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Abstract. Data-intensive end-user analyses in high energy physics require high data
throughput to reach short turnaround cycles. This leads to enormous challenges for storage
and network infrastructure, especially when facing the tremendously increasing amount of data
to be processed during High-Luminosity LHC runs. Including opportunistic resources with
volatile storage systems into the traditional HEP computing facilities makes this situation more
complex.

Bringing data close to the computing units is a promising approach to solve throughput
limitations and improve the overall performance. We focus on coordinated distributed caching
by coordinating workflows to the most suitable hosts in terms of cached files. This allows
optimizing overall processing efficiency of data-intensive workflows and efficiently use limited
cache volume by reducing replication of data on distributed caches.

We developed a NaviX coordination service at KIT that realizes coordinated distributed
caching using XRootD cache proxy server infrastructure and HTCondor batch system. In this
paper, we present the experience gained in operating coordinated distributed caches on cloud
and HPC resources. Furthermore, we show benchmarks of a dedicated high throughput cluster,
the Throughput-Optimized Analysis-System (TOpAS), which is based on the above-mentioned
concept.

1. Introduction
The performance of data-intensive workflows is limited by the data transfer rate [1]. This
is especially significant within a distributed computing infrastructure, where workflows must
access data from remote when it is not available locally. We can avoid bottlenecks regarding
data transfer rates by bringing data processing and storage resources close enough together [2].
Applying this data locality on various scales, e.g. within regional computing clusters or on per-
host basis, allows for individually tuning established computing infrastructures for data-intensive
workflows.

Caching data for realizing data locality fits especially well for HEP workflows that repeatedly
access large amount of data as input. If the throughput for accessing remote data is limited,
repeatedly accessing cached input data leads to an overall optimization of data throughput, and,
thus, the CPU efficiency of workflows waiting for data. While increasing the efficiency of data
processing and thus reducing the processing time, caching reduces the load for shared storage
and network resources.

Conventional caches deployed in a distributed infrastructure might not necessarily be used
in an efficient way. Repeated processing of workflows that might run on different hosts can
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cause duplication of data in multiple caches. We want to avoid duplication, since it wastes
limited cache space, decreases the cache hit rate, and, thus, reduces the total data throughput
rate [2]. Therefore, it is essential to coordinate data placement and schedule workflows to the
most suitable host in terms of data locality.

2. Coordinating distributed caches
We focus on increasing the efficiency of the WLCG Tier 3 computing infrastructure for HEP
workflows including institute and opportunistic resources. There are two main challenges when
coordinating caches in a distributed computing infrastructure: data selection and job to cache
coordination. We need to select data relevant for caching, since we only need to speed up jobs
that are suffering from insufficient data transfer rate. Other jobs will indirectly profit from
resources that are freed faster. Furthermore, we need to coordinate jobs to the most suitable
host in terms of data locality. To foster data locality, we need to influence the batch system,
especially the scheduling jobs to resources. By scheduling of jobs to resources, we directly
influence the placement of data in caches, and, thus, also coordinate data in distributed caches.

3. NaviX — Implementation of job and data coordination
We realized the coordinated distributed caching concept by implementing the coordination
service NaviX [3]. It adds job and data coordination to an HTCondor batch system [4] using
an XRootD [5] caching infrastructure. This section gives a short overview about the working
principle of NaviX. A more detailed description can be found in [6].
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Figure 1. NaviX orchestrates an XRootD caching proxy server infrastructure and an HTCondor

batch system to coordinate jobs to the most suitable computing resource in terms of data locality.

We require an HTCondor batch system and concentrate on data being transferred via the
XRootD protocol. Both are widely used within the HEP community. Since HTCondor does not
natively consider data locality for job to resource scheduling, we need to include this information
by manipulating submitted jobs before they are scheduled. XRootD already provides caching via
so-called caching proxy servers [8] and allows to transparently redirect clients accessing files to
such a caching proxy server 1. A caching proxy server reads the local copy if the file is already
cached, or it streams the accessed file while caching it on the fly for repeated access. Such
XRootD caching proxy servers can be placed within a distributed infrastructure. As shown in
Figure 1, each submitted job triggers the NaviX coordination service to coordinate the job based

1 The transparent redirection of data transfers to the caching proxy server requires XRootD version 4.7 and higher.
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on data locality. Using information about the input data of the job as well as files already cached
within XRootD proxy servers, NaviX calculates how well each cache fits to the job. Based on
the calculated data locality score, it updates the job description to influence the scheduling of
HTCondor. The decision is updated periodically while jobs are waiting for resources to become
available. We need the user to specify the list of input files required for each job, since this can
not be reliably extracted from the job itself.

4. Benchmarking prototype setups for distributed caching
Benchmark results of a first prototype system for coordinated distributed caching were presented
at the CHEP conference in 2018 [6]. We showed that NaviX successfully coordinates jobs to the
most suitable hosts in terms of data locality. It reduced the duplication of data in distributed
caches and improved the overall data throughput by coordinating jobs to the cached data. The
experiences of operating this prototype system allowed us to test the suitability of coordinated
distributed caching on different kinds of resources. In this section, we present benchmark
results of a dedicated high throughput cluster, an HPC cluster, and a cloud resource when
using distributed caches coordinated by NaviX.

