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Abstract. The measurements of aerosol particles with a fil-
ter inlet for gases and aerosols (FIGAERO) together with
a chemical ionisation mass spectrometer (CIMS) yield the
overall chemical composition of the particle phase. In addi-
tion, the thermal desorption profiles obtained for each de-
tected ion composition contain information about the volatil-
ity of the detected compounds, which is an important prop-
erty for understanding many physical properties like gas–
particle partitioning. We coupled this thermal desorption
method with isothermal evaporation prior to the sample col-
lection to investigate the chemical composition changes dur-
ing isothermal particle evaporation and particulate-water-
driven chemical reactions in α-pinene secondary organic
aerosol (SOA) of three different oxidative states. The ther-
mal desorption profiles of all detected elemental composi-
tions were then analysed with positive matrix factorisation
(PMF) to identify the drivers of the chemical composition
changes observed during isothermal evaporation. The keys to
this analysis were to use the error matrix as a tool to weight
the parts of the data carrying most information (i.e. the peak
area of each thermogram) and to run PMF on a combined
data set of multiple thermograms from different experiments
to enable a direct comparison of the individual factors be-
tween separate measurements.

The PMF was able to identify instrument background fac-
tors and separate them from the part of the data containing
particle desorption information. Additionally, PMF allowed

us to separate the direct desorption of compounds detected
at a specific elemental composition from other signals with
the same composition that stem from the thermal decompo-
sition of thermally instable compounds with lower volatil-
ity. For each SOA type, 7–9 factors were needed to explain
the observed thermogram behaviour. The contribution of the
factors depended on the prior isothermal evaporation. De-
creased contributions from the factors with the lowest des-
orption temperatures were observed with increasing isother-
mal evaporation time. Thus, the factors identified by PMF
could be interpreted as volatility classes. The composition
changes in the particles due to isothermal evaporation could
be attributed to the removal of volatile factors with very lit-
tle change in the desorption profiles of the individual factors
(i.e. in the respective temperatures of peak desorption, Tmax).
When aqueous-phase reactions took place, PMF was able to
identify a new factor that directly identified the ions affected
by the chemical processes.

We conducted a PMF analysis of the FIGAERO–CIMS
thermal desorption data for the first time using laboratory-
generated SOA particles. But this method can be applied
to, for example, ambient FIGAERO–CIMS measurements
as well. There, the PMF analysis of the thermal desorp-
tion data identifies organic aerosol (OA) sources (such as
biomass burning or oxidation of different precursors) and
types, e.g. hydrocarbon-like (HOA) or oxygenated organic
aerosol (OOA). This information could also be obtained with
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the traditional approach, namely the PMF analysis of the
mass spectra data integrated for each thermogram. But only
our method can also obtain the volatility information for each
OA source and type. Additionally, we can identify the con-
tribution of thermal decomposition to the overall signal.

1 Introduction

To understand the impact of secondary organic aerosol
(SOA) on the Earth’s climate and human health, we need
to know more about the chemical and physical properties
of these particles and how they evolve over time in the at-
mosphere. The physical properties of SOA particles are con-
trolled by the physical properties of their constituents and the
interaction of the compounds in these complex mixtures. The
volatility of SOA constituents is one of the defining charac-
teristics of SOA particles, as it plays a key role in understand-
ing (and predicting) the partitioning behaviour of a com-
pound between the gas and particle phase (Pankow, 1994a,
b; Pankow et al., 2001). Generally, the partitioning of a com-
pound into the particle phase is controlled by the saturation
vapour pressure (volatility) of the compound involved, its
concentrations, and the available condensation sink. In ad-
dition, particle-phase processes also play an important role,
especially when particle-phase compounds are partitioning
back into the gas phase. In highly viscous or solid particles,
mass transfer limitations exist that reduce the apparent parti-
cle volatility (Buchholz et al., 2019; Wilson et al., 2015; Yli-
Juuti et al., 2017). The partitioning process is further com-
plicated by particle-phase chemical reactions. Accretion re-
actions can convert more volatile compounds into larger and
heavier compounds, thereby changing the overall properties
of the SOA particles again (Herrmann, 2003; Kroll and Se-
infeld, 2008). Particulate water plays a special role in these
particle-phase processes. On the one hand, it acts as a plas-
ticiser that reduces the particle viscosity (Renbaum-Wolff et
al., 2013; Virtanen et al., 2010) and thus the mass transport
limitation in the particles. These transport limitations are re-
sponsible for the reduced evaporation under dry conditions
(Liu et al., 2016; Wilson et al., 2015; Yli-Juuti et al., 2017).
On the other hand, the presence of an aqueous phase enables
a wide range of chemical reactions with the potential to form
low-volatility compounds via oligomerisation reactions (e.g.
Surratt et al., 2007; Tolocka et al., 2004). Hydrolysis of labile
bonds (e.g. peroxides or esters) is also possible, which would
lead to more volatile products.

There are many challenges involved in trying to fully char-
acterise SOA particles and their volatility. Already the sheer
number of precursor compounds and their reaction products,
which may contribute to the particle phase by forming new
particles or condensing on existing ones, makes it almost
impossible to fully characterise the chemical composition
of SOA particles (Glasius and Goldstein, 2016; Goldstein

and Galbally, 2007). However, the development of the fil-
ter inlet for gases and aerosols (FIGAERO, Lopez-Hilfiker
et al., 2014) for the chemical ionisation mass spectrometer
(CIMS) was a big step forward in the chemical character-
isation of SOA particles. This is because the FIGAERO–
CIMS provides more detailed information about the molec-
ular composition and, at the same time, records the ther-
mal desorption behaviour (thermogram) of each detected ion.
Hence, in addition to composition information, FIGAERO–
CIMS measurements enable the determination of the volatil-
ity of SOA constituents. In an ideal case, the peak desorp-
tion temperature (Tmax – temperature at peak of ion ther-
mogram) of a single ion thermogram is correlated to the
ion volatility expressed by its effective saturation vapour
pressure, C∗sat (Lopez-Hilfiker et al., 2014; Schobesberger et
al., 2018). This relationship can be calibrated for a specific
FIGAERO–CIMS set-up and temperature ramp by measur-
ing compounds with known volatilities, e.g. carboxylic acids
(Lopez-Hilfiker et al., 2014) or polyethylene glycol (Bannan
et al., 2019). Unfortunately, in most cases the data interpreta-
tion is more complicated as some compounds will not desorb
from the FIGAERO filter at a temperature corresponding to
their volatility. They will instead decompose at a lower tem-
perature, and the decomposition products will be detected in
the mass spectrometer (D’Ambro et al., 2019; Lopez-Hilfiker
et al., 2015; Stark et al., 2017; Wang and Hildebrandt Ruiz,
2018). The decomposition products may have the same sum
formula as other constituents of the particles. Thus, only the
shape of the ion thermogram may give a hint as to whether
an ion stems from the desorption (typically a sharp peak) or
decomposition of one or several different larger compounds
(typically a broad peak or broad tailing on a peak, Schobes-
berger et al., 2018). A further complication for the interpre-
tation of the Tmax values arises from the presence of multiple
isomers with different volatilities. Depending on how close
the Tmax values of the isomers are and on the contribution of
each isomer to the signal at this ion mass, the resulting ion
thermogram may be multimodal, broadened, or with consid-
erable tailing/fronting.

To overcome the issues related to thermal decomposition
and further the interpretation of ion thermograms, we utilised
positive matrix factorisation (PMF) in the interpretation of
FIGAERO data. Traditionally, PMF has been used to anal-
yse complex mass spectra data sets, and it is mostly used
to identify the contribution of different sources to the to-
tal organic aerosol mass (Jimenez et al., 2009; Lanz et al.,
2007; Ulbrich et al., 2009). But, for PMF, it does not mat-
ter if the “source” of a mass spectra signal is a real, physi-
cal source (e.g. biomass burning, or traffic emissions) or if
the source is particles collected on a filter being desorbed.
PMF identifies the characteristic changes in the contribution
from a source to the total signal; this means in the case of
the FIGAERO–CIMS data one or more compounds desorb-
ing at a specific temperature range. In this study, we apply
PMF to FIGAERO–CIMS data analysis for the first time to
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Figure 1. Schematic diagram of experimental set-up.

distinguish the direct desorption (controlled by C∗sat) from
the thermal decomposition of thermally labile compounds
with lower volatility (i.e. controlled by the strength of the
weakest bond in the molecule). Furthermore, we combine the
PMF analysis of FIGAERO–CIMS data with the information
gained from isothermal evaporation experiments in which the
particle composition evolves during the isothermal evapora-
tion of the particles to understand the processes controlling
particle volatility.

