belong to as
well as a proof (such as his secret user key) that the user is guilty.

In particular, the task gets a serial number s as input and searches the internal database for two double-spending
transaction information ωdsp = (ϕ, t ,u2) and ωdsp ′ = (ϕ ′, t ′,u ′2) that contain the same serial number s = s ′ but
not the same double-spending randomness u2 , u

′
2. Then the fraudulent user’s secret key can be recovered as

skU := (t − t ′) · (u2 −u2)
−1 mod p. His public key is then pkU := дskU1 . The secret key skU can be used as a proof

of guilt in the Guilt Verification task (cf. Fig. 39).
Every user that is convicted of double-spending is added to the blacklist via the Blacklisting and Recalculation

task (cf. Figs. 40 and 41) and additional measures are taken (these are out of scope).

29Note that after a successful (both parties output OK) execution of the Prove Participation protocol a single transaction can be linked to the
user. But as long as the user does not get guiltlessly photographed at every RSU he passes, tracking is not possible.

74 M. Hoffmann, V. Fetzer, M. Nagel, A. Rupp, R. Schwerdt • P4TC

UC-Protocol πP4TC (cont.) – Task Guilt Verification
Party input: (verify_guilt, pkU ,π)
(1) Receive pidU from the bulletin-board Gbb for key pkU .⊥
(2) If дπ1 = pkU , then out := OK, else out := NOK.

Party output: (out)
⊥If this does not exist, output ⊥ and abort.

Fig. 39. The UC-protocol πP4TC (cont. from Fig. 18)

D.11 Guilt Verification
Whether a user is indeed guilty of double-spending can be verified using the Guilt Verification task depicted in
Fig. 39. This algorithm may be run by anyone, in particular by justice. Essentially, the algorithm checks if a given
public user key pkU and a proof of guilt π match. This is easily accomplished because they match if and only if
дπ1 = pkU holds. This equation holds if and only if π equals the user’s secret key skU that was recovered using
the Double-Spending Detection task (cf. Fig. 38).

D.12 Blacklisting and Recalculation
The Blacklisting and Recalculation task executed between the DR and TSP is used to put a user on the blacklist.
There are several reasons why a user is entered on the blacklist:

(1) A user did not submit his balance at the end of the billing period.
(2) A user did not physically pay his debt after submitting his balance.
(3) A user has been convicted of double-spending.
(4) The wallet (or the vehicle including the wallet) of a user has been stolen and the user wants to prevent the

thief from paying tolls from his account.
Blacklisted users are unable to get issued a new wallet and they also get photographed at every RSU they pass.
They may also be punished by other means (which are out of scope).

The Blacklisting and Recalculation task is presented in two parts: a wrapper protocol πP4TC (see Fig. 40) and a
core protocol BlacklistingAndRecalculation (see Fig. 41). The wrapper protocol interacts with other UC entities,
pre-processes the input and afterwards internally invokes the core protocol

((OK), (ΦU)) ← BlacklistingAndRecalculation
〈
DR(pkDR, skDR, pkDR

U
),T(HTDU)

〉
.

The DR gets as input its public and private key (pkDR, skDR) together with the public key pkDR
U

of the user to be
blacklisted. The TSP gets a set HTDU containing all his hidden user trapdoors from the current billing period as
input.30 We assume that the DR and TSP agreed upon which user is going to be blacklisted before the protocol
out-of-band.

At the beginning of the protocol the TSP sends its input HTD to the DR. The DR then recovers the corresponding
wallet ID λ for every htd := (pkT

U
, s, λ′′, e∗) ∈ HTD. To this end, the DR decrypts e∗ to get (Λ′0, . . . ,Λ

′
ℓ−1,Λ

′′, pkT
U
).

Firstly, the DR checks if the decrypted public key pkT
U
equals the expected public pkDR

U
of the correct user in

30In the case that a user owns more than one vehicle he can have more than one wallet and hence more than one hidden user trapdoor is
stored at the TSP for this user.

M. Hoffmann, V. Fetzer, M. Nagel, A. Rupp, R. Schwerdt • P4TC 75

UC-Protocol πP4TC (cont.) – Task Blacklisting and Recalculation
DR input: (blacklist_user, pkDR

U
)

TSP input: (blacklist_user, pkT
U
)

(1) At the DR side:
• Load the internally recorded (pkDR, skDR)

⊥.
• Receive pkDR

U
from the bulletin-board Gbb for PID pidDR

U
.⊥

(2) At the TSP side:
• Load internally recorded set HTD of all hidden user trapdoors and set HTDU := {htd | (pkT

U
, ·, ·, ·) ∈ HTD}.

(3) Both sides: Run the code of BlacklistingAndRecalculation between the DR and the TSP (see Fig. 41)

((OK), (ΦU)) ← BlacklistingAndRecalculation
〈
DR(pkDR, skDR, pkDR

U
),T(HTDU)

〉
.

(4) At the TSP side:
• Load the internally recorded set Ωbl of all blacklisting transaction information.
• Let Ωbl

U
be the subset of transaction entries ωbl = (ϕ,p) with fraud detection IDs ϕ ∈ ΦU .

• bbill :=
∑

ωbl∈Ωbl
U
p.

DR output: (OK)
TSP output: (bbill,ΦU)

⊥If this does not exist, output ⊥ and abort.

Fig. 40. The UC-protocol πP4TC (cont. from Fig. 18)

DR(pkDR, skDR, pk
DR
U
) T (HTDU)

HTDU

ΦU := ∅
for all htd ∈ HTDU

parse (pkT
U
, s, λ′′, e∗) := htd

(Λ′0, . . . ,Λ
′
ℓ−1,Λ

′′, pkT
U
) ← E1.Dec(skDR, e

∗)

if decryption fails ∨ Λ′′ , дλ
′′

1 ∨ pk
DR
U
, pkT

U

return ⊥

λ := λ′′ +
ℓ−1∑
i=0

DLOG(Λ′i) · B
i

ΦU ← ΦU ∪ {PRF(λ, 0), . . . ,PRF(λ,xblR)}

ΦU

return (OK) return (ΦU)

Fig. 41. Blacklisting and Recalculation Core Protocol

76 M. Hoffmann, V. Fetzer, M. Nagel, A. Rupp, R. Schwerdt • P4TC

question.31 This way, the DR cannot be tricked into recovering the wallet ID of another (possibly innocent) user.
Since each λ′i is small (λ′i < B), the DR can compute the discrete logarithms of (Λ′0, . . . ,Λ

′
ℓ−1) in a reasonable

amount of time to recover (λ′0, . . . , λ
′
ℓ−1). This algorithm is also not time-critical and is expected to be executed

only a few times per billing period. Therefore, the amount of required computation should be acceptable. Secondly,
the DR checks if the claimed TSP’s share λ′′ of the wallet ID is consistent to the decrypted Λ′′ ?

= дλ
′′

1 . (Remember
that λ′′ is directly stored in htd.) The DR calculates the wallet ID as λ = λ′′ +

∑ℓ−1
i=0 λ

′
i · B

i . Finally, the DR sends
the union of all sets {PRF(λ, 0), . . . ,PRF(λ,xblR)} of fraud detection IDs for every htd ∈ HTD to the TSP. The
blacklist parameter xblR is chosen in such a way that a user is expected to perform at most xblR executions of the
Debt Accumulation task in a single billing period. The DR’s output of the core protocol is simply OK, while the
TSP’s output is a set of fraud detection IDs.

After the core protocol has terminated, the TSP calculates the total toll amount the user owes for the billing
period in question in the wrapper protocol. To this end, the TSP calculates the subset Ωbl

U
⊆ Ωbl of all blacklisting

transaction information that correspond to the unveiled fraud detection IDs in ΦU . By summing up all the prices
in Ωbl

U
, the TSP can calculate the total fee bbill the user owes.

After the wrapper protocol has terminated, the fraud detection IDs ΦU are added to the RSU blacklist blR and
the user’s public key pkU is added on the TSP blacklist blT .
In the Wallet Issuing task the TSP uses the blacklist blT to prevent a user that did not pay its invoice from

receiving a fresh wallet. In the Debt Accumulation task a RSU checks if the fraud detection ID that the current
user presents is on the RSU blacklist blR .

D.13 Wallet Verification
TheWalletVerification algorithm is depicted in Fig. 42. A user can verify with this algorithm that the wallet he
stores at the end of a transaction is valid. In particular, the algorithm verifies that the commitments cT and cR
are valid and contain the values they are supposed to contain, that σT is a valid signature under skT

T
of cT and

aU , that σR is a valid signature under skR of cR and s , that the certificate certR containing pkR is valid and that
the fraud detection id ϕ was calculated using the correct values.

Of course, this algorithm can also be run by a third party to verify the validity of a wallet (since no secret keys
are needed to run this algorithm).

E ADVERSARIAL MODEL
For our security analysis to hold we consider a restricted class of adversarial environmentsZ and will argue
why these restrictions are reasonable.

E.1 Restricted Corruption
Firstly, we only consider security under static corruption. This is a technical necessity to enable the use of PRFs
to generate fraud detection IDs. With adaptive corruption the simulator would be required to come up with
a consistent PRF that could explain the up to the point of corruption uniformly and randomly drawn fraud
detection IDs. We deem static corruption to provide a sufficient level of security as a statically corrupted party
may always decide to interact honestly first and then deviate from the protocol later. Adaptive corruption only
comes into play with deniability which is not part of our desired properties.

31N.b.: The public key pkT
U

is stored redundantly: in clear as part of htd := (pkT
U
, s, λ′′, e∗) and encrypted as part of the cipher text

e∗ = Enc(Λ′0, . . . , Λ
′
ℓ−1, Λ

′′, pkT
U
). The DR only considers the latter version as this is protected by the non-malleability of the CCA

encryption. The outer public key is only required as management information and utilized by the TSP which cannot look inside e∗. The DR
ignores the outer pkT

U
.

M. Hoffmann, V. Fetzer, M. Nagel, A. Rupp, R. Schwerdt • P4TC 77

WalletVerification(pkT , pkU ,τ)

parse (pkT
T
, pkcert
T
, pkR
T
) := pkT

parse (s,ϕ,xnext, λ, aU , cR ,dR ,σR , certR , cT ,dT ,σT ,b,unext1) := τ

parse (pkR , aR ,σ
cert
R
) := certR

if

C1.Open(CRS1
com, (д

λ
1 , pkU), cT ,dT) = 0 ∨

S.Vfy(pkT
T
,σT , (cT , aU)) = 0 ∨

C1.Open(CRS1
com, (д

λ
1 ,д

b
1 ,д

unext
1

1 ,дx
next

1), cR ,dR) = 0 ∨
S.Vfy(pkR ,σR , (cR , s)) = 0 ∨

S.Vfy(pkcert
T
,σ cert
R
, (pkR , aR)) = 0 ∨

PRF(λ,xnext − 1) , ϕ

then return 0
else return 1

Fig. 42. Algorithm for Wallet Verification

Secondly, we only consider adversariesZ that corrupt one of the following sets32:
(1) A subset of users.
(2) All users and a subset of RSUs, TSP and SA.
(3) A subset of RSUs, TSP and SA.
(4) All of RSUs, TSP and SA as well as a subset of users.

We subsume the cases (1) and (2) under the term Operator Security and the cases (3) and (4) under the term User
Security. For both Operator Security and User Security the two subordinate cases are collectively treated by the
same proof. It is best to picture the cases inversely: To prove Operator Security we consider a scenario in which
at least some parties at the operator’s side remain honest; to prove User Security we consider a scenario in which
at least some users remain honest. Please note that both scenarios also commonly cover the case in which all
parties are corrupted, however, this extreme case is tedious as it is trivially simulatable.
One might believe that the combination of all cases above should already be sufficient to guarantee privacy,

security and correctness under arbitrary corruption. For example, case (4) guarantees that privacy and correctness
of accounting are still provided for honest users, even if all of the operator’s side and some fellow users are
corrupted. This ought to be the worst case from a honest user’s perspective. Further note that the proof of
indistinguishability quantifies over all environmentsZ. This includes environments that—still in case (4)—first
corrupt all the operator’s side but then let some (formally corrupted) parties follow the protocol honestly.

However, consider a scenario in which a party acts as a Man-in-the-Middle (MitM) playing the roles of a user
and an RSU at the same time while interacting with an honest user in the left interaction and an honest RSU in
the right interaction. The MitM simply relays messages back and forth unaltered. If the MitM approaches the
RSU and the RSU requests the MitM to participate in Debt Accumulation, the MitM relays all messages of the
RSU to the honest user (possibly driving the same road behind the MitM). The honest user replies and the MitM
forwards the messages to the honest RSU. The MitM passes by the RSU unnoticed and untroubled, while the
honest user pays for the MitM.
32Note that “subset” also includes the empty or full set.