4.1. A dedicated high throughput cluster
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Figure 2. HEP analysis benchmark for the
TOpAS cluster using 9 coordinated NVME SSD
caches and accessing data stored on remote Tier
2 center. The dots show the mean value of
420 jobs processed in parallel, the error bars
represent the variance. [7]

We installed the Throughput Optimized Anal-
ysis System (TOpAS), a dedicated high
throughput cluster at the WLCG Tier 1 cen-
ter GridKa. This cluster consists of 11 worker
nodes and is designed for data-intensive end-
user analysis workflows benefiting from fast
network connection to WLCG storage re-
sources. Each worker node has a single 1TB
NVME SSD, and all worker nodes share a
1PB distributed filesystem, both intended for
caching.

First benchmarks of the TOpAS setup use
the NVME SSDs as coordinated cache to
test their usability as fast level-one cache.
We measure the benefit for a data-intensive
CMS jet energy calibration workflow, which
serves as an estimate for benefit for HEP
analysis workflows. The test jobs accessed
data from remote Tier 2 Grid storage elements
to evaluate the benefits of caching within
the WLCG structure. We repeatedly process
the same jobs while increasing the fraction
of cached files in steps of 10%. This allows
scanning for an optimal working point, where jobs profit from optimally combining the data
transfer rate from remote Grid storage elements via network with direct access to local cache.

As Figure 2 shows, processing cached data directly from built-in SSD increased the CPU
efficiency of the workflow by about 20% compared to accessing remote Tier 2 Grid storage
elements. When data transfer from remote Grid storage elements is limited, the high data
transfer rate of built-in caches accelerate the jobs. Speeding up the workflows by 20% CPU
efficiency means, that we can save the same fraction of costs for CPU cores. A realistic speed-up

factor fspeed−up of the cluster depends on fraction
(
naccess−1
naccess

)
of cache read accesses compared

to the total number of file accesses naccess. Comparing the costs for additional SSD caches
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(costSSD ≈ 200e) with additional worker nodes (costwn ≈ 5000e) required for compensating

the lost CPU hours, caching helps to save about
(
1 − 1−fspeed−up

fspeed−up
· costSSD

costwn

)
percent of money.

Even if we assume an average cache hit rate of 80-100% and only 2 file accesses in total, we
get a realistic speed-up factor of fspeed−up = 0.1, which means that we save about 64% money.
Additionally, caching allows for reducing the load for the network and Grid storage infrastructure
by accessing data internally within the cluster. This allows us to reduce costs while freeing
resources for other WLCG users.

4.2. Boosting shared computing infrastructures
We, additionally, investigated the benefits of coordinated distributed caching for shared
computing infrastructures such as cloud and HPC infrastructures. In contrast to TOpAS, we
have to face fluctuating performance of shared storage, computing and network resources, which
complicates optimizing data throughput due to congestion of resources.

We successfully used resources at NEMO HPC cluster at Freiburg [9, 10] and OpenTelekom
cloud [1]. When processing data-intensive workflows on these resources, we observed inefficient
CPU utilization caused by limited data transfer rates between the processing hosts and the
Grid storage elements [11]. We expect an improvement of the data transfer rate, when placing
caching proxy servers directly inside the HPC cluster and the OpenTelekom cloud resources.
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Figure 3. Maximum achievable performance using a cache within the shared NEMO HPC
center (left) and the shared OpenTelekom cloud (right). The dots show the mean value of 420
jobs processed in parallel, the error bars represent the variance. [7]

For measuring the performance gain caused by caching, we used test jobs that only read data
without further processing. Again, we repeatedly processed the same jobs while increasing
the fraction of cached files in steps of 10% to scan for an optimal working point. We
repeated the measurement after one week, and observed different behavior for both, NEMO
and OpenTelekom. The results of the test runs are shown in Figure 3. Since both are shared
resources, the performance of the setup varies over time according to the load caused by other
users. At NEMO, the achievable data throughput is influenced by the load on the network and
the distributed file system used as cache volume. Especially at OpenTelekom, we observe a
different behavior. While the I/O rate of the cache volume was the limiting factor for the first
test run, limited network transfers slow down the second test run. Since we have no detailed
insight into how OpenTelekom provides storage and network in virtual machines, we can not to
determine the exact reasons. We will have to balance performance of network with the cache
volume and need to adapt this decision to the evolving conditions at the different systems due to
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congestion. Whether an increase in performance can be achieved with caching therefore depends
strongly on the resource provider and the utilization of resources. Caching enables the use of
resources that provide storage volume suitable for caching purpose available for processing of
data-intensive HEP analysis workflows. In particular, HPC centers, in which distributed file
systems are usually quickly accessible, can be easily adopted for HEP use.

5. Conclusion
The coordinated distributed caching concept utilizes caches in a distributed computing
infrastructure and coordinates workflows to the most suitable host in terms of data locality. We
have shown that coordinated distributed caches can improve the overall processing efficiency for
data-intensive jobs on specific computing infrastructures.

This concept was realized on the dedicated high throughput system TOpAS. We observed a
performance improvement for a data-intensive HEP workflow when accessing data from built-in
caches instead of remote Tier 2 WLCG Grid storage resources. Here, high data transfer rate
improves the data throughput of jobs and reduces the processing time. By increasing the CPU
efficiency of jobs, caching optimizes the overall data throughput of the cluster, and reduces
costs. Furthermore, we should also consider freeing resources for other WLCG users by caching
as much data as possible.

Additionally, we tested caching at resources not dedicated for HEP usage such as the NEMO
HPC center and the OpenTelekom cloud. Making these resources available for processing HEP
workflows, allows for adding additional CPU resources and, thus, facing increasing need for
computing resources. Here, we observed highly fluctuating performance caused by resources
being shared among different users. When adjusting selection of data for caching and the
scheduling of jobs to cached data to the computing infrastructure and resource provider, we
enable efficient processing of data-intensive HEP workflows.
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