
Journal of Physics: Conference Series

PAPER • OPEN ACCESS

HEP Analyses on Dynamically Allocated Opportunistic Computing
Resources
To cite this article: M J Schnepf et al 2020 J. Phys.: Conf. Ser. 1525 012067

 

View the article online for updates and enhancements.

This content was downloaded from IP address 84.132.35.219 on 13/09/2020 at 18:21

https://doi.org/10.1088/1742-6596/1525/1/012067
https://googleads.g.doubleclick.net/pcs/click?xai=AKAOjssD7ivJlIE-GzbroCzDOKz9t-P5EMk7psrY_BrB1XpVmO3PVc1SQwnHKPTjWRJ6y6TX9S5-T85r6fe5iMV4nEWvvm1tkpm8LLjSVJQFtfYz5wlSkyB2r0xK1Vm1_Thle_jeQ_j0_UbYO83AbieLDu00HQ8weIAnCNiMSPn7LapOpp8PysN98zoVc1fJLrUNg2Ju2ZQHGZvpcUhcrlLfnaqpWRT-VxKOfm8UMo9--VMexOO9rydj&sig=Cg0ArKJSzLfhnlfuNLF3&adurl=http://iopscience.org/books


Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

ACAT 2019

Journal of Physics: Conference Series 1525 (2020) 012067

IOP Publishing

doi:10.1088/1742-6596/1525/1/012067

1

HEP Analyses on Dynamically Allocated

Opportunistic Computing Resources

M J Schnepf, R F von Cube, C Heidecker, M Fischer, M Giffels, E
Kuehn, A Heiss, A Petzold, G Quast and M Sauter

KIT - Karlsruhe Institute of Technology, Germany

E-mail: matthias.schnepf@kit.edu

Abstract. The current experiments in high energy physics (HEP) have a huge data rate. To
convert the measured data, an enormous number of computing resources is needed and will
further increase with upgraded and newer experiments. To fulfill the ever-growing demand the
allocation of additional, potentially only temporary available non-HEP dedicated resources is
important. These so-called opportunistic resources cannot only be used for analyses in general
but are also well-suited to cover the typical unpredictable peak demands for computing resources.
For both use cases, the temporary availability of the opportunistic resources requires a dynamic
allocation, integration, and management, while their heterogeneity requires optimization to
maintain high resource utilization by allocating best matching resources. To find the best
matching resources which should be allocated is challenging due to the unpredictable submission
behavior as well as an ever-changing mixture of workflows with different requirements.

Instead of predicting the best matching resource, we base our decisions on the utilization
of resources. For this reason, we are developing the resource manager TARDIS (Transparent
Adaptive Resource Dynamic Integration System) which manages and dynamically requests or
releases resources. The decision of how many resources TARDIS has to request is implemented
in COBalD (COBald - The Opportunistic Balancing Daemon) to ensure further allocation of
well-used resources while reducing the amount of insufficiently used ones. TARDIS allocates
and manages resources from various resource providers such as HPC centers or commercial and
public clouds while ensuring a dynamic allocation and efficient utilization of these heterogeneous
opportunistic resources.

Furthermore, TARDIS integrates the allocated opportunistic resources into one overlay batch
system which provides a single point of entry for all users. In order to provide the dedicated
HEP software environment, we use virtualization and container technologies.

In this contribution, we give an overview of the dynamic integration of opportunistic
resources via TARDIS/COBalD in our HEP institute as well as how user analyses benefit from
these additional resources.

1. Introduction
High energy physics (HEP) searches for a better understanding of the fundamental forces and
building blocks in our universe. The searches include several analyses from detector studies up to
searches for a specific particle and its behavior. These analyses are divided into workflows such
as event simulation, skimming, and event reconstruction. Each of these workflows has differing
requirements in computing resources: event simulations typically need CPU power and memory,
whereas event analyses are I/O limited. Typically, users submit a big number of jobs of a single
workflow to the batch system. Especially in small batch systems this results in a high demand



ACAT 2019

Journal of Physics: Conference Series 1525 (2020) 012067

IOP Publishing

doi:10.1088/1742-6596/1525/1/012067

2

CVMFS

Drone
batch job

container

VM

user jobsresource provisioning batch system & environment provisioning

Figure 1. A drone provides resources for user jobs with a dedicated software environment.
This can be done via container or virtualization technology.

of resources that might not be available. This common situation prevents the submitted jobs
and other workflows from starting promptly. Additionally, the demand for computing resources
in HEP is increasing due to higher data rates of the experiments [1].

2. Integration of Additional Resources
The most significant part of the computing resources for the LHC collaborations is provided
by the Worldwide LHC Computing Grid (WLCG) [2]. The collaborations integrate resources
from the WLCG sites into their resource pool via the pilot concept [3]. A pilot is a placeholder
job which runs on a Grid site. This pilot job starts a worker node process of the overlay batch
system (OBS), which allows running user jobs on the resources of the Grid site allocated to
the pilot job. In this concept, users interact only with the OBS. This concept works fine for
homogeneous resources where each resource provides the same software environment and similar
hardware.