2 Methodology

2.1 Data set

The acquisition of the data set investigated in this study was
described in detail in Buchholz et al. (2019) and in the Sup-
plement. The schematic overview of the set-up is shown in
Fig. 1. Briefly, three types of SOA were formed via com-
bined ozonolysis and photo-oxidation of α-pinene in an ox-
idative flow reactor (OFR). They are characterised as low,
medium, and high O : C based on their elemental composi-
tion (oxygen-to-carbon (O : C) ratio of 0.53, 0.69, and 0.96,
respectively, as derived from the aerosol mass spectrometer
data). A nano differential mobility analyser (NanoDMA, TSI
Inc.) was used to select a quasi-monodisperse particle distri-
bution (with an electrical mobility diameter of 80 nm) and,
at the same time, dilute the surrounding gas phase by or-
ders of magnitude, which initiates isothermal evaporation at
the NanoDMA outlet. The monodisperse particles were then
filled into a stainless-steel residence time chamber (RTC) to
study their isothermal evaporation behaviour by measuring
the particle size in 1 h intervals for up to 10 h. Two sets of
evaporation experiments were conducted for each SOA type,
namely dry (RH < 2 %) and wet (RH 80 %). To achieve the
different RH conditions and control the RH of the selected
sample and in the RTC, only the RH of the sheath flow in the
NanoDMA was adjusted. The conditions of α-pinene SOA
formation in the OFR were not changed. The instruments,
tubing, RTC, and OFR were flushed with particle-free puri-
fied air or nitrogen between experiments.

The chemical composition of the particles was investi-
gated with a filter inlet for gases and aerosols (FIGAERO,
Aerodyne Research Inc.; Lopez-Hilfiker et al., 2014) sam-

pling unit in combination with a chemical ionisation mass
spectrometer (CIMS, Aerodyne Research Inc.; Lee et al.,
2014) using iodide as reagent ion. Samples were taken
directly after the size selection (“fresh” particles: tevap =

0.25 h) and after 3–4 h of isothermal evaporation in the RTC
(“RTC” particles: tevap = 4 h). Note that the evaporation time
of 0.25 h for the “fresh” sample does not stem from residence
in the RTC but rather from the collection time on the filter
(see Sect. S1.1 in the Supplement for details). Due to this
minimum evaporation time, the FIGAERO–CIMS measure-
ments will underestimate the contribution of volatile com-
pounds in the particles as they leave the OFR.

The combined analysis of the evaporation behaviour and
FIGAERO–CIMS thermogram with the composition infor-
mation in Buchholz et al. (2019) revealed increasing aver-
age desorption temperatures with increasing O : C ratio of
the particles, while the overall particle volatility (measured
by isothermal evaporation) decreased. The residual particles
after isothermal evaporation in the RTC exhibited an in-
crease in desorption temperature in all cases, which indicates
that the more volatile species had left the particles. Under
wet conditions, evaporation was enhanced due to the lower-
ing of particle viscosity and, thus, kinetic transport limita-
tions as described previously (D’Ambro et al., 2018; Wil-
son et al., 2015; Yli-Juuti et al., 2017). But in the high-
O : C case, strong indications for aqueous-phase chemistry
were found in the data, namely the shift of some ion thermo-
grams to much higher desorption temperatures and a relative
increase in low molecular weight (Mw) compounds. Thus,
this data set is perfect for testing the performance of PMF
with FIGAERO–CIMS data and determining whether PMF
can capture the evaporation behaviour and separate it from
aqueous-phase processes in the high-O : C case.

2.2 FIGAERO–CIMS measurements

It is necessary to understand the operation and data struc-
ture of FIGAERO–CIMS to comprehend the challenges of
analysing this data with PMF. In the FIGAERO inlet, parti-
cles are collected on a polytetrafluoroethylene (PTFE) filter.
A gradually heated nitrogen gas flow evaporates increasingly
less-volatile compounds and transports them into the CIMS
for detection. Hereafter, the resulting signal versus desorp-
tion temperature curves will be called ion thermogram for
individual ions and total thermogram for the sum of all de-
tected ions apart from the reagent ions. Each desorption cycle
(“thermogram scan”) consists of the following three parts:
the particle collection; the linear increase of the desorption
temperature (here, ∼ 25 ◦C →∼ 190 ◦C in 15 min); and a
“soak” period at the highest temperature (here, > 190 ◦C for
15 min). The soak period ensures that low-volatility com-
pounds have been removed from the FIGAERO filter be-
fore the next sample is collected. Note that only the part of
the thermogram with a near-linear increase in the desorption
temperature can be used to derive volatility information. The
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relationship between a compound’s desorption temperature,
specifically Tmax, and volatility (e.g. expressed as saturation
vapour pressure) can be calibrated for a specific FIGAERO–
CIMS set-up and temperature ramp by measuring, for exam-
ple, polyethylene glycol aerosol with a range of molecular
weights and volatilities (similar to the method described by
Bannan et al., 2019).

The raw FIGAERO–CIMS data were processed by using
tofTools, a MATLAB-based software package developed for
analysing time-of-flight CIMS data (Junninen et al., 2010).
The data were averaged to a 20 s time grid, and a baseline
correction was applied before the high-resolution mass spec-
tra data were fitted. The filter blank measurements were pro-
cessed in the same fashion as the collected samples. For the
PMF analysis, we did not subtract the filter blank measure-
ments but instead added the corresponding filter blank ther-
mograms to the data set to help with the identification of
the background factors i.e. factors dominated by compounds
from the instrument and/or filter background (more details
on factor identification in Sect. 3.1).

Due to suboptimal settings in the instrument’s ion guid-
ance unit, an atypically high number of declustered ions (not
containing the reagent ion iodide) were observed. This was
discussed in detail in Buchholz et al. (2019). For this study,
we will not make any assumptions about the declustering
process and treat the iodide clusters and declustered ions as
separate variables. However, this impacts neither the appli-
cation of PMF to the data set nor the validity of this method
for other data sets as the variables (ions) are all treated in-
dependently in the model, and the variables with the same
behaviour will be grouped into the same factor.

2.3 Positive matrix factorisation (PMF)

2.3.1 Working principles of PMF

Since its introduction by Paatero and Tapper (1994), PMF
has been established as a useful tool for analysing long time
series of mass spectra data mostly from ambient observa-
tions.

In the PMF model, it is assumed that the measured data
can be expressed by the combination of an (unknown) num-
ber p of constant source profiles with varying concentrations
over time (Ulbrich et al., 2009). This can be mathematically
expressed as follows:

X=GF+E, (1)

where X is a m× n matrix containing the measured mass
spectra with m rows of mass spectra (“observations”), which
are each averaged over 20 s of measurement time in the
CIMS, and n columns representing the time series of one
specific ion. G is a m×p matrix containing the factor time
series as columns. The rows of the p× n matrix F contain
the factor mass spectra, and then them×nmatrix E contains
the residuals between the measured data and the fitted values.

No a priori information about the values of G and F or the
number of factors (p) is required, but the user has to decide
which solution (i.e. how many factors) characterises the data
best. To account for uncertainties in the measurement data,
the PMF model weights the data points with their measure-
ment error (Sij ). Values for G and F are constrained to be
positive and are iteratively found by minimising the quantity,
Q, with a least square algorithm (Paatero and Tapper, 1994)
as follows:

Q=

m∑
j=1

n∑
i=1

(
Eij
Sij

)2

, (2)

where Sij is the error (uncertainty) of each measurement data
point. In an ideal case, the Q value of the model should ap-
proach the expected Q value (Qexp) that is equal to the de-
gree of freedom of the model solution. For mass spectra data,
this is approximately equal to the size of the original data ma-
trix, X, as follows:

Qexp ≈ n ·m. (3)

Different algorithms have been developed to solve the PMF
model (e.g. Hoyer, 2004; Lu and Wu, 2004; Paatero, 1999).
In this study, we used the PMF2 algorithm with robust least
square optimisation, which is included in the PMF Evalua-
tion Tool (PET, Ulbrich et al., 2009) for Igor Pro 7 (Wave-
Metrics, Inc., Portland, Oregon). We calculated solutions
with 1 to 12 factors. For each solution, 5 rotations (fpeak−1.0
to +1.0) were calculated, and 6 different seed values were
tested for each original solution (fpeak = 0).