78 M. Hoffmann, V. Fetzer, M. Nagel, A. Rupp, R. Schwerdt • P4TC

This scenario is not captured by any of the above cases and is the missing gap towards arbitrary corruption.
As the MitM is corrupted and plays both roles of a user and RSU, this falls into case (2) or (4). But either all users
are corrupted in case (2), which contradicts the existence of an honest user in the left interaction, or all of RSUs,
TSP and SA are corrupted in case (4), which does not allow for an honest RSU in the right interaction.

This attack is known as relay attack. Please note that the MitM does not need to break any cryptographic
assumption for this kind of attack as it just poses as a prolonged communication channel. There are some possible
counter measures that can be applied in the real world. For example, using distance-bounding the honest user
could refuse to participate in the protocol, if the RSU is known to be to far away. However, these are physical
counter measures and thus are not captured by the UC notion nor any other cryptographic notion. Actually, it is
a strength of the UC model that this gap is made explicit. For example, a set of game-based security notions that
cover a list of individual properties would most likely not unveil this issue.

E.2 Channel Model
Most of the time we assume channels to be secure and authenticated. The only exception is Debt Accumulation,
which uses a secure but only half-authenticated channel. Half-authenticated channel means only the RSU
authenticates itself and the user does not. These channels exempt us from the burden of defining a simulator for
the case where only honest parties interact with each other and rules out some trivial replay attacks. Of course,
the authentication of the channels must be tied to the parties’ credentials used in the toll collection system. In
other words, the same key registration service that registers the public keys for the toll collection system must
also be used to register the public keys to authenticate the communication.

E.3 Handling of Aborts
Lastly, we assume our functionality also uses the implicit writing conventions for ideal functionalities [20]. In
particular, our simulator can delay outputs and abort at any point. Beyond that, the simulator has the power to
override the output to honest parties with an abort reason (e.g., “blacklisting”) if it decides to abort.
Another important aspect with respect to aborts is that privacy may be partially lost for an honest user if a

task aborts prematurely. In this case the user’s identity can be unveiled if he chooses to take part in another
transaction with the same wallet. The reason for this is the double-spending detection mechanism. If the (honest)
user has not correctly updated his previous state, the user must start the next interaction from the same state as
before. Thus an (honest) user can be tricked into committing a double-spending without any fault of his own. We
explicitly model this artifact into the simulator.
Again, as in Appendix E.1 this kind of “attack” does not require to break any cryptographic assumptions.

Hence, the UC notion as well as any other cryptographic security notion does not take aborts into account—the
more so as aborts can occur at any time due to technical problems. To mitigate the effect of aborts we propose
that each user has one or more backup wallets and switches over to another wallet if the principal wallet becomes
unusable and the user does not accept to become linkable for a single transaction. Of course, at the end of a billing
period a user must always clear all of his wallets. If aborts occur more frequently than one would reasonably
expect due to technical problems and the RSU/TSP is suspected to purposely abort in order to lift privacy, the
user (or some NGO) is expected to file a claim. However, these are non-technical countermeasures.

F SECURITY PROOF
In this appendix we show that πP4TC UC-realizes FP4TC in the (FCRS,Gbb)-hybrid model for static corruption.
More precisely, we show the following theorem:

Theorem F.1 (Security Statement). Assume that the SXDH-problem is hard for gp := (G1,G2,GT, e,p,д1,д2),
the co-CDH problem is hard for (G1,G2), the nPRF-DDHI problem is hard for G1, and the DLOG-problem is hard

M. Hoffmann, V. Fetzer, M. Nagel, A. Rupp, R. Schwerdt • P4TC 79

for G1 and our building blocks (NIZK, commitment schemes, signature scheme, encryption schemes and PRF) are
instantiated as described in Appendix C.2. Then

π FCRS,Gbb
P4TC ≥UC F

Gbb ,

holds under static corruption of
(1) a subset of users,
(2) all users and a subset of RSUs, TSP and SA,
(3) a subset of RSUs, TSP and SA, or
(4) all RSUs, TSP and SA as well as a subset of users.

Please note, that the hardness of the Co-CDH problem and DLOG-problem is already implied by the SXDH-
assumption. For a discussion of the reasons and why this limited corruption model is not a severe restriction
from a practical vantage point see Appendix E.1.
We prove Theorem F.1 in three steps:

• In Appendix F.1 we first show some structural properties of F Gbb .
• In Appendix F.2, Theorem F.10 proves Theorem F.1 for the corruption scenario (1) and (2). We call this case
“Operator Security”.
• In Appendix F.3, Theorem F.25 proves Theorem F.1 for the corruption scenario (3) and (4). We call this case
“User Security and Privacy”.

Proof of Theorem F.1. The theorem is immediately implied by Theorems F.10 and F.25. □

Before giving the proof in full detail and complexity in Appendices F.1 to F.3, Section 6 explains our course of
action and outlines the proof on a high level.

F.1 Proof of Correctness
Many papers that show some protocol to be UC-secure consider rather simple cases (e.g., a commitment, an
oblivious transfer, a coin toss) and correctness of the ideal functionality is mostly obvious. In constrast, our
ideal functionality FP4TC is already a complex system on its own with polynomially many parties that can
reactively interact forever, i.e., FP4TC itself has no inherent exit point except that at some point the polynomially
bounded runtime of the environment is exhausted. In this appendix no security reduction occurs, because we
only consider the ideal functionality FP4TC. We start with a series of simple lemmas which also help to develop a
good conception about how the individual tasks/transactions are connected. Moreover, these lemmas a closely
associated to the desired properties of a toll collection scheme (cp. Sections 2.3 and 4.5).
Internally, FP4TC stores a pervasive database TRDB whose entries trdb are of the form

trdb = (sprev, s,ϕ,x , λ, pidU , pidR ,p,b).

This set can best be visualized as a directed graph in which each node represents the state of a user after the
respective transaction, i.e., at the end of an execution of Wallet Issuing, Debt Accumulation or Debt Clearance,
and the edges correspond to the transition from the previous to the next state. Each trdb entry represents a node
together with an edge pointing to its predecessor node. The node is labeled with (s,ϕ,x , λ, pidU ,b) and identified
by s . The edge to the predecessor is identified by (sprev, s) and labeled with (pidR ,p). See Fig. 43 for a depiction.
Transaction entries or nodes that are inserted by Wallet Issuing do not have a predecessor, therefore sprev = ⊥
and also p = 0 holds. All other tasks besides Wallet Issuing, Debt Accumulation and Debt Clearance do not alter
the graph but only query it. We show that the graph is a directed forest, i.e., a set of directed trees. Wallet Issuing
creates a new tree by inserting a new root node. Debt Accumulation and Debt Clearance extend a tree. Debt

80 M. Hoffmann, V. Fetzer, M. Nagel, A. Rupp, R. Schwerdt • P4TC

s, ϕ, x, λ, pidU, bsprev pidR, p

Fig. 43. An entry trdb ∈ TRDB visualized as an element of a directed graph

Clearance results in a leaf node from where no further extension is possible. As long as no double spending
occurs, each tree is a path graph.

Definition F.2 (Ideal Transaction Graph (informal)). The transaction database TRDB = {trdbi } with trdb = (sprev,
s,ϕ,x , λ, pidU , pidR ,p,b) is a directed, labeled graph as defined above. This graph is called the Ideal Transaction
Graph.

Lemma F.3 (Forest Structure of the Ideal Transaction Graph). The Ideal Transaction Graph TRDB is a
forest.

Proof. TRDB is a forest, if and only if it is cycle-free and every node has in-degree at most one. A new node
is only inserted in the scope of Wallet Issuing, Debt Accumulation or Debt Clearance. Proof by Induction: The
statement is correct for the empty TRDB. If Wallet Issuing is invoked, a new node with no predecessor is inserted.
Moreover, the serial number s of the new node is randomly chosen from the set of unused serial numbers, i.e.,
it is unique and no existing node can point to the new node as its predecessor. If Debt Accumulation or Debt
Clearance is invoked, a new node is inserted that points to an existing node. Again, the serial number s of the
new node is randomly chosen from the set of unused serial numbers, i.e., it is unique and no existing node can
point to the new node as its predecessor. Hence, no cycle can be closed. Since the only incoming edge of a node
is defined by the stated predecessor sprev (which may also be ⊥), each vertex has in-degree at most one. □

Lemma F.4 (Tree-wise Uniqeness of the Wallet ID). The wallet ID λ maps one-to-one and onto a connected
component (i.e., tree) of the Ideal Transaction Graph.

Proof. “ ⇐= ”: Let trdbi be an arbitrary node in TRDB and λ be its wallet ID. Furthermore let trdb∗i be the
root of the tree containing trdbi . Then on the (unique) path from trdb∗i to trdbi , every node apart from trdb∗i was
inserted by means of either Debt Accumulation or Debt Clearance, both of which ensure the inserted node has
the same λ as its predecessor. By induction over the length of the path, trdbi has the same wallet ID as trdb∗i and
hence the wallet ID is a locally constant function on TRDB.
“ =⇒ ”: For contradiction assume there are two nodes trdbi and trdbj with equal wallet IDs λi = λj in two

different connected components. Pick the root nodes trdb∗i and trdb∗j of their respective trees. By “⇐= ” it we get
λ∗i = λi = λj = λ∗j , i.e., the root nodes have equals wallet IDs, too. Both root nodes are inserted in the scope of
Wallet Issuing and the wallet ID is randomly drawn from the set of unused wallet IDs, i.e., they can not both have
the same wallet ID. Contradiction! □

Lemma F.5. Within a tree of the Ideal Transaction Graph the PID pidU of the corresponding user is constant.

Proof. Same proof as “⇐= ” in the proof of Lemma F.4. □

In other words, Lemma F.5 states that a wallet (a tree in TRDB) is always owned by a distinct user. But a user
can own multiple wallets.

Lemma F.6. Within a tree of TRDB, every node trdb = (sprev, s,ϕ,x , λ, pidU , pidR ,p,b) has depth x and all nodes
of the same depth in the same tree have the same fraud detection ID ϕ. Conversely, nodes with the same fraud
detection ID are in the same tree and have the same depth within this tree.

M. Hoffmann, V. Fetzer, M. Nagel, A. Rupp, R. Schwerdt • P4TC 81

Proof. Proof by Induction. The statement is true for the empty TRDB. In the scope of Wallet Issuing a new root
node is inserted, Wallet Issuing sets x := 0 and an unused ϕ is chosen. In the scope of Debt Accumulation or Debt
Clearance, x is calculated as x := xprev + 1, where by induction xprev is the depth of its predecessor. With respect
to ϕ we note that when inserted, every node gets as fraud detection ID the value stored in fΦ(λ,x) which only
depends on the node’s wallet ID and depth. When this value is set (in either Wallet Issuing, Debt Accumulation,
Debt Clearance or Blacklisting and Recalculation) it is chosen from the set of unused fraud detection IDs and
therefore unique for given λ and x . □

Lemma F.7 (Billing Correctness). Let trdb = (sprev, s,ϕ,x , λ, pidU , pidR ,p,b) be an arbitrary but fixed node.
If trdb is not a root let trdbprev = (sprev,prev, sprev,ϕprev,xprev, λ, pidU , pidprev

R
,pprev,bprev) be its predecessor. Then

b = bprev + p holds for non-root nodes and p = ⊥, b = 0 for root nodes.

Proof. Same induction argument as in proof of Lemma F.6. □

Before we start to show that πP4TC correctly implements FP4TC, we make note of two additional simple
statements about the ideal functionality itself.

Lemma F.8 (Protection Against False Accusation). (1) The task Double-Spending Detection returns a
proof π , ⊥ if and only if the user has committed double-spending.

(2) The task Verify Guilt returns OK if and only if its input (pidU ,π) has been output at a previous invocation of
Double-Spending Detection.

Proof. The first part obviously follows by the definition of the task Double-Spending Detection (cp. Fig. 14).
Note for the second part that users are assumed to be honest. If fΠ(pidU ,π) is undefined, then out is set to NOK
and the result is recorded (cp. Steps 3 and 4 in Fig. 15). Guilt Verification only returns OK, if fΠ(pidU ,π) = OK has
already been defined (cp. Step 2). As (in case of honest users) Guilt Verification extends fΠ by nothing but invalid
proofs, Double-Spending Detection exclusively sets fΠ(pidU ,π) = OK (cp. Step 2, in Fig. 14). □

Lemma F.9 (Correctness of Blacklisting). Let U be an arbitrary but fixed user with pidU . Under the
assumption thatU participates in less then xblR transactions, i.e., in less then xblR invocations of Wallet Issuing, Debt
Accumulation and Debt Clearance, the following two statements hold:

(1) Let the TSP be honest. The set ΦU returned to T by Blacklisting and Recalculation contains all fraud detection
IDs that have ever been used byU.

(2) Any invocation of Debt Accumulation forU with input blR = ΦU aborts with message blacklisted.

