
Journal of Physics: Conference Series

PAPER • OPEN ACCESS

Federation of compute resources available to the German CMS
community
To cite this article: R F von Cube et al 2020 J. Phys.: Conf. Ser. 1525 012055

 

View the article online for updates and enhancements.

This content was downloaded from IP address 84.132.35.219 on 13/09/2020 at 18:51

https://doi.org/10.1088/1742-6596/1525/1/012055
https://googleads.g.doubleclick.net/pcs/click?xai=AKAOjsv313GNlEbvRV3W3IIIVLSP_ptDPptQFBHsXuS-_N4Y2e6eRUeIO5QO3iL3M4Hg9xORcxMheySrbNnuhw4rFE4JEnPtKzIj95ZU56MvCJA6X5e-ONDawjGXIrFBT_gZQF4KjbHb7VkOKNU4QjDH-B8pV79zLh5_E4oAIo5u_4QJYQS5o6nekL9pqkriMMWqBUx8w58QJnEkjSMxbXCj3zWKVFLqLdZVXaauz0pLrSY7JpCHBAtD&sig=Cg0ArKJSzNdEl3x98au_&adurl=http://iopscience.org/books


Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

ACAT 2019

Journal of Physics: Conference Series 1525 (2020) 012055

IOP Publishing

doi:10.1088/1742-6596/1525/1/012055

1

Federation of compute resources available to the

German CMS community

R F von Cube, M Giffels, C Heidecker, G Quast, M B Sauter and
M J Schnepf

KIT – Karlsruhe Institute of Technology, Germany

E-mail: ralf.florian.von.cube@cern.ch

Abstract. The German CMS community (DCMS) as a whole can benefit from the various
compute resources, available to its different institutes. While Grid-enabled and National
Analysis Facility resources are usually shared within the community, local and recently enabled
opportunistic resources like HPC centers and cloud resources are not. Furthermore, there is no
shared submission infrastructure available.

Via HTCondor’s [1] mechanisms to connect resource pools, several remote pools can be
connected transparently to the users and therefore used more efficiently by a multitude of user
groups. In addition to the statically provisioned resources, also dynamically allocated resources
from external cloud providers as well as HPC centers can be integrated. However, the usage
of such dynamically allocated resources gives rise to additional complexity. Constraints on
access policies of the resources, as well as workflow necessities have to be taken care of. To
maintain a well-defined and reliable runtime environment on each resource, virtualization and
containerization technologies such as virtual machines, Docker, and Singularity, are used.

1. Introduction
Recent surveys show that a significant amount of computing resources is locally available to
institutes of the German high energy physics (HEP) community, however not shared among the
national collaborators. Commissioning and federating such resources will enable us to mitigate
the resource shortage in future LHC runs, improve the overall runtime of workflows and increase
the usage efficiency of the resources.

Those resources, combined with the official WLCG [2] resources constitute a rather
heterogeneous, hence challenging environment for administrators, as well as for users: For
each resource there might be different access and usage policies, authorization and thereby
authentication has to be handled, and the users expect a certain runtime environment in order
to execute HEP workflows.

2. HTCondor
Computing payloads are organized as jobs, which consist of an executable and possible input
and output files, and these jobs are scheduled using batch systems. Due to its reliability and
scalability, HTCondor [1] is a very popular choice in HEP. A major part of the German WLCG
resources and many other institutions are already using HTCondor as their batch system. Users
submit jobs to their local HTCondor instance, which then checks within the local pool for
resources which match the requirements. The requirements are defined by the user in the jobs



ACAT 2019

Journal of Physics: Conference Series 1525 (2020) 012055

IOP Publishing

doi:10.1088/1742-6596/1525/1/012055

2

gg g gg g gg g

HTCondor HTCondor HTCondor

Cache

Local
Resource

Local
Resource

Local
Resource

Cache

GPU
Cluster

Cache

HPC
Resource

Cache

Commercial
Cloud

Job Flow

Figure 1. Federating resources from different providers with HTCondor’s flocking mechanism
allows users from different groups to exploit unused resources, and profit from dedicated
hardware, as e.g. high throughput nodes with caching infrastructure, e.g. as described in [5], or
GPU clusters.

submission file. If HTCondor finds a match, it takes care of transferring the executable and the
corresponding input files to the respective resource. Then the job gets executed on this resource
and after finishing, the relevant output files get transferred back.