As an additional measure for the goodness of fit, we cal-
culated the fraction of explained absolute variance (Ratioexp)
as follows:

absVartotal =
∑
ij

∣∣Xij −Xi∣∣ (4)

absVarexplained =
∑
ij

∣∣Rij −Xi∣∣ (5)

Ratioexp =
absVarexplained

absVartotal
, (6)

where Rij is the value in the reconstructed data matrix (R=
GF) for each ion i and observation j , Xi is the average mea-
sured value of the ion i, and absVartotal and absVarexplained
are the total and explained absolute variance. Note that we
use the absolute distance between the average values and the
measured or reconstructed data instead of the square of this
distance.

PMF has been widely used for analysing the time series
of mass spectra data in the atmospheric science community.
However, the model does not utilise the information of the
time axis in the optimisation process. Rather, it is a method
that can be used to analyse a set of mass spectra, which were
obtained at different time points during the desorption cycle
of FIGAERO, and for different particle sampling conditions.
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Figure 2. Measured total ion thermogram with the colour-coded
contributions of PMF model output factors for the medium-O : C
wet (tevap = 4 h) case plotted against data point index (a); time since
start of desorption (b); and desorption temperature (c). Note that
the desorption temperature ramp (b) is not increasing linearly after
∼ 1000 s. This “soak” period ensures that all organic material is
removed from the filter before the next collection.

This means that PMF will create the same model output if
the x values in the data set are a real time series (Fig. 2b),
a temperature ramp (Fig. 2c), or simply an index with num-
bers (Fig. 2a). Thus, data from separate thermogram scans
with FIGAERO–CIMS can be combined to larger data sets
and analysed together with PMF. Analysing multiple thermo-
gram scans together has the advantage that more data points
are utilised to identify the factors (90 mass spectra for each
thermogram in this case) and that factors can be directly com-
pared between scans. The real time series/temperature ramp
is only of interest when evaluating the model output for the
interpretation of the identified factors and comparing their
desorption temperature profiles between thermogram scans.
In the graphic presentation of these combined “time series”
(e.g. Fig. 4), a data index was used as the x values, which is
the desorption temperature of each thermogram plus an off-
set (200 per thermogram). This choice of x values preserves
the shape of the thermogram in the desorption temperature
space. The individual thermograms are marked with roman
numerals and the sampling conditions are given in the figure
captions. For an easier comparison of the shape of the des-
orption behaviour of the factors, they are plotted individually
for each SOA type (e.g. Fig. 5).

When performing PMF with the combined data set with all
available thermogram scans, the large number of factors (13
or more) necessary to explain the observed variability com-
plicates the analysis and interpretation (see the case study
in Sect. S1.4). Thus, the thermogram scans were grouped
by SOA type (i.e. tevap = 0.25 h and 4 h particles, dry and
wet conditions of one SOA type: four thermogram scans
per group). This pre-grouping reduced the number of fac-
tors in each group enhancing their interpretability while still
enabling a direct investigation of the changes due to the evap-
oration and/or humidification for one SOA type. But, gener-
ally, splitting the data by SOA type or even knowing about
different SOA types and/or sources in the data is not a re-
quirement for analysing a thermogram data set with PMF.

2.3.2 Error schemes for PMF

To perform the PMF analysis, a data error Sij must be de-
fined. As seen in Eq. (2), the Sij values have a strong influ-
ence on the outcome of the PMF model. The measurement
error can be understood as a weighting mechanism that gives
more weight to data points with less uncertainty (Paatero and
Hopke, 2003). Ideally, Sij is the true measurement error of
the data set. For gas-phase CIMS data, Yan et al. (2016)
suggested calculating the measurement error by assuming a
Poisson-type distribution of the counting error as follows:

Sij = a ·

√
Xij
ts
+ σnoise,i, (7)

where Xij is the signal intensity of the ion i, ts is the sampling
(averaging) interval in s, and σnoise,i is the electronic noise
for ion i. We applied a procedure equivalent to the one in-
troduced by Yan et al. (2016) to derive the parameter a from
analysing the distribution of signal noise. The detailed calcu-
lation for this type of error is given in the Supplement. The
resulting error values (Poisson-like – “PLerror”) will trace
the shape of the thermogram signal with higher absolute val-
ues for those parts of the thermogram that have higher in-
tensity (i.e. the “peak”) and give less weight to this region
(Fig. S1 in the Supplement). This is the correct approach for
the analysis of long time series data in which rapid changes
are most likely caused by instrument noise or data outliers.

For FIGAERO–CIMS thermograms, the main information
lies in the rapidly increasing and decreasing part of the data
(i.e. the “peak”; data points 10–50 in Fig. 2a) when the com-
pounds are desorbing from the FIGAERO filter and not in the
slowly changing (or constant) part at high desorption temper-
atures (i.e. the “tail”; data points 50–90 in Fig. 2a). During
this analysis it was found that the thermal desorption peaks
could not be modelled well with error values calculated us-
ing Eq. (7) (see Sect. 2.3.3 and Appendix A). Thus, a new
error scheme that allowed for an increased weighting of the
thermal desorption peaks was also tested. In this scheme, a
constant error value corresponding to the noise in the data at
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the end of the thermogram scan is used for each thermogram
scan (constant noise – “CNerror”) as follows:

Sij = σnoise,i, (8)

where σnoise,i of each ion i is calculated in the same way as
for the PLerror (see the Supplement for details). Note that by
omitting the first term in Eq. (7), Eq. (8) does not correspond
to the true measurement error of the FIGAERO–CIMS data.
Rather, it is the simplest way of weighting the PMF runs to
put more emphasis on each thermogram peak and less on
the fronts and tails (Fig. S1 shows an example of the val-
ues for the two error schemes for one exemplary ion). The
signal-to-noise values are up to 3 orders of magnitude higher
in the peak region for the CNerror case, which clearly gives
them a stronger weight in the optimisation. As a direct con-
sequence of the modified error value, the value for Q/Qexp
is not expected to approach 1 but will instead reach a larger
(used error values smaller than real measurement error) or
smaller (used error values larger than real measurement er-
ror) value. Thus, most solutions from PMF with PLerror will
have (much) lower Q and Q/Qexp values than any solution
from PMF with CNerror. This also means that comparing the
absolute Q or Q/Qexp values between results from the dif-
ferent error schemes is not meaningful as a higher absolute
error value will result in a lower Q value.

2.3.3 Selection of error scheme and number of factors
(“best” solution)

Before the “best” solution from PMF can be identified by
investigating the factor profiles and spectra, the impact of
the two different error schemes on the PMF output needs to
be determined by running PMF for all combined data sets
with both error schemes and comparing the output. Since the
comparison of theQ/Qexp values between the error schemes
is not meaningful, as pointed out previously, the fraction of
explained variance (Ratioexp) and the reconstruction of the
characteristic shape of the thermograms (i.e. time series of
residuals) were the decisive criteria. In addition to the single
Q/Qexp value summed over all ions and observations (i.e.
mass spectra) in each data set, we calculated the time series
of the Q contributions (Qj ) summed over all ions for each
observation (mass spectrum), j , to identify which periods in
the data set were not captured well by the investigated PMF
solution. The calculation is as follows:

Qj =

n∑
i=1

(
Eij
Sij

)2

. (9)

Similarly, we calculated Qi as the value sum over all obser-
vations (mass spectra), j , as follows, to investigate which ion
has the strongest contribution to the overall Q value:

Qi =

m∑
j=1

(
Eij
Sij

)2

. (10)

For a given number of factors, the CNerror scheme results in
higher Ratioexp values than the PLerror (Fig. 3), i.e. a larger
fraction of the observed variance is captured by the model.
With the PLerror the maximum Ratioexp is 0.9 – even with up
to 12 factors – while the values for Ratioexp with the CNerror
are already > 0.95 with 7 factors.