Proof. (1) Let TRDBU ⊆ TRDB be the subset of all transaction entries trdb = (·, ·, ·, ·, ·, pidU , ·,p, ·) corre-
sponding to pidU and let LU denote the set of wallet IDs occurring in TRDBU . For λ ∈ LU the depth
of the tree associated to the wallet id λ is given by xλ := max{x | fΦ(λ,x) , ⊥}. If U with pidU partic-
ipated in less than xblR transaction, then the maximum depth xmax = maxλ∈LU xλ is smaller than xblR .
The set of used fraud detection IDs is given by { fΦ(λ,x) | λ ∈ LU , 0 ≤ x ≤ xλ} which is a subset of
ΦU := { fΦ(λ,x) | λ ∈ LU , 0 ≤ x ≤ xblR }.

(2) Let sprev denote the serial number for which Debt Accumulation is invoked and let trdbprev = (·, sprev,ϕprev,
xprev, λ, . . .) be the corresponding transaction entry. By assumption xprev < xblR holds. As Blacklisting and
Recalculation has previously been called, ϕ = fΦ(λ,x

prev + 1) is already fixed. Moreover, ϕ ∈ ΦU = blR
holds and thus Debt Accumulation aborts.

□

82 M. Hoffmann, V. Fetzer, M. Nagel, A. Rupp, R. Schwerdt • P4TC

Simulator Ssys-sec
πP4TC

Setup:
(1) Run a modified version of the algorithm CRS← Setup(1n) with
(a) CRS2com ← C2.Gen being replaced by (CRS2com, tdeqcom) ← C2.SimGen, and
(b) CRSpok ← SetupPoK being replaced by (CRSpok, tdepok) ← SetupEPoK.

(2) Record CRS, tdeqcom and tdepok.
(3) Set TRDB := ∅.
(4) Set Ω

dsp := ∅.
(5) Set Ω

pp
U := ∅.

DR Registration: Upon receiving (registering_dr, pidDR) run (pkDR, skDR) ← DRRegistration(CRS), record
pidDR 7→ (pkDR, skDR), and return pkDR to FP4TC.

TSP Registration: Upon receiving (registering_tsp, pidT , aT) run (pkT , skT , cert
R
T
) ←

TSPRegistration(CRS, aT), record pidT 7→ (pkT , skT , cert
R
T
), and return pkT to FP4TC.

RSU Registration: Upon receiving (registering_rsu, pidR) run (pkR , skR) ← RSURegistration(CRS), and
record pidR 7→ (pkR , skR), and return pkR to FP4TC.

User Registration: If user is corrupted, then nothing to do, as this is a local algorithm.
If user is honest: Upon receiving (registering_user, pidU) run (pkU , skU) ← UserRegistration(CRS),
record pidU 7→ (pkU , skU), and return pkU to FP4TC.

RSU Certification: Upon receiving (certifying_rsu, pidR , aR) . . .
(1) Load the recorded pidT 7→ (pkT , skT , cert

R
T
), and pidR 7→ (pkR , skR); if any of these do not exist, let

FP4TC abort.
(2) Generate certR := (pkR , aR ,σ cert

R
) with σ cert

R
← S.Sgn(skcert

T
, (pkR , aR)) faithfully.

(3) Update record pidR 7→ (pkR , skR , certR).

Fig. 44. The simulator for Operator Security

F.2 Proof of Operator Security
In this appendix we show the following theorem.

Theorem F.10 (Operator Security). Under the assumptions of Theorem F.1

π FCRS,Gbb
P4TC ≥UC F

Gbb

holds under static corruption of
(1) a subset of users, or
(2) all users and a subset of RSUs, TSP and SA.

The definition of the UC-simulator Ssys-sec
πP4TC for Theorem F.10 can be found in Figs. 44 to 47. Please note that

while the real protocol πP4TC lives in the (FCRS,Gbb)-model the ideal functionality FP4TC has no CRS. Hence, the
CRS (but not the bulletin board) is likewise simulated by Ssys-sec

πP4TC , giving it a lever to extract the ZK proofs P1, P2,
and P3 and to equivoke the commitment C2.
While the protocol executes, the simulator Ssys-sec

πP4TC records certain information similar to what the parties or
the ideal functionality internally record, namely the set of simulated transaction information for double-spending
detection Ω

dsp, the set of simulated transaction information for prove participation Ω
pp
U , and the simulated

M. Hoffmann, V. Fetzer, M. Nagel, A. Rupp, R. Schwerdt • P4TC 83

Simulator Ssys-sec
πP4TC

Wallet Issuing:
(1) Load the recorded pidT 7→ (pkT , skT , cert

R
T
), pidDR 7→ (pkDR, skDR); if any of these do not exist, let FP4TC

abort.
(2) Upon receiving (pkU , c ′seed) fromZ

sys-sec in the name ofU with pid∗
U
. . .

(a) Look up pidU from Gbb for which pkU has been recorded; if no pidU exists abort.
(b) If pidU < PIDcorrupt give up simulation.
(c) Call FP4TC with input (issue)

(3) Upon receiving leaked (s, aU) from FP4TC . . .
(a) (c ′′ser,dser) ← C2.SimCom(CRS2com).
(b) λ′′

R
← Zp.

(c) Send (certR
T
, aU , c ′′ser, λ′′) toZsys-sec as the 1st message from T toU.

(4) Upon receiving (s ′, e∗, cT , cR ,π) fromZsys-sec in the name ofU with pid∗
U
. . .

(a) stmnt := (pkU , pkDR, e
∗, cT , cR ,π).

(b) If P1.Vfy(CRSpok, stmnt,π) = 0 let FP4TC abort.
(c) Extract Wit = (Λ,Λ′,Λ′0, . . . ,Λ

′
ℓ−1, . . . ,U

next
1 ,dT ,dR ,d

′
seed, SKU) ← P1.ExtractW(CRS, tdepok, stmnt,

π).
(d) Assert that (stmnt,Wit) fullfills the projected equations from L(1)gp , else abort (event E1)
(e) λ := λ′′ +

∑ℓ−1
i=0 DLOG(Λ

′
i) · B

i

(f) Provide alternative user PID pidU to FP4TC.
(5) Upon being asked by FP4TC to provide ϕ . . .
(a) ϕ := PRF(λ,x) with x := 0
(b) Provide ϕ to FP4TC.

(6) Upon receiving output (s, aU) from FP4TC forU . . .
(a) s ′′ := s · s ′−1

(b) Equivoke d ′′ser ← C2.Equiv(CRS2com, tdeqcom, s
′′, c ′′ser,dser).

(c) σT ← S.Sgn(skT
T
, (cT , aU))

(d) σR ← S.Sgn(skR
T
, (cR , s))

(e) Set sprev := ⊥, p := 0, b := 0, c in
T

:= ⊥, d in
T

:= ⊥, M in
T

:= ⊥, c in
R

:= ⊥, d in
R

:= ⊥, M in
R

:= ⊥, cout
T

:= cT ,
dout
T

:= dT ,Mout
T

:= (Λ, pkU), coutR := cR , doutR := dR , andMout
R

:= (Λ,дb1 ,U1,д
x+1
1).

(f) Append (sprev, s,ϕ,x , λ, pidU , pidT ,p,b, c
in
T
,d in
T
,M in
T
, c in
R
,d in
R
,M in
R
, cout
T
,dout
T
,Mout
T
, cout
R
,dout
R
,Mout
R
) to

TRDB.
(g) Send (s ′′,d ′′ser,σT ,σR) toZsys-sec as the 2nd message from T toU.

Fig. 45. The simulator for Operator Security (cont. from Fig. 44)

transaction graph TRDB. Basically, Ω
dsp, Ω

pp
U and TRDB correspond to Ωdsp, Ωpp

U
and TRDB resp., but exist in the

head of the simulator and are augmented by additional information. The simulator uses them as “lookup tables”
to keep up a consistent simulation in later parts of the protocol. Obviously, this implies information is stored
redundantly: In the head of Ssys-sec

πP4TC as Ω
pp
U and TRDB and inside the ideal functionality FP4TC (in case of TRDB)

84 M. Hoffmann, V. Fetzer, M. Nagel, A. Rupp, R. Schwerdt • P4TC

Simulator Ssys-sec
πP4TC (cont.)

Debt Accumulation:
(1) Load the recorded pidT 7→ (pkT , skT , cert

R
T
), and pidR 7→ (pkR , skR , certR); if any of these do not exist,

let FP4TC abort.
(2) Pick u2

R
← Zp.

(3) (c ′′ser,dser) ← C2.SimCom(CRS2com).
(4) Send (u2, c

′′
ser, certR) toZ as the 1st message from R toU.

(5) Upon receiving (s ′,π ,ϕ, aU , a
prev
R
, chid, c

′
R
, t) fromZ as the 2nd message fromU to R . . .

(a) stmnt := (pkT
T
, pkcert

T
,ϕ, aU , a

prev
R
, chid, c

′
R
, t ,u2).

(b) If P2.Vfy(CRSpok, stmnt,π) = 0 let FP4TC abort.
(c) Extract Wit = (X ,Λ, pkU ,U1, s

prev,ϕprev,X ,Λ, pkU ,B
prev,U1,U

next
1 ,dhid,d

prev
R
,d ′
R
,dT , pk

prev
R
, c

prev
R
, cT ,

σ
prev
R
,σ cert
R

prev
,σT) ← P2.ExtractW(CRS, tdepok, stmnt,π).

(d) Assert that (stmnt,Wit) fullfills the projected equations from L(2)gp , else abort (event E1)
(e) Look up trdb

∗
:= (sprev,∗, s∗,ϕ∗,x∗, λ∗, pid∗

U
, pid∗T ,p

∗,b∗, c in
T

∗
,d in
T

∗
,M in
T

∗
, c in
R

∗
,d in
R

∗
,M in
R

∗
, cout
T

∗
,dout
T

∗
,

Mout
T

∗
, cout
R

∗
,dout
R

∗
,Mout
R

∗
) with s∗ = sprev being used as key; if no unique entry exists, give up sim-

ulation (event E2).
(f) Give up simulation if any of these conditions meet: cout

R

∗
, c

prev
R

(event E3), Λ , дλ
∗

1 (event E4),
cout
T

∗
, cT (event E5), pkU , pk∗

U
with (Λ∗, pk∗

U
) := Mout

T

∗ (event E6), Bprev , дb
∗

1 (event E7), or
X , дx

∗+1
1 (event E8).

(g) Retrieve pidU from Gbb for pkU
(h) Call FP4TC with input (pay_toll, sprev) in the name ofU

(6) Upon being asked by FP4TC to provide an alternative PID, return pidU to FP4TC.
(7) If being asked by FP4TC to provide ϕ, return ϕ := PRF(λ,x) with x := x∗ + 1 to FP4TC.a
(8) Upon being ask by FP4TC to provide a price for (aU , aR , a

prev
R
), return a price p as the dummy adversary

would do.
(9) Upon receiving output (s, aR ,p,b) from FP4TC forU . . .
(a) Set ωpp

U
:= (s, chid,dhid, pkU) and append ωpp

U
to Ω

pp
U .

(b) Run (c ′′
R
,d ′′
R
) ← C1.Com(CRS1

com, (0,p, 0, 1)), cR := c ′
R
· c ′′
R
, and σR ← S.Sgn(skR , (cR , s)) honestly as

the real protocol would do.
(c) Set s ′′ := s · s ′−1 and equivoke d ′′ser ← C2.Equiv(CRS2com, s

′′, c ′′ser,dser).
(d) Set c in

T
:= cT , d inT := dT , M in

T
:= (Λ, pkU), c inR := c

prev
R

, d in
R

:= d
prev
R

, M in
R

:= (Λ,Bprev,U1,X), coutT := cT ,
dout
T

:= d ′
T
· d ′′
T
,Mout
T

:= (Λ, pkU), coutR := cR , doutR := d ′
R
· d ′′
R
, andMout

R
:= (Λ,дb1 ,U1,д

x+1
1).

(e) Append (sprev, s,ϕ,x , λ, pidU , pidR ,p,b, c
in
T
,d in
T
,M in
T
, c in
R
,d in
R
,M in
R
, cout
T
,dout
T
,Mout
T
, cout
R
,dout
R
,Mout
R
) to

TRDB.
(f) Append ωdsp = (ϕ, t ,u2) to Ω

dsp

(g) Check if ωdsp‡ = (ϕ‡, t‡,u‡2) ∈ Ω
dsp exists with ϕ = ϕ‡ and u2 , u

‡
2 ; in this case

(i) skU := (t − t‡) · (u2 − u
‡
2)
−1 mod p

(ii) Record pidU 7→ (pkU , skU) internally
(h) Send (s ′′,d ′′ser, cR ,d ′′R ,σR ,p) toZ as the 3rd message from R toU.

aN.b.: FP4TC does not always ask for the next serial number. If the corrupted user re-uses an old token, then FP4TC internally picks the next
serial number which has already been determined in some earlier interaction. Hence, the simulator only needs to provide the next serial

number, if the chain of transactions is extended.

Fig. 46. The simulator for Operator Security (cont. from Fig. 44)

M. Hoffmann, V. Fetzer, M. Nagel, A. Rupp, R. Schwerdt • P4TC 85

Simulator Ssys-sec
πP4TC (cont.)