Other resource providers outside the WLCG, e.g. HPC centers, and commercial clouds
provide computing resources in various hardware and software configurations and different forms,
e.g. as a batch job, or as a virtual machine. To integrate these opportunistic resources into a
resource pool of an OBS, we propose the more generalized drone concept [4]. The drones

ensure a dedicated HEP software environment for resources in different forms independent of
the hardware configuration. This concept enables us to run HEP jobs on resources that are not
designed for HEP.

A drone has several parts which are shown in Figure 1. The resource provisioning part of a
drone depends on how the resources can be allocated. The drone can act as a batch job, virtual
machine or a container in which the software provisioning part runs. The software provisioning
part takes care of running the OBS worker node process and to provide the software environment
required by the job. The drone provides this environment either natively, via virtualization, or
using container technology. The jobs then run inside the provided environment. At our physics
institute, we are using an HTCondor [5] instance as the OBS. HTCondor has built-in support for
docker [6] and Singularity [7] containers, which enables us to run each job in a HEP software
environment. The default software environment includes CVMFS as well as Scientific Linux 6 and
is provided transparently. This enables users to use various computing resource without having
to adapt their code to each resource.

3. Resource Management
The drone concept enables the use of various resources outside of the WLCG. We developed
a resource manager ROCED [8] to enable on-demand provisioning and management of resources
from various providers. We used ROCED to manage drones at the HPC cluster NEMO [9] at



ACAT 2019

Journal of Physics: Conference Series 1525 (2020) 012067

IOP Publishing

doi:10.1088/1742-6596/1525/1/012067

3

Freiburg, Germany. Due to the growing demand for computing resources, we need to integrate
further resources from various different resource providers. ROCED monitors the job queue of the
OBS. Based on the number of jobs that could be run on a particular resource provider, ROCED
decides the number of drones to request from that resource provider. Usually, resources from
different resource providers are heterogeneous. Therefore, ROCED needs to choose the resources
fitting best to the jobs currently in the queue of the OBS. The current version of ROCED does
not assess the goodness of fit when calculating the demand for drones. This results in many
unused resources e.g. unused CPU cores due to insufficient memory for further jobs.

Further issues with the current version of ROCED include the evolving character of job
composition that can result in requirement changes within minutes. Additionally, the availability
of resources is often not known in advance. Instead of predicting this complex situation by
improving ROCED accordingly, we decided to follow a more flexible and dynamic approach. In that
approach, the demand for drones is based on the utilization of the currently running drones.
Thereby, we aggregate similar drones to a pool where each pool is individually managed.
Our implementation of that approach is the COBalD framework (COBalD - the Opportunistic
Balancing Daemon) [10].

COBalD handles abstract resources via pools. It increases the demand for resources in a pool if
the utilization of these resources in the pool is high. If the utilization of the resources in the pool
is low, COBalD will decrease the demand for these resources in that pool. Resources in COBalD

can, for example, represent the number of special batch job slots or the number of drones. This
abstract handling of resources within COBalD means that it cannot handle drones directly.
Therefore, we are developing TARDIS (Transparent Adaptive Resource Dynamic Integration
System) [11]. TARDIS requests and manages drones and also translates the utilization of the
drones so that COBalD can handle it.

The decision about increasing or decreasing the number of drones in a certain pool depends
only on the utilization of that pool. Therefore, a TARDIS instance can be assigned to one pool
at a specific provider and act independently from other TARDIS instances. Our implementation
enables us to react on site-specific issues, where jobs do not run properly. These issues would
result in low utilization of drones and, therefore, to a decreasing number of drones for this
provider and pool. Figure 2 shows the resource management workflow of TARDIS.

Each of the TARDIS instances run independently from each other. Therefore, the system is
more scalable and reliable compared to a setup with ROCED. It also enables various management
policies for different resource providers. At the date of this publication, we use TARDIS in
production state to manage all resources from external resource providers.

4. Current Status
Most of the computing resources used at our physics institute are provided by external resource
providers. In November 2018, we dynamically integrated resources into our OBS from the HPC
cluster NEMO at Freiburg and from the Open Telekom Cloud in the scope of the Helix Nebula
Science cloud project [12]. The local institute resources, including desktop PCs and dedicated
worker nodes, are statically integrated into the OBS. Figure 3 shows the usage as well as the
number of resources, integrated into our OBS.

As can be seen in Figure 3, we did not get as many resources as required to fulfill the demand
of all jobs. This results in the difference between the brown and light blue line in Figure 3.
This is a result of a fixed quota of resources by Open Telekom Cloud and the fair share at the
HPC cluster NEMO. The fair share at an HPC center is one example of why the availability of
resources can vary. Also, the number of jobs shows peak loads which are difficult to predict.