To highlight the differences in the behaviour of the two er-
ror schemes, we display the time series of the residual and
Qj values in Fig. 4 for the high-O : C case for three solu-
tions (6, 7, and 10 factors). With the PLerror, the residuals
are much larger than in the CNerror case (panels b and d).
But, due to the larger values of Sij in the PLerror case, the
Q/Qexp values (panels c and e) are much smaller. Thus, the
optimisation algorithm sees no need to further improve the
model in the PLerror case. In contrast, the smaller unscaled
residual in the 6-factor solution with the CNerror leads to
much higher Q/Qexp values, especially in the peaks of ther-
mograms III and IV. Here, the addition of 1 factor (from 6
to 7) improves both the residual and the Qj/Qexp values,
and the new factor captures a characteristic behaviour that
we discuss in Sect. 3.3.

This analysis, together with the more detailed case study
in Appendix A, leads us to the conclusion that, for this study
and data set, the CNerror reconstructed the measured data
best and yielded the most interpretable results. Thus, here-
after we only present the results from PMF runs with the
CNerror scheme.

The advantage of PMF, that no a priori information about
F, G, and p is needed for the analysis, is also a disadvantage.
There is no absolute criterion for which number of factors
(p) is correct or “best”, but the chosen value strongly im-
pacts the interpretation of the factors and their profiles. In
the ideal case, when the true measurement errors are used,
Q/Qexp approaches 1, and a solution with Q/Qexp close
enough to 1 may be considered as the “best” or most correct.
But, as we explained previously, PMF performed much better
for FIGAERO–CIMS data when the “unrealistic” CNerror
scheme was used; thusQ/Qexp are not necessarily meaning-
ful. However, the shape of the Q/Qexp versus the number
of factors curve can be used to judge the impact of intro-
ducing another factor; i.e. a large change in Q/Qexp values
suggest that the new factor explains a large fraction of the
variability in the data (Ulbrich et al., 2009). We investigated
this for the PMF runs for each SOA type (Figs. 3 and S2).
The largest changes in Q/Qexp are already achieved by in-
creasing the factors from 2 to 3. Further factor addition leads
to a steady decrease of Q/Qexp. In this case, the Ratioexp
values are more helpful. Strong increases of Ratioexp are ob-
served when increasing the number of factors to 6 (medium-
and high-O : C cases) or 8 (low-O : C case).

As shown by Yan et al. (2016) for gas-phase CIMS data, a
solution with a low overallQ/Qexp value may still have large
variations in the scaled residual with time or with different
ions. We carefully investigated the time series (Qj/Qexp) of
individual ions (e.g. C5H5O−6 in Fig. A1b and c) in particu-
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Figure 3. Fraction of explained variance (Ratioexp, a–c) and Q/Qexp values (d–f) for the low- (a), medium- (b), and high-O : C (c) data set
for PLerror (blue) and CNerror (red).

lar and present the details of this case study in Appendix A.
There were a few specific ions for each SOA type that were
not captured well in the data set until a certain number of fac-
tors was chosen (e.g. 7 in the high-O : C case) – even if the
overall fraction of explained variance for the solutions was
already larger than 95 % and changed very little with further
factor additions. We decided to choose the PMF solution with
the smallest number of factors that still described the charac-
teristic behaviour of most ion thermograms. These were the
solutions with 9, 7, and 7 factors for the low-, medium-, and
high-O : C cases, respectively.

3 Results and discussion

3.1 PMF-factor interpretation

The three evaporation data sets (one for each SOA type) were
analysed with PMF by using the CNerror scheme and the
results for the “best” solutions chosen are shown in Figs. 5,
6, and 7 (and with “stacked” factor contribution in Figs. S4,
S5, and S6). In the following paragraphs, the first letter in the
labels of factors indicates whether they are from the low- (L),
medium- (M), or high (H)-O : C case, and the second letter
identifies the factor type (V, B, D, and C; see below).

Generally, there were the following three main types of
thermogram profiles for all factors: volatility class (type V)
with a single, distinct peak (LV1 – 5, MV1 – 5, and HV1 – 5);

background (type B) with mostly constant contribution over
the full Tdesorp range (LB1, MB1, and HB1); and decomposi-
tion (type D) with mostly very broad peaks at Tdesorp < 65 ◦C
and an increase at Tdesorp > 110 ◦C (LD1, MD1, and HD1).

Factors of type V do not contribute to the filter blank ther-
mograms (Fig. S3), which indicates that these factors are
linked to compounds only present in the sampled aerosol par-
ticles. With the exception of the high-O : C wet case (which
we discuss in detail in Sect. 3.3), the peak position (Tmax) of
type-V factors changes very little with aerosol age or water
content (Table 2). Only the contribution of these factors to
the total signal changes with isothermal evaporation or hu-
midification. For each type-V factor, we could identify ions
with thermogram shapes similar to the thermogram profile of
the individual factors. This means that especially the type-V
factors at high desorption temperature are not merely a bet-
ter mathematical description of the tails of some ion thermo-
grams, but they represent real compounds desorbing from the
FIGAERO filter at high desorption temperatures. Thus, we
interpret the type-V factors as volatility classes. Compounds
with the same thermal desorption behaviour (i.e. volatility)
are grouped into one type-V factor that is characterised by its
Tmax value. Note that for the three different SOA types the
starting particle composition was significantly different. So,
even if the Tmax values for 2 factors of different SOA types,
e.g. LV2, MV2, and HV1 (dry cases), only differ by ∼ 5 ◦C,
the compounds contributing to them are not the same; i.e. the
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Figure 4. Total ion thermogram (a), residuals (b, d), and Qj /Qexp values (c, e) as time series for solutions with 6, 7, or 10 factors for
PMF run with CNerror (b, c – yellow background) and PLerror (d, e – blue background). The data set contains thermogram scans for the
high-O : C SOA particles from the following sampling conditions: dry – tevap = 0.25 h (I); dry – tevap = 4 h(II); wet – tevap = 0.25 h (III);
and wet – tevap = 4 h (IV). Note that the y-axis scaling is the same in panels (b) and (d), but it is 10 times smaller in (e) than in (c).

factor mass spectra for LV2, MV2, and HV1 are significantly
different. We elaborate on the reasons for these differences in
Sect. S1.3 and S1.4.

Type-B factors show contributions to the signal of sample
thermograms and filter blanks (Fig. S3). For LB1, MB1, and
HB1, the very shallow thermogram profile and the similar
absolute signal strength despite different mass loadings on
the FIGAERO filter indicate that these are instrument back-
ground factors. For some samples, especially those with high
overall filter loading, the factor thermograms of the type-
B factors show a decrease to almost 0 for Tdesorp ∼ 60–
∼ 120 ◦C. This may indicate that part of the background
signal in this temperature range is assigned to other factors
(“factor blending/mixing”). Since the overall background in
these few cases is 200–400 ct s−1 while the signals of the
type-V factors are more than 10 times higher, this factor
blending will have a minor effect on the shape and Tmax val-
ues of the type-V factors and thus the interpretation of the
PMF solution. For the parts of the thermograms with lower
signal strength and samples with low overall mass loading
on the filter, the signal of the type-B factors stays constant
at a value that is comparable to values observed for the filter
blank samples. For all SOA types, the mass spectra of these
factors are dominated by single ions typically associated with

the FIGAERO–CIMS background (e.g. fluorine-containing
compounds, formic acid, and lactic acid). According to the
uncentred correlation method (contrast angle or dot product)
MB1 and HB1 are reasonably similar. For the low-O : C case,
some of the instrument background is apparently assigned to
the contamination factors (LC1 and 2; see below), which de-
creases the degree of similarity between LB1 and the other
type-B factors.