Debt Clearance:
(1) Load the recorded pidT 7→ (pkT , skT , cert

R
T
) if this does not exist, let FP4TC abort.

(2) Pick u2
R
← Zp.

(3) Send u2 toZ as the 1st message from T toU.
(4) Upon receiving (pkU ,π ,ϕ, aU , a

prev
R
,bprev, t) fromZ as the 2nd message fromU to T . . .

(a) stmnt := (pkU , pk
T
T
, pkcert

T
,ϕ, aU , a

prev
R
,дb

prev

1 , t ,u2).
(b) If P3.Vfy(CRSpok, stmnt,π) = 0 let FP4TC abort.
(c) Extract Wit = (X ,Λ, pkU ,U1, s

prev,ϕprev,X ,Λ,U1,d
prev
R
,dT , pk

prev
R
, c

prev
R
, cT ,σ

prev
R
,σ cert
R

prev
,σT) ←

P3.ExtractW(CRS, tdepok, stmnt,π).
(d) Assert that (stmnt,Wit) fullfills the projected equations from L(3)gp , else abort (event E1)
(e) Lookup trdb

∗
:= (sprev,∗, s∗,ϕ∗,x∗, λ∗, pid∗

U
, pid∗T ,p

∗,b∗, c in
T

∗
,d in
T

∗
,M in
T

∗
, c in
R

∗
,d in
R

∗
,M in
R

∗
, cout
T

∗
,dout
T

∗
,

Mout
T

∗
, cout
R

∗
,dout
R

∗
,Mout
R

∗
) with s∗ = sprev being used as key; if no unique entry exists, give up sim-

ulation (event E2).
(f) Give up simulation if any of these conditions meet: cout

R

∗
, c

prev
R

(event E3), Λ , дλ
∗

1 (event E4),
cout
T

∗
, cT (event E5), pkU , pk∗

U
with (Λ∗, pk∗

U
) := Mout

T

∗ (event E6), or Bprev , дb
∗

1 (event E7).
(g) Retrieve pidU from Gbb for pkU
(h) Call FP4TC with input (clear_debt, sprev) in the name ofU

(5) Upon being asked by FP4TC to provide an alternative PID, return pidU to FP4TC.
(6) If being asked by FP4TC to provide ϕ, return ϕ := PRF(λ,x) with x := xprev + 1 to FP4TC.a
(7) Upon receiving output (bbill) from FP4TC forU . . .
(a) Set c in

T
:= cT , d inT := dT , M in

T
:= (Λ, pkU), c inR := c

prev
R

, d in
R

:= d
prev
R

, M in
R

:= (Λ,дbprev

1 ,U1,X), coutT := ⊥,
dout
T

:= ⊥,Mout
T

:= ⊥, cout
R

:= ⊥, dout
R

:= ⊥, andMout
R

:= ⊥.
(b) Append (sprev, s,ϕ,x , λ, pidU , pidR ,p,b, c

in
T
,d in
T
,M in
T
, c in
R
,d in
R
,M in
R
, cout
T
,dout
T
,Mout
T
, cout
R
,dout
R
,Mout
R
) to

TRDB.
(c) Append ωdsp = (ϕ, t ,u2) to Ω

dsp

(d) Check if ωdsp‡ = (ϕ‡, t‡,u‡2) ∈ Ω
dsp exists with ϕ = ϕ

‡
and u2 , u

‡
2 ; in this case

(i) skU := (t − t‡) · (u2 − u
‡
2)
−1 mod p

(ii) Record pidU 7→ (pkU , skU) internally
(e) Send (OK) toZ as the 3rd message from T toU.

aN.b.: FP4TC does not always ask for the next serial number. If the corrupted user re-uses an old token, then FP4TC internally picks the next
serial number which has already been determined in some earlier interaction. Hence, the simulator only needs to provide the next serial

number, if the chain of transactions is extended.

Fig. 47. The simulator for Operator Security (cont. from Fig. 44)

or the environment (in case of Ωpp
U

for a corrupted user).33 A crucial part of the security proof is to show that
these sets stay in sync.
Before starting with the security proof we explain the Simulated Transaction Graph TRDB and the additional

information beyond the Ideal Transaction Graph (cp. Definition F.2) in more details. The Ideal Transaction Graph

33Note, that we get rid of Ωdsp during the proof, because honest user are only dummy parties and only Ω
dsp remains.

86 M. Hoffmann, V. Fetzer, M. Nagel, A. Rupp, R. Schwerdt • P4TC

Simulator Ssys-sec
πP4TC (cont.)

Prove Participation:
(1) Call FP4TC with input (prove_participation) in the name ofU
(2) Obtain leaked set Spp

R
of serial numbers from FP4TC.

(3) Upon receiving output (outU) from FP4TC forU . . .
(a) Delay the output of FP4TC to SA.
(b) Send Spp

R
toZ as the 1st message from SA toU.

(4) Upon receiving (s, chid,dhid) fromZ as the 2nd message fromU to SA . . .
(a) If (s, chid, ·, ·) < Ω

pp
U , let FP4TC abort.

(b) Look up pkU from Gbb for PID pidU ; if no pkU has been recorded abort.
(c) If C1.Open(CRS1

com, pkU , chid,dhid) = 0, let FP4TC abort.
(d) If outU = NOK give up simulation.
(e) Let FP4TC return the delayed output to SA.

Double-Spending Detection: Upon being ask to provide a proof for pidU , look up pidU 7→ (pkU , skU), and return
skU .

Guilt Verification: Upon being ask by FP4TC to provide out for (pidU ,π) . . .
(1) Receive pkU from Gbb for pidU .
(2) If дπ1 = pkU , then return out := OK, else out := NOK to FP4TC.

Blacklisting and Recalculation: Upon receiving (λ,x) and being ask to provide a serial number, return ϕ :=
PRF(λ,x).

Fig. 48. The simulator for Operator Security (cont. from Fig. 44)

s, ϕ, x, λ, pidU, bsprev pidR, p

cout
T

, dout
T

, Mout
T

,
cout
R

, dout
R

, Mout
R

c in
T
, d in
T
, M in
T
,

c in
R
, d in
R
, M in
R

Fig. 49. An entry trdb ∈ TRDB visualized as an element of a directed graph

is a theoretical construct that helps us to link the interactions of the parties across the various tasks our protocol
provides. An Simulated Transaction Entry trdb has the form

trdb = (sprev, s,ϕ,x , λ, pidU , pidR ,p,b,

c inT ,d
in
T ,M

in
T , c

in
R ,d

in
R ,M

in
R ,

cout
T
,dout
T
,Mout
T
, cout
R
,dout
R
,Mout
R
)

(9)

with c , d andM with equal suffixes denoting a commitment, its decommitment information and the opening in
the implicit message space (see Fig. 49). At the beginning of a transaction in the scope of Debt Accumulation
or Debt Clearance the user loads his token τ prev which contains two commitments cT and c

prev
R

, randomizes
the commitments and at the end the user possesses two updated commitments cT , cR which are stored in τ
again. We call the initial commitments the in-commitments of the transaction and the resulting commitments the
out-commitments.

M. Hoffmann, V. Fetzer, M. Nagel, A. Rupp, R. Schwerdt • P4TC 87

Definition F.11 (Simulated Transaction Graph (informal)). The set TRDB = {trdbi } with trdbi defined as in
Eq. (9) is called the Simulated Transaction Graph. It inherits the graph structure of the Ideal Transaction Graph
and augments each edge by additional labels, called the in-commitments and out-commitments.

Two remarks are in order: Firstly, none of the (commitment, decommitment, message)-triples is neither
completely received nor sent by the RSU or TSP, respectively. The RSU receives a randomized version of the
in-commitment and no decommitment at all. In the reverse direction, the RSU sends the out-commitment and
a share of the decommitment. The complete triples only exist inside the user’s token. Secondly, it is tempting
but misleading to assume that c in

R
= c

prev
R

(or similar equations) hold. Note that we do not make any of these
assumptions for the definition. Hence we decided on a new notion and coined the term in-/out-commitments
instead of re-using the term “previous commitment”. Actually, these kind of equalities is what we have to show.
The overall proof idea is to define a sequence of hybrid experiments Hi together with simulators Si and

protocols πi such that the first hybrid H0 is identical to the real experiment and the last hybrid H16 is identical to
the ideal experiment. Each hybrid is of the form

Hi := EXECπi ,Gbb,Si ,Zsys-sec (1n).

Instead of directly proving indistinguishability of the real and ideal experiment we can break the proof down
into showing indistinguishability of each pair of consecutive hybrids. We achieve this by demonstrating that
wheneverZsys-sec can distinguish between two consecutive hybrids with non-negligible probability this yields
an efficient adversary against one of the underlying cryptographic assumptions. The general idea is that the
protocol πi that honest parties perform gradually declines from the real protocol π0 = πP4TC to a dummy protocol
π16, which does nothing but relay in- and outputs. At the same time Si progresses from a dummy adversary S0
to the final simulator S16 which can be split up into the ideal functionality FP4TC and Ssys-sec

πP4TC .
We proceed by giving concrete (incremental) definitions of all hybrids Hi . Please note that input privacy for

the honest TSP, RSU, DR and SA does not pose a difficulty for the definition of the sequence of the simulators.
The users learns most information as part of its prescribed output anyway. In other words, the simulator Ssys-sec

πP4TC
mimicking the role of an honest operator can perfectly simulate most messages towards the (malicious) user after
is has received the user’s output from the ideal functionality. The essential part is to ensure that no malicious
user can make the Simulated Transaction Graph to deviate from the Ideal Transaction Graph and thereby cause
a different (wrong) output at some later point in the protocol. To this end, most hybrids introduce additional
“sanity checks” to the simulation: if the sanity check holds, both transaction graphs are still in sync and the
simulator proceeds; if the sanity check fails, the adversary has caused the transaction graphs to fall apart and the
simulator immediately gives up the simulation. Each sanity check is related to the security of one of the building
blocks or cryptographic assumptions. Finally, after the last hybrid all sanity checks collectively assert that no
efficient adversary can deviate from the Ideal Transaction Graph.

Hybrid H0. The hybrid H0 is defined as

H0 := EXECπ0,Gbb,S0,Zsys-sec (1n)

with S0 = A being identical to the dummy adversary and π0 = πP4TC. Hence, H0 denotes the real experiment.

Hybrid H1. In hybrid H1 we modify S1 such that CRSpok is generated by SetupEPoK, and CRS2com is generated
by C2.SimGen. Additionally, S1 initializes the internal sets TRDB, Ω

dsp, and Ω
pp
U as empty sets.

Hybrid H2. Hybrid H2 replaces the code in the tasks DR/TSP/RSU/User Registration of the protocol π2 such
that the simulator S2 is asked for the keys instead. This equals the method in which the keys are generated in the
ideal experiment.

88 M. Hoffmann, V. Fetzer, M. Nagel, A. Rupp, R. Schwerdt • P4TC

Hybrid H3. In hybrid H3 the task RSU Certification is modified. The protocol π3 is modified such that the
simulator S3 receives the message (certifying_rsu, pidR , aR), creates the certificate σ cert

R
and records it.

Whenever the honest TSP or honest RSU running π3 would send σ cert
R

as part of its messages in the scope of
Wallet Issuing or Debt Accumulation, they omit σ cert

R
. Instead, the simulator S3 injects σ cert

R
into the message.

Hybrid H4. Hybrid H4 replaces the code in the tasks Wallet Issuing and Debt Accumulation of the protocol π4
such that the RSU/TSP do not create signatures, but the simulator S4 creates the signatures σT , σR and σR resp.
and injects them into the messages instead.

Moreover, in Debt Accumulation the RSU running π4 does not send cR and d ′′
R
in its final message, but reports

the price p to S4, S4 creates cR and d ′′
R
honestly and injects them into the message.

Hybrid H5. H5 modifies the tasks of Wallet Issuing and Debt Accumulation. The code of π5 for the TSP/RSU is
modified such that it does not send c ′′ser in the scope of Wallet Issuing or Debt Accumulation. Instead S5 runs
(c ′′ser,dser) ← C2.SimCom(CRS2com) and injects c ′′ser into the message. Moreover, π5 for the TSP/RSU is modified
such that it uniformly and independently picks s

R
← Zp and passes s to S5 as part of the final message. S5

calculates s ′′ := s · (s ′)−1, executes d ′′ser ← C2.Equiv(CRS2com, tdeqcom, s
′′, c ′′ser,dser) and injects s ′′ together with

d ′′ser into the messages from TSP/RSU to the user.