HTCondor enables automatic execution of jobs in Docker [3] or Singularity [4] containers.
This facilitates deploying the correct runtime environment for each job, no matter on which
resource it is run, as it permits choosing the operating system and supplied software. The
containerization of the jobs is done completely by HTCondor and thus transparent to the user.
This allows to define default container images on each resource, while the user can still opt for
a different image.

HTCondor also offers a so-called flocking mechanism in order to send jobs to remote resource
pools. If configured, jobs for which no match within the local resource pool can be found
become eligible for flocking. Those jobs then get sent to a configured remote resource pool
and run through its match making process. The administrator of the remote resource pool
can configure, how the jobs flocking into the pool are handled. HTCondor takes care of the
authentication and, if a match is found within this pool and the jobs starts running, the file
transfers to the matched resource. With this mechanism, multiple pools can be connected and
jobs can move relatively freely to remote resources in order to find a suitable match. Figure 1
depicts an example.

3. Federating resources
Many groups have access not only to local resources, like desktops or local computing clusters
within their institutes, but also to HPC clusters, cloud computing infrastructure, or more general
other remote computing clusters, which we call opportunistic resources. Using the flocking
mechanism, jobs can be sent to remote resource pools transparently to the user. By integrating
opportunistic resources available to a group into the local resource pool with the pilot concept,
as described in [6] and connecting the pools to one national pool, the overall utilization of
the resources can be optimized, as described in section 3.1. The German HEP infrastructure
is an ideal candidate for applying such concepts, as HTCondor is already widely used, the
funding structure is similar, and collaborations within the German HEP community are already
established. However, this approach can be easily extended to further communities as well.
Flocking can take place on different-level computing resources as described in the following.



ACAT 2019

Journal of Physics: Conference Series 1525 (2020) 012055

IOP Publishing

doi:10.1088/1742-6596/1525/1/012055

3

3.1. Federating resources for end-users
The demand for resources within an institute varies heavily over time. By flocking several
institute’s HTCondor pools this high variation can be mitigated, resulting in 1. a more efficient
usage of the available resources and 2. an overall shorter processing time. Another advantage
is to be able to use dedicated hardware of other groups: For example, a job that runs physics
simulation needs a fast CPU but not an exceptional network connection, whereas an analysis
job performing data-skimming is best located on a resource with high-bandwidth to the storage
elements, but is probably not CPU-limited. By flagging workflows appropriately, the best fitting
resource within all connected groups can be selected.

However, some resources available to local groups might have strict usage policies on who
and what may be processed on them. Such restrictions have to be implemented on the affected
resources taking advantage of the available X.509 infrastructure and the user’s proxy. This is
also only possible using mechanisms like flocking: Other concepts to integrate such resources
require pilot jobs using a proxy-user, so that the remote pool administrators depend on the
administrators of the submission pool to implement the correct policies.

3.2. Federating official WLCG resources
The large HEP experiments usually have access to a Grid infrastructure for performing end-
user analysis, official data processing and simulation tasks. The WLCG for example is a global
infrastructure, commissioned and used by multiple experiments, especially the LHC experiments.
It is organized in an hierarchical structure, with the Tier 0 center located at CERN, 13 Tier 1
centers around the globe, and another roughly 160 Tier 2 centers.

This strict top-down approach requires a very well-defined setting spanning all involved
centers and implies high operational costs, as each provider has to maintain particular services,
provision specific environments and often pledge a 24/7 support-team. A promising alternative
is shifting from dedicated, community-specific resources to inter-community shared resources to
reduce the operational costs. In this setup, jobs could move freely to the most suitable resource.
However, utilizing those resources, possibly located at various places, requires a change in the
computing operations performed by the experiments. This is because it would not be possible
for every experiment to negotiate operation models with each resource provider, even less to
make the resources provide the necessary environment for HEP workflows.