Type-D factors are the most difficult to interpret as they
contribute to the signal for both the filter blank and sam-
ple thermograms, but the contribution can vary with the col-
lected mass loading on the filter for sample thermograms.
The factor mass spectra (LD1, MD1, and HD1) mostly show
contributions from ions with Mw < 200 Da, but the thermo-
gram profiles exhibit a strong increase at Tdesorp > 110 ◦C,
especially in filter blank thermograms. This suggests that
the detected low Mw compounds in these factors are ther-
mal decomposition products of larger, low-volatility com-
pounds that are thermally unstable. But in some cases (e.g.
medium-O : C dry – tevap = 0.25 h and 4 h; Fig. 6a and b) a
second peak occurs at much lower Tdesorp (< 65 ◦C), which is
in the range where compounds of the detected composition
are expected to desorb. This suggests that the ions grouped
into the type-D factors can stem from two “sources”, namely
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Figure 5. Factor thermograms (a–d) and factor mass spectra (e) for the 9-factor solution for the low-O : C case. Each factor mass spectrum
is normalised. The colour code is the same for both panels. Background colours in the panel on the left indicate volatility classifications
according to Donahue et al. (2006) and are derived from Tmax–C∗sat calibrations (green: semi-volatile organic compounds (SVOCs), red:
low-volatility organic compounds (LVOCs), and grey: extremely low volatility organic compounds (ELVOCs)). Note the different scaling
for the y axes in (a)–(d).

Figure 6. Factor thermograms (a–d) and factor mass spectra (e) for the 7-factor solution for the medium-O : C case. Each factor mass
spectrum is normalised. The colour code is the same for both panels. Background colours in the panel on the left indicate the volatility
classification derived from Tmax–C∗sat calibrations (green – SVOC; red – LVOC; and grey – ELVOC). Note the different scaling for the y
axes in (a)–(d).
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Figure 7. Factor thermograms (a–d) and factor mass spectra (e) for the 7-factor solution of the high-O : C case. Each factor mass spectrum
is normalised. The colour code is the same for both panels. Background colours in the panel on the left indicate the volatility classification
derived from Tmax–C∗sat calibrations (green – SVOC; red – LVOC; and grey – ELVOC). Note the different scaling for the y axes in (a)–(d).

direct desorption (Tdesorp <∼ 100 ◦C) and thermal decompo-
sition (Tdesorp >∼ 100 ◦C), and PMF is not able to separate
them because either their composition or their desorption be-
haviour is too similar. Consequently, type-D factors have to
be carefully analysed and interpreted as desorption at low
Tdesorp and decomposition at high Tdesorp. Also, the instru-
ment background contribution needs to be estimated from
the filter blank thermograms. For the low-O : C case, LD1 is
dominated by compounds coming from the filter/instrument
background as the factor thermogram does not change with
the collected sample mass, and there is still a contribution
from the factor below Tdesorp < 100 ◦C after 4 h of isothermal
evaporation (Fig. S3a). In the medium-O : C case, the direct
desorption part (Tdesorp < 100 ◦C) of MD1 is removed with
isothermal evaporation, which suggests that at least this part
of the factor stems from the collected sample and not just
the instrument/filter background. The high-O : C case is dis-
cussed in Sect. 3.3 below.

For the low-O : C dry (tevap = 0.25 h) sample, 2 additional
factors (type C) were found. The factor mass spectra of LC1
and 2 are dominated by extremely high signals for formic
and lactic acid, which are typically strong indications of a
contamination on the FIGAERO filter due to handling. Ret-
rospectively, we could not determine what happened to this
specific sample collection to cause this obvious contamina-
tion, but the FIGAERO filter was replaced between this and
the next sample collection, and several heating cycles were
performed to ensure that no other sample was affected. How-
ever, since PMF has identified the ions affected by this con-

tamination and grouped them into LC1 and 2, these 2 fac-
tors can be omitted from further analysis and remove the bias
caused by the contamination.

Note that almost the same factors are produced by PMF re-
gardless of whether the filter blank measurements are added
to the data sets or not. This shows that PMF can be a very
helpful tool for data interpretation when no reliable instru-
ment background measurements are available or if the back-
ground varies strongly between samples. Then the identifica-
tion of the type-B, type-D, and type-C factors has to rely on
the factor thermograms and factor mass spectra.

3.2 Composition changes due to evaporation

One set of type-V factors (i.e. volatility classes) was identi-
fied and separated from the instrument background contribu-
tions for each data set consisting of one SOA type sampled
after different time intervals of isothermal evaporation under
dry and wet conditions. The contribution of a single factor
to the total signal is calculated as the ratio of the integral of
the thermogram of this factor to the total signal. The relative
contribution of factors V1–V5 for each sampling condition
is shown in Fig. 8 and is plotted against the volume frac-
tion remaining (VFR) that was measured in separate isother-
mal evaporation measurements (VFR values from Buchholz
et al., 2019). The corresponding figure with absolute signal
contributions is shown in the Supplement (Fig. S7). Note that
the residual particles after isothermal evaporation or humidi-
fication were collected on the FIGAERO filter. This means
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Figure 8. Contribution of type-V factors to total signal for low- (a), medium- (b), and high-O : C cases (c). The x axis is the average volume
fraction remaining (VFR) after comparable time intervals of isothermal evaporation observed in separate RTC experiments. Orange and blue
arrows indicate the change from tevap = 0.25 h to tevap = 4 h particles for dry and wet conditions, respectively. Note that the colour code is
the same in all panels, but LV1 is not equal to MV1, etc. VFR values are from isothermal evaporation measurements described in Buchholz
et al. (2019). Average Tmax values are for the comparison of the volatility of the factors. Detailed values are given in Table 2.

that, with decreasing VFR, a larger fraction of the parti-
cle mass evaporated prior to the FIGAERO–CIMS measure-
ments. In the low- and medium-O : C cases (Fig. 8a and b),
the relative contributions of MV1 and 2, and LV1 and 2 (Tmax
in the range of semi-volatile organic compounds, SVOCs),
decreased with decreasing VFR while those of LV3–5 and
MV3–5 (Tmax in the range of low- and extremely low volatil-
ity organic compounds, LVOCs and ELVOCs) increased.
During 4 h of dry isothermal evaporation, a similar volume
fraction was removed as in 0.25 h of isothermal evaporation
under wet conditions. The very similar relative contribution
of the type-V factors in these two samples suggests that the
observed changes in chemical composition in the particles
are indeed connected to the change in VFR (i.e. how much
of the volatile material was removed before sampling) and
are not directly driven by other water-induced processes. For
these SOA types, the main process during physical ageing
in the RTC (i.e. long residence time in clean air) under dry
and wet conditions was isothermal particle evaporation. In
this case, the particulate water mostly decreased the viscosity
in the particles, thus decreasing the kinetic transport limita-
tions in the particle phase and increasing evaporation. This
observation is in agreement with previous interpretations of
this and other comparable data sets (Buchholz et al., 2019;

Yli-Juuti et al., 2017). The high-O : C case (Fig. 8c) will be
discussed in Sect. 3.3.

The detailed changes in particle composition, due to
isothermal evaporation, can be derived from the factor con-
tribution by analysing the trends in the factor mass spectra.
With increasing Tmax of the factors (i.e. decreasing volatil-
ity), the average Mw as well as the carbon-chain length and
the number of oxygen increased continuously from V1 to V5
(Table 1). The contribution of compounds with more than 10
carbon atoms (C > 10) also increased, which suggests an in-
creasing contribution of dimers/oligomers. This may explain
why no clear trend could be observed for the type-V factors
in the O : C (or OSc) values. While the lower volatility com-
pounds did indeed contain more oxygen, the simultaneous
increase of the carbon-chain length seems to compensate for
this, which results in no obvious systematic increase in the
O : C ratios. Thus, we observe a correlation of the volatility
with average Mw but not with the average O : C ratio of the
factors.

As the more volatile factors (LV1 and 2; MV1 and 2)
were systematically removed with isothermal evaporation,
the composition of the residual particles was dominated more
and more by the less volatile factors (LV3–5 and MV3–5),
i.e. by larger, higher Mw compounds with many of them be-
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Table 1. Signal-weighted average values of elemental composition, O : C, OSc, and the contribution of C > 10 compounds for all factors.