Hybrid H6. When S6 receives a NIZK proof π in the scope of Wallet Issuing, Debt Accumulation and Debt
Clearance, it extracts the witness, restores λ := λ′′ +

∑ℓ−1
i=0 DLOG(Λ

′
i) · B

i , assembles trdb and appends it to TRDB.
Additionally, S6 also assembles ωpp

U
, ωdsp in the scope of Debt Accumulation and appends entries to Ω

pp
U , Ω

dsp

resp. If Ω
dsp already contains an entry ωdsp‡ with matching fraud detection ID, the secret key skU is immediately

reconstructed and the pair pidU 7→ (pkU , skU) is also recorded.
Moreover, the verification of the proof is moved from π6 for the honest TSP/RSU to the simulator. If the

verification fails, S6 aborts as the TSP/RSU running the real protocol would do.
Additionally, S6 checks if the pair of the statement and the extracted witness fulfills the languages L(1)gp , L

(2)
gp ,

and L(3)gp resp. If not, S6 abort with failure event (E1).

Hybrid H7. This hybrid modifies the code π7 for T , SA and DR in the scope of the tasks Prove Participation,
Double-Spending Detection, Guilt Verification and Blacklisting and Recalculation. The honest parties become
dummy parties, the code is moved to the simulator and S7 resorts to its “lookup tables” TRDB, Ω

pp
U , and Ω

dsp that
have been introduced by the previous hybrid.
More precisely, in Prove Participation the party SA becomes a dummy party and simply forwards the set of

serial numbers Spp
R

to S7. The simulator uses its own set Ω
pp
U to validate the response of the environment (in the

name of the malicious user) and returns the result to SA.
In the task Double-Spending Detection the honest T becomes a dummy party, too. It simply asks the simulator
S7 to provide a proof. To this end, S7 checks if pidU 7→ (pkU , skU) has been recorded and returns skU .

The same applies to the task Guilt Verification. The honest party does not locally run the algorithm itself, but
simply forwards its input to the simulator (as the dummy party would do) and S7 actually checks if дπ1 = π holds.
The task Blacklisting and Recalculation is modified accordingly. The dispute resolver DR becomes a dummy

party and simply sends it input (blacklist_user, pkDR
U
) to the simulator S7 in order to signal its consent to

blacklist the user. The simulator S7 utilizes the Simulated Transaction Graph TRDB and runs the code as the ideal
functionality FP4TC would do eventually.

Hybrid H8. Hybrid H8 replaces the code in the tasks Wallet Issuing and Debt Accumulation of the protocol
π8 such that the RSU/TSP do not neither send λ′′ nor u2. Instead S8 draws λ′′ and u2 and injects them into the

M. Hoffmann, V. Fetzer, M. Nagel, A. Rupp, R. Schwerdt • P4TC 89

appropriate messages. Consequently, the code of the TSP is modified such that it does not longer record htd.
Likewise, the code of the RSU is modified such that it does not longer record ωdsp.

Hybrid H9. In the scope of Debt Accumulation or Debt Clearance, the simulator S9 looks up the predecessor
entry with sprev being used as the unique key. If this fails, S9 gives up the simulation with event E2.

Hybrid H10. The simulator S10 additionally checks for cout
R

∗
, c

prev
R

and gives up the simulation with event E3,
if the check suceeds.

Hybrid H11. The simulator S11 additionally checks for Λ , дλ∗1 and gives up the simulation with event E4, if
the check suceeds.

Hybrid H12. The simulator S12 additionally checks for cout
T

∗
, cT and gives up the simulation with event E5, if

the check suceeds.

Hybrid H13. The simulator S13 parses (Λ∗, pk∗U) := Mout
T

∗ and checks for pkU , pk∗
U
. If the check suceeds, it

gives up the simulation with event E6.

Hybrid H14. The simulator S14 additionally checks for Bprev , дb
∗

1 and gives up the simulation with event E7 ,
if the check suceeds.

Hybrid H15. The simulator S15 additionally checks for X , дx ∗+1
1 and gives up the simulation with event E8, if

the check suceeds.

For the proof of Theorem F.10 we show the indistinguishability of subsequent hybrids by a series of lemmas.
The Lemmas F.12 to F.14 are rather trivial and thus Lemma F.13 handles various hybrids at once.

Lemma F.12 (Indistinguishability between H0 and H1). Under the assumptions of Theorem F.10, H0
c
≡ H1

holds.

Proof. This hop solely changes how the CRS is created during the setup phase. This is indistinguishable
for CRSpok, and CRS2com (see the extractability property of Definition C.5 and the equivocality property of
Definition C.7, resp., condition (a) each). □

Lemma F.13 (Indistinguishability between its predecessors and H2, H3, H4, H7, or H8, resp.). Under the
assumptions of Theorem F.10, H1

c
≡ H2, H2

c
≡ H3, H3

c
≡ H4, H6

c
≡ H7, and H7

c
≡ H8 holds.

Proof. The hops are all indistinguishable as the do not change anything in the view ofZsys-sec. Please note,
thatZsys-sec only sees the in-/output of honest parties and these hops only syntactically change what parts of the
code are executed by the parties or by the simulator. With each hop the parties degrade more to a dummy party
while at the same time more functionality is put into the simulator. □

Lemma F.14 (Indistinguishability between H4 and H5). Under the assumptions of Theorem F.10, H4
c
≡ H5

holds.

Proof. This hop is indistinguishable as the equivoced decommitment information is perfectly indistinguishable
from a decommitment that has originally been created with the correct message (cp. Definition C.7, Item (3)). □

So far, none of hops between two consecutive hybrids changes anything from the environment’s perspective:
either the hops are only syntactical or the modification is perfectly indistinguishable. Hence, no reduction
argument is required. In the contrary, each of the upcoming security proofs roughly follows the same lines of
argument. If the environmentZsys-sec can efficiently distinguish between two consecutive hybrids, then we can

90 M. Hoffmann, V. Fetzer, M. Nagel, A. Rupp, R. Schwerdt • P4TC

construct an efficient adversary B against one of the underlying cryptographic building blocks. To this end, B
plays the adversary against the binding property in the outer game and internally executes the UC-experiment
in its head while mimicking the role of the simulator. It is important to note that although B emulates the
environment internally, it only has black-box access to it. In other words, although everything happens inside
“the head of B” it cannot somehow magically extractZ’s attack strategy.

Lemma F.15 (Indistinguishability between H5 and H6). Under the assumptions of Theorem F.10, H5
c
≡ H6

holds.

Proof. First note that the only effective change between H5 and H6 are the additional checks that abort
the simulation with event E1, if the extracted witnesses are invalid. Again, the other modification are purely
syntactical. To proof indistinguishability between H5 and H6 we split this hop into three sub-hybrids. Each
sub-hybrid introduces the check for one of the languages L(1)gp , L

(2)
gp and L(3)gp , resp. In the following only the

sub-hybrid for the language L(1)gp is considered, the indistinguishability of the remaining two is proved analogously.
Further note, that the view ofZsys-sec is perfectly indistinguishable, if the simulation does not abort.

Assume there is an environmentZsys-sec that trigger the event E1 in the first sub-hybrid with non-negligible
advantage. This immediately yields an efficient adversary B against the extraction property of the NIZK scheme.
Internally, B runsZsys-sec in its head plays the role of the simulator and all honest parties. Externally, B plays
the adversary in Definition C.5, Item (3b). If the event E1 occurs internally, B outputs the corresponding pair
(stmnt,π). In the second and third sub-hybrid B internally extracts the witness for the previous sub-hybrid using
the extraction trapdoor tdepok which B obtains as part of its input. □

Remark F.16. We observe that Lemma F.15 implies that the equations
C1.Open(CRS1

com,m, cT ,dT) = 1 with m = (Λ, pkU) (10)

C1.Open(CRS1
com,m, cR ,dR) = 1 with m = (Λ,1,U next

1 ,д1) (11)

C1.Open(CRS1
com,m, c

prev
R
,d

prev
R
) = 1 with m = (Λ,Bprev,U1,X) (12)

C1.Open(CRS1
com,m, c

′
R ,d

′
R) = 1 with m = (Λ,Bprev,U next

1 ,X) (13)

C1.Open(CRS1
com,Λ

′, c ′seed,d
′
seed) = 1 (14)

C1.Open(CRS1
com, pkU , chid,dhid) = 1 (15)

and
S.Vfy(pkT

T
,σT ,m) = 1 with m = (cT , aU) (16)

S.Vfy(pkprev
R
,σ

prev
R
,m) = 1 with m = (c

prev
R
, sprev) (17)

S.Vfy(pkcert
T
,σ cert
R

prev
,m) = 1 with m = (pkprev

R
, aprev
R
) (18)

resp., hold and that all variables can efficiently be extracted. Remember, that Fgp acts as the identity function on
group elements. Moreover, given the extracted chunks of the Wallet ID Λ′0, . . . ,Λ

′
ℓ−1 the unique Wallet ID λ can

be reconstructed. The projection Fgp becomes injective if the pre-image is restricted to Zp and the inverse, i.e.
DLOG, can be efficiently computed as λ′0, . . . , λ

′
ℓ−1 are sufficiently “small”.

Up to this point, we already know that H0
c
≡ H8 holds. Except for two small changes (from H4 to H5 and from

H5 to H6) all hops are only syntactical. Moreover, the simulator S8 of hybrid H8 is indeed sufficient to simulate
an indistinguishable view forZsys-sec in the ideal model. Note, that all subsequent hybrids from H10 to H15 only
add more sanity checks but do not change any messages. Actually, even the modification introduced by H6 is not
required for a indistinguishable simulation, as H6 only records TRDB, but TRDB is not used yet. However, only

M. Hoffmann, V. Fetzer, M. Nagel, A. Rupp, R. Schwerdt • P4TC 91

TRDB and the upcoming sanity checks enable a reduction to cryptographic assumptions and thus are vital to
proof the indistinguishably between H8 and the ideal model.

To this end, two additional lemmas about the structure of TRDB are necessary. These lemmas are in the same
spirit as Lemmas F.3 and F.4. Intuitively, the commitments cT , cR induce a graph structure onto TRDB comparable
to the wallet ID λ and serial number s .

Lemma F.17 (Forest Structure of the Simulated Transaction Graph). (1) Every trdb = (sprev, s, . . .) ∈
TRDB is uniquely identified by s with overwhelming probability.

(2) The Simulated Transaction Graph TRDB is a forest with edges defined by (sprev, s).

Proof. (1) A new entry is only inserted in the scope of Wallet Issuing, Debt Accumulation or Debt Clearance.
Proof by Induction: The statement is correct for the empty TRDB. For each insertion, the simulator S6 (and
every following simulator) draws s uniformly and independently. The chance to pick a serial number that
has already been used is negligible.

(2) As the serial number s of the new node is randomly chosen, no existing node can point to the new node as
its predecessor and thus no cycle is closed with overwhelming probability.

□

Lemma F.18 (Indistinguishability between H8 and H9). Under the assumptions of Theorem F.10, H8
c
≡ H9

holds.

Proof. Assume there is an environmentZsys-sec that trigger the event E2 with non-negligible advantage. This
immediately yields an efficient adversary B against the EUF-CMA security of S. We only need to deal with the
case that s∗ does not exist. If it exists, Lemma F.17, Item (1) implies its uniqueness. We need to distinguish two
cases. On an abstract level these cases correspond to the following scenarios: Either the previous RSU exists. Then
the signature σ prev

R
on (cprev

R
, sprev) is a forgery. Or alternatively, the allegedly previous RSU does not exits but has

been imagined by the user. Then (cprev
R
, sprev) may have a honest, valid signature (because the user feigned the

RSU), but the certificate certRprev for the fake RSU constitutes a forgery. Please note, that the simulator always
records an entry trdb when it legitimately issues a signature σR and vice versa.
(1) A record pidprev

R
7→ (pkprev

R
, skprev
R
) has been recorded: In other words, (cprev

R
, sprev) has never been legitimately

issued by a the the allegedly previous RSU.34 We construct an efficient adversary B against the EUF-CMA
security of S. Internally, B runsZsys-sec in its head and plays the role of the simulator and all honest parties.
Externally, B plays the EUF-CMA security experiment with a challenger C and a signing oracle OS

pk,sk. B
needs to guess for which pidprev

R
the event (E2) eventually occurs. When the RSU with pidprev

R
registers itself,

and B playing S9 needs to provide pkprev
R

it embeds the challenge as pkprev
R

:= pkC . Whenever B playing
the role of S9 needs to issue a signature with respect to pkprev

R
, it does so using its external EUF-CMA

oracle OS
pk,sk. When the event (E2) occurs, B extracts (cprev

R
, sprev) and σ prev

R
from the proof and outputs the

forgery. N.b., (cprev
R
, sprev) has never been signed with respect to pkprev

R
= pkC by assumption.

(2) A record pidprev
R
7→ (pkprev

R
, skprev
R
, certR) has not been recorded: We construct an efficient adversary B

against the EUF-CMA security of S along the same lines as above. Internally, B runsZsys-sec in its head
and plays the role of the simulator and all honest parties. Externally, B plays the EUF-CMA security
experiment with a challenger C and a signing oracleOS

pk,sk. When the adversary B has to internally provide
pkT = (pk

cert
T
, pkR

T
, pkT

T
) playing the role of S9 in the scope of the TSP Registration, B embeds the external

34N.b.: RSU may also denote the TSP, if the transaction at hand happens to be the first after a Wallet Issuing and thus s∗ has been signed by
the TSP playing the role an RSU. For brevity, we only consider RSUs here.