The stacked colored areas show the number of jobs running on one of the integrated resources
weighted with the number of the requested CPU cores. The blue and yellow areas represent the
desktop PCs and dedicated worker nodes located at the physics institute. Some of the CPU



ACAT 2019

Journal of Physics: Conference Series 1525 (2020) 012067

IOP Publishing

doi:10.1088/1742-6596/1525/1/012067

4

External SiteExternal SiteExternal SiteExternal SiteExternal SiteExternal SiteExternal Site
External SiteExternal SiteExternal SiteExternal SiteExternal SiteExternal Site

integrate

into OBS

Local Site

Overlay

Batch System

(OBS)

Job

submission

jobflow

usage

monitoring

Access Point

schedule request 
and start resource

Resource PoolResource Pool

dronedrone

drone

Users

increase

resources

decrease

resources

utilization

usage

monitoring

TA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA ISTA IS

Figure 2. Users interact only with the OBS. The OBS schedules jobs to drones which are
integrated from external sites. Each TARDIS instance monitors the utilization of the resources
of its pool via the OBS. Depending on the utilization, TARDIS requests additional resources or
reduces the number of drones from the provider. The resource provider schedules the drone on
its resource pool. After the drone started, the drone is integrated into the OBS either by itself
or by TARDIS depending on the OBS.

15000

20000

25000

OpenTelekomCloud

NEMO Container

NEMO VM

Desktops (static)

Dedicated WNs (static)

Jobs

Usable resources

01
Nov
2018

31 02 03 04 05 06 07 08 09 10 11

date

0

2000

4000

6000C
P
U

 c
o
re

s

Used CPU cores per site

Figure 3. The brown line shows the number of jobs weighted with the number of requested
CPU cores. The light blue line shows the number of CPU cores which were integrated into the
OBS of the physics institute.

cores could not be matched with a job due to other constraints on the drone such as memory or
disk space and are represented by the difference between the light blue line and the filled colored
areas. However, this is acceptable to provide more resources to the users. The vast amount of



ACAT 2019

Journal of Physics: Conference Series 1525 (2020) 012067

IOP Publishing

doi:10.1088/1742-6596/1525/1/012067

5

additional resources results in a shorter waiting time and enables our users to run not only a
higher number of workflows but also more complex workflows to improve their physics analyses.

5. Further Steps
In this contribution, we showed how we integrate opportunistic resources from different resource
providers with TARDIS and COBalD into an OBS and make these transparently available to
users. Some of the resource providers have a limited network bandwidth. Therefore, we study
the correlation between network utilization and CPU efficiency to include an indirect network
scheduling into TARDIS. Furthermore, we plan to improve the behavior of TARDIS to deal with
very low and high utilization to ensure faster and more efficient resource management. We also
plan to support further resource providers, which gives a broader range of resources. We assume
this will result in a significant increase in the number of resources for our users. This will enable
large-scale scalability tests of our approach and setup.

Acknowledgement
The authors acknowledge support by the state of Baden-Württemberg through bwHPC and the
German Research Foundation (DFG) through grant no INST 39/963-1 FUGG as well as the
support by the DFG-funded Doctoral School ”Karlsruhe School of Elementary and Astroparticle
Physics: Science and Technology”.

References
[1] HEP Software Foundation 2018 A Roadmap for HEP Software and Computing R&D for the 2020s

https://arxiv.org/abs/1712.06982
[2] Eck C et al. 2005 LHC computing Grid : Technical Design Report Technical Design Report LCG,

https://cds.cern.ch/record/840543
[3] Sfiligoi I, Bradley D C, Holzman B, Mhashilkar P, Padhi S and Wurthwein F 2009 The Pilot Way to Grid

Resources Using glideinWMS, 2009 WRI World Congress on Computer Science and Information Engineering
p. 428-432

[4] Schnepf M et al. 2019 Dynamic Integration and Management of Opportunistic Resources for HEP Proceedings
of the 23rd International Conference on Computing in High Energy and Nuclear Physics to be published

[5] HTCondor Team. (2017, August 1) HTCondor 8.6.5 (Version 8.6.5) Zenodo
http://doi.org/10.5281/zenodo.1324566

[6] Docker inc., ”docker” [software], version 17.05.0-ce, Available from https://www.docker.com/ [accessed 2019-
05-10]

[7] Kurtzer GM, Sochat V, Bauer MW, ”singularity” [software], version 2.2.1, 11 May 2017.
https://doi.org/10.1371/journal.pone.0177459

[8] ROCED project, ”ROCED” [software], version 1.0.0, Available from https://github.com/roced-
scheduler/ROCED [accessed 2017-10-12]

[9] Meier K et al. 2016 Dynamic provisioning of a HEP computing infrastructure on a shared hybrid HPC system,
Journal of Physics: Conference Series Volume 762 012012

[10] Fischer M et al. (2018, December 3) MaineKuehn/cobald: Working version for HNSC and ConcurrencyLimits
(Version v0.9.1) Zenodo http://doi.org/10.5281/zenodo.1887873

[11] Giffels M et al. (2018, December 13) MatterMiners/tardis (Version v0.1.0) Zenodo
https://zenodo.org/record/2240606

[12] Helix Nebula Science Cloud, http://www.hnscicloud.eu/ [accessed 2019-05-02]