ID Composition Mw/g mol−1 O : C OSc C > 10/%

LV1 C8.6H13.3O5.2 213.4 0.66 −0.27 9.3
LV2 C9.0H14.2O5.6 200.3 0.64 −0.30 12.7
LV3 C10.3H16.7O6.8 249.7 0.70 −0.21 36.5
LV4 C12.6H21.8O7.9 300.5 0.66 −0.39 65.2
LV5 C12.5H21.3O8.5 308.2 0.72 −0.24 65.1
LD1 C9.8H15.4O6.3 235.7 0.74 −0.05 33.8
LB1 C9.7H15.5O6.2 234.8 0.78 0.00 38.3
LC1 C8.6H14.3O5.2 201.9 0.81 -0.05 28.2
LC2 C6.2H9.5O3.9 148.0 0.93 0.21 7.6

MV1 C7.8H11.6O5.0 185.8 0.70 −0.12 7.6
MV2 C8.1H11.6O5.8 202.3 0.76 0.07 4.1
MV3 C9.0H13.4O6.5 226.6 0.76 0.01 15.4
MV4 C10.1H16.0O7.4 257.1 0.80 0.02 38.3
MV5 C11.3H18.7O7.6 276.5 0.73 −0.17 51.4
MD1 C8.8H13.5O5.9 214.8 0.75 −0.01 7.6
MB1 C9.8H15.6O6.1 235.5 0.79 0.02 38.9

HV1 C7.0H9.5O5.6 184.7 0.90 0.43 6.2
HV2 C7.9H11.1O6.3 208.6 0.86 0.29 8.5
HV3 C7.7H10.6O6.3 204.3 0.92 0.44 12.9
HV4 C8.4H12.4O6.6 219.4 0.87 0.23 18.6
HV5 C10.0H16.2O6.8 247.4 0.76 −0.09 39.8
HD1 C8.3H12.3O5.9 207.1 0.82 0.18 19.7
HB1 C9.7H15.5O6.1 232.8 0.77 −0.02 38.4

Table 2. Tmax values for all type-V factors. The “–” symbol indicates that there was not enough signal to determine the Tmax value.

ID dry (tevap = 0.25 h) dry (tevap = 4 h) wet (tevap = 0.25 h) wet (tevap = 4 h)

LV1 37.4 42.5 44.7 –
LV2 51.7 56.5 56.0 56.8
LV3 66.5 70.3 71.2 69.2
LV4 82.0 83.6 86.5 86.6
LV5 95.8 97.6 99.3 102.7

MV1 42.9 44.1 48.1 –
MV2 59.7 58.2 63.7 63.2
MV3 74.9 73.5 78.7 79.6
MV4 93.6 91.6 97.3 101.1
MV5 118.8 116.5 122.5 129.9

HV1 60.7 61.0 75.3 –
HV2 77.2 76.7 93.7 136.5
HV3 58.1 60.0 87.8 104.3
HV4 95.8 94.7 109.0 128.5
HV5 121.6 120.3 136.5 148.0

ing dimers/oligomers. However, the V4 and 5 factors still
had a significant contribution from low Mw compounds as
well (Figs. 5 and 6). The ion and factor thermograms of
[C8H12O5+ I]− are shown as an example of a relatively
small, lowMw ion in Fig. 9a and b. This ion had contributions
from all 5 factors. In principle, it is possible that there are sev-
eral isomers of this composition with significantly different

volatilities being grouped into V1–5, spreading ∼ 4 orders
of magnitude in C∗sat. But it seems more likely that the com-
pounds of this composition contributing to V4 and 5 were
products of thermal decomposition. If this was indeed the
case, it means that there were compounds in the particles
that have a volatility which corresponds to even higher Tmax
than that of factors V4 and 5, but they are grouped into these
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Figure 9. Measured ion thermograms and factor thermograms for ion [C8H12O5+ I]− in the low- (a) and medium-O : C cases (b) and
C4H3O−6 in the high-O : C case (c). Note that the contributions of the type-B, type-C, and type-D factors were subtracted from the measured
ion thermograms to enhance comparability between the measured data and the PMF results.

factors/volatility classes because they decompose at desorp-
tion temperatures > 100 ◦C. This is an indication that, as sug-
gested previously, the FIGAERO–CIMS data overestimate
the volatility (Lopez-Hilfiker et al., 2015; Schobesberger et
al., 2018; Stark et al., 2017), and care has to be taken when
using these volatility values for modelling purposes.

3.3 Composition changes due to aqueous-phase
chemistry

Similar to the low- and medium-O : C cases, high-O : C SOA
particles showed enhanced evaporation under wet conditions
(Buchholz et al., 2019). But, in addition, strong signs for
aqueous-phase chemistry in the high-O : C wet case were al-
ready visible when comparing the mass spectra integrated
over the whole thermogram scan. Several very small com-
pounds (Mw < 200 Da and C4–C7) increased their contribu-
tion under wet conditions. Also, the thermograms of these
ions showed distinct shifts to higher Tmax values in the
wet cases (by up to 20 ◦C) and even the formation of new
low-volatility material under wet conditions. As discussed
by Buchholz et al. (2019), the different behaviour of the
high-O : C SOA is most likely due to higher fractions of
(hydro-)peroxides in the particles that are caused by the

much higher HO2 concentrations in the OFR at the high-
O : C oxidation conditions. Most peroxides are sensitive to
hydrolysis which will initiate a range of reactions in the
aqueous phase. The low-volatility products of these reactions
thermally decompose into similar fragments as the peroxide
precursor. Thus, the same groups of ions are detected but at
a higher Tdesorp.

In the PMF analysis results, the different behaviour in
the high-O : C case is also directly visible when compar-
ing the dry (tevap = 0.25 h) and wet (tevap = 0.25 h) cases
(Fig. 7a and c). The contribution of the (semi-)volatile fac-
tor (HV1) was reduced, but the factor thermograms and Tmax
also changed. HV2 and 4 shifted to higher Tmax values and
a new factor, HV3, was introduced, which contained mostly
low Mw compounds. The least volatile factor, HV5, which
contains mostly high Mw compounds, had much less of a
contribution. It is also noteworthy that HD1 showed a strong
increase in the wet case, not only in relative contribution but
also in absolute strength. Also, the shape of the factor ther-
mogram (strong increase at Tdesorp > 100 ◦C) indicates that
HD1 was dominated by thermal decomposition products in
this case. With further isothermal evaporation under wet con-
ditions, HV3 increased its contribution while HV1 and 2
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were almost completely removed (Figs. 7 and 8). Note that
HV3 also exhibited an increase in absolute contribution to the
signal; i.e. compounds contributing to this factor were being
produced (Fig. S7c).

The removal of HV1 can still be explained by particulate
water acting as a plasticiser, enhancing the isothermal evap-
oration comparable to the low- and medium-O : C cases. But
HV2 has a Tmax value already in the LVOC range, like LV3
or MV3, which do not show a similar decrease with isother-
mal evaporation under wet conditions. Thus, the observed
changes can only be explained by chemical processes that are
induced by the presence of water in the particles. These pro-
cesses consume compounds that were mostly grouped into
the factors HV2 and HV5. The Tmax shift of HV1 and HV4
indicates that some of the compounds grouped into these fac-
tors might have been affected as well. The reaction products
are mostly detected as lowMw compounds in HV3 and HD1.
While the compounds grouped into HV3 might still be des-
orbing from the filter as such, this seems extremely unlikely
for the compounds in HD1 as they only start to appear at
desorption temperatures > 100 ◦C. Thus, many of the formed
low-volatility compounds must be thermally unstable.

In our previous work (Buchholz et al., 2019), we used the
unexpectedly large shift of Tmax of specific ions, together
with the formation of low-volatility material at wet condi-
tions, as evidence for aqueous-phase chemistry in the high-
O : C case. With the results from PMF, we can now show
how this Tmax shift in the high-O : C case is indeed different
from those smaller ones observed for the other SOA types.
The single ion thermograms for [C8H12O5+ I]− (strong ion
in low- and medium-O : C samples) and for C4H3O−6 (strong
ion in high-O : C samples which was identified to be af-
fected by aqueous-phase chemistry) are shown in Fig. 9.
In the low- and medium-O : C cases (Fig. 9a and b), Tmax
changed by ∼ 10 ◦C between the samples with the least (dry
– tevap = 0.25 h) and the most isothermal evaporation (wet
– tevap = 4 h). This shift is solely caused by the removal of
LV1 and MV1, and partly LV2 and MV2, i.e. by the isother-
mal evaporation of the volatile fraction with this composi-
tion. In the high-O : C case (Fig. 9c), HV1 is also removed
with isothermal evaporation, but the new factor, HV3, dom-
inates under wet conditions. The change in Tmax by 40 ◦C
between the dry (tevap = 0.25 h) case, when HV1 dominates,
and the wet (tevap = 4 h) case, when HV3 is the only contri-
bution, is then simply the difference in the volatility of the
original compounds detected with this composition and the
ones formed by aqueous-phase chemistry.