92 M. Hoffmann, V. Fetzer, M. Nagel, A. Rupp, R. Schwerdt • P4TC

challenge as pkcert
T

:= pkC . Whenever B playing the role of S9 in the scope of RSU Certification needs
to issue signatures with respect to pkcert

T
, it does so using its external EUF-CMA oracle OS

pk,sk. When the
event (E2) occurs, B extracts certRprev = (pkR , aR ,σ cert

R
) from the proof and outputs (pkR , aR) together

with σ cert
R

as the forgery. N.b.: (pkR , aR) has never been signed by the TSP with respect to pkcert
T
= pkC as

otherwise a mapping pidprev
R
7→ (pkprev

R
, skprev
R
, certR) would have been recorded.

The forgeries are indeed valid due to Remark F.16. □

Remark F.19. Without Lemma F.18 it is unclear in Lemma F.17, Item (2) if the denoted predecessor of edge
(sprev, s) actually exists. The simulator extracts the serial number sprev of the predecessor from the proof and
puts this serial number into the newly added trdb. With this in mind Lemma F.17, Item (2) would have to be
interpreted such that an edge (sprev, s) is ignored, if the predecessor did not exist. Nonetheless, TRDB is still a
forest and Lemma F.17, Item (2) remains correct. Anyway, this oddity is ruled out by Lemma F.18.

Lemma F.20 (Indistinguishability between H9 and H10). Under the assumptions of Theorem F.10, H9
c
≡ H10

holds.

Proof. Assume there is an environmentZsys-sec that trigger the event E3 with non-negligible advantage. This
immediately yields an efficient adversary B against the EUF-CMA security of S by the same argument as in the
proof of Lemma F.18 as (cprev

R
, sprev) are jointly signed by the same signature σR . □

Lemma F.21 (Indistinguishability between H10 and H11). Under the assumptions of Theorem F.10, H10
c
≡ H11

holds.

Proof. Assume there is an environmentZsys-sec that trigger the event E4 with non-negligible advantage. We
construct an efficient adversary B against the binding property of C1. Internally, B runsZsys-sec in its head and
plays the role of the simulator and all honest parties. Externally, B plays the role of the adversary as defined by
Definition C.7, Item (2). When the event (E3) occurs, B sets

M
prev
R

:= (Λ,Bprev,U1,X)

from the extracted witness and obtains

Mout
R

∗
= (Λ∗,B∗,U ∗1 ,X

∗)

from TRDB. B outputs (cout
R

∗
,M

prev
R
,d

prev
R
,Mout
R

∗
,dout
R

∗
) to the external game. By assumption Λ , Λ∗ holds and

Remark F.16 asserts that both openings are valid. □

Lemma F.22 (Tree-wise Uniqeness of the Wallet ID). The wallet ID λ maps one-to-one and onto a connected
component (i.e., tree) of the Simulated Transaction Graph.

Proof. Same argument as in the proof of Lemma F.4. □

Lemma F.23 (Indistinguishability between H11 and H12). Under the assumptions of Theorem F.10, H11
c
≡ H12

holds.

Proof. We introduce a sub-hybrid that splits between two cases why event E5 is triggered: (1) cout
T

∗
, cT

and cT is not recorded in any trdb ∈ TRDB. (2) cout
T

∗
, cT and cT is recorded in some record trdb

‡
∈ TRDB.

An environmentZsys-sec that can differentiate between H11 and the sub-hybrid yields an efficient adversary B
against the EUF-CMA security of S. An environmentZsys-sec that can differentiate between the sub-hybrid and
H12 yields an efficient adversary B against the binding property of C1.

M. Hoffmann, V. Fetzer, M. Nagel, A. Rupp, R. Schwerdt • P4TC 93

(1) We construct an efficient adversary B against the EUF-CMA security of S. Internally, B runsZsys-sec in
its head, and plays the role of the simulator and all honest parties. Externally, B plays the EUF-CMA
security experiment with a challenger C and a signing oracle OS

pk,sk. When B must internally provide
pkT = (pk

cert
T
, pkR

T
, pkT

T
) playing the role of S12 in the scope of the TSP Registration, B embeds the external

challenge as pkT
T

:= pkC . Whenever B playing the role of S12 needs to issue signatures with respect to
pkT , it does so using its external EUF-CMA oracle OS

pk,sk. When the event (E5) occurs, B extracts cT and
σT from the proof and outputs the forgery.

(2) We construct an efficient adversary B against the binding property of C1. Internally, B runsZsys-sec in its
head and plays the role of the simulator and all honest parties. Externally, B plays the role of the adversary
as defined by Definition C.7, Item (2). As (E5) has not been raised earlier, cout

T

(i)
= cout
T

∗
, cT holds for all

cout
T

(i) in the same tree. Consequently, trdb
‡
with cout

T

‡
= cT is part of a different tree in TRDB and thus

Λ‡ , Λ∗ = Λ follows by Lemma F.22. B sets

MT := (Λ, pkU)

from the extracted witness and obtains

Mout
T

‡
= (Λ‡, pk‡

U
)

from TRDB. B outputs (cT ,MT ,dT ,Mout
T

‡
,dout
T

‡
) to the external game.

Remark F.16 asserts that the forgery in (1) and both openings in (2) are indeed valid. □

Lemma F.24 (Indistinguishability between H12, H13, H14 and H15). Under the assumptions of Theorem F.10,
H12

c
≡ H13

c
≡ H14

c
≡ H15 holds.

Proof. If an environment Zsys-sec can distinguish between any of the hops from H12 to H15 this yields an
efficient adversary against the binding property of C1. As usual, B runsZsys-sec in its head and internally plays
the role of the simulator and all honest parties. Externally, B plays the role of the adversary as defined by
Definition C.7, Item (2). If event (E7) or (E8) occurs, B sets

M
prev
R
= (Λ,Bprev,U1,д1X)

from the extracted witness and obtains

Mout
R

∗ := (Λ∗,B∗,U ∗1 ,X
∗)

from TRDB.B outputs (cR ,M
prev
R
,d

prev
R
,Mout
R

∗
,dout
R

∗
) to the external game. If the event (E6) is triggered,B proceeds

analogous but for the fixed part of wallet cT . □

Taking all the aforementioned statements together, Theorem F.10 from the beginning of this appendix follows.
For the sake of formal completeness we recall it again.

Theorem F.10 (Operator Security). Under the assumptions of Theorem F.1

π FCRS,Gbb
P4TC ≥UC F

Gbb

holds under static corruption of
(1) a subset of users, or
(2) all users and a subset of RSUs, TSP and SA.

Proof. A direct consequence of Lemmas F.12 to F.15, F.18, F.20, F.21, F.23 and F.24. □

94 M. Hoffmann, V. Fetzer, M. Nagel, A. Rupp, R. Schwerdt • P4TC

F.3 Proof of User Security and Privacy
In this appendix we show the following theorem.

Theorem F.25 (User Security and Privacy). Under the assumptions of Theorem F.1

π FCRS,Gbb
P4TC ≥UC F

Gbb

holds under static corruption of
(1) a subset of RSUs, TSP and SA, or
(2) all RSUs, TSP and SA as well as a subset of users.

The definition of the UC-simulator Suser-sec
πP4TC for Theorem F.25 can be found in Figs. 50 to 54. Please note that

while the real protocol πP4TC lives in the (FCRS,Gbb)-model, the ideal functionality FP4TC has no CRS. Hence, the
CRS (but not the bulletin board) is likewise simulated, providing Suser-sec

πP4TC with a lever to simulate the ZK proofs
P1, P2, and P3, to equivoke C1, and to extract C2.
The overall proof idea is to define a sequence of hybrid experiments Hi together with simulators Si and

protocols πi such that the first hybrid H0 is identical to the real experiment and the last hybrid H12 is identical to
the ideal experiment. Each hybrid is of the form

Hi := EXECπi ,Gbb,Si ,Zuser-sec (1n).

Instead of directly proving indistinguishability of the real and ideal experiment we can break the proof down
into showing indistinguishability of each pair of consecutive hybrids. We achieve this by demonstrating that
wheneverZuser-sec can distinguish between two consecutive hybrids with non-negligible probability this yields
an efficient adversary against one of the underlying cryptographic assumptions. The general idea is that the
protocol πi that honest parties perform gradually declines from the real protocol π0 = πP4TC to a dummy protocol
π12, which does nothing but relay in- and outputs. At the same time Si progresses from a dummy adversary S0
to the final simulator S12 which can be split up into the ideal functionality FP4TC and Suser-sec

πP4TC . We proceed by
giving concrete (incremental) definitions of all hybrids Hi .

Hybrid H0. The hybrid H0 is defined as
H0 := EXECπ0,Gbb,S0,Zuser-sec (1n)

with S0 = A being identical to the dummy adversary and π0 = πP4TC. Hence, H0 denotes the real experiment.

Hybrid H1. In hybrid H1 we modify S1 such that CRSpok is generated by SetupSPoK, CRS1
com is generated by

C1.SimGen and CRS2com is generated by C2.ExtGen. Additionally, S1 initializes the internal sets Ω
dsp, Ω

pp
U and

HTD as empty sets and records the respective entries as the final simulator Suser-sec
πP4TC does.

Hybrid H2. Hybrid H2 replaces the code in the tasks DR/TSP/RSU/User Registration of the protocol π2 such that
the simulator S2 is asked for the keys instead. This equals the method in which the keys are generated in the
ideal experiment.

Hybrid H3. In hybrid H3 the task RSU Certification is modified. For an honest TSP or an honest RSU the code of
π3 is replaced by the code of a dummy party. The simulator S3 behaves in this case as the final simulator Suser-sec

πP4TC
would.

Hybrid H4. H4 modifies the tasks of Wallet Issuing and Debt Accumulation. The code of π4 for the user is
modified such that it does not send s ′ but randomly picks s and sends it to S4. Then S4 extracts s ′′ ←
C2.Extract(CRS2com, c

′′
ser), calculates s ′ := s · (s ′′)−1 and inserts s ′ into the message from the user to the TSP

or RSU respectively.

M. Hoffmann, V. Fetzer, M. Nagel, A. Rupp, R. Schwerdt • P4TC 95

Simulator Suser-sec
πP4TC

Setup:
(1) Run a modified version of the algorithm CRS← Setup(1n) with
(a) CRS1

com ← C1.Gen being replaced by (CRS1
com, tdeqcom) ← C1.SimGen,

(b) CRS2com ← C2.Gen being replaced by (CRS2com, tdextcom) ← C2.ExtGen, and
(c) CRSpok ← SetupPoK being replaced by (CRSpok, tdspok) ← SetupSPoK.

(2) Record CRS, tdeqcom, tdextcom, and tdspok.
(3) Set Ω

dsp := ∅.
(4) Set Ω

pp
U := ∅.

(5) Set HTD := ∅.
DR Registration: Upon receiving (registering_dr, pidDR) run (pkDR, skDR) ← DRRegistration(CRS), return

pkDR to FP4TC and record pidDR 7→ (pkDR, skDR).
TSP Registration: Distinguish two cases:

TSP is corrupted: (nothing to do as this is a local algorithm for a corrupted TSP)
TSP honest: Upon receiving (registering_tsp, pidT , aT) run (pkT , skT , cert

R
T
) ←

TSPRegistration(CRS, aT), return pkT to FP4TC and record pidT 7→ (pkT , skT , cert
R
T
).

RSU Registration: Distinguish two cases:
RSU is corrupted: (nothing to do as this is a local algorithm for a corrupted RSU)
RSU honest: Upon receiving (registering_rsu, pidR) run (pkR , skR) ← RSURegistration(CRS), return
pkR to FP4TC and record pidR 7→ (pkR , skR).

User Registration: Upon receiving (registering_user, pidU) run (pkU , skU) ← UserRegistration(CRS), return
pkU to FP4TC and record pidU 7→ (pkU , skU).

RSU Certification: Distinguish four cases:
TSP and RSU honest: Upon receiving (certifying_rsu, pidR , aR) . . .
(1) Load the recorded pidT 7→ (pkT , skT , cert

R
T
), and pidR 7→ (pkR , skR); if any of these do not exist, let

FP4TC abort.
(2) Generate certR := (pkR , aR ,σ cert

R
) with σ cert

R
← S.Sgn(skcert

T
, (pkR , aR)) faithfully.

(3) Update record pidR 7→ (pkR , skR , certR).
TSP honest, RSU corrupted: Upon receiving (certifying_rsu, pidR , aR) . . .
(1) Load the recorded pidT 7→ (pkT , skT , cert

R
T
), and obtain pkR from Gbb for pidR ; if any of these do not

exist, let FP4TC abort.
(2) Generate certR := (pkR , aR ,σ cert

R
) with σ cert

R
← S.Sgn(skcert

T
, (pkR , aR)) faithfully.