In this heterogeneous environment, detailed knowledge about the resources, for instance,
network or local storage, also helps to increase usage efficiency. In order to achieve this, the
computing model could be adapted, such that the experiments do not decide on which particular
resource to run a production job, but rather submit it to a single point of entry of a region. From
there, it can further be decided whether to run the job on an associated Tier 1 or 2 resource
or to send it to another federated resource, depending on where the data will be processed, or
where the most suitable hardware (e.g. high throughput or GPU) is located.

4. Test setup at KIT
The recently commissioned “Throughput Optimized Analysis System” (TOpAS) at GridKa is
a computing resource designed for high throughput analyses. It consists of eleven worker nodes
and one management node in one HTCondor pool without interactive login. It is described in
more detail in [5]. TOpAS was designed to be a shared resource for joined operation of Tier 1 and
Tier 3 workflows. That is, it should run official production jobs, coming from the Tier 1 WLCG
instance at GridKa in parallel with Tier 3 user jobs from the local physics community. Therefore,
it is not directly integrated in the local infrastructure of the institute. As such, it is an ideal
candidate for testing the federation concepts. As the next step, the two integration mechanisms
flocking and using pilot jobs as discussed in [6] will be assessed for both types of workflows.
After the commissioning phase it will then be integrated with the evaluated mechanisms.



ACAT 2019

Journal of Physics: Conference Series 1525 (2020) 012055

IOP Publishing

doi:10.1088/1742-6596/1525/1/012055

4

The institutes HTCondor instance, used by physicists from various different experiments, is
configured to flock jobs to the cluster. The authentication of hosts and users is done using
the X.509-certificates already provided by WLCG infrastructure. As this infrastructure is
already deployed, the configurational overhead is minimized and the integration is completely
transparent to the users. Based upon recent positive discussions, it is planned to extend the
proof-of-concept at KIT to the first external partner by end of the year.

To simplify running official Tier 1 production, as well as Tier 3 user jobs, all jobs are run in
Docker containers. This way, the correct runtime environment can easily be provided, even if
the operating system would not be supported by the experiment’s software. All software, if not
delivered with the job’s payload, is provided using the “CERN Virtual Machine File System” [7]
(CVMFS). This allows for lightweight container-images.

5. Summary
Using HTCondor’s flocking and other mechanisms for connecting remote resource pools, a
transparent integration of community-shared, distributed computing infrastructure, specialized
clusters or an extension of Grid infrastructure into a single point of entry can be achieved. In
combination with modern container technologies such as Docker or Singularity, this enables the
usage of virtually any resource, also non-HEP dedicated resources.

With this concept, the significant amount of Tier 3 resources sitting in various institutions and
accessible by their local groups can be provided to the whole community in order to maximize
the overall usage efficiency.

References
[1] Thain D et al. 2005 Distributed computing in practice: the Condor experience Concurrency and Computation:

Practice and Experience 17 323–356 URL https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.938

[2] Eck C et al. 2005 LHC computing Grid: Technical Design Report. Version 1.06 (20 Jun 2005) Technical
Design Report LCG (Geneva: CERN) URL https://cds.cern.ch/record/840543

[3] Docker Inc, “Docker” [software], Version 17.05.0-ce. Available from https://www.docker.com/ [accessed 2019-
05-10]

[4] Kurtzer G M et al. 2017 Singularity: Scientific containers for mobility of compute PLOS ONE 12 1–20 URL
https://doi.org/10.1371/journal.pone.0177459

[5] Heidecker C et al. 2019 Boosting Performance of Data-intensive Analysis Workflows with Distributed
Coordinated Caching Journal of Physics: Conference Series (JPCS) In this proceedings, to be published

[6] Schnepf M J et al. 2019 HEP Analyses on Dynamically Allocated Opportunistic Computing Resources Journal
of Physics: Conference Series (JPCS) In this proceedings, to be published

[7] Blomer J et al. 2015 The Evolution of Global Scale Filesystems for Scientific Software Distribution Computing
in Science Engineering 17 61–71

https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.938
https://cds.cern.ch/record/840543
https://doi.org/10.1371/journal.pone.0177459