In the dry case, there is a small contribution of HV3 around
100 ◦C. This is most likely due to the described aqueous-
phase processes already happening inside the OFR that was
operated at ∼ 40 % RH. The drying during the size selection
stopped these processes, which leads to a very minor contri-
bution from the reaction products to the particle phase. If the
particle stayed at wet conditions, then the reactions contin-
ued and created the compounds that were grouped into HV3.

But, apart from this, there has to be another source for the
compounds in HV3 in the dry case as there is a small peak at
63 ◦C. However, this peak is a very minor contribution to the
overall signal in the dry case, while HV3 at 100 ◦C dominates
the thermograms in the wet case.

The 7-factor solution presented here clearly identifies the
main features in the thermal desorption data that are caused
by aqueous-phase processes in the high-O : C case. But this
solution still has “mixed” factors containing some com-
pounds that are affected by chemical processes and others
that are not, which leads to changes in Tmax as described pre-
viously. Increasing the number of factors in the solution to
10 (results not shown) splits HB1 into 3 type-B and/or type-D
factors as well as HV5 into HV5’a, which contributed mostly
to the dry cases, and HV5’b, which only occurred in the wet
cases. This shows that a better separation of the compounds
affected by aqueous-phase processes may be achieved with
more factors, but many more factors than 10 may be needed
and a strong factor splitting (i.e. artificial separation) may
occur.

4 Conclusions

To our knowledge, this is the first study applying a PMF anal-
ysis to high-resolution FIGAERO–CIMS thermal desorption
data and interpreting the PMF factors as volatility classes
characterised by their Tmax values. Although we used a very
specific data set from a focussed laboratory study, the intro-
duced method can be applied to other FIGAERO–CIMS data
sets. The nature of PMF allows us to combine multiple sepa-
rate FIGAERO–CIMS thermograms and investigate them to-
gether.

We found that it is very important to study the impact of
the chosen “measurement error” on the PMF solutions before
interpreting the results of the PMF analysis. Instead of the
most realistic measurement error, an error scheme best suited
for focussing on the part of the data relevant to the research
question should be chosen. In our case, the most interpretable
results were achieved by applying a CNerror based on the
noise of each ion.

The PMF was able to separate the measured signal of
each ion into instrument background, contamination, and
collected aerosol mass. This separation worked even if no fil-
ter blank data were added to the data sets. However, adding
filter blank measurements to the data set simplified the iden-
tification of background factors. Identifying background fac-
tors in this way, instead of simply subtracting filter blank
measurements taken periodically, is especially helpful if an
insufficient number of filter blank measurements were col-
lected or if the background changed between filter blank
samples. While there was some evidence that a small por-
tion of the background signal was misassigned to other fac-
tors (factor mixing/blending) for higher mass loading sam-
ples, this did not occur in low-concentration measurements
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for which being able to determine the actual contribution of
background compounds is more important. At low concen-
trations, the shape of the combined thermogram of the back-
ground may significantly alter the overall shape of the ther-
mogram (e.g. shift the Tmax value) and thus change the inter-
pretation of the volatility of the collected aerosol.

The collected aerosol mass signal part was separated into
(mostly) direct desorption factors (i.e. volatility classes) and
thermal decomposition factors. Thermal decomposition be-
came the dominant process for many low Mw ions observed
at temperatures above 120 ◦C. Then the observed “desorp-
tion” temperatures are actually the decomposition tempera-
tures and thus give an upper limit for the true volatility of the
parent compounds. This shows again that FIGAERO–CIMS
measurements may overestimate the volatility of aerosol par-
ticles based on the parameterisation of the overall compo-
sition but also on desorption temperatures as described in
some previous studies (Lopez-Hilfiker et al., 2016; Schobes-
berger et al., 2018; Stark et al., 2017). The information about
the contributions of thermal decomposition to a thermogram
measurement obtained with the PMF method that is pre-
sented here can be used, for example, to improve the input
into process models. An example of such an application is
presented in Tikkanen et al. (2019).

For each SOA type (i.e. α-pinene SOA of different ox-
idative age) five main volatility classes were identified in
the chosen PMF solution. Isothermal evaporation prior to
sampling with FIGAERO–CIMS systematically removed the
more volatile factors with Tmax values corresponding to
SVOCs. LowMw compounds remaining in the particles after
evaporation were attributed to low-volatility factors, which
indicates that they were most likely products of thermal de-
composition above ∼ 100 ◦C. However, between ∼ 100 and
120 ◦C thermal decomposition was still a minor process. In
the high-O : C case, the aqueous-phase chemistry occurring
under wet conditions was captured by introducing a new fac-
tor and shifts in Tmax for other factors. Both the educts and
products (or their thermal decomposition products) could be
identified. This highlights how PMF analysis can help with
identifying processes in the particle phase.

The high-O : C SOA in our study may not be repre-
sentative of ambient SOA with the same O : C ratio as it
was formed under extremely strong oxidation conditions in
an OFR. But the type of compounds affected by aqueous-
phase chemistry (i.e. organic compounds containing (hydro-
)peroxides or other functional groups which easily hydrol-
yse and then continue to react) is not unique to OFR reac-
tors. One formation path of compounds containing several
hydroperoxyl or peroxy acid groups is the auto-oxidation of
terpenes in the gas phase that leads to highly oxygenated ma-
terial (HOM; Bianchi et al., 2019; Ehn et al., 2014). These
compounds play an important role in particle growth and are
detected more and more in ambient measurements (Lee et
al., 2018; Mohr et al., 2017). Another compound class that is
possibly susceptible to hydrolysis is organo-nitrates (which

did not occur in our study due to the experiment design).
Thus, ambient aerosol will probably not show as clear signs
of aqueous-phase chemistry as our high-O : C case, but it
is very likely that such processes occur to some degree and
may be detected by the PMF analysis of the FIGAERO ther-
mogram data. We would like to point out that picking the
“best” solution of PMF may have a subjective bias, and there
is no guarantee that we selected the truly optimal solution.
But even if a higher number of factors were chosen, the over-
all interpretation of the factors would be the same because
the additional factors were added in all thermograms in the
data set, and they typically split one of the previously iden-
tified factors. The influence of the background and thermal
decomposition was still separated from the type-V factors,
and there was very little variation in Tmax values in one set
of type-V factors for one SOA type. Different degrees of
isothermal evaporation of the particles prior to FIGAERO
sampling were still reconstructed by decreasing the contribu-
tion of the most volatile factors. Only in the high-O : C case,
in which the chemical processes altered the particle compo-
sition enough, did the factor interpretability improve by in-
creasing the number of factors because the “wet chemistry”
factors will likely be completely separated from the other fac-
tors at some point. This means there will be multiple factors
only occurring in the wet samples, and the Tmax values of the
other factors will be constant. But, as long as the chosen so-
lution can capture the main features of the chemical process,
mixed/blended factors are no hindrance for identifying the
compounds affected by the chemical processes. Thus, even
without a hard criterion to determine the “correct” number
of factors, the PMF analysis of FIGAERO–CIMS data gives
valuable insight into processes in the particle phase.

The example ions shown in Fig. 9 highlight how impor-
tant it is to allow a single ion to contribute to more than one
class/factor when analysing FIGAERO–CIMS data. Cluster-
ing techniques that assign each detected ion/composition to
a single cluster, as described by Koss et al. (2020) or Li
et al. (2020) for example, are incapable of capturing this
behaviour, i.e. the shift of Tmax between 2 measured ther-
mograms due to the selective removal of some of the iso-
mers/thermal decomposition products. For the data set inves-
tigated, we artificially removed the volatile fraction at a set
ion composition with the prior isothermal evaporation. How-
ever, as the composition of ambient aerosol changes with
time, e.g. by changes in the gas-particle partitioning or due to
ageing processes, the ratio between different isomers or the
educts for thermal decomposition will change and cause sim-
ilar features in single ion thermograms of FIGAERO–CIMS
data.