(3) Record pidR 7→ (pkR ,⊥, certR).
(4) Output cert toZuser-sec.
TSP corrupted, RSU honest: Upon receiving (certR) fromZuser-sec in the name of T with pidT . . .
(1) Load the recorded pidR 7→ (pkR , skR), and obtain pkT from Gbb for pidT ; if any of these do not exist,

let FP4TC abort.
(2) Parse aR and σ cert

R
from certR .

(3) If S.Vfy(pkcert
T
,σ cert
R
, (pkR , aR)) = 0, let FP4TC abort.

(4) Call FP4TC with input (certify, aR) in the name of T with pidT .
TSP and RSU corrupted: (nothing to do asZuser-sec plays both parties)

Fig. 50. The simulator for User Security and Privacy

96 M. Hoffmann, V. Fetzer, M. Nagel, A. Rupp, R. Schwerdt • P4TC

Simulator Suser-sec
πP4TC (cont.)

Wallet Issuing: Distinguish two cases:
TSP is honest: (nothing to do)
TSP is corrupted:
(1) Load the recorded pidU 7→ (pkU , skU), and obtain pkT from Gbb for pidT ; if any of these do not exist,

let FP4TC abort.
(2) (c ′seed,d

′sim
seed) ← C1.SimCom(CRS1

com)

(3) Send (pkU , c ′seed) toZ
user-sec as the 1st message fromU to T

(4) Upon receiving (certR
T
, aU , c ′′ser, λ′′) fromZuser-sec in the name of T with pidT . . . a

(a) Parse (pkR
T
, aT ,σ cert

T
) := certR

T
.

(b) If S.Vfy(pkcert
T
,σ cert
T
, (pkR

T
, aT)) = 0 abort.

(c) Λ′′ := дλ′′1
(d) s ′′← C2.Extract(CRS2com, tdextcom, c

′′
ser).

(e) Call FP4TC with input (issue, aU , ∅) in the name of T with pidT .b
(5) Upon receiving output (s) from FP4TC for T . . .
(a) s ′ := s · s ′′−1.
(b) r1, r2

R
← Zp.

(c) e∗ ← E1.Enc(pkDR, (1, . . . ,1︸ ︷︷ ︸
ℓ+2

); r1, r2)

(d) (cT ,dT) ← C1.Com(CRS1
com, (0, 0)).

(e) (cR ,dR) ← C1.Com(CRS1
com, (0, 0, 0, 0)).

(f) stmnt := (pkU , pkDR, e
∗, cT , cR , c

′
seed,Λ

′′, λ′′).
(g) π ← P1.SimProof(CRSpok, tdspok, stmnt).
(h) Send (s ′, e∗, cT , cR ,π) toZuser-sec as the 2nd message fromU to T

(6) Upon receiving (s ′′,d ′′ser,σT ,σR) fromZuser-sec in the name of T with pidT . . .
(a) If C2.Open(CRS2com, s ′′, c ′′ser,d ′′ser) = 0, let FP4TC abort.
(b) Set htd := (pkU , s, λ′′, e∗) and insert htd into HTD.
(c) Create real token τ faithfully.
(d) If WalletVerification(pkT , pkU ,τ) = 0, let FP4TC abort.
(e) Let FP4TC return the delayed output to the User.

aIf no message is received, let FP4TC abort; if blacklisted is received, override FP4TC’s delayed output for the User with blacklisted.
bUse empty set as blacklist. If the TSP intended to blacklist the user, the TSP would not have sent the previous message.

Fig. 51. The simulator for User Security and Privacy (cont. from Fig. 50)

Hybrid H5. This hybrid modifies π5 such that the honest parties do not send any proofs. Instead, the simulator S5
appends a simulated proof to the message from a user to a TSP or RSU without knowing the witness.

Hybrid H6. H6 modifies π6 such that honest users do not send the commitments c ′seed, cT and cR in the Wallet
Issuing task and c ′

R
in the Debt Accumulation task. Instead, S6 injects suitable commitments to vectors of zeros.

This equals the behavior of the final simulator Suser-sec
πP4TC .

M. Hoffmann, V. Fetzer, M. Nagel, A. Rupp, R. Schwerdt • P4TC 97

Simulator Suser-sec
πP4TC (cont.)

Debt Accumulation: Distinguish two cases:
RSU is honest: (nothing to do)
RSU is corrupted:
(1) Obtain pkT from Gbb for pidT ; if it does not exist, let FP4TC abort.
(2) Upon receiving u2, c

′′
ser, certR fromZuser-sec in the name of R with pidR , do . . .

(a) Parse (pkR , aR ,σ cert
R
) := certR .

(b) If S.Vfy(pkcert
T
,σ cert
R
, (pkR , aR)) = 0 abort.

(c) s ′′← C2.Extract(CRS2com, c
′′
ser).

(d) Call FP4TC with input (pay_toll, ∅)a in the name of R with pidR .
(e) Obtain RSU’s output (s,ϕ, aU , aR) from FP4TC, and delay the output of the User.
(f) s ′ := s · s ′′−1.

(3) Upon being requested byZuser-sec to provide the second message . . .
(a) Run (chid,dhid) ← C1.SimCom(CRS1

com) and append (s, chid,dhid) to Ω
pp
U .

(b) (c ′
R
,d ′
R
) ← C1.Com(CRS1

com, (0, 0, 0, 0)).
(c) Check if any (ϕ, t ′,u ′2) ∈ Ω

dsp has been recorded previously with (ϕ) being used as key. If no, pick

t
R
← Zp. If yes, load the recorded pidU 7→ (pkU , skU) and set t := t ′ + skU(u2 − u

′
2). Insert (ϕ, t ,u2)

into Ω
dsp.

(d) stmnt := (pkT , pk
cert
T
,ϕ, aU , a

prev
R
, chid, c

′
R
, t ,u2).

(e) π ← P2.SimProof(CRSpok, tdspok, stmnt).
(f) Output (s ′,π ,ϕ, aU , a

prev
R
, chid, c

′
R
, t) toZuser-sec.

(4) Upon being ask to provide a price for (aU , aR , a
prev
R
) return a price p as the dummy adversary would

do.
(5) Upon receiving (s ′′,d ′′ser, cR ,d ′′R ,σR ,p) fromZ

user-sec . . . b
(a) dR := d ′

R
· d ′′
R
.

(b) If C1.Open(CRS1
com, (1,д

p
1 , 1,д1), cR ,dR) = 0 let FP4TC abort.

(c) If S.Vfy(pkR ,σR , (cR , s)) = 0 let FP4TC abort.
(d) Let FP4TC return the delayed output to the User.

aUse empty set as blacklist.
bIf no message is received, let FP4TC abort; if blacklisted is received, override FP4TC’s delayed output for the User with blacklisted.

Fig. 52. The simulator for User Security and Privacy (cont. from Fig. 50)

Hybrid H7. This hybrid introduces a lookup table that links hidden user trapdoors to their origin. More precisely,
if the task Wallet Issuing is executed, S7 records htd = (pkU , s, λ

′′, e∗) in HTD. Please note that S7 knows s due
to the change in H4.

Moreover, if the task Blacklisting and Recalculation is invoked, S7 partitions the set of hidden user trapdoors
HTDU provided by the environment into two “subsets”35 HTDgenuine

U
and HTDfake

U
(cp. Fig. 54, Steps 2a to 2c). If

for a hidden user trapdoor htd = (pkU , s, λ
′′, e∗) a corresponding entry (·, ·, λ′′, e∗) is recorded in HTD, then we

35The sets HTDgenuine
U

and HTDfake
U

might be no actual “subsets”. The hidden user trapdoors are classified with respect to (·, ·, λ′′, e∗) which
are left unmodified, but the first two components (pkU, s, ·, ·) are sanitized.

98 M. Hoffmann, V. Fetzer, M. Nagel, A. Rupp, R. Schwerdt • P4TC

Simulator Suser-sec
πP4TC (cont.)

Debt Clearance: Distinguish two cases:
TSP is honest: (nothing to do)
TSP is corrupted:
(1) Load the recorded pidU 7→ (pkU , skU), and obtain pkT from Gbb for pidT ; if any of these do not exist,

let FP4TC abort.
(2) Upon receiving u2 fromZuser-sec in the name of T with pidT , do . . .
(a) Call FP4TC with input (clear_debt) in the name of T with pidT .
(b) Obtain leaked aprev

R
.

(c) Obtain TSP’s output (pidU ,ϕ,b
bill) from FP4TC, and delay the output of the User.

(3) Upon being requested byZuser-sec to provide the second message . . .
(a) Check if any (ϕ, t ′,u ′2) ∈ Ω

dsp has been recorded previously with (ϕ) being used as key. If no, pick

t
R
← Zp. If yes, load the recorded pidU 7→ (pkU , skU) and set t := t ′ + skU(u2 − u

′
2). Insert (ϕ, t ,u2)

into Ω
dsp.

(b) stmnt := (pkU , pkT , pk
cert
T
,ϕ, aU , a

prev
R
,дb

bill

1 , t ,u2).
(c) π ← P3.SimProof(CRSpok, tdspok, stmnt).
(d) Output (pkU ,π ,ϕ, aU , a

prev
R
,bbill, t) toZuser-sec.

(4) Upon receiving (OK) fromZuser-sec,a let FP4TC return the delayed output to the User.
aIf no message is received, let FP4TC abort.

Fig. 53. The simulator for User Security and Privacy (cont. from Fig. 50)

call it a genuine hidden user trapdoor and the public key pkU and the serial number s are set to the originally
recorded value. Genuine hidden user trapdoors are those which have legitimately been created in the scope of
Wallet Issue. Else we call it a fake hidden user trapdoor. In this case, the provided serial number s is left as is and
the public key pkU is set to the decrypted value from e∗.36 S7 additionally checks if the hidden user trapdoors of
both sets HTDgenuine

U
and HTDfake

U
belong to the same user public key pkT

U
or else aborts. This equals the behavior

of the final simulator.
S7 runs the code of an honest DR on HTDgenuine

U
∪ HTDfake

U
to recover ΦU , i.e., it decrypts every hidden user

trapdoor and evaluates the PRF itself. For the DR the code of π7 is changed such that it simply signals its consent
by forwarding its input pkDR

U
to S7.

Hybrid H7 is a preparative step to eventually free the simulator from having to actually decrypt genuine hidden
user trapdoors in case a user is blacklisted. Decryption of genuine hidden user trapdoors becomes impossible for
the final simulator Suser-sec

πP4TC as hybrid H9 replaces all hidden user trapdoors with an encryption of zeros. However,
a hidden user trapdoor is not bound to any user secrets. This allows a (malicious) TSP to pick an arbitrary chosen
wallet ID λfake and create a syntactically valid hidden user trapdoor for λfake and any public user key pkU . If
the DR and the (malicious) TSP agree to blacklist a user, the TSP may send these fake hidden user trapdoors in
addition to the genuine hidden user trapdoors to the DR. In the real protocol the DR simply decrypts both types
of hidden user trapdoors and returns a list of pseudo-random fraud detection IDs for each of them.37 The final

36We assume, that Dec returns ⊥ if e∗ cannot be decrypted.
37Skipping ahead, please note that this is not a “real” attack but only a very cumbersome way for the TSP to evaluate the PRF on self-chosen
seeds.

M. Hoffmann, V. Fetzer, M. Nagel, A. Rupp, R. Schwerdt • P4TC 99

Simulator Suser-sec
πP4TC (cont.)

Prove Participation:
(1) Load the recorded pidU 7→ (skU , pkU); if this does not exist let FP4TC abort.
(2) Upon receiving Spp

R
fromZuser-sec in the name of SA . . .

(a) Call FP4TC with input (prove_participation, pidU , S
pp
R
).

(b) Obtain the SA’s output (out) from FP4TC.
(c) If out = NOK, abort.
(d) Pick ωpp

U
= (s, chid,dhid) from Ω

pp
U such that s ∈ Spp

R
; if this does not exist abort.

(e) Equivoke dhid ← C1.Equiv(CRS1
com, skU , chid,dhid).

(f) Output (s, chid,dhid) toZuser-sec as message fromU to SA.
Double-Spending Detection: Upon being ask to provide a proof for pidU , look up pidU 7→ (pkU , skU), and return

skU .
Guilt Verification: Upon being ask by FP4TC to provide out for (pidU ,π) . . .

(1) Receive pkU from Gbb for pidU .
(2) If дπ1 = pkU , then return out := OK, else out := NOK to FP4TC.