The next step for this method (PMF analysis of ther-
mal desorption data) is its application to ambient measure-
ments. Typically, the thermal desorption data of each sam-
ple in a time series of FIGAERO–CIMS measurements are
integrated over the desorption cycle to create a time series
of chemical composition that can be analysed with PMF to
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identify sources and organic aerosol (OA) types. By includ-
ing the “extra dimension” of the thermal desorption in the
analysis, this time series is changed to a sequence of thermo-
grams. Real time-series-specific (i.e. source-specific) group-
ing in PMF will then only occur for compounds that also
have similar thermograms (i.e. similar volatility). A simpli-
fied demonstration of this is found in Sect. S1.3. However,
the additional volatility information will help with factor
interpretation. Preliminary tests with a data set of ambient
FIGAERO–CIMS measurements show that PMF analysis of
thermal desorption data creates factors that can be associated
with ambient sources (i.e. which precursors and/or processes
created the aerosol) and/or OA type (e.g. fresh and aged OA).
In addition, the analysis provides detailed information about
the volatility of each of these sources, or OA types, while
also showing how much of the signal is affected by thermal
decomposition. This information about the contribution of
thermal decomposition is crucial when the FIGAERO–CIMS
data are used to identify the detailed composition or volatility
of SOA particles. It will be very interesting to compare the
factors identified by PMF of thermal desorption data with
the “traditional” PMF analysis of the mass spectra data inte-
grated over each thermogram scan. The details of this inves-
tigation will be the content of a future paper.
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Appendix A: Case study on the impact of different error
schemes

As briefly described in Sect. 2.3.2 and 2.3.3, we investigated
the impact of two different error schemes (CNerror and PLer-
ror) on the results of PMF. The high-O : C data set was se-
lected for this case study as the ions affected by aqueous-
phase chemistry proved to be the most difficult to capture.

In the case of the PLerror, the residual time series for the
total ion signal (Fig. 4d) was positive at all times (i.e. the to-
tal reconstructed signal was lower than the measured data)
and decreased very little when increasing the factor number
from 6 to 10. While the residual time series of individual ions
did exhibit negative values (Figs. A1d and A2d), their distri-
bution was still biased towards positive values (i.e. under-
predicting the measured data overall). In the case of the CN-
error (Fig. 4b) in particular, the residual time series is spread
more symmetrically around 0. Additionally, it exhibits much
lower values than in the comparable case of the PLerror –
particularly for thermograms III and IV (particles under wet
conditions).

To illustrate why there is no further improvement in the
PMF results with the PLerror scheme and to show at which
part of the data set the error schemes create different re-
sults, we investigated the behaviour of the PMF solutions
for individual ions. We selected two ions with similar sig-
nal strength and different error scheme responses. Both er-
ror schemes provided comparable PMF results for the ion
[C7H8O6+I]− (Fig. A2) while the thermogram behaviour of
the ion C5H5O−6 (Fig. A1) was not captured well with the
PLerror scheme. Note that the latter represents the group that
mostly contained ions that were affected by aqueous-phase
chemistry. For the 6-factor solution (red line in Fig. A1b
and d), the residual time series for this ion has similar val-
ues for thermogram scans III and IV in both error schemes,
but increasing the number of factors by 1 seems to only have
a noticeable effect in the case of the CNerror. This is be-
cause, in this case, theQion values

(
Qion =

(
Eion
Sion

)2)
are ex-

tremely high for that part of the data set (red line in panel
c). Investigating theQi values summed over all observations
(mass spectra) shows that this ion (C5H5O−6 ) has the fifth-
highest contribution to overall Q/Qexp. The other ions with
such a high single contribution to Q/Qexp exhibit very sim-
ilar behaviour of their residuals and Qion values. Together,
they account for 15 % of the overall Q/Qexp value in the 6-
factor case. So, adding an additional factor to describe that
portion of the data set will strongly decrease Qion and also
Q/Qexp, which indicates a better fit. In the case of the PLer-
ror, the Qion values exhibit very similar profiles for all four
thermogram scans (Fig. A1d and e). Thus, changing any pa-
rameter for C5H5O−6 will have little effect on theQion values
and, therefore, on the overall Q/Qexp. This example clearly
shows how the selection of the error values guides the focus
of PMF, i.e. which part of the data set still needs improve-

ment when the number of factors is increased. In Fig. A3,
the contribution of each factor to the signal of C5H5O−6 is
shown with coloured areas for the 6- (top) and 7-factor (bot-
tom) solutions for CNerror (a and c) and PLerror (b and d) to
highlight the changes caused by the increase of the number
of factors for this ion. In addition to reducing the residual for
the peaks in thermograms III and IV by using the CNerror,
the additional factor substantially alters the factor time series
for this ion and is therefore likely affecting our interpretation
of these factors – presumably towards improved accuracy. In-
deed, the “new” factor F3 was identified in Sect. 3.3 as HV3,
which contains the products of the chemical reactions in the
aqueous phase.

This error-scheme-dependent performance of PMF is not
controlled by the signal strength of the ion or the ratio be-
tween signals of combined thermograms. The two example
ions were explicitly chosen because of their similar signal
strength in all thermograms (compare Figs. A1a and A2a).
Instead, it seems that the PLerror does not assign enough
weight to the peak region of the ion thermograms. Thus,
it cannot resolve the changes in peak shape (i.e. the large
shift towards higher desorption temperatures). As the shift is
caused by specific processes in the particle phase, PMF with
the PLerror will not identify these processes.

These two observations, the CNerror explaining more of
the observed variance in general and capturing the complex
chemical processes in the particles, lead us to the conclusion
that the CNerror yields the more interpretable results for this
study and data set and should be used – even though it is not
the “true” measurement error of the data.
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Figure A1. Single ion thermogram (a), residual (b, d), and Qion values (c, e) as time series for solutions with 6, 7, or 10 factors for PMF
run with CNerror (b, c) and PLerror (d, e) for the ion C5H5O−6 . The data set contains thermogram scans for high-O : C SOA particles for the
following sampling conditions: dry – tevap = 0.25 h (I); dry – tevap = 4 (II); wet – tevap = 0.25 h (III); and wet – tevap = 4 h (IV). Note that
the y scaling is the same in panels (b) and (d), but it is much smaller in (e) than in (c).
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Figure A2. Single ion thermogram (a), residuals (b, d), and Qion values (c, e) as time series for solutions with 6, 7, or 10 factors for PMF
run with CNerror (b, c) and PLerror (d, e) for the ion [C7H8O6+ I]−. The data set contains thermogram scans for high-O : C SOA particles
for the following sampling conditions: dry – tevap = 0.25 h (I); dry – tevap = 4 h (II); wet – tevap = 0.25 h (III); and wet – tevap = 4 h (IV).
Note that the y scaling in (e) is much smaller than in (c).
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Figure A3. Combined single ion thermograms of the ion C5H5O−6 and PMF factor thermograms for 6- (a, c) and 7-factor (b, d) solutions.
Left column values (a, b) are calculated with CNerror and right column values (c, d) are calculated with PLerror. The data set contains
thermogram scans for high-O : C SOA particles for the following sampling conditions: dry – tevap = 0.25 h (I); dry – tevap = 4 h (II); wet –
tevap = 0.25 h (III); and wet – tevap = 4 h (IV). Note that generally the factors are not the same between the two error schemes or the two
solutions (i.e. F1 in the 6-factor solution with CNerror is different to F1 in the 7-factor solution with CNerror, etc.).
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Appendix B: Mathematical symbols and notations used
in the equations throughout the paper

Symbol Explanation
X, Xij Data matrix (n×m) and data matrix element
p Number of factors
m Number of observations (mass spectra) in the data set
n Number of ions in the data set
G Factorisation matrix containing the factor thermograms

as columns (n×p)
F Factorisation matrix containing the factor mass spectra

as rows (p×m)
E, Eij Residual matrix and residual matrix element
R, Rij Reconstructed data matrix (R=GF) and reconstructed

data matrix element
S, Sij Measurement error matrix and error matrix element
absVartotal Total absolute variance
absVarexp Explained absolute variance
Ratioexp Ratio of explained to total absolute variance
Q Square of the residual scaled with the error summed

over all ions and observations (mass spectra)
Qexp Expected Q value, in the ideal case, with the “true”

measurement error equal to n×m
Qj Square of the residual scaled with the error summed

over all observations (mass spectra)
Qi Square of the residual scaled with the error

summed over all ions
Qion Square of the residual scaled with the error

for a single ion as time series
Q/Qexp Optimisation parameter in PMF
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