Blacklisting and Recalculation: Distinguish two cases:
TSP honest: (nothing to do)
TSP corrupted:
(1) Load the recorded pidDR 7→ (pkDR, skDR).
(2) Upon receiving HTDU fromZuser-sec . . .
(a) HTDgenuine

U
=
{
(pkU , s, λ

′′, e∗)
��� (·, ·, λ′′, e∗) ∈ HTDU ∧ (pkU , s, λ

′′, e∗) ∈ HTD
}

(b) HTDfake
U
=
{
(pkU , s, λ

′′, e∗)
��� (·, s, λ′′, e∗) ∈ HTDU ∧ (·, ·, λ′′, e∗) < HTD ∧ (. . . , pkU) ← E1.Dec(skDR, e

∗)

}
(c) Assert pk(1)

U
= pk(2)

U
for all (pk(1)

U
, ·, ·, ·), (pk(2)

U
, ·, ·, ·) ∈ HTDgenuine

U
∪HTDfake

U
and set pkT

U
:= pk(1)

U
, else

abort
(d) Call FP4TC with (blacklist_user, pkT

U
).

(3) Upon being ask by FP4TC to provide Sroot . . .
(a) Sroot :=

{
s
�� (·, s, ·, ·) ∈ HTDgenuine

U

}
(b) Provide Sroot to FP4TC

(4) Upon receiving TSP’s output (bbill,Φbl) from FP4TC . . .
(a) For HTDfake

U
recover Φfake as the real DR would do

(b) Send ΦU := Φbl ∪ Φ
fake to FP4TC as the message from DR to T

Fig. 54. The simulator for User Security and Privacy (cont. from Fig. 50)

simulator needs to mimic this behavior. The ideal functionality always returns a list of uniformly drawn fraud
detection IDs of the correct length only for legitimately issued wallets. Hence, the final simulator extends this list
by fraud detection IDs for each of the fake hidden user trapdoors.

Hybrid H8. This hybrid introduces a new incorruptible entity Fϕ-rand into the experiment that is only accessible
by honest users and the simulator through subroutine input/output tapes.38

38I.e., communication is confidential, reliable and trustworthy. One might think of this entity as a preliminary version of the eventual ideal
functionality.

100 M. Hoffmann, V. Fetzer, M. Nagel, A. Rupp, R. Schwerdt • P4TC

Fϕ-rand provides the following functionality: Internally, Fϕ-rand manages a partial map fΦ, mapping pairs of
wallet IDs λ and counters x to fraud detection IDs. Whenever an as yet undefined value fΦ(λ,x) is required,
Fϕ-rand defines fΦ(λ,x) := PRF(λ,x). If a user requests a fraud detection ID ϕ for (λ,x), Fϕ-rand returns fΦ(λ,x)
to the user. If an honest user inquires Fϕ-rand for the first time for a fresh λ, the user has to also provide the
corresponding serial number s of the current transaction. Fϕ-rand internally records that s is associated with λ. If
Fϕ-rand is invoked by the simulator with input s , Fϕ-rand looks up the associated wallet ID λ and returns the set
{ fΦ(λ, 0), . . . , fΦ(λ,xblR)}.
An honest user running π8 does not evaluate the PRF to obtain a fraud detection ID ϕ, but requests Fϕ-rand to

provide one.
If Blacklisting and Recalculation is invoked, the simulator S8 proceeds as follows: For hidden user trapdoors in

the set HTDfake
U

it still decrypts the seed and evaluates the PRF. However, for hidden user trapdoors (pkU , s, λ′′, e∗)
in the set HTDgenuine

U
, S8 it does not decrypt e∗, but requests Fϕ-rand for the corresponding set of fraud detection

IDs using s .

Hybrid H9. In the scope of Wallet Issuing π9 is modified such that honest users do not send e∗. Instead, S6 injects
an encrypted zero-vector as e∗.

Hybrid H10. Hybrid H10 replaces the PRF inside Fϕ-rand by truly random values. Whenever an as yet undefined
value fΦ(λ,x) is required, Fϕ-rand independently and uniformly draws a fresh random fraud detection id ϕ and
sets fΦ(λ,x) := ϕ.

Hybrid H11. In H11 Debt Accumulation and Debt Clearance are modified such that the simulator S11 replaces
t in the message from the user. If no (ϕ, t ′,u ′2) ∈ Ω

dsp has been recorded previously, S11 picks t
R
← Zp, else S11

sets t := t ′ + skU(u2 − u
′
2). Finally, S11 inserts (ϕ, t ,u2) into Ω

dsp. This equals the behavior of the final simulator
Suser-sec
πP4TC .

Hybrid H12. The hybrid H12 modifies Debt Accumulation and Prove Participation. In Debt Accumulation the
simulator S12 runs (chid,dhid) ← C1.SimCom(CRS1

com) and appends (s, chid,dhid) to Ω
pp
U . In Prove Participation

the code of S12 for the honest user is replaced by a code that just checks if the user has a matching and
correct (s∗, c∗hid,d

∗
hid) and respectively sends OK or NOK to S12. If S12 receives OK from the user, then it picks

ω
pp
U
= (s, chid,dhid) from Ω

pp
U such that s ∈ Spp

R
. Furthermore, it runs dhid ← C1.Equiv(CRS1

com, skU , chid,dhid) and
sends (s, chid,dhid) to T . Again, this equals the behavior of the final simulator Suser-sec

πP4TC .
The combinations of all modifications from H0 to H12 yields

H12 = EXECπ12,Gbb,S12,Zuser-sec (1n)
= EXEC

FP4TC,Gbb,S
user-sec
πP4TC ,Zuser-sec (1n).

With these hybrids we can now give the proof of Theorem F.25. We do not spell out all steps of the proofs in full
detail, but rather sketch the necessary reductions.

Proof of Theorem F.25.
FromH0 toH1: This hop solely changes how the CRS is created during the setup phase. This is indistinguishable

for CRSpok, CRS1
com, and CRS2com (see the composable zero-knowledge property of Definition C.5, the equivocality

property and the extractability property of Definition C.7, resp., condition (a) each).
From H1 to H2: This hop does not change anything in the view ofZuser-sec as S2 runs the same key generation

algorithm as the real protocol does for honest parties.
From H2 to H3: Again, this hop only changes which party runs which part of the code, but has no effect on the

view ofZuser-sec.

M. Hoffmann, V. Fetzer, M. Nagel, A. Rupp, R. Schwerdt • P4TC 101

FromH3 toH4: This hop does not change anything from the perspective ofZuser-sec asC2 is perfectly extractable.
The change is a purely syntactical one to push the simulator closer to Suser-sec

πP4TC .
From H4 to H5: This game hop replaces the real proofs by simulated proofs. To show indistinguishability despite

this change, we actually have to consider a sequence of sub-hybrids—one for each of the different ZK proof
systems P1, P2 and P3. In the first sub-hybrid all proofs for P1 are replaced by simulated proofs, in the second
sub-hybrid all proofs for P2 are replaced and finally all proofs for P3. Assume there existsZuser-sec that notices a
difference between H4 and the first sub-hybrid. Then we can construct an adversary B that has a non-negligible
advantage Advpok-zkPOK,B(n). Internally, B runsZuser-sec and plays the protocol and simulator forZuser-sec. All calls
of the simulator to P1.Prove are forwarded by B to its own oracle in the external challenge game which is either
P1.Prove or P1.SimProof. B outputs whatever Zuser-sec outputs. The second and third sub-hybrid follow the
same line, but this time B internally needs to generate simulated proofs for the proof system that has already
been replaced in the previous sub-hybrid. As B gets the simulation trapdoor as part of its input in the external
challenge game, B can do so.
From H5 to H6: In this hop the commitments c ′seed, cT , cR and c ′

R
are replaced with commitments to zero-

messages for every honest user. Again, the hop from H5 to H6 is further split into a sequence of sub-hybrids with
each sub-hybrid replacing a single commitment in reverse order of appearance. AssumeZuser-sec can distinguish
between H5 and H6 with non-negligible advantage. This yields an efficient adversary B against the hiding
property of C1. Please note that none of the commitments are ever opened, hence in each sub-hybrid only a single
message is replaced. Internally, B runsZuser-sec and plays the role of all parties and the simulator forZuser-sec.
Externally, B plays the hiding game. First, B guesses the index i of the sub-hybrid which letsZuser-sec distinguish.
For the first (i − 1) commitments, B commits to the true message. For the ith commitment, B sends the actual
message and an all-zero message to the external challenger. B embeds the external challenge commitment (either
to the actual message or the all-zero message) as the ith commitment. All remaining commitments are replaced
by commitments to zeros. B outputs whateverZuser-sec outputs.
From H6 to H7: This hop is perfectly indistinguishable from the environment’s perspective as the additional

code executed by S7 does not change the output. Note that the hidden user trapdoors are still recovered in the
same way the real DR would. For hidden user trapdoors htd = (pkU , s, λ

′′, e∗) in HTDgenuine
U

the (outer) public
key pkU is replaced by the public key that has originally been recorded for (·, ·, λ′′, e∗). However, due to the
correctness of E1 the ciphertext e∗ determines a unique message (for a fix key pair pkDR, skDR) and thus the
originally recorded pkU equals the one that e∗ decrypts to. The additional, pairwise equality check for all public
keys triggers an abort if and only if the real DR aborts as well.
From H7 to H8: Again, this hop is purely syntactical. The inserted entity Fϕ-rand is invisible for Zuser-sec.

Moreover, Fϕ-rand still uses the real PRF to generate fraud detection IDs. However, this hop frees S8 from the
decryption of genuine hidden user trapdoors. Instead, S8 uses the originally recorded serial number s of the
associated Wallet Issuing task to look up the set {PRF(λ, 0), . . . ,PRF(λ,xblR)}, if required. Again, this is possible
due to the correctness of E1, i.e., e∗ uniquely determines λ and thus maps to a unique s .
From H8 to H9: In this hop every encryption e∗ of a wallet ID λ is replaced by an encryption of a 1-vector

for every honest user. We further split this hop into a sequence of sub-hybrids, with each sub-hybrid replacing
a single encryption in reverse order of appearance. AssumeZuser-sec can distinguish between H8 and H9 with
non-negligible advantage. This yields an efficient adversary B against the IND-CCA security of the encryption
scheme E1. Internally, B runsZuser-sec and plays the role of all parties and the simulator forZuser-sec. Externally,
B plays the IND-CCA game. When B—playing the role of the simulator—needs to provide the public key in the
scope of DR Registration, it embeds the challenge key pkDR := pkC . B needs to guess the index of the sub-hybrid
that causes a non-negligible difference, i.e., B needs to guess which (user) wallet causes distinguishability. For the
first (i − 1) invocations of Wallet Issuing, B encrypts the true seed, in the ith invocation B embeds the external

102 M. Hoffmann, V. Fetzer, M. Nagel, A. Rupp, R. Schwerdt • P4TC

challenge and B encrypts a 1-vector for the remaining invocations of Wallet Issuing. If Zuser-sec invokes the
task Blacklist User and B needs to restore the wallet ID, the following two cases may occur: a) The presented
hidden user trapdoor is a genuine trapdoor. In this case B uses its lookup table to recover the correct set of fraud
detection IDs. b) The presented hidden user trapdoor is a fake trapdoor. In this case B uses its decryption oracle
of the external CCA-game to restore the wallet ID λ and to create a set of fraud detection IDs. B outputs whatever
Zuser-sec outputs.

From H9 to H10: In this hop the pseudo-random fraud detection IDs for honest users are replaced by uniformly
drawn random IDs. Again, we proceed by introducing a sequence of sub-hybrids. In each sub-hybrid the fraud
detection IDs for one particular wallet ID λ are replaced. IfZuser-sec can distinguish between two of the sub-hybrids,
this immediately yields an efficient adversary against the pseudo-random game as defined in Definition C.13.
Internally, B runs Zuser-sec and plays the protocol and simulator for Zuser-sec. Externally, B interacts with an
oracle that is either a true random function R(·) or a pseudo-random function PRF(λ̂, ·) for an unknown seed λ̂.
Whenever B playing Fϕ-rand internally needs to draw a fraud detection ID for the particular wallet λ, B uses
its external oracle. B outputs whateverZuser-sec outputs. Please note, this argument crucially uses the fact that
Zuser-sec is information-theoretically independent of λ. The hidden user trapdoors e∗ have already been replaced
by encryptions of 1-vectors in the previous hybrid H9. This enables the external challenger to pick any seed λ̂.
From H10 to H11: This hop is statistically identical. As long as no double-spending occurs, the user chooses a

fresh u1 in every transaction and thus a single point (u2, t) is information-theoretically independent from skU .
From H11 to H12: In this hop the simulator S12 sends simulated commitments chid for the hidden user ID instead

of commitments to the true values. Later, S12 equivokes these commitments on demand to the correct pkU , if
Zuser-sec triggers Prove Participation. Again, ifZuser-sec has a non-negligible advantage to distinguish between
H11 and H12, then an efficient adversary B can be constructed against the hiding property and equivocality of
C1. The reduction follows the same lines as in the hop from hybrid H5 to H6. □

	1 Introduction
	2 Considered Scenario
	3 Security Model
	4 System Definition
	5 Protocol Overview
	6 Security Theorem
	7 Protocol Performance Evaluation
	References
	A Information Leakage and Discussion on Privacy Implications
	B Full System Definition
	C Setting and Building Blocks
	D Full Protocol Description
	E Adversarial Model
	F Security Proof

